blob: c07d985a09d1ff230b5e64643647b60db6ef1f41 [file] [log] [blame]
//===-- LiveStacks.cpp - Live Stack Slot Analysis -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the live stack slot analysis pass. It is analogous to
// live interval analysis except it's analyzing liveness of stack slots rather
// than registers.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Function.h"
using namespace llvm;
#define DEBUG_TYPE "livestacks"
char LiveStacksWrapperLegacy::ID = 0;
INITIALIZE_PASS_BEGIN(LiveStacksWrapperLegacy, DEBUG_TYPE,
"Live Stack Slot Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
INITIALIZE_PASS_END(LiveStacksWrapperLegacy, DEBUG_TYPE,
"Live Stack Slot Analysis", false, true)
char &llvm::LiveStacksID = LiveStacksWrapperLegacy::ID;
void LiveStacksWrapperLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addPreserved<SlotIndexesWrapperPass>();
AU.addRequiredTransitive<SlotIndexesWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void LiveStacks::releaseMemory() {
// Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
VNInfoAllocator.Reset();
S2IMap.clear();
S2RCMap.clear();
}
void LiveStacks::init(MachineFunction &MF) {
TRI = MF.getSubtarget().getRegisterInfo();
// FIXME: No analysis is being done right now. We are relying on the
// register allocators to provide the information.
}
LiveInterval &
LiveStacks::getOrCreateInterval(int Slot, const TargetRegisterClass *RC) {
assert(Slot >= 0 && "Spill slot indice must be >= 0");
SS2IntervalMap::iterator I = S2IMap.find(Slot);
if (I == S2IMap.end()) {
I = S2IMap
.emplace(
std::piecewise_construct, std::forward_as_tuple(Slot),
std::forward_as_tuple(Register::index2StackSlot(Slot), 0.0F))
.first;
S2RCMap.insert(std::make_pair(Slot, RC));
} else {
// Use the largest common subclass register class.
const TargetRegisterClass *&OldRC = S2RCMap[Slot];
OldRC = TRI->getCommonSubClass(OldRC, RC);
}
return I->second;
}
AnalysisKey LiveStacksAnalysis::Key;
LiveStacks LiveStacksAnalysis::run(MachineFunction &MF,
MachineFunctionAnalysisManager &) {
LiveStacks Impl;
Impl.init(MF);
return Impl;
}
PreservedAnalyses
LiveStacksPrinterPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &AM) {
AM.getResult<LiveStacksAnalysis>(MF).print(OS, MF.getFunction().getParent());
return PreservedAnalyses::all();
}
bool LiveStacksWrapperLegacy::runOnMachineFunction(MachineFunction &MF) {
Impl = LiveStacks();
Impl.init(MF);
return false;
}
void LiveStacksWrapperLegacy::releaseMemory() { Impl = LiveStacks(); }
void LiveStacksWrapperLegacy::print(raw_ostream &OS, const Module *) const {
Impl.print(OS);
}
/// print - Implement the dump method.
void LiveStacks::print(raw_ostream &OS, const Module*) const {
OS << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
I->second.print(OS);
int Slot = I->first;
const TargetRegisterClass *RC = getIntervalRegClass(Slot);
if (RC)
OS << " [" << TRI->getRegClassName(RC) << "]\n";
else
OS << " [Unknown]\n";
}
}