|  | //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Compiler.h" | 
|  | #include "ByteCodeEmitter.h" | 
|  | #include "Context.h" | 
|  | #include "FixedPoint.h" | 
|  | #include "Floating.h" | 
|  | #include "Function.h" | 
|  | #include "InterpShared.h" | 
|  | #include "PrimType.h" | 
|  | #include "Program.h" | 
|  | #include "clang/AST/Attr.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace clang::interp; | 
|  |  | 
|  | using APSInt = llvm::APSInt; | 
|  |  | 
|  | namespace clang { | 
|  | namespace interp { | 
|  |  | 
|  | static std::optional<bool> getBoolValue(const Expr *E) { | 
|  | if (const auto *CE = dyn_cast_if_present<ConstantExpr>(E); | 
|  | CE && CE->hasAPValueResult() && | 
|  | CE->getResultAPValueKind() == APValue::ValueKind::Int) { | 
|  | return CE->getResultAsAPSInt().getBoolValue(); | 
|  | } | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | /// Scope used to handle temporaries in toplevel variable declarations. | 
|  | template <class Emitter> class DeclScope final : public LocalScope<Emitter> { | 
|  | public: | 
|  | DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) | 
|  | : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P), | 
|  | OldInitializingDecl(Ctx->InitializingDecl) { | 
|  | Ctx->InitializingDecl = VD; | 
|  | Ctx->InitStack.push_back(InitLink::Decl(VD)); | 
|  | } | 
|  |  | 
|  | ~DeclScope() { | 
|  | this->Ctx->InitializingDecl = OldInitializingDecl; | 
|  | this->Ctx->InitStack.pop_back(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | Program::DeclScope Scope; | 
|  | const ValueDecl *OldInitializingDecl; | 
|  | }; | 
|  |  | 
|  | /// Scope used to handle initialization methods. | 
|  | template <class Emitter> class OptionScope final { | 
|  | public: | 
|  | /// Root constructor, compiling or discarding primitives. | 
|  | OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, | 
|  | bool NewInitializing) | 
|  | : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), | 
|  | OldInitializing(Ctx->Initializing) { | 
|  | Ctx->DiscardResult = NewDiscardResult; | 
|  | Ctx->Initializing = NewInitializing; | 
|  | } | 
|  |  | 
|  | ~OptionScope() { | 
|  | Ctx->DiscardResult = OldDiscardResult; | 
|  | Ctx->Initializing = OldInitializing; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Parent context. | 
|  | Compiler<Emitter> *Ctx; | 
|  | /// Old discard flag to restore. | 
|  | bool OldDiscardResult; | 
|  | bool OldInitializing; | 
|  | }; | 
|  |  | 
|  | template <class Emitter> | 
|  | bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { | 
|  | switch (Kind) { | 
|  | case K_This: | 
|  | return Ctx->emitThis(E); | 
|  | case K_Field: | 
|  | // We're assuming there's a base pointer on the stack already. | 
|  | return Ctx->emitGetPtrFieldPop(Offset, E); | 
|  | case K_Temp: | 
|  | return Ctx->emitGetPtrLocal(Offset, E); | 
|  | case K_Decl: | 
|  | return Ctx->visitDeclRef(D, E); | 
|  | case K_Elem: | 
|  | if (!Ctx->emitConstUint32(Offset, E)) | 
|  | return false; | 
|  | return Ctx->emitArrayElemPtrPopUint32(E); | 
|  | case K_RVO: | 
|  | return Ctx->emitRVOPtr(E); | 
|  | case K_InitList: | 
|  | return true; | 
|  | default: | 
|  | llvm_unreachable("Unhandled InitLink kind"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Scope managing label targets. | 
|  | template <class Emitter> class LabelScope { | 
|  | public: | 
|  | virtual ~LabelScope() {} | 
|  |  | 
|  | protected: | 
|  | LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} | 
|  | /// Compiler instance. | 
|  | Compiler<Emitter> *Ctx; | 
|  | }; | 
|  |  | 
|  | /// Sets the context for break/continue statements. | 
|  | template <class Emitter> class LoopScope final : public LabelScope<Emitter> { | 
|  | public: | 
|  | using LabelTy = typename Compiler<Emitter>::LabelTy; | 
|  | using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; | 
|  |  | 
|  | LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) | 
|  | : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), | 
|  | OldContinueLabel(Ctx->ContinueLabel), | 
|  | OldBreakVarScope(Ctx->BreakVarScope), | 
|  | OldContinueVarScope(Ctx->ContinueVarScope) { | 
|  | this->Ctx->BreakLabel = BreakLabel; | 
|  | this->Ctx->ContinueLabel = ContinueLabel; | 
|  | this->Ctx->BreakVarScope = this->Ctx->VarScope; | 
|  | this->Ctx->ContinueVarScope = this->Ctx->VarScope; | 
|  | } | 
|  |  | 
|  | ~LoopScope() { | 
|  | this->Ctx->BreakLabel = OldBreakLabel; | 
|  | this->Ctx->ContinueLabel = OldContinueLabel; | 
|  | this->Ctx->ContinueVarScope = OldContinueVarScope; | 
|  | this->Ctx->BreakVarScope = OldBreakVarScope; | 
|  | } | 
|  |  | 
|  | private: | 
|  | OptLabelTy OldBreakLabel; | 
|  | OptLabelTy OldContinueLabel; | 
|  | VariableScope<Emitter> *OldBreakVarScope; | 
|  | VariableScope<Emitter> *OldContinueVarScope; | 
|  | }; | 
|  |  | 
|  | // Sets the context for a switch scope, mapping labels. | 
|  | template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { | 
|  | public: | 
|  | using LabelTy = typename Compiler<Emitter>::LabelTy; | 
|  | using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; | 
|  | using CaseMap = typename Compiler<Emitter>::CaseMap; | 
|  |  | 
|  | SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, | 
|  | OptLabelTy DefaultLabel) | 
|  | : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), | 
|  | OldDefaultLabel(this->Ctx->DefaultLabel), | 
|  | OldCaseLabels(std::move(this->Ctx->CaseLabels)), | 
|  | OldLabelVarScope(Ctx->BreakVarScope) { | 
|  | this->Ctx->BreakLabel = BreakLabel; | 
|  | this->Ctx->DefaultLabel = DefaultLabel; | 
|  | this->Ctx->CaseLabels = std::move(CaseLabels); | 
|  | this->Ctx->BreakVarScope = this->Ctx->VarScope; | 
|  | } | 
|  |  | 
|  | ~SwitchScope() { | 
|  | this->Ctx->BreakLabel = OldBreakLabel; | 
|  | this->Ctx->DefaultLabel = OldDefaultLabel; | 
|  | this->Ctx->CaseLabels = std::move(OldCaseLabels); | 
|  | this->Ctx->BreakVarScope = OldLabelVarScope; | 
|  | } | 
|  |  | 
|  | private: | 
|  | OptLabelTy OldBreakLabel; | 
|  | OptLabelTy OldDefaultLabel; | 
|  | CaseMap OldCaseLabels; | 
|  | VariableScope<Emitter> *OldLabelVarScope; | 
|  | }; | 
|  |  | 
|  | template <class Emitter> class StmtExprScope final { | 
|  | public: | 
|  | StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { | 
|  | Ctx->InStmtExpr = true; | 
|  | } | 
|  |  | 
|  | ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } | 
|  |  | 
|  | private: | 
|  | Compiler<Emitter> *Ctx; | 
|  | bool OldFlag; | 
|  | }; | 
|  |  | 
|  | } // namespace interp | 
|  | } // namespace clang | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { | 
|  | const Expr *SubExpr = CE->getSubExpr(); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->delegate(SubExpr); | 
|  |  | 
|  | switch (CE->getCastKind()) { | 
|  | case CK_LValueToRValue: { | 
|  | if (SubExpr->getType().isVolatileQualified()) | 
|  | return this->emitInvalidCast(CastKind::Volatile, /*Fatal=*/true, CE); | 
|  |  | 
|  | OptPrimType SubExprT = classify(SubExpr->getType()); | 
|  | // Prepare storage for the result. | 
|  | if (!Initializing && !SubExprT) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, CE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (SubExprT) | 
|  | return this->emitLoadPop(*SubExprT, CE); | 
|  |  | 
|  | // If the subexpr type is not primitive, we need to perform a copy here. | 
|  | // This happens for example in C when dereferencing a pointer of struct | 
|  | // type. | 
|  | return this->emitMemcpy(CE); | 
|  | } | 
|  |  | 
|  | case CK_DerivedToBaseMemberPointer: { | 
|  | assert(classifyPrim(CE->getType()) == PT_MemberPtr); | 
|  | assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); | 
|  | const auto *FromMP = SubExpr->getType()->castAs<MemberPointerType>(); | 
|  | const auto *ToMP = CE->getType()->castAs<MemberPointerType>(); | 
|  |  | 
|  | unsigned DerivedOffset = | 
|  | Ctx.collectBaseOffset(ToMP->getMostRecentCXXRecordDecl(), | 
|  | FromMP->getMostRecentCXXRecordDecl()); | 
|  |  | 
|  | if (!this->delegate(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | return this->emitGetMemberPtrBasePop(DerivedOffset, CE); | 
|  | } | 
|  |  | 
|  | case CK_BaseToDerivedMemberPointer: { | 
|  | assert(classifyPrim(CE) == PT_MemberPtr); | 
|  | assert(classifyPrim(SubExpr) == PT_MemberPtr); | 
|  | const auto *FromMP = SubExpr->getType()->castAs<MemberPointerType>(); | 
|  | const auto *ToMP = CE->getType()->castAs<MemberPointerType>(); | 
|  |  | 
|  | unsigned DerivedOffset = | 
|  | Ctx.collectBaseOffset(FromMP->getMostRecentCXXRecordDecl(), | 
|  | ToMP->getMostRecentCXXRecordDecl()); | 
|  |  | 
|  | if (!this->delegate(SubExpr)) | 
|  | return false; | 
|  | return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); | 
|  | } | 
|  |  | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_DerivedToBase: { | 
|  | if (!this->delegate(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { | 
|  | if (const auto *PT = dyn_cast<PointerType>(Ty)) | 
|  | return PT->getPointeeType()->getAsCXXRecordDecl(); | 
|  | return Ty->getAsCXXRecordDecl(); | 
|  | }; | 
|  |  | 
|  | // FIXME: We can express a series of non-virtual casts as a single | 
|  | // GetPtrBasePop op. | 
|  | QualType CurType = SubExpr->getType(); | 
|  | for (const CXXBaseSpecifier *B : CE->path()) { | 
|  | if (B->isVirtual()) { | 
|  | if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) | 
|  | return false; | 
|  | CurType = B->getType(); | 
|  | } else { | 
|  | unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); | 
|  | if (!this->emitGetPtrBasePop( | 
|  | DerivedOffset, /*NullOK=*/CE->getType()->isPointerType(), CE)) | 
|  | return false; | 
|  | CurType = B->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_BaseToDerived: { | 
|  | if (!this->delegate(SubExpr)) | 
|  | return false; | 
|  | unsigned DerivedOffset = | 
|  | collectBaseOffset(SubExpr->getType(), CE->getType()); | 
|  |  | 
|  | const Type *TargetType = CE->getType().getTypePtr(); | 
|  | if (TargetType->isPointerOrReferenceType()) | 
|  | TargetType = TargetType->getPointeeType().getTypePtr(); | 
|  | return this->emitGetPtrDerivedPop(DerivedOffset, | 
|  | /*NullOK=*/CE->getType()->isPointerType(), | 
|  | TargetType, CE); | 
|  | } | 
|  |  | 
|  | case CK_FloatingCast: { | 
|  | // HLSL uses CK_FloatingCast to cast between vectors. | 
|  | if (!SubExpr->getType()->isFloatingType() || | 
|  | !CE->getType()->isFloatingType()) | 
|  | return false; | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); | 
|  | return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); | 
|  | } | 
|  |  | 
|  | case CK_IntegralToFloating: { | 
|  | if (!CE->getType()->isRealFloatingType()) | 
|  | return false; | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); | 
|  | return this->emitCastIntegralFloating( | 
|  | classifyPrim(SubExpr), TargetSemantics, getFPOptions(CE), CE); | 
|  | } | 
|  |  | 
|  | case CK_FloatingToBoolean: { | 
|  | if (!SubExpr->getType()->isRealFloatingType() || | 
|  | !CE->getType()->isBooleanType()) | 
|  | return false; | 
|  | if (const auto *FL = dyn_cast<FloatingLiteral>(SubExpr)) | 
|  | return this->emitConstBool(FL->getValue().isNonZero(), CE); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitCastFloatingIntegralBool(getFPOptions(CE), CE); | 
|  | } | 
|  |  | 
|  | case CK_FloatingToIntegral: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | PrimType ToT = classifyPrim(CE); | 
|  | if (ToT == PT_IntAP) | 
|  | return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), | 
|  | getFPOptions(CE), CE); | 
|  | if (ToT == PT_IntAPS) | 
|  | return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), | 
|  | getFPOptions(CE), CE); | 
|  |  | 
|  | return this->emitCastFloatingIntegral(ToT, getFPOptions(CE), CE); | 
|  | } | 
|  |  | 
|  | case CK_NullToPointer: | 
|  | case CK_NullToMemberPointer: { | 
|  | if (!this->discard(SubExpr)) | 
|  | return false; | 
|  | const Descriptor *Desc = nullptr; | 
|  | const QualType PointeeType = CE->getType()->getPointeeType(); | 
|  | if (!PointeeType.isNull()) { | 
|  | if (OptPrimType T = classify(PointeeType)) | 
|  | Desc = P.createDescriptor(SubExpr, *T); | 
|  | else | 
|  | Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(), | 
|  | std::nullopt, /*IsConst=*/true); | 
|  | } | 
|  |  | 
|  | uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(CE->getType()); | 
|  | return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE); | 
|  | } | 
|  |  | 
|  | case CK_PointerToIntegral: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | // If SubExpr doesn't result in a pointer, make it one. | 
|  | if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { | 
|  | assert(isPtrType(FromT)); | 
|  | if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PrimType T = classifyPrim(CE->getType()); | 
|  | if (T == PT_IntAP) | 
|  | return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), | 
|  | CE); | 
|  | if (T == PT_IntAPS) | 
|  | return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), | 
|  | CE); | 
|  | return this->emitCastPointerIntegral(T, CE); | 
|  | } | 
|  |  | 
|  | case CK_ArrayToPointerDecay: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitArrayDecay(CE); | 
|  | } | 
|  |  | 
|  | case CK_IntegralToPointer: { | 
|  | QualType IntType = SubExpr->getType(); | 
|  | assert(IntType->isIntegralOrEnumerationType()); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | // FIXME: I think the discard is wrong since the int->ptr cast might cause a | 
|  | // diagnostic. | 
|  | PrimType T = classifyPrim(IntType); | 
|  | QualType PtrType = CE->getType(); | 
|  | const Descriptor *Desc; | 
|  | if (OptPrimType T = classify(PtrType->getPointeeType())) | 
|  | Desc = P.createDescriptor(SubExpr, *T); | 
|  | else if (PtrType->getPointeeType()->isVoidType()) | 
|  | Desc = nullptr; | 
|  | else | 
|  | Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), | 
|  | Descriptor::InlineDescMD, /*IsConst=*/true); | 
|  |  | 
|  | if (!this->emitGetIntPtr(T, Desc, CE)) | 
|  | return false; | 
|  |  | 
|  | PrimType DestPtrT = classifyPrim(PtrType); | 
|  | if (DestPtrT == PT_Ptr) | 
|  | return true; | 
|  |  | 
|  | // In case we're converting the integer to a non-Pointer. | 
|  | return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); | 
|  | } | 
|  |  | 
|  | case CK_AtomicToNonAtomic: | 
|  | case CK_ConstructorConversion: | 
|  | case CK_FunctionToPointerDecay: | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_NoOp: | 
|  | case CK_UserDefinedConversion: | 
|  | case CK_AddressSpaceConversion: | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | return this->delegate(SubExpr); | 
|  |  | 
|  | case CK_BitCast: { | 
|  | // Reject bitcasts to atomic types. | 
|  | if (CE->getType()->isAtomicType()) { | 
|  | if (!this->discard(SubExpr)) | 
|  | return false; | 
|  | return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); | 
|  | } | 
|  | QualType SubExprTy = SubExpr->getType(); | 
|  | OptPrimType FromT = classify(SubExprTy); | 
|  | // Casts from integer/vector to vector. | 
|  | if (CE->getType()->isVectorType()) | 
|  | return this->emitBuiltinBitCast(CE); | 
|  |  | 
|  | OptPrimType ToT = classify(CE->getType()); | 
|  | if (!FromT || !ToT) | 
|  | return false; | 
|  |  | 
|  | assert(isPtrType(*FromT)); | 
|  | assert(isPtrType(*ToT)); | 
|  | if (FromT == ToT) { | 
|  | if (CE->getType()->isVoidPointerType()) | 
|  | return this->delegate(SubExpr); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (CE->getType()->isFunctionPointerType()) | 
|  | return true; | 
|  | if (FromT == PT_Ptr) | 
|  | return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitDecayPtr(*FromT, *ToT, CE); | 
|  | } | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_FixedPointToBoolean: { | 
|  | // HLSL uses this to cast to one-element vectors. | 
|  | OptPrimType FromT = classify(SubExpr->getType()); | 
|  | if (!FromT) | 
|  | return false; | 
|  |  | 
|  | if (const auto *IL = dyn_cast<IntegerLiteral>(SubExpr)) | 
|  | return this->emitConst(IL->getValue(), CE); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitCast(*FromT, classifyPrim(CE), CE); | 
|  | } | 
|  |  | 
|  | case CK_BooleanToSignedIntegral: | 
|  | case CK_IntegralCast: { | 
|  | OptPrimType FromT = classify(SubExpr->getType()); | 
|  | OptPrimType ToT = classify(CE->getType()); | 
|  | if (!FromT || !ToT) | 
|  | return false; | 
|  |  | 
|  | // Try to emit a casted known constant value directly. | 
|  | if (const auto *IL = dyn_cast<IntegerLiteral>(SubExpr)) { | 
|  | if (ToT != PT_IntAP && ToT != PT_IntAPS && FromT != PT_IntAP && | 
|  | FromT != PT_IntAPS && !CE->getType()->isEnumeralType()) | 
|  | return this->emitConst(IL->getValue(), CE); | 
|  | if (!this->emitConst(IL->getValue(), SubExpr)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Possibly diagnose casts to enum types if the target type does not | 
|  | // have a fixed size. | 
|  | if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { | 
|  | if (const auto *ET = CE->getType().getCanonicalType()->castAs<EnumType>(); | 
|  | !ET->getDecl()->isFixed()) { | 
|  | if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ToT == PT_IntAP) { | 
|  | if (!this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE)) | 
|  | return false; | 
|  | } else if (ToT == PT_IntAPS) { | 
|  | if (!this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE)) | 
|  | return false; | 
|  | } else { | 
|  | if (FromT == ToT) | 
|  | return true; | 
|  | if (!this->emitCast(*FromT, *ToT, CE)) | 
|  | return false; | 
|  | } | 
|  | if (CE->getCastKind() == CK_BooleanToSignedIntegral) | 
|  | return this->emitNeg(*ToT, CE); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_PointerToBoolean: | 
|  | case CK_MemberPointerToBoolean: { | 
|  | PrimType PtrT = classifyPrim(SubExpr->getType()); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitIsNonNull(PtrT, CE); | 
|  | } | 
|  |  | 
|  | case CK_IntegralComplexToBoolean: | 
|  | case CK_FloatingComplexToBoolean: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitComplexBoolCast(SubExpr); | 
|  | } | 
|  |  | 
|  | case CK_IntegralComplexToReal: | 
|  | case CK_FloatingComplexToReal: | 
|  | return this->emitComplexReal(SubExpr); | 
|  |  | 
|  | case CK_IntegralRealToComplex: | 
|  | case CK_FloatingRealToComplex: { | 
|  | // We're creating a complex value here, so we need to | 
|  | // allocate storage for it. | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateTemporary(CE); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, CE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PrimType T = classifyPrim(SubExpr->getType()); | 
|  | // Init the complex value to {SubExpr, 0}. | 
|  | if (!this->visitArrayElemInit(0, SubExpr, T)) | 
|  | return false; | 
|  | // Zero-init the second element. | 
|  | if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) | 
|  | return false; | 
|  | return this->emitInitElem(T, 1, SubExpr); | 
|  | } | 
|  |  | 
|  | case CK_IntegralComplexCast: | 
|  | case CK_FloatingComplexCast: | 
|  | case CK_IntegralComplexToFloatingComplex: | 
|  | case CK_FloatingComplexToIntegralComplex: { | 
|  | assert(CE->getType()->isAnyComplexType()); | 
|  | assert(SubExpr->getType()->isAnyComplexType()); | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(CE); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, CE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Location for the SubExpr. | 
|  | // Since SubExpr is of complex type, visiting it results in a pointer | 
|  | // anyway, so we just create a temporary pointer variable. | 
|  | unsigned SubExprOffset = | 
|  | allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) | 
|  | return false; | 
|  |  | 
|  | PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); | 
|  | QualType DestElemType = | 
|  | CE->getType()->getAs<ComplexType>()->getElementType(); | 
|  | PrimType DestElemT = classifyPrim(DestElemType); | 
|  | // Cast both elements individually. | 
|  | for (unsigned I = 0; I != 2; ++I) { | 
|  | if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPop(SourceElemT, I, CE)) | 
|  | return false; | 
|  |  | 
|  | // Do the cast. | 
|  | if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) | 
|  | return false; | 
|  |  | 
|  | // Save the value. | 
|  | if (!this->emitInitElem(DestElemT, I, CE)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_VectorSplat: { | 
|  | assert(!classify(CE->getType())); | 
|  | assert(classify(SubExpr->getType())); | 
|  | assert(CE->getType()->isVectorType()); | 
|  |  | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(CE); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, CE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto *VT = CE->getType()->getAs<VectorType>(); | 
|  | PrimType ElemT = classifyPrim(SubExpr->getType()); | 
|  | unsigned ElemOffset = | 
|  | allocateLocalPrimitive(SubExpr, ElemT, /*IsConst=*/true); | 
|  |  | 
|  | // Prepare a local variable for the scalar value. | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitSetLocal(ElemT, ElemOffset, CE)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned I = 0; I != VT->getNumElements(); ++I) { | 
|  | if (!this->emitGetLocal(ElemT, ElemOffset, CE)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, I, CE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CK_HLSLVectorTruncation: { | 
|  | assert(SubExpr->getType()->isVectorType()); | 
|  | if (OptPrimType ResultT = classify(CE)) { | 
|  | assert(!DiscardResult); | 
|  | // Result must be either a float or integer. Take the first element. | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitArrayElemPop(*ResultT, 0, CE); | 
|  | } | 
|  | // Otherwise, this truncates from one vector type to another. | 
|  | assert(CE->getType()->isVectorType()); | 
|  |  | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateTemporary(CE); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, CE)) | 
|  | return false; | 
|  | } | 
|  | unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); | 
|  | assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0, | 
|  | ToSize, CE); | 
|  | }; | 
|  |  | 
|  | case CK_IntegralToFixedPoint: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | auto Sem = | 
|  | Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt(); | 
|  | return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), | 
|  | Sem, CE); | 
|  | } | 
|  | case CK_FloatingToFixedPoint: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | auto Sem = | 
|  | Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt(); | 
|  | return this->emitCastFloatingFixedPoint(Sem, CE); | 
|  | } | 
|  | case CK_FixedPointToFloating: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); | 
|  | return this->emitCastFixedPointFloating(TargetSemantics, CE); | 
|  | } | 
|  | case CK_FixedPointToIntegral: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); | 
|  | } | 
|  | case CK_FixedPointCast: { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | auto Sem = | 
|  | Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt(); | 
|  | return this->emitCastFixedPoint(Sem, CE); | 
|  | } | 
|  |  | 
|  | case CK_ToVoid: | 
|  | return discard(SubExpr); | 
|  |  | 
|  | default: | 
|  | return this->emitInvalid(CE); | 
|  | } | 
|  | llvm_unreachable("Unhandled clang::CastKind enum"); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { | 
|  | return this->emitBuiltinBitCast(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | return this->emitConst(LE->getValue(), LE); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | APFloat F = E->getValue(); | 
|  | return this->emitFloat(F, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { | 
|  | assert(E->getType()->isAnyComplexType()); | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateTemporary(E); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | PrimType SubExprT = classifyPrim(SubExpr->getType()); | 
|  |  | 
|  | if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) | 
|  | return false; | 
|  | if (!this->emitInitElem(SubExprT, 0, SubExpr)) | 
|  | return false; | 
|  | return this->visitArrayElemInit(1, SubExpr, SubExprT); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { | 
|  | assert(E->getType()->isFixedPointType()); | 
|  | assert(classifyPrim(E) == PT_FixedPoint); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); | 
|  | APInt Value = E->getValue(); | 
|  | return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { | 
|  | return this->delegate(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { | 
|  | // Need short-circuiting for these. | 
|  | if (BO->isLogicalOp() && !BO->getType()->isVectorType()) | 
|  | return this->VisitLogicalBinOp(BO); | 
|  |  | 
|  | const Expr *LHS = BO->getLHS(); | 
|  | const Expr *RHS = BO->getRHS(); | 
|  |  | 
|  | // Handle comma operators. Just discard the LHS | 
|  | // and delegate to RHS. | 
|  | if (BO->isCommaOp()) { | 
|  | if (!this->discard(LHS)) | 
|  | return false; | 
|  | if (RHS->getType()->isVoidType()) | 
|  | return this->discard(RHS); | 
|  |  | 
|  | return this->delegate(RHS); | 
|  | } | 
|  |  | 
|  | if (BO->getType()->isAnyComplexType()) | 
|  | return this->VisitComplexBinOp(BO); | 
|  | if (BO->getType()->isVectorType()) | 
|  | return this->VisitVectorBinOp(BO); | 
|  | if ((LHS->getType()->isAnyComplexType() || | 
|  | RHS->getType()->isAnyComplexType()) && | 
|  | BO->isComparisonOp()) | 
|  | return this->emitComplexComparison(LHS, RHS, BO); | 
|  | if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) | 
|  | return this->VisitFixedPointBinOp(BO); | 
|  |  | 
|  | if (BO->isPtrMemOp()) { | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitToMemberPtr(BO)) | 
|  | return false; | 
|  |  | 
|  | if (classifyPrim(BO) == PT_MemberPtr) | 
|  | return true; | 
|  |  | 
|  | if (!this->emitCastMemberPtrPtr(BO)) | 
|  | return false; | 
|  | return DiscardResult ? this->emitPopPtr(BO) : true; | 
|  | } | 
|  |  | 
|  | // Typecheck the args. | 
|  | OptPrimType LT = classify(LHS); | 
|  | OptPrimType RT = classify(RHS); | 
|  | OptPrimType T = classify(BO->getType()); | 
|  |  | 
|  | // Special case for C++'s three-way/spaceship operator <=>, which | 
|  | // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't | 
|  | // have a PrimType). | 
|  | if (!T && BO->getOpcode() == BO_Cmp) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | const ComparisonCategoryInfo *CmpInfo = | 
|  | Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); | 
|  | assert(CmpInfo); | 
|  |  | 
|  | // We need a temporary variable holding our return value. | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> ResultIndex = this->allocateLocal(BO); | 
|  | if (!this->emitGetPtrLocal(*ResultIndex, BO)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!visit(LHS) || !visit(RHS)) | 
|  | return false; | 
|  |  | 
|  | return this->emitCMP3(*LT, CmpInfo, BO); | 
|  | } | 
|  |  | 
|  | if (!LT || !RT || !T) | 
|  | return false; | 
|  |  | 
|  | // Pointer arithmetic special case. | 
|  | if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { | 
|  | if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) | 
|  | return this->VisitPointerArithBinOp(BO); | 
|  | } | 
|  |  | 
|  | if (BO->getOpcode() == BO_Assign) | 
|  | return this->visitAssignment(LHS, RHS, BO); | 
|  |  | 
|  | if (!visit(LHS) || !visit(RHS)) | 
|  | return false; | 
|  |  | 
|  | // For languages such as C, cast the result of one | 
|  | // of our comparision opcodes to T (which is usually int). | 
|  | auto MaybeCastToBool = [this, T, BO](bool Result) { | 
|  | if (!Result) | 
|  | return false; | 
|  | if (DiscardResult) | 
|  | return this->emitPop(*T, BO); | 
|  | if (T != PT_Bool) | 
|  | return this->emitCast(PT_Bool, *T, BO); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | auto Discard = [this, T, BO](bool Result) { | 
|  | if (!Result) | 
|  | return false; | 
|  | return DiscardResult ? this->emitPop(*T, BO) : true; | 
|  | }; | 
|  |  | 
|  | switch (BO->getOpcode()) { | 
|  | case BO_EQ: | 
|  | return MaybeCastToBool(this->emitEQ(*LT, BO)); | 
|  | case BO_NE: | 
|  | return MaybeCastToBool(this->emitNE(*LT, BO)); | 
|  | case BO_LT: | 
|  | return MaybeCastToBool(this->emitLT(*LT, BO)); | 
|  | case BO_LE: | 
|  | return MaybeCastToBool(this->emitLE(*LT, BO)); | 
|  | case BO_GT: | 
|  | return MaybeCastToBool(this->emitGT(*LT, BO)); | 
|  | case BO_GE: | 
|  | return MaybeCastToBool(this->emitGE(*LT, BO)); | 
|  | case BO_Sub: | 
|  | if (BO->getType()->isFloatingType()) | 
|  | return Discard(this->emitSubf(getFPOptions(BO), BO)); | 
|  | return Discard(this->emitSub(*T, BO)); | 
|  | case BO_Add: | 
|  | if (BO->getType()->isFloatingType()) | 
|  | return Discard(this->emitAddf(getFPOptions(BO), BO)); | 
|  | return Discard(this->emitAdd(*T, BO)); | 
|  | case BO_Mul: | 
|  | if (BO->getType()->isFloatingType()) | 
|  | return Discard(this->emitMulf(getFPOptions(BO), BO)); | 
|  | return Discard(this->emitMul(*T, BO)); | 
|  | case BO_Rem: | 
|  | return Discard(this->emitRem(*T, BO)); | 
|  | case BO_Div: | 
|  | if (BO->getType()->isFloatingType()) | 
|  | return Discard(this->emitDivf(getFPOptions(BO), BO)); | 
|  | return Discard(this->emitDiv(*T, BO)); | 
|  | case BO_And: | 
|  | return Discard(this->emitBitAnd(*T, BO)); | 
|  | case BO_Or: | 
|  | return Discard(this->emitBitOr(*T, BO)); | 
|  | case BO_Shl: | 
|  | return Discard(this->emitShl(*LT, *RT, BO)); | 
|  | case BO_Shr: | 
|  | return Discard(this->emitShr(*LT, *RT, BO)); | 
|  | case BO_Xor: | 
|  | return Discard(this->emitBitXor(*T, BO)); | 
|  | case BO_LOr: | 
|  | case BO_LAnd: | 
|  | llvm_unreachable("Already handled earlier"); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled binary op"); | 
|  | } | 
|  |  | 
|  | /// Perform addition/subtraction of a pointer and an integer or | 
|  | /// subtraction of two pointers. | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { | 
|  | BinaryOperatorKind Op = E->getOpcode(); | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  |  | 
|  | if ((Op != BO_Add && Op != BO_Sub) || | 
|  | (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) | 
|  | return false; | 
|  |  | 
|  | OptPrimType LT = classify(LHS); | 
|  | OptPrimType RT = classify(RHS); | 
|  |  | 
|  | if (!LT || !RT) | 
|  | return false; | 
|  |  | 
|  | // Visit the given pointer expression and optionally convert to a PT_Ptr. | 
|  | auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { | 
|  | if (!this->visit(E)) | 
|  | return false; | 
|  | if (T != PT_Ptr) | 
|  | return this->emitDecayPtr(T, PT_Ptr, E); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { | 
|  | if (Op != BO_Sub) | 
|  | return false; | 
|  |  | 
|  | assert(E->getType()->isIntegerType()); | 
|  | if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) | 
|  | return false; | 
|  |  | 
|  | PrimType IntT = classifyPrim(E->getType()); | 
|  | if (!this->emitSubPtr(IntT, E)) | 
|  | return false; | 
|  | return DiscardResult ? this->emitPop(IntT, E) : true; | 
|  | } | 
|  |  | 
|  | PrimType OffsetType; | 
|  | if (LHS->getType()->isIntegerType()) { | 
|  | if (!visitAsPointer(RHS, *RT)) | 
|  | return false; | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | OffsetType = *LT; | 
|  | } else if (RHS->getType()->isIntegerType()) { | 
|  | if (!visitAsPointer(LHS, *LT)) | 
|  | return false; | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | OffsetType = *RT; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do the operation and optionally transform to | 
|  | // result pointer type. | 
|  | if (Op == BO_Add) { | 
|  | if (!this->emitAddOffset(OffsetType, E)) | 
|  | return false; | 
|  |  | 
|  | if (classifyPrim(E) != PT_Ptr) | 
|  | return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); | 
|  | return true; | 
|  | } else if (Op == BO_Sub) { | 
|  | if (!this->emitSubOffset(OffsetType, E)) | 
|  | return false; | 
|  |  | 
|  | if (classifyPrim(E) != PT_Ptr) | 
|  | return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { | 
|  | assert(E->isLogicalOp()); | 
|  | BinaryOperatorKind Op = E->getOpcode(); | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  | OptPrimType T = classify(E->getType()); | 
|  |  | 
|  | if (Op == BO_LOr) { | 
|  | // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. | 
|  | LabelTy LabelTrue = this->getLabel(); | 
|  | LabelTy LabelEnd = this->getLabel(); | 
|  |  | 
|  | if (!this->visitBool(LHS)) | 
|  | return false; | 
|  | if (!this->jumpTrue(LabelTrue)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitBool(RHS)) | 
|  | return false; | 
|  | if (!this->jump(LabelEnd)) | 
|  | return false; | 
|  |  | 
|  | this->emitLabel(LabelTrue); | 
|  | this->emitConstBool(true, E); | 
|  | this->fallthrough(LabelEnd); | 
|  | this->emitLabel(LabelEnd); | 
|  |  | 
|  | } else { | 
|  | assert(Op == BO_LAnd); | 
|  | // Logical AND. | 
|  | // Visit LHS. Only visit RHS if LHS was TRUE. | 
|  | LabelTy LabelFalse = this->getLabel(); | 
|  | LabelTy LabelEnd = this->getLabel(); | 
|  |  | 
|  | if (!this->visitBool(LHS)) | 
|  | return false; | 
|  | if (!this->jumpFalse(LabelFalse)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitBool(RHS)) | 
|  | return false; | 
|  | if (!this->jump(LabelEnd)) | 
|  | return false; | 
|  |  | 
|  | this->emitLabel(LabelFalse); | 
|  | this->emitConstBool(false, E); | 
|  | this->fallthrough(LabelEnd); | 
|  | this->emitLabel(LabelEnd); | 
|  | } | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->emitPopBool(E); | 
|  |  | 
|  | // For C, cast back to integer type. | 
|  | assert(T); | 
|  | if (T != PT_Bool) | 
|  | return this->emitCast(PT_Bool, *T, E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { | 
|  | // Prepare storage for result. | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateTemporary(E); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Both LHS and RHS might _not_ be of complex type, but one of them | 
|  | // needs to be. | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  |  | 
|  | PrimType ResultElemT = this->classifyComplexElementType(E->getType()); | 
|  | unsigned ResultOffset = ~0u; | 
|  | if (!DiscardResult) | 
|  | ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, /*IsConst=*/true); | 
|  |  | 
|  | // Save result pointer in ResultOffset | 
|  | if (!this->DiscardResult) { | 
|  | if (!this->emitDupPtr(E)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) | 
|  | return false; | 
|  | } | 
|  | QualType LHSType = LHS->getType(); | 
|  | if (const auto *AT = LHSType->getAs<AtomicType>()) | 
|  | LHSType = AT->getValueType(); | 
|  | QualType RHSType = RHS->getType(); | 
|  | if (const auto *AT = RHSType->getAs<AtomicType>()) | 
|  | RHSType = AT->getValueType(); | 
|  |  | 
|  | bool LHSIsComplex = LHSType->isAnyComplexType(); | 
|  | unsigned LHSOffset; | 
|  | bool RHSIsComplex = RHSType->isAnyComplexType(); | 
|  |  | 
|  | // For ComplexComplex Mul, we have special ops to make their implementation | 
|  | // easier. | 
|  | BinaryOperatorKind Op = E->getOpcode(); | 
|  | if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { | 
|  | assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == | 
|  | classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); | 
|  | PrimType ElemT = | 
|  | classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | return this->emitMulc(ElemT, E); | 
|  | } | 
|  |  | 
|  | if (Op == BO_Div && RHSIsComplex) { | 
|  | QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); | 
|  | PrimType ElemT = classifyPrim(ElemQT); | 
|  | // If the LHS is not complex, we still need to do the full complex | 
|  | // division, so just stub create a complex value and stub it out with | 
|  | // the LHS and a zero. | 
|  |  | 
|  | if (!LHSIsComplex) { | 
|  | // This is using the RHS type for the fake-complex LHS. | 
|  | std::optional<unsigned> LocalIndex = allocateTemporary(RHS); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | LHSOffset = *LocalIndex; | 
|  |  | 
|  | if (!this->emitGetPtrLocal(LHSOffset, E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | // real is LHS | 
|  | if (!this->emitInitElem(ElemT, 0, E)) | 
|  | return false; | 
|  | // imag is zero | 
|  | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, 1, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | return this->emitDivc(ElemT, E); | 
|  | } | 
|  |  | 
|  | // Evaluate LHS and save value to LHSOffset. | 
|  | if (LHSType->isAnyComplexType()) { | 
|  | LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) | 
|  | return false; | 
|  | } else { | 
|  | PrimType LHST = classifyPrim(LHSType); | 
|  | LHSOffset = this->allocateLocalPrimitive(LHS, LHST, /*IsConst=*/true); | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(LHST, LHSOffset, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Same with RHS. | 
|  | unsigned RHSOffset; | 
|  | if (RHSType->isAnyComplexType()) { | 
|  | RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) | 
|  | return false; | 
|  | } else { | 
|  | PrimType RHST = classifyPrim(RHSType); | 
|  | RHSOffset = this->allocateLocalPrimitive(RHS, RHST, /*IsConst=*/true); | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(RHST, RHSOffset, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // For both LHS and RHS, either load the value from the complex pointer, or | 
|  | // directly from the local variable. For index 1 (i.e. the imaginary part), | 
|  | // just load 0 and do the operation anyway. | 
|  | auto loadComplexValue = [this](bool IsComplex, bool LoadZero, | 
|  | unsigned ElemIndex, unsigned Offset, | 
|  | const Expr *E) -> bool { | 
|  | if (IsComplex) { | 
|  | if (!this->emitGetLocal(PT_Ptr, Offset, E)) | 
|  | return false; | 
|  | return this->emitArrayElemPop(classifyComplexElementType(E->getType()), | 
|  | ElemIndex, E); | 
|  | } | 
|  | if (ElemIndex == 0 || !LoadZero) | 
|  | return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); | 
|  | return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), | 
|  | E); | 
|  | }; | 
|  |  | 
|  | // Now we can get pointers to the LHS and RHS from the offsets above. | 
|  | for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { | 
|  | // Result pointer for the store later. | 
|  | if (!this->DiscardResult) { | 
|  | if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The actual operation. | 
|  | switch (Op) { | 
|  | case BO_Add: | 
|  | if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) | 
|  | return false; | 
|  |  | 
|  | if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) | 
|  | return false; | 
|  | if (ResultElemT == PT_Float) { | 
|  | if (!this->emitAddf(getFPOptions(E), E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitAdd(ResultElemT, E)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case BO_Sub: | 
|  | if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) | 
|  | return false; | 
|  |  | 
|  | if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) | 
|  | return false; | 
|  | if (ResultElemT == PT_Float) { | 
|  | if (!this->emitSubf(getFPOptions(E), E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitSub(ResultElemT, E)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case BO_Mul: | 
|  | if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) | 
|  | return false; | 
|  |  | 
|  | if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) | 
|  | return false; | 
|  |  | 
|  | if (ResultElemT == PT_Float) { | 
|  | if (!this->emitMulf(getFPOptions(E), E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitMul(ResultElemT, E)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case BO_Div: | 
|  | assert(!RHSIsComplex); | 
|  | if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) | 
|  | return false; | 
|  |  | 
|  | if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) | 
|  | return false; | 
|  |  | 
|  | if (ResultElemT == PT_Float) { | 
|  | if (!this->emitDivf(getFPOptions(E), E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitDiv(ResultElemT, E)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->DiscardResult) { | 
|  | // Initialize array element with the value we just computed. | 
|  | if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitPop(ResultElemT, E)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { | 
|  | assert(!E->isCommaOp() && | 
|  | "Comma op should be handled in VisitBinaryOperator"); | 
|  | assert(E->getType()->isVectorType()); | 
|  | assert(E->getLHS()->getType()->isVectorType()); | 
|  | assert(E->getRHS()->getType()->isVectorType()); | 
|  |  | 
|  | // Prepare storage for result. | 
|  | if (!Initializing && !E->isCompoundAssignmentOp()) { | 
|  | std::optional<unsigned> LocalIndex = allocateTemporary(E); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  | const auto *VecTy = E->getType()->getAs<VectorType>(); | 
|  | auto Op = E->isCompoundAssignmentOp() | 
|  | ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode()) | 
|  | : E->getOpcode(); | 
|  |  | 
|  | PrimType ElemT = this->classifyVectorElementType(LHS->getType()); | 
|  | PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); | 
|  | PrimType ResultElemT = this->classifyVectorElementType(E->getType()); | 
|  |  | 
|  | // Evaluate LHS and save value to LHSOffset. | 
|  | unsigned LHSOffset = | 
|  | this->allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) | 
|  | return false; | 
|  |  | 
|  | // Evaluate RHS and save value to RHSOffset. | 
|  | unsigned RHSOffset = | 
|  | this->allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) | 
|  | return false; | 
|  |  | 
|  | if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) | 
|  | return false; | 
|  |  | 
|  | // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the | 
|  | // integer promotion. | 
|  | bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); | 
|  | QualType PromotTy = | 
|  | Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy); | 
|  | PrimType PromotT = classifyPrim(PromotTy); | 
|  | PrimType OpT = NeedIntPromot ? PromotT : ElemT; | 
|  |  | 
|  | auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { | 
|  | if (!this->emitGetLocal(PT_Ptr, Offset, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPop(ElemT, Index, E)) | 
|  | return false; | 
|  | if (E->isLogicalOp()) { | 
|  | if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) | 
|  | return false; | 
|  | if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) | 
|  | return false; | 
|  | } else if (NeedIntPromot) { | 
|  | if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | #define EMIT_ARITH_OP(OP)                                                      \ | 
|  | {                                                                            \ | 
|  | if (ElemT == PT_Float) {                                                   \ | 
|  | if (!this->emit##OP##f(getFPOptions(E), E))                              \ | 
|  | return false;                                                          \ | 
|  | } else {                                                                   \ | 
|  | if (!this->emit##OP(ElemT, E))                                           \ | 
|  | return false;                                                          \ | 
|  | }                                                                          \ | 
|  | break;                                                                     \ | 
|  | } | 
|  |  | 
|  | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { | 
|  | if (!getElem(LHSOffset, ElemT, I)) | 
|  | return false; | 
|  | if (!getElem(RHSOffset, RHSElemT, I)) | 
|  | return false; | 
|  | switch (Op) { | 
|  | case BO_Add: | 
|  | EMIT_ARITH_OP(Add) | 
|  | case BO_Sub: | 
|  | EMIT_ARITH_OP(Sub) | 
|  | case BO_Mul: | 
|  | EMIT_ARITH_OP(Mul) | 
|  | case BO_Div: | 
|  | EMIT_ARITH_OP(Div) | 
|  | case BO_Rem: | 
|  | if (!this->emitRem(ElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_And: | 
|  | if (!this->emitBitAnd(OpT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_Or: | 
|  | if (!this->emitBitOr(OpT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_Xor: | 
|  | if (!this->emitBitXor(OpT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_Shl: | 
|  | if (!this->emitShl(OpT, RHSElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_Shr: | 
|  | if (!this->emitShr(OpT, RHSElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_EQ: | 
|  | if (!this->emitEQ(ElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_NE: | 
|  | if (!this->emitNE(ElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_LE: | 
|  | if (!this->emitLE(ElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_LT: | 
|  | if (!this->emitLT(ElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_GE: | 
|  | if (!this->emitGE(ElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_GT: | 
|  | if (!this->emitGT(ElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_LAnd: | 
|  | // a && b is equivalent to a!=0 & b!=0 | 
|  | if (!this->emitBitAnd(ResultElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_LOr: | 
|  | // a || b is equivalent to a!=0 | b!=0 | 
|  | if (!this->emitBitOr(ResultElemT, E)) | 
|  | return false; | 
|  | break; | 
|  | default: | 
|  | return this->emitInvalid(E); | 
|  | } | 
|  |  | 
|  | // The result of the comparison is a vector of the same width and number | 
|  | // of elements as the comparison operands with a signed integral element | 
|  | // type. | 
|  | // | 
|  | // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html | 
|  | if (E->isComparisonOp()) { | 
|  | if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) | 
|  | return false; | 
|  | if (!this->emitNeg(ResultElemT, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we performed an integer promotion, we need to cast the compute result | 
|  | // into result vector element type. | 
|  | if (NeedIntPromot && | 
|  | !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) | 
|  | return false; | 
|  |  | 
|  | // Initialize array element with the value we just computed. | 
|  | if (!this->emitInitElem(ResultElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  | const ASTContext &ASTCtx = Ctx.getASTContext(); | 
|  |  | 
|  | assert(LHS->getType()->isFixedPointType() || | 
|  | RHS->getType()->isFixedPointType()); | 
|  |  | 
|  | auto LHSSema = ASTCtx.getFixedPointSemantics(LHS->getType()); | 
|  | auto LHSSemaInt = LHSSema.toOpaqueInt(); | 
|  | auto RHSSema = ASTCtx.getFixedPointSemantics(RHS->getType()); | 
|  | auto RHSSemaInt = RHSSema.toOpaqueInt(); | 
|  |  | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | if (!LHS->getType()->isFixedPointType()) { | 
|  | if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), | 
|  | LHSSemaInt, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | if (!RHS->getType()->isFixedPointType()) { | 
|  | if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), | 
|  | RHSSemaInt, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Convert the result to the target semantics. | 
|  | auto ConvertResult = [&](bool R) -> bool { | 
|  | if (!R) | 
|  | return false; | 
|  | auto ResultSema = ASTCtx.getFixedPointSemantics(E->getType()).toOpaqueInt(); | 
|  | auto CommonSema = LHSSema.getCommonSemantics(RHSSema).toOpaqueInt(); | 
|  | if (ResultSema != CommonSema) | 
|  | return this->emitCastFixedPoint(ResultSema, E); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | auto MaybeCastToBool = [&](bool Result) { | 
|  | if (!Result) | 
|  | return false; | 
|  | PrimType T = classifyPrim(E); | 
|  | if (DiscardResult) | 
|  | return this->emitPop(T, E); | 
|  | if (T != PT_Bool) | 
|  | return this->emitCast(PT_Bool, T, E); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | switch (E->getOpcode()) { | 
|  | case BO_EQ: | 
|  | return MaybeCastToBool(this->emitEQFixedPoint(E)); | 
|  | case BO_NE: | 
|  | return MaybeCastToBool(this->emitNEFixedPoint(E)); | 
|  | case BO_LT: | 
|  | return MaybeCastToBool(this->emitLTFixedPoint(E)); | 
|  | case BO_LE: | 
|  | return MaybeCastToBool(this->emitLEFixedPoint(E)); | 
|  | case BO_GT: | 
|  | return MaybeCastToBool(this->emitGTFixedPoint(E)); | 
|  | case BO_GE: | 
|  | return MaybeCastToBool(this->emitGEFixedPoint(E)); | 
|  | case BO_Add: | 
|  | return ConvertResult(this->emitAddFixedPoint(E)); | 
|  | case BO_Sub: | 
|  | return ConvertResult(this->emitSubFixedPoint(E)); | 
|  | case BO_Mul: | 
|  | return ConvertResult(this->emitMulFixedPoint(E)); | 
|  | case BO_Div: | 
|  | return ConvertResult(this->emitDivFixedPoint(E)); | 
|  | case BO_Shl: | 
|  | return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); | 
|  | case BO_Shr: | 
|  | return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); | 
|  |  | 
|  | default: | 
|  | return this->emitInvalid(E); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unhandled binop opcode"); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | assert(SubExpr->getType()->isFixedPointType()); | 
|  |  | 
|  | switch (E->getOpcode()) { | 
|  | case UO_Plus: | 
|  | return this->delegate(SubExpr); | 
|  | case UO_Minus: | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitNegFixedPoint(E); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled unary opcode"); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitImplicitValueInitExpr( | 
|  | const ImplicitValueInitExpr *E) { | 
|  | QualType QT = E->getType(); | 
|  |  | 
|  | if (OptPrimType T = classify(QT)) | 
|  | return this->visitZeroInitializer(*T, QT, E); | 
|  |  | 
|  | if (QT->isRecordType()) { | 
|  | const RecordDecl *RD = QT->getAsRecordDecl(); | 
|  | assert(RD); | 
|  | if (RD->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); | 
|  | CXXRD && CXXRD->getNumVBases() > 0) { | 
|  | // TODO: Diagnose. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const Record *R = getRecord(QT); | 
|  | if (!R) | 
|  | return false; | 
|  |  | 
|  | assert(Initializing); | 
|  | return this->visitZeroRecordInitializer(R, E); | 
|  | } | 
|  |  | 
|  | if (QT->isIncompleteArrayType()) | 
|  | return true; | 
|  |  | 
|  | if (QT->isArrayType()) | 
|  | return this->visitZeroArrayInitializer(QT, E); | 
|  |  | 
|  | if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { | 
|  | assert(Initializing); | 
|  | QualType ElemQT = ComplexTy->getElementType(); | 
|  | PrimType ElemT = classifyPrim(ElemQT); | 
|  | for (unsigned I = 0; I < 2; ++I) { | 
|  | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const auto *VecT = E->getType()->getAs<VectorType>()) { | 
|  | unsigned NumVecElements = VecT->getNumElements(); | 
|  | QualType ElemQT = VecT->getElementType(); | 
|  | PrimType ElemT = classifyPrim(ElemQT); | 
|  |  | 
|  | for (unsigned I = 0; I < NumVecElements; ++I) { | 
|  | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  | const Expr *Index = E->getIdx(); | 
|  | const Expr *Base = E->getBase(); | 
|  |  | 
|  | // C++17's rules require us to evaluate the LHS first, regardless of which | 
|  | // side is the base. | 
|  | bool Success = true; | 
|  | for (const Expr *SubExpr : {LHS, RHS}) { | 
|  | if (!this->visit(SubExpr)) { | 
|  | Success = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Expand the base if this is a subscript on a | 
|  | // pointer expression. | 
|  | if (SubExpr == Base && Base->getType()->isPointerType()) { | 
|  | if (!this->emitExpandPtr(E)) | 
|  | Success = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Success) | 
|  | return false; | 
|  |  | 
|  | OptPrimType IndexT = classify(Index->getType()); | 
|  | // In error-recovery cases, the index expression has a dependent type. | 
|  | if (!IndexT) | 
|  | return this->emitError(E); | 
|  | // If the index is first, we need to change that. | 
|  | if (LHS == Index) { | 
|  | if (!this->emitFlip(PT_Ptr, *IndexT, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->emitArrayElemPtrPop(*IndexT, E)) | 
|  | return false; | 
|  | if (DiscardResult) | 
|  | return this->emitPopPtr(E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, | 
|  | const Expr *ArrayFiller, const Expr *E) { | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::InitList()); | 
|  |  | 
|  | QualType QT = E->getType(); | 
|  | if (const auto *AT = QT->getAs<AtomicType>()) | 
|  | QT = AT->getValueType(); | 
|  |  | 
|  | if (QT->isVoidType()) { | 
|  | if (Inits.size() == 0) | 
|  | return true; | 
|  | return this->emitInvalid(E); | 
|  | } | 
|  |  | 
|  | // Handle discarding first. | 
|  | if (DiscardResult) { | 
|  | for (const Expr *Init : Inits) { | 
|  | if (!this->discard(Init)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Primitive values. | 
|  | if (OptPrimType T = classify(QT)) { | 
|  | assert(!DiscardResult); | 
|  | if (Inits.size() == 0) | 
|  | return this->visitZeroInitializer(*T, QT, E); | 
|  | assert(Inits.size() == 1); | 
|  | return this->delegate(Inits[0]); | 
|  | } | 
|  |  | 
|  | if (QT->isRecordType()) { | 
|  | const Record *R = getRecord(QT); | 
|  |  | 
|  | if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) | 
|  | return this->delegate(Inits[0]); | 
|  |  | 
|  | auto initPrimitiveField = [=](const Record::Field *FieldToInit, | 
|  | const Expr *Init, PrimType T, | 
|  | bool Activate = false) -> bool { | 
|  | InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  |  | 
|  | bool BitField = FieldToInit->isBitField(); | 
|  | if (BitField && Activate) | 
|  | return this->emitInitBitFieldActivate(T, FieldToInit, E); | 
|  | if (BitField) | 
|  | return this->emitInitBitField(T, FieldToInit, E); | 
|  | if (Activate) | 
|  | return this->emitInitFieldActivate(T, FieldToInit->Offset, E); | 
|  | return this->emitInitField(T, FieldToInit->Offset, E); | 
|  | }; | 
|  |  | 
|  | auto initCompositeField = [=](const Record::Field *FieldToInit, | 
|  | const Expr *Init, | 
|  | bool Activate = false) -> bool { | 
|  | InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); | 
|  |  | 
|  | // Non-primitive case. Get a pointer to the field-to-initialize | 
|  | // on the stack and recurse into visitInitializer(). | 
|  | if (!this->emitGetPtrField(FieldToInit->Offset, Init)) | 
|  | return false; | 
|  |  | 
|  | if (Activate && !this->emitActivate(E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitInitializer(Init)) | 
|  | return false; | 
|  | return this->emitPopPtr(E); | 
|  | }; | 
|  |  | 
|  | if (R->isUnion()) { | 
|  | if (Inits.size() == 0) { | 
|  | if (!this->visitZeroRecordInitializer(R, E)) | 
|  | return false; | 
|  | } else { | 
|  | const Expr *Init = Inits[0]; | 
|  | const FieldDecl *FToInit = nullptr; | 
|  | if (const auto *ILE = dyn_cast<InitListExpr>(E)) | 
|  | FToInit = ILE->getInitializedFieldInUnion(); | 
|  | else | 
|  | FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); | 
|  |  | 
|  | const Record::Field *FieldToInit = R->getField(FToInit); | 
|  | if (OptPrimType T = classify(Init)) { | 
|  | if (!initPrimitiveField(FieldToInit, Init, *T, /*Activate=*/true)) | 
|  | return false; | 
|  | } else { | 
|  | if (!initCompositeField(FieldToInit, Init, /*Activate=*/true)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return this->emitFinishInit(E); | 
|  | } | 
|  |  | 
|  | assert(!R->isUnion()); | 
|  | unsigned InitIndex = 0; | 
|  | for (const Expr *Init : Inits) { | 
|  | // Skip unnamed bitfields. | 
|  | while (InitIndex < R->getNumFields() && | 
|  | R->getField(InitIndex)->isUnnamedBitField()) | 
|  | ++InitIndex; | 
|  |  | 
|  | if (OptPrimType T = classify(Init)) { | 
|  | const Record::Field *FieldToInit = R->getField(InitIndex); | 
|  | if (!initPrimitiveField(FieldToInit, Init, *T)) | 
|  | return false; | 
|  | ++InitIndex; | 
|  | } else { | 
|  | // Initializer for a direct base class. | 
|  | if (const Record::Base *B = R->getBase(Init->getType())) { | 
|  | if (!this->emitGetPtrBase(B->Offset, Init)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitInitializer(Init)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitFinishInitPop(E)) | 
|  | return false; | 
|  | // Base initializers don't increase InitIndex, since they don't count | 
|  | // into the Record's fields. | 
|  | } else { | 
|  | const Record::Field *FieldToInit = R->getField(InitIndex); | 
|  | if (!initCompositeField(FieldToInit, Init)) | 
|  | return false; | 
|  | ++InitIndex; | 
|  | } | 
|  | } | 
|  | } | 
|  | return this->emitFinishInit(E); | 
|  | } | 
|  |  | 
|  | if (QT->isArrayType()) { | 
|  | if (Inits.size() == 1 && QT == Inits[0]->getType()) | 
|  | return this->delegate(Inits[0]); | 
|  |  | 
|  | const ConstantArrayType *CAT = | 
|  | Ctx.getASTContext().getAsConstantArrayType(QT); | 
|  | uint64_t NumElems = CAT->getZExtSize(); | 
|  |  | 
|  | if (!this->emitCheckArraySize(NumElems, E)) | 
|  | return false; | 
|  |  | 
|  | OptPrimType InitT = classify(CAT->getElementType()); | 
|  | unsigned ElementIndex = 0; | 
|  | for (const Expr *Init : Inits) { | 
|  | if (const auto *EmbedS = | 
|  | dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { | 
|  | PrimType TargetT = classifyPrim(Init->getType()); | 
|  |  | 
|  | auto Eval = [&](const Expr *Init, unsigned ElemIndex) { | 
|  | PrimType InitT = classifyPrim(Init->getType()); | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  | if (InitT != TargetT) { | 
|  | if (!this->emitCast(InitT, TargetT, E)) | 
|  | return false; | 
|  | } | 
|  | return this->emitInitElem(TargetT, ElemIndex, Init); | 
|  | }; | 
|  | if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->visitArrayElemInit(ElementIndex, Init, InitT)) | 
|  | return false; | 
|  | ++ElementIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Expand the filler expression. | 
|  | // FIXME: This should go away. | 
|  | if (ArrayFiller) { | 
|  | for (; ElementIndex != NumElems; ++ElementIndex) { | 
|  | if (!this->visitArrayElemInit(ElementIndex, ArrayFiller, InitT)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return this->emitFinishInit(E); | 
|  | } | 
|  |  | 
|  | if (const auto *ComplexTy = QT->getAs<ComplexType>()) { | 
|  | unsigned NumInits = Inits.size(); | 
|  |  | 
|  | if (NumInits == 1) | 
|  | return this->delegate(Inits[0]); | 
|  |  | 
|  | QualType ElemQT = ComplexTy->getElementType(); | 
|  | PrimType ElemT = classifyPrim(ElemQT); | 
|  | if (NumInits == 0) { | 
|  | // Zero-initialize both elements. | 
|  | for (unsigned I = 0; I < 2; ++I) { | 
|  | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | } else if (NumInits == 2) { | 
|  | unsigned InitIndex = 0; | 
|  | for (const Expr *Init : Inits) { | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitInitElem(ElemT, InitIndex, E)) | 
|  | return false; | 
|  | ++InitIndex; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const auto *VecT = QT->getAs<VectorType>()) { | 
|  | unsigned NumVecElements = VecT->getNumElements(); | 
|  | assert(NumVecElements >= Inits.size()); | 
|  |  | 
|  | QualType ElemQT = VecT->getElementType(); | 
|  | PrimType ElemT = classifyPrim(ElemQT); | 
|  |  | 
|  | // All initializer elements. | 
|  | unsigned InitIndex = 0; | 
|  | for (const Expr *Init : Inits) { | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  |  | 
|  | // If the initializer is of vector type itself, we have to deconstruct | 
|  | // that and initialize all the target fields from the initializer fields. | 
|  | if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { | 
|  | if (!this->emitCopyArray(ElemT, 0, InitIndex, | 
|  | InitVecT->getNumElements(), E)) | 
|  | return false; | 
|  | InitIndex += InitVecT->getNumElements(); | 
|  | } else { | 
|  | if (!this->emitInitElem(ElemT, InitIndex, E)) | 
|  | return false; | 
|  | ++InitIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(InitIndex <= NumVecElements); | 
|  |  | 
|  | // Fill the rest with zeroes. | 
|  | for (; InitIndex != NumVecElements; ++InitIndex) { | 
|  | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, InitIndex, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Pointer to the array(not the element!) must be on the stack when calling | 
|  | /// this. | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, const Expr *Init, | 
|  | OptPrimType InitT) { | 
|  | if (InitT) { | 
|  | // Visit the primitive element like normal. | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  | return this->emitInitElem(*InitT, ElemIndex, Init); | 
|  | } | 
|  |  | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex)); | 
|  | // Advance the pointer currently on the stack to the given | 
|  | // dimension. | 
|  | if (!this->emitConstUint32(ElemIndex, Init)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtrUint32(Init)) | 
|  | return false; | 
|  | if (!this->visitInitializer(Init)) | 
|  | return false; | 
|  | return this->emitFinishInitPop(Init); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitCallArgs(ArrayRef<const Expr *> Args, | 
|  | const FunctionDecl *FuncDecl, | 
|  | bool Activate) { | 
|  | assert(VarScope->getKind() == ScopeKind::Call); | 
|  | llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); | 
|  |  | 
|  | unsigned ArgIndex = 0; | 
|  | for (const Expr *Arg : Args) { | 
|  | if (OptPrimType T = classify(Arg)) { | 
|  | if (!this->visit(Arg)) | 
|  | return false; | 
|  | } else { | 
|  |  | 
|  | std::optional<unsigned> LocalIndex = allocateLocal( | 
|  | Arg, Arg->getType(), /*ExtendingDecl=*/nullptr, ScopeKind::Call); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, Arg)) | 
|  | return false; | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); | 
|  | if (!this->visitInitializer(Arg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ArgIndex == 1 && Activate) { | 
|  | if (!this->emitActivate(Arg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FuncDecl && NonNullArgs[ArgIndex]) { | 
|  | PrimType ArgT = classify(Arg).value_or(PT_Ptr); | 
|  | if (ArgT == PT_Ptr) { | 
|  | if (!this->emitCheckNonNullArg(ArgT, Arg)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ++ArgIndex; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { | 
|  | return this->visitInitList(E->inits(), E->getArrayFiller(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXParenListInitExpr( | 
|  | const CXXParenListInitExpr *E) { | 
|  | return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( | 
|  | const SubstNonTypeTemplateParmExpr *E) { | 
|  | return this->delegate(E->getReplacement()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { | 
|  | OptPrimType T = classify(E->getType()); | 
|  | if (T && E->hasAPValueResult()) { | 
|  | // Try to emit the APValue directly, without visiting the subexpr. | 
|  | // This will only fail if we can't emit the APValue, so won't emit any | 
|  | // diagnostics or any double values. | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | if (this->visitAPValue(E->getAPValueResult(), *T, E)) | 
|  | return true; | 
|  | } | 
|  | return this->delegate(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { | 
|  | auto It = E->begin(); | 
|  | return this->visit(*It); | 
|  | } | 
|  |  | 
|  | static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, | 
|  | UnaryExprOrTypeTrait Kind) { | 
|  | bool AlignOfReturnsPreferred = | 
|  | ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; | 
|  |  | 
|  | // C++ [expr.alignof]p3: | 
|  | //     When alignof is applied to a reference type, the result is the | 
|  | //     alignment of the referenced type. | 
|  | if (const auto *Ref = T->getAs<ReferenceType>()) | 
|  | T = Ref->getPointeeType(); | 
|  |  | 
|  | if (T.getQualifiers().hasUnaligned()) | 
|  | return CharUnits::One(); | 
|  |  | 
|  | // __alignof is defined to return the preferred alignment. | 
|  | // Before 8, clang returned the preferred alignment for alignof and | 
|  | // _Alignof as well. | 
|  | if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) | 
|  | return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); | 
|  |  | 
|  | return ASTCtx.getTypeAlignInChars(T); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( | 
|  | const UnaryExprOrTypeTraitExpr *E) { | 
|  | UnaryExprOrTypeTrait Kind = E->getKind(); | 
|  | const ASTContext &ASTCtx = Ctx.getASTContext(); | 
|  |  | 
|  | if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { | 
|  | QualType ArgType = E->getTypeOfArgument(); | 
|  |  | 
|  | // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, | 
|  | //   the result is the size of the referenced type." | 
|  | if (const auto *Ref = ArgType->getAs<ReferenceType>()) | 
|  | ArgType = Ref->getPointeeType(); | 
|  |  | 
|  | CharUnits Size; | 
|  | if (ArgType->isVoidType() || ArgType->isFunctionType()) | 
|  | Size = CharUnits::One(); | 
|  | else { | 
|  | if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) | 
|  | return this->emitInvalid(E); | 
|  |  | 
|  | if (Kind == UETT_SizeOf) | 
|  | Size = ASTCtx.getTypeSizeInChars(ArgType); | 
|  | else | 
|  | Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; | 
|  | } | 
|  |  | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | return this->emitConst(Size.getQuantity(), E); | 
|  | } | 
|  |  | 
|  | if (Kind == UETT_CountOf) { | 
|  | QualType Ty = E->getTypeOfArgument(); | 
|  | assert(Ty->isArrayType()); | 
|  |  | 
|  | // We don't need to worry about array element qualifiers, so getting the | 
|  | // unsafe array type is fine. | 
|  | if (const auto *CAT = | 
|  | dyn_cast<ConstantArrayType>(Ty->getAsArrayTypeUnsafe())) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitConst(CAT->getSize(), E); | 
|  | } | 
|  |  | 
|  | assert(!Ty->isConstantSizeType()); | 
|  |  | 
|  | // If it's a variable-length array type, we need to check whether it is a | 
|  | // multidimensional array. If so, we need to check the size expression of | 
|  | // the VLA to see if it's a constant size. If so, we can return that value. | 
|  | const auto *VAT = ASTCtx.getAsVariableArrayType(Ty); | 
|  | assert(VAT); | 
|  | if (VAT->getElementType()->isArrayType()) { | 
|  | std::optional<APSInt> Res = | 
|  | VAT->getSizeExpr()->getIntegerConstantExpr(ASTCtx); | 
|  | if (Res) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitConst(*Res, E); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { | 
|  | CharUnits Size; | 
|  |  | 
|  | if (E->isArgumentType()) { | 
|  | QualType ArgType = E->getTypeOfArgument(); | 
|  |  | 
|  | Size = AlignOfType(ArgType, ASTCtx, Kind); | 
|  | } else { | 
|  | // Argument is an expression, not a type. | 
|  | const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); | 
|  |  | 
|  | // The kinds of expressions that we have special-case logic here for | 
|  | // should be kept up to date with the special checks for those | 
|  | // expressions in Sema. | 
|  |  | 
|  | // alignof decl is always accepted, even if it doesn't make sense: we | 
|  | // default to 1 in those cases. | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) | 
|  | Size = ASTCtx.getDeclAlign(DRE->getDecl(), | 
|  | /*RefAsPointee*/ true); | 
|  | else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) | 
|  | Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), | 
|  | /*RefAsPointee*/ true); | 
|  | else | 
|  | Size = AlignOfType(Arg->getType(), ASTCtx, Kind); | 
|  | } | 
|  |  | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | return this->emitConst(Size.getQuantity(), E); | 
|  | } | 
|  |  | 
|  | if (Kind == UETT_VectorElements) { | 
|  | if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) | 
|  | return this->emitConst(VT->getNumElements(), E); | 
|  | assert(E->getTypeOfArgument()->isSizelessVectorType()); | 
|  | return this->emitSizelessVectorElementSize(E); | 
|  | } | 
|  |  | 
|  | if (Kind == UETT_VecStep) { | 
|  | if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { | 
|  | unsigned N = VT->getNumElements(); | 
|  |  | 
|  | // The vec_step built-in functions that take a 3-component | 
|  | // vector return 4. (OpenCL 1.1 spec 6.11.12) | 
|  | if (N == 3) | 
|  | N = 4; | 
|  |  | 
|  | return this->emitConst(N, E); | 
|  | } | 
|  | return this->emitConst(1, E); | 
|  | } | 
|  |  | 
|  | if (Kind == UETT_OpenMPRequiredSimdAlign) { | 
|  | assert(E->isArgumentType()); | 
|  | unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType()); | 
|  |  | 
|  | return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E); | 
|  | } | 
|  |  | 
|  | if (Kind == UETT_PtrAuthTypeDiscriminator) { | 
|  | if (E->getArgumentType()->isDependentType()) | 
|  | return this->emitInvalid(E); | 
|  |  | 
|  | return this->emitConst( | 
|  | const_cast<ASTContext &>(ASTCtx).getPointerAuthTypeDiscriminator( | 
|  | E->getArgumentType()), | 
|  | E); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { | 
|  | // 'Base.Member' | 
|  | const Expr *Base = E->getBase(); | 
|  | const ValueDecl *Member = E->getMemberDecl(); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->discard(Base); | 
|  |  | 
|  | // MemberExprs are almost always lvalues, in which case we don't need to | 
|  | // do the load. But sometimes they aren't. | 
|  | const auto maybeLoadValue = [&]() -> bool { | 
|  | if (E->isGLValue()) | 
|  | return true; | 
|  | if (OptPrimType T = classify(E)) | 
|  | return this->emitLoadPop(*T, E); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | if (const auto *VD = dyn_cast<VarDecl>(Member)) { | 
|  | // I am almost confident in saying that a var decl must be static | 
|  | // and therefore registered as a global variable. But this will probably | 
|  | // turn out to be wrong some time in the future, as always. | 
|  | if (auto GlobalIndex = P.getGlobal(VD)) | 
|  | return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!isa<FieldDecl>(Member)) { | 
|  | if (!this->discard(Base) && !this->emitSideEffect(E)) | 
|  | return false; | 
|  |  | 
|  | return this->visitDeclRef(Member, E); | 
|  | } | 
|  |  | 
|  | if (Initializing) { | 
|  | if (!this->delegate(Base)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->visit(Base)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Base above gives us a pointer on the stack. | 
|  | const auto *FD = cast<FieldDecl>(Member); | 
|  | const RecordDecl *RD = FD->getParent(); | 
|  | const Record *R = getRecord(RD); | 
|  | if (!R) | 
|  | return false; | 
|  | const Record::Field *F = R->getField(FD); | 
|  | // Leave a pointer to the field on the stack. | 
|  | if (F->Decl->getType()->isReferenceType()) | 
|  | return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); | 
|  | return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { | 
|  | // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated | 
|  | // stand-alone, e.g. via EvaluateAsInt(). | 
|  | if (!ArrayIndex) | 
|  | return false; | 
|  | return this->emitConst(*ArrayIndex, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { | 
|  | assert(Initializing); | 
|  | assert(!DiscardResult); | 
|  |  | 
|  | // We visit the common opaque expression here once so we have its value | 
|  | // cached. | 
|  | if (!this->discard(E->getCommonExpr())) | 
|  | return false; | 
|  |  | 
|  | // TODO: This compiles to quite a lot of bytecode if the array is larger. | 
|  | //   Investigate compiling this to a loop. | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | size_t Size = E->getArraySize().getZExtValue(); | 
|  | OptPrimType SubExprT = classify(SubExpr); | 
|  |  | 
|  | // So, every iteration, we execute an assignment here | 
|  | // where the LHS is on the stack (the target array) | 
|  | // and the RHS is our SubExpr. | 
|  | for (size_t I = 0; I != Size; ++I) { | 
|  | ArrayIndexScope<Emitter> IndexScope(this, I); | 
|  | BlockScope<Emitter> BS(this); | 
|  |  | 
|  | if (!this->visitArrayElemInit(I, SubExpr, SubExprT)) | 
|  | return false; | 
|  | if (!BS.destroyLocals()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { | 
|  | const Expr *SourceExpr = E->getSourceExpr(); | 
|  | if (!SourceExpr) | 
|  | return false; | 
|  |  | 
|  | if (Initializing) | 
|  | return this->visitInitializer(SourceExpr); | 
|  |  | 
|  | PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); | 
|  | if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) | 
|  | return this->emitGetLocal(SubExprT, It->second, E); | 
|  |  | 
|  | if (!this->visit(SourceExpr)) | 
|  | return false; | 
|  |  | 
|  | // At this point we either have the evaluated source expression or a pointer | 
|  | // to an object on the stack. We want to create a local variable that stores | 
|  | // this value. | 
|  | unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); | 
|  | if (!this->emitSetLocal(SubExprT, LocalIndex, E)) | 
|  | return false; | 
|  |  | 
|  | // Here the local variable is created but the value is removed from the stack, | 
|  | // so we put it back if the caller needs it. | 
|  | if (!DiscardResult) { | 
|  | if (!this->emitGetLocal(SubExprT, LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This is cleaned up when the local variable is destroyed. | 
|  | OpaqueExprs.insert({E, LocalIndex}); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitAbstractConditionalOperator( | 
|  | const AbstractConditionalOperator *E) { | 
|  | const Expr *Condition = E->getCond(); | 
|  | const Expr *TrueExpr = E->getTrueExpr(); | 
|  | const Expr *FalseExpr = E->getFalseExpr(); | 
|  |  | 
|  | auto visitChildExpr = [&](const Expr *E) -> bool { | 
|  | LocalScope<Emitter> S(this); | 
|  | if (!this->delegate(E)) | 
|  | return false; | 
|  | return S.destroyLocals(); | 
|  | }; | 
|  |  | 
|  | if (std::optional<bool> BoolValue = getBoolValue(Condition)) { | 
|  | if (BoolValue) | 
|  | return visitChildExpr(TrueExpr); | 
|  | return visitChildExpr(FalseExpr); | 
|  | } | 
|  |  | 
|  | bool IsBcpCall = false; | 
|  | if (const auto *CE = dyn_cast<CallExpr>(Condition->IgnoreParenCasts()); | 
|  | CE && CE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) { | 
|  | IsBcpCall = true; | 
|  | } | 
|  |  | 
|  | LabelTy LabelEnd = this->getLabel();   // Label after the operator. | 
|  | LabelTy LabelFalse = this->getLabel(); // Label for the false expr. | 
|  |  | 
|  | if (IsBcpCall) { | 
|  | if (!this->emitStartSpeculation(E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->visitBool(Condition)) { | 
|  | // If the condition failed and we're checking for undefined behavior | 
|  | // (which only happens with EvalEmitter) check the TrueExpr and FalseExpr | 
|  | // as well. | 
|  | if (this->checkingForUndefinedBehavior()) { | 
|  | if (!this->discard(TrueExpr)) | 
|  | return false; | 
|  | if (!this->discard(FalseExpr)) | 
|  | return false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->jumpFalse(LabelFalse)) | 
|  | return false; | 
|  | if (!visitChildExpr(TrueExpr)) | 
|  | return false; | 
|  | if (!this->jump(LabelEnd)) | 
|  | return false; | 
|  | this->emitLabel(LabelFalse); | 
|  | if (!visitChildExpr(FalseExpr)) | 
|  | return false; | 
|  | this->fallthrough(LabelEnd); | 
|  | this->emitLabel(LabelEnd); | 
|  |  | 
|  | if (IsBcpCall) | 
|  | return this->emitEndSpeculation(E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | if (!Initializing) { | 
|  | unsigned StringIndex = P.createGlobalString(E); | 
|  | return this->emitGetPtrGlobal(StringIndex, E); | 
|  | } | 
|  |  | 
|  | // We are initializing an array on the stack. | 
|  | const ConstantArrayType *CAT = | 
|  | Ctx.getASTContext().getAsConstantArrayType(E->getType()); | 
|  | assert(CAT && "a string literal that's not a constant array?"); | 
|  |  | 
|  | // If the initializer string is too long, a diagnostic has already been | 
|  | // emitted. Read only the array length from the string literal. | 
|  | unsigned ArraySize = CAT->getZExtSize(); | 
|  | unsigned N = std::min(ArraySize, E->getLength()); | 
|  | unsigned CharWidth = E->getCharByteWidth(); | 
|  |  | 
|  | for (unsigned I = 0; I != N; ++I) { | 
|  | uint32_t CodeUnit = E->getCodeUnit(I); | 
|  |  | 
|  | if (CharWidth == 1) { | 
|  | this->emitConstSint8(CodeUnit, E); | 
|  | this->emitInitElemSint8(I, E); | 
|  | } else if (CharWidth == 2) { | 
|  | this->emitConstUint16(CodeUnit, E); | 
|  | this->emitInitElemUint16(I, E); | 
|  | } else if (CharWidth == 4) { | 
|  | this->emitConstUint32(CodeUnit, E); | 
|  | this->emitInitElemUint32(I, E); | 
|  | } else { | 
|  | llvm_unreachable("unsupported character width"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill up the rest of the char array with NUL bytes. | 
|  | for (unsigned I = N; I != ArraySize; ++I) { | 
|  | if (CharWidth == 1) { | 
|  | this->emitConstSint8(0, E); | 
|  | this->emitInitElemSint8(I, E); | 
|  | } else if (CharWidth == 2) { | 
|  | this->emitConstUint16(0, E); | 
|  | this->emitInitElemUint16(I, E); | 
|  | } else if (CharWidth == 4) { | 
|  | this->emitConstUint32(0, E); | 
|  | this->emitInitElemUint32(I, E); | 
|  | } else { | 
|  | llvm_unreachable("unsupported character width"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitDummyPtr(E, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { | 
|  | auto &A = Ctx.getASTContext(); | 
|  | std::string Str; | 
|  | A.getObjCEncodingForType(E->getEncodedType(), Str); | 
|  | StringLiteral *SL = | 
|  | StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, | 
|  | /*Pascal=*/false, E->getType(), E->getAtLoc()); | 
|  | return this->delegate(SL); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( | 
|  | const SYCLUniqueStableNameExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | assert(!Initializing); | 
|  |  | 
|  | auto &A = Ctx.getASTContext(); | 
|  | std::string ResultStr = E->ComputeName(A); | 
|  |  | 
|  | QualType CharTy = A.CharTy.withConst(); | 
|  | APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); | 
|  | QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, | 
|  | ArraySizeModifier::Normal, 0); | 
|  |  | 
|  | StringLiteral *SL = | 
|  | StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, | 
|  | /*Pascal=*/false, ArrayTy, E->getLocation()); | 
|  |  | 
|  | unsigned StringIndex = P.createGlobalString(SL); | 
|  | return this->emitGetPtrGlobal(StringIndex, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitConst(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( | 
|  | const CompoundAssignOperator *E) { | 
|  |  | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  | QualType LHSType = LHS->getType(); | 
|  | QualType LHSComputationType = E->getComputationLHSType(); | 
|  | QualType ResultType = E->getComputationResultType(); | 
|  | OptPrimType LT = classify(LHSComputationType); | 
|  | OptPrimType RT = classify(ResultType); | 
|  |  | 
|  | assert(ResultType->isFloatingType()); | 
|  |  | 
|  | if (!LT || !RT) | 
|  | return false; | 
|  |  | 
|  | PrimType LHST = classifyPrim(LHSType); | 
|  |  | 
|  | // C++17 onwards require that we evaluate the RHS first. | 
|  | // Compute RHS and save it in a temporary variable so we can | 
|  | // load it again later. | 
|  | if (!visit(RHS)) | 
|  | return false; | 
|  |  | 
|  | unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); | 
|  | if (!this->emitSetLocal(*RT, TempOffset, E)) | 
|  | return false; | 
|  |  | 
|  | // First, visit LHS. | 
|  | if (!visit(LHS)) | 
|  | return false; | 
|  | if (!this->emitLoad(LHST, E)) | 
|  | return false; | 
|  |  | 
|  | // If necessary, convert LHS to its computation type. | 
|  | if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), | 
|  | LHSComputationType, E)) | 
|  | return false; | 
|  |  | 
|  | // Now load RHS. | 
|  | if (!this->emitGetLocal(*RT, TempOffset, E)) | 
|  | return false; | 
|  |  | 
|  | switch (E->getOpcode()) { | 
|  | case BO_AddAssign: | 
|  | if (!this->emitAddf(getFPOptions(E), E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_SubAssign: | 
|  | if (!this->emitSubf(getFPOptions(E), E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_MulAssign: | 
|  | if (!this->emitMulf(getFPOptions(E), E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_DivAssign: | 
|  | if (!this->emitDivf(getFPOptions(E), E)) | 
|  | return false; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) | 
|  | return false; | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->emitStorePop(LHST, E); | 
|  | return this->emitStore(LHST, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( | 
|  | const CompoundAssignOperator *E) { | 
|  | BinaryOperatorKind Op = E->getOpcode(); | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  | OptPrimType LT = classify(LHS->getType()); | 
|  | OptPrimType RT = classify(RHS->getType()); | 
|  |  | 
|  | if (Op != BO_AddAssign && Op != BO_SubAssign) | 
|  | return false; | 
|  |  | 
|  | if (!LT || !RT) | 
|  | return false; | 
|  |  | 
|  | if (!visit(LHS)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitLoad(*LT, LHS)) | 
|  | return false; | 
|  |  | 
|  | if (!visit(RHS)) | 
|  | return false; | 
|  |  | 
|  | if (Op == BO_AddAssign) { | 
|  | if (!this->emitAddOffset(*RT, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitSubOffset(*RT, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->emitStorePopPtr(E); | 
|  | return this->emitStorePtr(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCompoundAssignOperator( | 
|  | const CompoundAssignOperator *E) { | 
|  | if (E->getType()->isVectorType()) | 
|  | return VisitVectorBinOp(E); | 
|  |  | 
|  | const Expr *LHS = E->getLHS(); | 
|  | const Expr *RHS = E->getRHS(); | 
|  | OptPrimType LHSComputationT = classify(E->getComputationLHSType()); | 
|  | OptPrimType LT = classify(LHS->getType()); | 
|  | OptPrimType RT = classify(RHS->getType()); | 
|  | OptPrimType ResultT = classify(E->getType()); | 
|  |  | 
|  | if (!Ctx.getLangOpts().CPlusPlus14) | 
|  | return this->visit(RHS) && this->visit(LHS) && this->emitError(E); | 
|  |  | 
|  | if (!LT || !RT || !ResultT || !LHSComputationT) | 
|  | return false; | 
|  |  | 
|  | // Handle floating point operations separately here, since they | 
|  | // require special care. | 
|  |  | 
|  | if (ResultT == PT_Float || RT == PT_Float) | 
|  | return VisitFloatCompoundAssignOperator(E); | 
|  |  | 
|  | if (E->getType()->isPointerType()) | 
|  | return VisitPointerCompoundAssignOperator(E); | 
|  |  | 
|  | assert(!E->getType()->isPointerType() && "Handled above"); | 
|  | assert(!E->getType()->isFloatingType() && "Handled above"); | 
|  |  | 
|  | // C++17 onwards require that we evaluate the RHS first. | 
|  | // Compute RHS and save it in a temporary variable so we can | 
|  | // load it again later. | 
|  | // FIXME: Compound assignments are unsequenced in C, so we might | 
|  | //   have to figure out how to reject them. | 
|  | if (!visit(RHS)) | 
|  | return false; | 
|  |  | 
|  | unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); | 
|  |  | 
|  | if (!this->emitSetLocal(*RT, TempOffset, E)) | 
|  | return false; | 
|  |  | 
|  | // Get LHS pointer, load its value and cast it to the | 
|  | // computation type if necessary. | 
|  | if (!visit(LHS)) | 
|  | return false; | 
|  | if (!this->emitLoad(*LT, E)) | 
|  | return false; | 
|  | if (LT != LHSComputationT) { | 
|  | if (!this->emitCast(*LT, *LHSComputationT, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get the RHS value on the stack. | 
|  | if (!this->emitGetLocal(*RT, TempOffset, E)) | 
|  | return false; | 
|  |  | 
|  | // Perform operation. | 
|  | switch (E->getOpcode()) { | 
|  | case BO_AddAssign: | 
|  | if (!this->emitAdd(*LHSComputationT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_SubAssign: | 
|  | if (!this->emitSub(*LHSComputationT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_MulAssign: | 
|  | if (!this->emitMul(*LHSComputationT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_DivAssign: | 
|  | if (!this->emitDiv(*LHSComputationT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_RemAssign: | 
|  | if (!this->emitRem(*LHSComputationT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_ShlAssign: | 
|  | if (!this->emitShl(*LHSComputationT, *RT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_ShrAssign: | 
|  | if (!this->emitShr(*LHSComputationT, *RT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_AndAssign: | 
|  | if (!this->emitBitAnd(*LHSComputationT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_XorAssign: | 
|  | if (!this->emitBitXor(*LHSComputationT, E)) | 
|  | return false; | 
|  | break; | 
|  | case BO_OrAssign: | 
|  | if (!this->emitBitOr(*LHSComputationT, E)) | 
|  | return false; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unimplemented compound assign operator"); | 
|  | } | 
|  |  | 
|  | // And now cast from LHSComputationT to ResultT. | 
|  | if (ResultT != LHSComputationT) { | 
|  | if (!this->emitCast(*LHSComputationT, *ResultT, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // And store the result in LHS. | 
|  | if (DiscardResult) { | 
|  | if (LHS->refersToBitField()) | 
|  | return this->emitStoreBitFieldPop(*ResultT, E); | 
|  | return this->emitStorePop(*ResultT, E); | 
|  | } | 
|  | if (LHS->refersToBitField()) | 
|  | return this->emitStoreBitField(*ResultT, E); | 
|  | return this->emitStore(*ResultT, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { | 
|  | LocalScope<Emitter> ES(this); | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  |  | 
|  | return this->delegate(SubExpr) && ES.destroyLocals(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( | 
|  | const MaterializeTemporaryExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  |  | 
|  | if (Initializing) { | 
|  | // We already have a value, just initialize that. | 
|  | return this->delegate(SubExpr); | 
|  | } | 
|  | // If we don't end up using the materialized temporary anyway, don't | 
|  | // bother creating it. | 
|  | if (DiscardResult) | 
|  | return this->discard(SubExpr); | 
|  |  | 
|  | // When we're initializing a global variable *or* the storage duration of | 
|  | // the temporary is explicitly static, create a global variable. | 
|  | OptPrimType SubExprT = classify(SubExpr); | 
|  | bool IsStatic = E->getStorageDuration() == SD_Static; | 
|  | if (IsStatic) { | 
|  | std::optional<unsigned> GlobalIndex = P.createGlobal(E); | 
|  | if (!GlobalIndex) | 
|  | return false; | 
|  |  | 
|  | const LifetimeExtendedTemporaryDecl *TempDecl = | 
|  | E->getLifetimeExtendedTemporaryDecl(); | 
|  | if (IsStatic) | 
|  | assert(TempDecl); | 
|  |  | 
|  | if (SubExprT) { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (IsStatic) { | 
|  | if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) | 
|  | return false; | 
|  | } | 
|  | return this->emitGetPtrGlobal(*GlobalIndex, E); | 
|  | } | 
|  |  | 
|  | if (!this->checkLiteralType(SubExpr)) | 
|  | return false; | 
|  | // Non-primitive values. | 
|  | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) | 
|  | return false; | 
|  | if (!this->visitInitializer(SubExpr)) | 
|  | return false; | 
|  | if (IsStatic) | 
|  | return this->emitInitGlobalTempComp(TempDecl, E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For everyhing else, use local variables. | 
|  | if (SubExprT) { | 
|  | bool IsConst = SubExpr->getType().isConstQualified(); | 
|  | unsigned LocalIndex = | 
|  | allocateLocalPrimitive(E, *SubExprT, IsConst, E->getExtendingDecl()); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) | 
|  | return false; | 
|  | return this->emitGetPtrLocal(LocalIndex, E); | 
|  | } else { | 
|  |  | 
|  | if (!this->checkLiteralType(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); | 
|  | if (std::optional<unsigned> LocalIndex = | 
|  | allocateLocal(E, Inner->getType(), E->getExtendingDecl())) { | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | return this->visitInitializer(SubExpr) && this->emitFinishInit(E); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( | 
|  | const CXXBindTemporaryExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  |  | 
|  | if (Initializing) | 
|  | return this->delegate(SubExpr); | 
|  |  | 
|  | // Make sure we create a temporary even if we're discarding, since that will | 
|  | // make sure we will also call the destructor. | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->emitPopPtr(E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { | 
|  | const Expr *Init = E->getInitializer(); | 
|  | if (DiscardResult) | 
|  | return this->discard(Init); | 
|  |  | 
|  | if (Initializing) { | 
|  | // We already have a value, just initialize that. | 
|  | return this->visitInitializer(Init) && this->emitFinishInit(E); | 
|  | } | 
|  |  | 
|  | OptPrimType T = classify(E->getType()); | 
|  | if (E->isFileScope()) { | 
|  | // Avoid creating a variable if this is a primitive RValue anyway. | 
|  | if (T && !E->isLValue()) | 
|  | return this->delegate(Init); | 
|  |  | 
|  | if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { | 
|  | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) | 
|  | return false; | 
|  |  | 
|  | if (T) { | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  | return this->emitInitGlobal(*T, *GlobalIndex, E); | 
|  | } | 
|  |  | 
|  | return this->visitInitializer(Init) && this->emitFinishInit(E); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise, use a local variable. | 
|  | if (T && !E->isLValue()) { | 
|  | // For primitive types, we just visit the initializer. | 
|  | return this->delegate(Init); | 
|  | } | 
|  |  | 
|  | unsigned LocalIndex; | 
|  | if (T) | 
|  | LocalIndex = this->allocateLocalPrimitive(Init, *T, /*IsConst=*/false); | 
|  | else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) | 
|  | LocalIndex = *MaybeIndex; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | if (!this->emitGetPtrLocal(LocalIndex, E)) | 
|  | return false; | 
|  |  | 
|  | if (T) | 
|  | return this->visit(Init) && this->emitInit(*T, E); | 
|  | return this->visitInitializer(Init) && this->emitFinishInit(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | if (E->isStoredAsBoolean()) { | 
|  | if (E->getType()->isBooleanType()) | 
|  | return this->emitConstBool(E->getBoolValue(), E); | 
|  | return this->emitConst(E->getBoolValue(), E); | 
|  | } | 
|  | PrimType T = classifyPrim(E->getType()); | 
|  | return this->visitAPValue(E->getAPValue(), T, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitConst(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | assert(Initializing); | 
|  | const Record *R = P.getOrCreateRecord(E->getLambdaClass()); | 
|  | if (!R) | 
|  | return false; | 
|  |  | 
|  | auto *CaptureInitIt = E->capture_init_begin(); | 
|  | // Initialize all fields (which represent lambda captures) of the | 
|  | // record with their initializers. | 
|  | for (const Record::Field &F : R->fields()) { | 
|  | const Expr *Init = *CaptureInitIt; | 
|  | if (!Init || Init->containsErrors()) | 
|  | continue; | 
|  | ++CaptureInitIt; | 
|  |  | 
|  | if (OptPrimType T = classify(Init)) { | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitInitField(*T, F.Offset, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitGetPtrField(F.Offset, E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitInitializer(Init)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitPopPtr(E)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | if (!Initializing) { | 
|  | unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E); | 
|  | return this->emitGetPtrGlobal(StringIndex, E); | 
|  | } | 
|  |  | 
|  | return this->delegate(E->getFunctionName()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { | 
|  | if (E->getSubExpr() && !this->discard(E->getSubExpr())) | 
|  | return false; | 
|  |  | 
|  | return this->emitInvalid(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( | 
|  | const CXXReinterpretCastExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  |  | 
|  | OptPrimType FromT = classify(SubExpr); | 
|  | OptPrimType ToT = classify(E); | 
|  |  | 
|  | if (!FromT || !ToT) | 
|  | return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); | 
|  |  | 
|  | if (FromT == PT_Ptr || ToT == PT_Ptr) { | 
|  | // Both types could be PT_Ptr because their expressions are glvalues. | 
|  | OptPrimType PointeeFromT; | 
|  | if (SubExpr->getType()->isPointerOrReferenceType()) | 
|  | PointeeFromT = classify(SubExpr->getType()->getPointeeType()); | 
|  | else | 
|  | PointeeFromT = classify(SubExpr->getType()); | 
|  |  | 
|  | OptPrimType PointeeToT; | 
|  | if (E->getType()->isPointerOrReferenceType()) | 
|  | PointeeToT = classify(E->getType()->getPointeeType()); | 
|  | else | 
|  | PointeeToT = classify(E->getType()); | 
|  |  | 
|  | bool Fatal = true; | 
|  | if (PointeeToT && PointeeFromT) { | 
|  | if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT)) | 
|  | Fatal = false; | 
|  | } else { | 
|  | Fatal = SubExpr->getType().getTypePtr() != E->getType().getTypePtr(); | 
|  | } | 
|  |  | 
|  | if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) | 
|  | return false; | 
|  |  | 
|  | if (E->getCastKind() == CK_LValueBitCast) | 
|  | return this->delegate(SubExpr); | 
|  | return this->VisitCastExpr(E); | 
|  | } | 
|  |  | 
|  | // Try to actually do the cast. | 
|  | bool Fatal = (ToT != FromT); | 
|  | if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) | 
|  | return false; | 
|  |  | 
|  | return this->VisitCastExpr(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { | 
|  |  | 
|  | if (!Ctx.getLangOpts().CPlusPlus20) { | 
|  | if (!this->emitInvalidCast(CastKind::Dynamic, /*Fatal=*/false, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return this->VisitCastExpr(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { | 
|  | assert(E->getType()->isBooleanType()); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitConstBool(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { | 
|  | QualType T = E->getType(); | 
|  | assert(!classify(T)); | 
|  |  | 
|  | if (T->isRecordType()) { | 
|  | const CXXConstructorDecl *Ctor = E->getConstructor(); | 
|  |  | 
|  | // Trivial copy/move constructor. Avoid copy. | 
|  | if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && | 
|  | Ctor->isTrivial() && | 
|  | E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), | 
|  | T->getAsCXXRecordDecl())) | 
|  | return this->visitInitializer(E->getArg(0)); | 
|  |  | 
|  | // If we're discarding a construct expression, we still need | 
|  | // to allocate a variable and call the constructor and destructor. | 
|  | if (DiscardResult) { | 
|  | if (Ctor->isTrivial()) | 
|  | return true; | 
|  | assert(!Initializing); | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(E); | 
|  |  | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Zero initialization. | 
|  | if (E->requiresZeroInitialization()) { | 
|  | const Record *R = getRecord(E->getType()); | 
|  |  | 
|  | if (!this->visitZeroRecordInitializer(R, E)) | 
|  | return false; | 
|  |  | 
|  | // If the constructor is trivial anyway, we're done. | 
|  | if (Ctor->isTrivial()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const Function *Func = getFunction(Ctor); | 
|  |  | 
|  | if (!Func) | 
|  | return false; | 
|  |  | 
|  | assert(Func->hasThisPointer()); | 
|  | assert(!Func->hasRVO()); | 
|  |  | 
|  | //  The This pointer is already on the stack because this is an initializer, | 
|  | //  but we need to dup() so the call() below has its own copy. | 
|  | if (!this->emitDupPtr(E)) | 
|  | return false; | 
|  |  | 
|  | // Constructor arguments. | 
|  | for (const auto *Arg : E->arguments()) { | 
|  | if (!this->visit(Arg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Func->isVariadic()) { | 
|  | uint32_t VarArgSize = 0; | 
|  | unsigned NumParams = Func->getNumWrittenParams(); | 
|  | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { | 
|  | VarArgSize += | 
|  | align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); | 
|  | } | 
|  | if (!this->emitCallVar(Func, VarArgSize, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitCall(Func, 0, E)) { | 
|  | // When discarding, we don't need the result anyway, so clean up | 
|  | // the instance dup we did earlier in case surrounding code wants | 
|  | // to keep evaluating. | 
|  | if (DiscardResult) | 
|  | (void)this->emitPopPtr(E); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->emitPopPtr(E); | 
|  | return this->emitFinishInit(E); | 
|  | } | 
|  |  | 
|  | if (T->isArrayType()) { | 
|  | const ConstantArrayType *CAT = | 
|  | Ctx.getASTContext().getAsConstantArrayType(E->getType()); | 
|  | if (!CAT) | 
|  | return false; | 
|  |  | 
|  | size_t NumElems = CAT->getZExtSize(); | 
|  | const Function *Func = getFunction(E->getConstructor()); | 
|  | if (!Func) | 
|  | return false; | 
|  |  | 
|  | // FIXME(perf): We're calling the constructor once per array element here, | 
|  | //   in the old intepreter we had a special-case for trivial constructors. | 
|  | for (size_t I = 0; I != NumElems; ++I) { | 
|  | if (!this->emitConstUint64(I, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtrUint64(E)) | 
|  | return false; | 
|  |  | 
|  | // Constructor arguments. | 
|  | for (const auto *Arg : E->arguments()) { | 
|  | if (!this->visit(Arg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->emitCall(Func, 0, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | const APValue Val = | 
|  | E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); | 
|  |  | 
|  | // Things like __builtin_LINE(). | 
|  | if (E->getType()->isIntegerType()) { | 
|  | assert(Val.isInt()); | 
|  | const APSInt &I = Val.getInt(); | 
|  | return this->emitConst(I, E); | 
|  | } | 
|  | // Otherwise, the APValue is an LValue, with only one element. | 
|  | // Theoretically, we don't need the APValue at all of course. | 
|  | assert(E->getType()->isPointerType()); | 
|  | assert(Val.isLValue()); | 
|  | const APValue::LValueBase &Base = Val.getLValueBase(); | 
|  | if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) | 
|  | return this->visit(LValueExpr); | 
|  |  | 
|  | // Otherwise, we have a decl (which is the case for | 
|  | // __builtin_source_location). | 
|  | assert(Base.is<const ValueDecl *>()); | 
|  | assert(Val.getLValuePath().size() == 0); | 
|  | const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); | 
|  | assert(BaseDecl); | 
|  |  | 
|  | auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); | 
|  |  | 
|  | std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); | 
|  | if (!GlobalIndex) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) | 
|  | return false; | 
|  |  | 
|  | const Record *R = getRecord(E->getType()); | 
|  | const APValue &V = UGCD->getValue(); | 
|  | for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { | 
|  | const Record::Field *F = R->getField(I); | 
|  | const APValue &FieldValue = V.getStructField(I); | 
|  |  | 
|  | PrimType FieldT = classifyPrim(F->Decl->getType()); | 
|  |  | 
|  | if (!this->visitAPValue(FieldValue, FieldT, E)) | 
|  | return false; | 
|  | if (!this->emitInitField(FieldT, F->Offset, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Leave the pointer to the global on the stack. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { | 
|  | unsigned N = E->getNumComponents(); | 
|  | if (N == 0) | 
|  | return false; | 
|  |  | 
|  | for (unsigned I = 0; I != N; ++I) { | 
|  | const OffsetOfNode &Node = E->getComponent(I); | 
|  | if (Node.getKind() == OffsetOfNode::Array) { | 
|  | const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); | 
|  | PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); | 
|  |  | 
|  | if (DiscardResult) { | 
|  | if (!this->discard(ArrayIndexExpr)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!this->visit(ArrayIndexExpr)) | 
|  | return false; | 
|  | // Cast to Sint64. | 
|  | if (IndexT != PT_Sint64) { | 
|  | if (!this->emitCast(IndexT, PT_Sint64, E)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | PrimType T = classifyPrim(E->getType()); | 
|  | return this->emitOffsetOf(T, E, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( | 
|  | const CXXScalarValueInitExpr *E) { | 
|  | QualType Ty = E->getType(); | 
|  |  | 
|  | if (DiscardResult || Ty->isVoidType()) | 
|  | return true; | 
|  |  | 
|  | if (OptPrimType T = classify(Ty)) | 
|  | return this->visitZeroInitializer(*T, Ty, E); | 
|  |  | 
|  | if (const auto *CT = Ty->getAs<ComplexType>()) { | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(E); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Initialize both fields to 0. | 
|  | QualType ElemQT = CT->getElementType(); | 
|  | PrimType ElemT = classifyPrim(ElemQT); | 
|  |  | 
|  | for (unsigned I = 0; I != 2; ++I) { | 
|  | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const auto *VT = Ty->getAs<VectorType>()) { | 
|  | // FIXME: Code duplication with the _Complex case above. | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(E); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Initialize all fields to 0. | 
|  | QualType ElemQT = VT->getElementType(); | 
|  | PrimType ElemT = classifyPrim(ElemQT); | 
|  |  | 
|  | for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { | 
|  | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { | 
|  | return this->emitConst(E->getPackLength(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitGenericSelectionExpr( | 
|  | const GenericSelectionExpr *E) { | 
|  | return this->delegate(E->getResultExpr()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { | 
|  | return this->delegate(E->getChosenSubExpr()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | return this->emitConst(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( | 
|  | const CXXInheritedCtorInitExpr *E) { | 
|  | const CXXConstructorDecl *Ctor = E->getConstructor(); | 
|  | assert(!Ctor->isTrivial() && | 
|  | "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); | 
|  | const Function *F = this->getFunction(Ctor); | 
|  | assert(F); | 
|  | assert(!F->hasRVO()); | 
|  | assert(F->hasThisPointer()); | 
|  |  | 
|  | if (!this->emitDupPtr(SourceInfo{})) | 
|  | return false; | 
|  |  | 
|  | // Forward all arguments of the current function (which should be a | 
|  | // constructor itself) to the inherited ctor. | 
|  | // This is necessary because the calling code has pushed the pointer | 
|  | // of the correct base for  us already, but the arguments need | 
|  | // to come after. | 
|  | unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. | 
|  | for (const ParmVarDecl *PD : Ctor->parameters()) { | 
|  | PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); | 
|  |  | 
|  | if (!this->emitGetParam(PT, Offset, E)) | 
|  | return false; | 
|  | Offset += align(primSize(PT)); | 
|  | } | 
|  |  | 
|  | return this->emitCall(F, 0, E); | 
|  | } | 
|  |  | 
|  | // FIXME: This function has become rather unwieldy, especially | 
|  | // the part where we initialize an array allocation of dynamic size. | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { | 
|  | assert(classifyPrim(E->getType()) == PT_Ptr); | 
|  | const Expr *Init = E->getInitializer(); | 
|  | QualType ElementType = E->getAllocatedType(); | 
|  | OptPrimType ElemT = classify(ElementType); | 
|  | unsigned PlacementArgs = E->getNumPlacementArgs(); | 
|  | const FunctionDecl *OperatorNew = E->getOperatorNew(); | 
|  | const Expr *PlacementDest = nullptr; | 
|  | bool IsNoThrow = false; | 
|  |  | 
|  | if (PlacementArgs != 0) { | 
|  | // FIXME: There is no restriction on this, but it's not clear that any | 
|  | // other form makes any sense. We get here for cases such as: | 
|  | // | 
|  | //   new (std::align_val_t{N}) X(int) | 
|  | // | 
|  | // (which should presumably be valid only if N is a multiple of | 
|  | // alignof(int), and in any case can't be deallocated unless N is | 
|  | // alignof(X) and X has new-extended alignment). | 
|  | if (PlacementArgs == 1) { | 
|  | const Expr *Arg1 = E->getPlacementArg(0); | 
|  | if (Arg1->getType()->isNothrowT()) { | 
|  | if (!this->discard(Arg1)) | 
|  | return false; | 
|  | IsNoThrow = true; | 
|  | } else { | 
|  | // Invalid unless we have C++26 or are in a std:: function. | 
|  | if (!this->emitInvalidNewDeleteExpr(E, E)) | 
|  | return false; | 
|  |  | 
|  | // If we have a placement-new destination, we'll later use that instead | 
|  | // of allocating. | 
|  | if (OperatorNew->isReservedGlobalPlacementOperator()) | 
|  | PlacementDest = Arg1; | 
|  | } | 
|  | } else { | 
|  | // Always invalid. | 
|  | return this->emitInvalid(E); | 
|  | } | 
|  | } else if (!OperatorNew | 
|  | ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) | 
|  | return this->emitInvalidNewDeleteExpr(E, E); | 
|  |  | 
|  | const Descriptor *Desc; | 
|  | if (!PlacementDest) { | 
|  | if (ElemT) { | 
|  | if (E->isArray()) | 
|  | Desc = nullptr; // We're not going to use it in this case. | 
|  | else | 
|  | Desc = P.createDescriptor(E, *ElemT, /*SourceTy=*/nullptr, | 
|  | Descriptor::InlineDescMD); | 
|  | } else { | 
|  | Desc = P.createDescriptor( | 
|  | E, ElementType.getTypePtr(), | 
|  | E->isArray() ? std::nullopt : Descriptor::InlineDescMD, | 
|  | /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, | 
|  | /*IsVolatile=*/false, Init); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (E->isArray()) { | 
|  | std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); | 
|  | if (!ArraySizeExpr) | 
|  | return false; | 
|  |  | 
|  | const Expr *Stripped = *ArraySizeExpr; | 
|  | for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); | 
|  | Stripped = ICE->getSubExpr()) | 
|  | if (ICE->getCastKind() != CK_NoOp && | 
|  | ICE->getCastKind() != CK_IntegralCast) | 
|  | break; | 
|  |  | 
|  | PrimType SizeT = classifyPrim(Stripped->getType()); | 
|  |  | 
|  | // Save evaluated array size to a variable. | 
|  | unsigned ArrayLen = | 
|  | allocateLocalPrimitive(Stripped, SizeT, /*IsConst=*/false); | 
|  | if (!this->visit(Stripped)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(SizeT, ArrayLen, E)) | 
|  | return false; | 
|  |  | 
|  | if (PlacementDest) { | 
|  | if (!this->visit(PlacementDest)) | 
|  | return false; | 
|  | if (!this->emitStartLifetime(E)) | 
|  | return false; | 
|  | if (!this->emitGetLocal(SizeT, ArrayLen, E)) | 
|  | return false; | 
|  | if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitGetLocal(SizeT, ArrayLen, E)) | 
|  | return false; | 
|  |  | 
|  | if (ElemT) { | 
|  | // N primitive elements. | 
|  | if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) | 
|  | return false; | 
|  | } else { | 
|  | // N Composite elements. | 
|  | if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Init) { | 
|  | QualType InitType = Init->getType(); | 
|  | size_t StaticInitElems = 0; | 
|  | const Expr *DynamicInit = nullptr; | 
|  | if (const ConstantArrayType *CAT = | 
|  | Ctx.getASTContext().getAsConstantArrayType(InitType)) { | 
|  | StaticInitElems = CAT->getZExtSize(); | 
|  | if (!this->visitInitializer(Init)) | 
|  | return false; | 
|  |  | 
|  | if (const auto *ILE = dyn_cast<InitListExpr>(Init); | 
|  | ILE && ILE->hasArrayFiller()) | 
|  | DynamicInit = ILE->getArrayFiller(); | 
|  | } | 
|  |  | 
|  | // The initializer initializes a certain number of elements, S. | 
|  | // However, the complete number of elements, N, might be larger than that. | 
|  | // In this case, we need to get an initializer for the remaining elements. | 
|  | // There are to cases: | 
|  | //   1) For the form 'new Struct[n];', the initializer is a | 
|  | //      CXXConstructExpr and its type is an IncompleteArrayType. | 
|  | //   2) For the form 'new Struct[n]{1,2,3}', the initializer is an | 
|  | //      InitListExpr and the initializer for the remaining elements | 
|  | //      is the array filler. | 
|  |  | 
|  | if (DynamicInit || InitType->isIncompleteArrayType()) { | 
|  | const Function *CtorFunc = nullptr; | 
|  | if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) { | 
|  | CtorFunc = getFunction(CE->getConstructor()); | 
|  | if (!CtorFunc) | 
|  | return false; | 
|  | } else if (!DynamicInit) | 
|  | DynamicInit = Init; | 
|  |  | 
|  | LabelTy EndLabel = this->getLabel(); | 
|  | LabelTy StartLabel = this->getLabel(); | 
|  |  | 
|  | // In the nothrow case, the alloc above might have returned nullptr. | 
|  | // Don't call any constructors that case. | 
|  | if (IsNoThrow) { | 
|  | if (!this->emitDupPtr(E)) | 
|  | return false; | 
|  | if (!this->emitNullPtr(0, nullptr, E)) | 
|  | return false; | 
|  | if (!this->emitEQPtr(E)) | 
|  | return false; | 
|  | if (!this->jumpTrue(EndLabel)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Create loop variables. | 
|  | unsigned Iter = | 
|  | allocateLocalPrimitive(Stripped, SizeT, /*IsConst=*/false); | 
|  | if (!this->emitConst(StaticInitElems, SizeT, E)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(SizeT, Iter, E)) | 
|  | return false; | 
|  |  | 
|  | this->fallthrough(StartLabel); | 
|  | this->emitLabel(StartLabel); | 
|  | // Condition. Iter < ArrayLen? | 
|  | if (!this->emitGetLocal(SizeT, Iter, E)) | 
|  | return false; | 
|  | if (!this->emitGetLocal(SizeT, ArrayLen, E)) | 
|  | return false; | 
|  | if (!this->emitLT(SizeT, E)) | 
|  | return false; | 
|  | if (!this->jumpFalse(EndLabel)) | 
|  | return false; | 
|  |  | 
|  | // Pointer to the allocated array is already on the stack. | 
|  | if (!this->emitGetLocal(SizeT, Iter, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtr(SizeT, E)) | 
|  | return false; | 
|  |  | 
|  | if (isa_and_nonnull<ImplicitValueInitExpr>(DynamicInit) && | 
|  | DynamicInit->getType()->isArrayType()) { | 
|  | QualType ElemType = | 
|  | DynamicInit->getType()->getAsArrayTypeUnsafe()->getElementType(); | 
|  | PrimType InitT = classifyPrim(ElemType); | 
|  | if (!this->visitZeroInitializer(InitT, ElemType, E)) | 
|  | return false; | 
|  | if (!this->emitStorePop(InitT, E)) | 
|  | return false; | 
|  | } else if (DynamicInit) { | 
|  | if (OptPrimType InitT = classify(DynamicInit)) { | 
|  | if (!this->visit(DynamicInit)) | 
|  | return false; | 
|  | if (!this->emitStorePop(*InitT, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->visitInitializer(DynamicInit)) | 
|  | return false; | 
|  | if (!this->emitPopPtr(E)) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | assert(CtorFunc); | 
|  | if (!this->emitCall(CtorFunc, 0, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // ++Iter; | 
|  | if (!this->emitGetPtrLocal(Iter, E)) | 
|  | return false; | 
|  | if (!this->emitIncPop(SizeT, false, E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->jump(StartLabel)) | 
|  | return false; | 
|  |  | 
|  | this->fallthrough(EndLabel); | 
|  | this->emitLabel(EndLabel); | 
|  | } | 
|  | } | 
|  | } else { // Non-array. | 
|  | if (PlacementDest) { | 
|  | if (!this->visit(PlacementDest)) | 
|  | return false; | 
|  | if (!this->emitStartLifetime(E)) | 
|  | return false; | 
|  | if (!this->emitCheckNewTypeMismatch(E, E)) | 
|  | return false; | 
|  | } else { | 
|  | // Allocate just one element. | 
|  | if (!this->emitAlloc(Desc, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Init) { | 
|  | if (ElemT) { | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitInit(*ElemT, E)) | 
|  | return false; | 
|  | } else { | 
|  | // Composite. | 
|  | if (!this->visitInitializer(Init)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->emitPopPtr(E); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { | 
|  | const Expr *Arg = E->getArgument(); | 
|  |  | 
|  | const FunctionDecl *OperatorDelete = E->getOperatorDelete(); | 
|  |  | 
|  | if (!OperatorDelete->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) | 
|  | return this->emitInvalidNewDeleteExpr(E, E); | 
|  |  | 
|  | // Arg must be an lvalue. | 
|  | if (!this->visit(Arg)) | 
|  | return false; | 
|  |  | 
|  | return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | const Function *Func = nullptr; | 
|  | if (auto F = Ctx.getOrCreateObjCBlock(E)) | 
|  | Func = F; | 
|  |  | 
|  | if (!Func) | 
|  | return false; | 
|  | return this->emitGetFnPtr(Func, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { | 
|  | const Type *TypeInfoType = E->getType().getTypePtr(); | 
|  |  | 
|  | auto canonType = [](const Type *T) { | 
|  | return T->getCanonicalTypeUnqualified().getTypePtr(); | 
|  | }; | 
|  |  | 
|  | if (!E->isPotentiallyEvaluated()) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | if (E->isTypeOperand()) | 
|  | return this->emitGetTypeid( | 
|  | canonType(E->getTypeOperand(Ctx.getASTContext()).getTypePtr()), | 
|  | TypeInfoType, E); | 
|  |  | 
|  | return this->emitGetTypeid( | 
|  | canonType(E->getExprOperand()->getType().getTypePtr()), TypeInfoType, | 
|  | E); | 
|  | } | 
|  |  | 
|  | // Otherwise, we need to evaluate the expression operand. | 
|  | assert(E->getExprOperand()); | 
|  | assert(E->getExprOperand()->isLValue()); | 
|  |  | 
|  | if (!Ctx.getLangOpts().CPlusPlus20 && !this->emitDiagTypeid(E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visit(E->getExprOperand())) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitGetTypeidPtr(TypeInfoType, E)) | 
|  | return false; | 
|  | if (DiscardResult) | 
|  | return this->emitPopPtr(E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { | 
|  | assert(Ctx.getLangOpts().CPlusPlus); | 
|  | return this->emitConstBool(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | assert(!Initializing); | 
|  |  | 
|  | const MSGuidDecl *GuidDecl = E->getGuidDecl(); | 
|  | const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); | 
|  | assert(RD); | 
|  | // If the definiton of the result type is incomplete, just return a dummy. | 
|  | // If (and when) that is read from, we will fail, but not now. | 
|  | if (!RD->isCompleteDefinition()) | 
|  | return this->emitDummyPtr(GuidDecl, E); | 
|  |  | 
|  | std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); | 
|  | if (!GlobalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) | 
|  | return false; | 
|  |  | 
|  | assert(this->getRecord(E->getType())); | 
|  |  | 
|  | const APValue &V = GuidDecl->getAsAPValue(); | 
|  | if (V.getKind() == APValue::None) | 
|  | return true; | 
|  |  | 
|  | assert(V.isStruct()); | 
|  | assert(V.getStructNumBases() == 0); | 
|  | if (!this->visitAPValueInitializer(V, E, E->getType())) | 
|  | return false; | 
|  |  | 
|  | return this->emitFinishInit(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { | 
|  | assert(classifyPrim(E->getType()) == PT_Bool); | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitConstBool(E->isSatisfied(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitConceptSpecializationExpr( | 
|  | const ConceptSpecializationExpr *E) { | 
|  | assert(classifyPrim(E->getType()) == PT_Bool); | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitConstBool(E->isSatisfied(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( | 
|  | const CXXRewrittenBinaryOperator *E) { | 
|  | return this->delegate(E->getSemanticForm()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { | 
|  |  | 
|  | for (const Expr *SemE : E->semantics()) { | 
|  | if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { | 
|  | if (SemE == E->getResultExpr()) | 
|  | return false; | 
|  |  | 
|  | if (OVE->isUnique()) | 
|  | continue; | 
|  |  | 
|  | if (!this->discard(OVE)) | 
|  | return false; | 
|  | } else if (SemE == E->getResultExpr()) { | 
|  | if (!this->delegate(SemE)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->discard(SemE)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { | 
|  | return this->delegate(E->getSelectedExpr()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { | 
|  | return this->emitError(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { | 
|  | assert(E->getType()->isVoidPointerType()); | 
|  |  | 
|  | unsigned Offset = | 
|  | allocateLocalPrimitive(E->getLabel(), PT_Ptr, /*IsConst=*/true); | 
|  |  | 
|  | return this->emitGetLocal(PT_Ptr, Offset, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { | 
|  | assert(Initializing); | 
|  | const auto *VT = E->getType()->castAs<VectorType>(); | 
|  | QualType ElemType = VT->getElementType(); | 
|  | PrimType ElemT = classifyPrim(ElemType); | 
|  | const Expr *Src = E->getSrcExpr(); | 
|  | QualType SrcType = Src->getType(); | 
|  | PrimType SrcElemT = classifyVectorElementType(SrcType); | 
|  |  | 
|  | unsigned SrcOffset = | 
|  | this->allocateLocalPrimitive(Src, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(Src)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned I = 0; I != VT->getNumElements(); ++I) { | 
|  | if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPop(SrcElemT, I, E)) | 
|  | return false; | 
|  |  | 
|  | // Cast to the desired result element type. | 
|  | if (SrcElemT != ElemT) { | 
|  | if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) | 
|  | return false; | 
|  | } else if (ElemType->isFloatingType() && SrcType != ElemType) { | 
|  | const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType); | 
|  | if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E)) | 
|  | return false; | 
|  | } | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { | 
|  | assert(Initializing); | 
|  | assert(E->getNumSubExprs() > 2); | 
|  |  | 
|  | const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; | 
|  | const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); | 
|  | PrimType ElemT = classifyPrim(VT->getElementType()); | 
|  | unsigned NumInputElems = VT->getNumElements(); | 
|  | unsigned NumOutputElems = E->getNumSubExprs() - 2; | 
|  | assert(NumOutputElems > 0); | 
|  |  | 
|  | // Save both input vectors to a local variable. | 
|  | unsigned VectorOffsets[2]; | 
|  | for (unsigned I = 0; I != 2; ++I) { | 
|  | VectorOffsets[I] = | 
|  | this->allocateLocalPrimitive(Vecs[I], PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(Vecs[I])) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) | 
|  | return false; | 
|  | } | 
|  | for (unsigned I = 0; I != NumOutputElems; ++I) { | 
|  | APSInt ShuffleIndex = E->getShuffleMaskIdx(I); | 
|  | assert(ShuffleIndex >= -1); | 
|  | if (ShuffleIndex == -1) | 
|  | return this->emitInvalidShuffleVectorIndex(I, E); | 
|  |  | 
|  | assert(ShuffleIndex < (NumInputElems * 2)); | 
|  | if (!this->emitGetLocal(PT_Ptr, | 
|  | VectorOffsets[ShuffleIndex >= NumInputElems], E)) | 
|  | return false; | 
|  | unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; | 
|  | if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitExtVectorElementExpr( | 
|  | const ExtVectorElementExpr *E) { | 
|  | const Expr *Base = E->getBase(); | 
|  | assert( | 
|  | Base->getType()->isVectorType() || | 
|  | Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); | 
|  |  | 
|  | SmallVector<uint32_t, 4> Indices; | 
|  | E->getEncodedElementAccess(Indices); | 
|  |  | 
|  | if (Indices.size() == 1) { | 
|  | if (!this->visit(Base)) | 
|  | return false; | 
|  |  | 
|  | if (E->isGLValue()) { | 
|  | if (!this->emitConstUint32(Indices[0], E)) | 
|  | return false; | 
|  | return this->emitArrayElemPtrPop(PT_Uint32, E); | 
|  | } | 
|  | // Else, also load the value. | 
|  | return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); | 
|  | } | 
|  |  | 
|  | // Create a local variable for the base. | 
|  | unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(Base)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) | 
|  | return false; | 
|  |  | 
|  | // Now the vector variable for the return value. | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> ResultIndex; | 
|  | ResultIndex = allocateLocal(E); | 
|  | if (!ResultIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*ResultIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); | 
|  |  | 
|  | PrimType ElemT = | 
|  | classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); | 
|  | uint32_t DstIndex = 0; | 
|  | for (uint32_t I : Indices) { | 
|  | if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPop(ElemT, I, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, DstIndex, E)) | 
|  | return false; | 
|  | ++DstIndex; | 
|  | } | 
|  |  | 
|  | // Leave the result pointer on the stack. | 
|  | assert(!DiscardResult); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | if (!E->isExpressibleAsConstantInitializer()) | 
|  | return this->discard(SubExpr) && this->emitInvalid(E); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | assert(classifyPrim(E) == PT_Ptr); | 
|  | return this->emitDummyPtr(E, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( | 
|  | const CXXStdInitializerListExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | const ConstantArrayType *ArrayType = | 
|  | Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); | 
|  | const Record *R = getRecord(E->getType()); | 
|  | assert(Initializing); | 
|  | assert(SubExpr->isGLValue()); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (!this->emitConstUint8(0, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtrPopUint8(E)) | 
|  | return false; | 
|  | if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) | 
|  | return false; | 
|  |  | 
|  | PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); | 
|  | if (isIntegralType(SecondFieldT)) { | 
|  | if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), | 
|  | SecondFieldT, E)) | 
|  | return false; | 
|  | return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); | 
|  | } | 
|  | assert(SecondFieldT == PT_Ptr); | 
|  |  | 
|  | if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) | 
|  | return false; | 
|  | if (!this->emitExpandPtr(E)) | 
|  | return false; | 
|  | if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtrPop(PT_Uint64, E)) | 
|  | return false; | 
|  | return this->emitInitFieldPtr(R->getField(1u)->Offset, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { | 
|  | BlockScope<Emitter> BS(this); | 
|  | StmtExprScope<Emitter> SS(this); | 
|  |  | 
|  | const CompoundStmt *CS = E->getSubStmt(); | 
|  | const Stmt *Result = CS->getStmtExprResult(); | 
|  | for (const Stmt *S : CS->body()) { | 
|  | if (S != Result) { | 
|  | if (!this->visitStmt(S)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(S == Result); | 
|  | if (const Expr *ResultExpr = dyn_cast<Expr>(S)) | 
|  | return this->delegate(ResultExpr); | 
|  | return this->emitUnsupported(E); | 
|  | } | 
|  |  | 
|  | return BS.destroyLocals(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { | 
|  | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, | 
|  | /*NewInitializing=*/false); | 
|  | return this->Visit(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { | 
|  | // We're basically doing: | 
|  | // OptionScope<Emitter> Scope(this, DicardResult, Initializing); | 
|  | // but that's unnecessary of course. | 
|  | return this->Visit(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { | 
|  | if (E->getType().isNull()) | 
|  | return false; | 
|  |  | 
|  | if (E->getType()->isVoidType()) | 
|  | return this->discard(E); | 
|  |  | 
|  | // Create local variable to hold the return value. | 
|  | if (!E->isGLValue() && !E->getType()->isAnyComplexType() && | 
|  | !classify(E->getType())) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(E); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); | 
|  | return this->visitInitializer(E); | 
|  | } | 
|  |  | 
|  | //  Otherwise,we have a primitive return value, produce the value directly | 
|  | //  and push it on the stack. | 
|  | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, | 
|  | /*NewInitializing=*/false); | 
|  | return this->Visit(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitInitializer(const Expr *E) { | 
|  | assert(!classify(E->getType())); | 
|  |  | 
|  | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, | 
|  | /*NewInitializing=*/true); | 
|  | return this->Visit(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { | 
|  | OptPrimType T = classify(E->getType()); | 
|  | if (!T) { | 
|  | // Convert complex values to bool. | 
|  | if (E->getType()->isAnyComplexType()) { | 
|  | if (!this->visit(E)) | 
|  | return false; | 
|  | return this->emitComplexBoolCast(E); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->visit(E)) | 
|  | return false; | 
|  |  | 
|  | if (T == PT_Bool) | 
|  | return true; | 
|  |  | 
|  | // Convert pointers to bool. | 
|  | if (T == PT_Ptr) | 
|  | return this->emitIsNonNullPtr(E); | 
|  |  | 
|  | // Or Floats. | 
|  | if (T == PT_Float) | 
|  | return this->emitCastFloatingIntegralBool(getFPOptions(E), E); | 
|  |  | 
|  | // Or anything else we can. | 
|  | return this->emitCast(*T, PT_Bool, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, | 
|  | const Expr *E) { | 
|  | if (const auto *AT = QT->getAs<AtomicType>()) | 
|  | QT = AT->getValueType(); | 
|  |  | 
|  | switch (T) { | 
|  | case PT_Bool: | 
|  | return this->emitZeroBool(E); | 
|  | case PT_Sint8: | 
|  | return this->emitZeroSint8(E); | 
|  | case PT_Uint8: | 
|  | return this->emitZeroUint8(E); | 
|  | case PT_Sint16: | 
|  | return this->emitZeroSint16(E); | 
|  | case PT_Uint16: | 
|  | return this->emitZeroUint16(E); | 
|  | case PT_Sint32: | 
|  | return this->emitZeroSint32(E); | 
|  | case PT_Uint32: | 
|  | return this->emitZeroUint32(E); | 
|  | case PT_Sint64: | 
|  | return this->emitZeroSint64(E); | 
|  | case PT_Uint64: | 
|  | return this->emitZeroUint64(E); | 
|  | case PT_IntAP: | 
|  | return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); | 
|  | case PT_IntAPS: | 
|  | return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); | 
|  | case PT_Ptr: | 
|  | return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT), | 
|  | nullptr, E); | 
|  | case PT_MemberPtr: | 
|  | return this->emitNullMemberPtr(0, nullptr, E); | 
|  | case PT_Float: { | 
|  | APFloat F = APFloat::getZero(Ctx.getFloatSemantics(QT)); | 
|  | return this->emitFloat(F, E); | 
|  | } | 
|  | case PT_FixedPoint: { | 
|  | auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType()); | 
|  | return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("unknown primitive type"); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, | 
|  | const Expr *E) { | 
|  | assert(E); | 
|  | assert(R); | 
|  | // Fields | 
|  | for (const Record::Field &Field : R->fields()) { | 
|  | if (Field.isUnnamedBitField()) | 
|  | continue; | 
|  |  | 
|  | const Descriptor *D = Field.Desc; | 
|  | if (D->isPrimitive()) { | 
|  | QualType QT = D->getType(); | 
|  | PrimType T = classifyPrim(D->getType()); | 
|  | if (!this->visitZeroInitializer(T, QT, E)) | 
|  | return false; | 
|  | if (R->isUnion()) { | 
|  | if (!this->emitInitFieldActivate(T, Field.Offset, E)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | if (!this->emitInitField(T, Field.Offset, E)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!this->emitGetPtrField(Field.Offset, E)) | 
|  | return false; | 
|  |  | 
|  | if (D->isPrimitiveArray()) { | 
|  | QualType ET = D->getElemQualType(); | 
|  | PrimType T = classifyPrim(ET); | 
|  | for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { | 
|  | if (!this->visitZeroInitializer(T, ET, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(T, I, E)) | 
|  | return false; | 
|  | } | 
|  | } else if (D->isCompositeArray()) { | 
|  | // Can't be a vector or complex field. | 
|  | if (!this->visitZeroArrayInitializer(D->getType(), E)) | 
|  | return false; | 
|  | } else if (D->isRecord()) { | 
|  | if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the | 
|  | // object's first non-static named data member is zero-initialized | 
|  | if (R->isUnion()) { | 
|  | if (!this->emitFinishInitActivatePop(E)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | if (!this->emitFinishInitPop(E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const Record::Base &B : R->bases()) { | 
|  | if (!this->emitGetPtrBase(B.Offset, E)) | 
|  | return false; | 
|  | if (!this->visitZeroRecordInitializer(B.R, E)) | 
|  | return false; | 
|  | if (!this->emitFinishInitPop(E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: Virtual bases. | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) { | 
|  | assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType()); | 
|  | const ArrayType *AT = T->getAsArrayTypeUnsafe(); | 
|  | QualType ElemType = AT->getElementType(); | 
|  | size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize(); | 
|  |  | 
|  | if (OptPrimType ElemT = classify(ElemType)) { | 
|  | for (size_t I = 0; I != NumElems; ++I) { | 
|  | if (!this->visitZeroInitializer(*ElemT, ElemType, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(*ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } else if (ElemType->isRecordType()) { | 
|  | const Record *R = getRecord(ElemType); | 
|  |  | 
|  | for (size_t I = 0; I != NumElems; ++I) { | 
|  | if (!this->emitConstUint32(I, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtr(PT_Uint32, E)) | 
|  | return false; | 
|  | if (!this->visitZeroRecordInitializer(R, E)) | 
|  | return false; | 
|  | if (!this->emitPopPtr(E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } else if (ElemType->isArrayType()) { | 
|  | for (size_t I = 0; I != NumElems; ++I) { | 
|  | if (!this->emitConstUint32(I, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtr(PT_Uint32, E)) | 
|  | return false; | 
|  | if (!this->visitZeroArrayInitializer(ElemType, E)) | 
|  | return false; | 
|  | if (!this->emitPopPtr(E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitAssignment(const Expr *LHS, const Expr *RHS, | 
|  | const Expr *E) { | 
|  | if (!classify(E->getType())) | 
|  | return false; | 
|  |  | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  |  | 
|  | // We don't support assignments in C. | 
|  | if (!Ctx.getLangOpts().CPlusPlus && !this->emitInvalid(E)) | 
|  | return false; | 
|  |  | 
|  | PrimType RHT = classifyPrim(RHS); | 
|  | bool Activates = refersToUnion(LHS); | 
|  | bool BitField = LHS->refersToBitField(); | 
|  |  | 
|  | if (!this->emitFlip(PT_Ptr, RHT, E)) | 
|  | return false; | 
|  |  | 
|  | if (DiscardResult) { | 
|  | if (BitField && Activates) | 
|  | return this->emitStoreBitFieldActivatePop(RHT, E); | 
|  | if (BitField) | 
|  | return this->emitStoreBitFieldPop(RHT, E); | 
|  | if (Activates) | 
|  | return this->emitStoreActivatePop(RHT, E); | 
|  | // Otherwise, regular non-activating store. | 
|  | return this->emitStorePop(RHT, E); | 
|  | } | 
|  |  | 
|  | auto maybeLoad = [&](bool Result) -> bool { | 
|  | if (!Result) | 
|  | return false; | 
|  | // Assignments aren't necessarily lvalues in C. | 
|  | // Load from them in that case. | 
|  | if (!E->isLValue()) | 
|  | return this->emitLoadPop(RHT, E); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (BitField && Activates) | 
|  | return maybeLoad(this->emitStoreBitFieldActivate(RHT, E)); | 
|  | if (BitField) | 
|  | return maybeLoad(this->emitStoreBitField(RHT, E)); | 
|  | if (Activates) | 
|  | return maybeLoad(this->emitStoreActivate(RHT, E)); | 
|  | // Otherwise, regular non-activating store. | 
|  | return maybeLoad(this->emitStore(RHT, E)); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | template <typename T> | 
|  | bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { | 
|  | switch (Ty) { | 
|  | case PT_Sint8: | 
|  | return this->emitConstSint8(Value, E); | 
|  | case PT_Uint8: | 
|  | return this->emitConstUint8(Value, E); | 
|  | case PT_Sint16: | 
|  | return this->emitConstSint16(Value, E); | 
|  | case PT_Uint16: | 
|  | return this->emitConstUint16(Value, E); | 
|  | case PT_Sint32: | 
|  | return this->emitConstSint32(Value, E); | 
|  | case PT_Uint32: | 
|  | return this->emitConstUint32(Value, E); | 
|  | case PT_Sint64: | 
|  | return this->emitConstSint64(Value, E); | 
|  | case PT_Uint64: | 
|  | return this->emitConstUint64(Value, E); | 
|  | case PT_Bool: | 
|  | return this->emitConstBool(Value, E); | 
|  | case PT_Ptr: | 
|  | case PT_MemberPtr: | 
|  | case PT_Float: | 
|  | case PT_IntAP: | 
|  | case PT_IntAPS: | 
|  | case PT_FixedPoint: | 
|  | llvm_unreachable("Invalid integral type"); | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("unknown primitive type"); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | template <typename T> | 
|  | bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { | 
|  | return this->emitConst(Value, classifyPrim(E->getType()), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, | 
|  | const Expr *E) { | 
|  | if (Ty == PT_IntAPS) | 
|  | return this->emitConstIntAPS(Value, E); | 
|  | if (Ty == PT_IntAP) | 
|  | return this->emitConstIntAP(Value, E); | 
|  |  | 
|  | if (Value.isSigned()) | 
|  | return this->emitConst(Value.getSExtValue(), Ty, E); | 
|  | return this->emitConst(Value.getZExtValue(), Ty, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { | 
|  | return this->emitConst(Value, classifyPrim(E->getType()), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | unsigned Compiler<Emitter>::allocateLocalPrimitive( | 
|  | DeclTy &&Src, PrimType Ty, bool IsConst, const ValueDecl *ExtendingDecl, | 
|  | ScopeKind SC, bool IsConstexprUnknown) { | 
|  | // Make sure we don't accidentally register the same decl twice. | 
|  | if (const auto *VD = | 
|  | dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { | 
|  | assert(!P.getGlobal(VD)); | 
|  | assert(!Locals.contains(VD)); | 
|  | (void)VD; | 
|  | } | 
|  |  | 
|  | // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. | 
|  | //   (int){12} in C. Consider using Expr::isTemporaryObject() instead | 
|  | //   or isa<MaterializeTemporaryExpr>(). | 
|  | Descriptor *D = P.createDescriptor(Src, Ty, nullptr, Descriptor::InlineDescMD, | 
|  | IsConst, isa<const Expr *>(Src)); | 
|  | D->IsConstexprUnknown = IsConstexprUnknown; | 
|  | Scope::Local Local = this->createLocal(D); | 
|  | if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) | 
|  | Locals.insert({VD, Local}); | 
|  | if (ExtendingDecl) | 
|  | VarScope->addExtended(Local, ExtendingDecl); | 
|  | else | 
|  | VarScope->addForScopeKind(Local, SC); | 
|  | return Local.Offset; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | std::optional<unsigned> | 
|  | Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty, | 
|  | const ValueDecl *ExtendingDecl, ScopeKind SC, | 
|  | bool IsConstexprUnknown) { | 
|  | // Make sure we don't accidentally register the same decl twice. | 
|  | if ([[maybe_unused]] const auto *VD = | 
|  | dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { | 
|  | assert(!P.getGlobal(VD)); | 
|  | assert(!Locals.contains(VD)); | 
|  | } | 
|  |  | 
|  | const ValueDecl *Key = nullptr; | 
|  | const Expr *Init = nullptr; | 
|  | bool IsTemporary = false; | 
|  | if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { | 
|  | Key = VD; | 
|  | Ty = VD->getType(); | 
|  |  | 
|  | if (const auto *VarD = dyn_cast<VarDecl>(VD)) | 
|  | Init = VarD->getInit(); | 
|  | } | 
|  | if (auto *E = Src.dyn_cast<const Expr *>()) { | 
|  | IsTemporary = true; | 
|  | if (Ty.isNull()) | 
|  | Ty = E->getType(); | 
|  | } | 
|  |  | 
|  | Descriptor *D = P.createDescriptor( | 
|  | Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), | 
|  | IsTemporary, /*IsMutable=*/false, /*IsVolatile=*/false, Init); | 
|  | if (!D) | 
|  | return std::nullopt; | 
|  | D->IsConstexprUnknown = IsConstexprUnknown; | 
|  |  | 
|  | Scope::Local Local = this->createLocal(D); | 
|  | if (Key) | 
|  | Locals.insert({Key, Local}); | 
|  | if (ExtendingDecl) | 
|  | VarScope->addExtended(Local, ExtendingDecl); | 
|  | else | 
|  | VarScope->addForScopeKind(Local, SC); | 
|  | return Local.Offset; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | std::optional<unsigned> Compiler<Emitter>::allocateTemporary(const Expr *E) { | 
|  | QualType Ty = E->getType(); | 
|  | assert(!Ty->isRecordType()); | 
|  |  | 
|  | Descriptor *D = P.createDescriptor( | 
|  | E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), | 
|  | /*IsTemporary=*/true); | 
|  |  | 
|  | if (!D) | 
|  | return std::nullopt; | 
|  |  | 
|  | Scope::Local Local = this->createLocal(D); | 
|  | VariableScope<Emitter> *S = VarScope; | 
|  | assert(S); | 
|  | // Attach to topmost scope. | 
|  | while (S->getParent()) | 
|  | S = S->getParent(); | 
|  | assert(S && !S->getParent()); | 
|  | S->addLocal(Local); | 
|  | return Local.Offset; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { | 
|  | if (const PointerType *PT = dyn_cast<PointerType>(Ty)) | 
|  | return PT->getPointeeType()->getAs<RecordType>(); | 
|  | return Ty->getAs<RecordType>(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { | 
|  | if (const auto *RecordTy = getRecordTy(Ty)) | 
|  | return getRecord(RecordTy->getDecl()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { | 
|  | return P.getOrCreateRecord(RD); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { | 
|  | return Ctx.getOrCreateFunction(FD); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { | 
|  | LocalScope<Emitter> RootScope(this); | 
|  |  | 
|  | // If we won't destroy the toplevel scope, check for memory leaks first. | 
|  | if (!DestroyToplevelScope) { | 
|  | if (!this->emitCheckAllocations(E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto maybeDestroyLocals = [&]() -> bool { | 
|  | if (DestroyToplevelScope) | 
|  | return RootScope.destroyLocals() && this->emitCheckAllocations(E); | 
|  | return this->emitCheckAllocations(E); | 
|  | }; | 
|  |  | 
|  | // Void expressions. | 
|  | if (E->getType()->isVoidType()) { | 
|  | if (!visit(E)) | 
|  | return false; | 
|  | return this->emitRetVoid(E) && maybeDestroyLocals(); | 
|  | } | 
|  |  | 
|  | // Expressions with a primitive return type. | 
|  | if (OptPrimType T = classify(E)) { | 
|  | if (!visit(E)) | 
|  | return false; | 
|  |  | 
|  | return this->emitRet(*T, E) && maybeDestroyLocals(); | 
|  | } | 
|  |  | 
|  | // Expressions with a composite return type. | 
|  | // For us, that means everything we don't | 
|  | // have a PrimType for. | 
|  | if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalOffset)); | 
|  | if (!this->emitGetPtrLocal(*LocalOffset, E)) | 
|  | return false; | 
|  |  | 
|  | if (!visitInitializer(E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitFinishInit(E)) | 
|  | return false; | 
|  | // We are destroying the locals AFTER the Ret op. | 
|  | // The Ret op needs to copy the (alive) values, but the | 
|  | // destructors may still turn the entire expression invalid. | 
|  | return this->emitRetValue(E) && maybeDestroyLocals(); | 
|  | } | 
|  |  | 
|  | return maybeDestroyLocals() && this->emitCheckAllocations(E) && false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD, | 
|  | bool IsConstexprUnknown) { | 
|  |  | 
|  | auto R = this->visitVarDecl(VD, /*Toplevel=*/true, IsConstexprUnknown); | 
|  |  | 
|  | if (R.notCreated()) | 
|  | return R; | 
|  |  | 
|  | if (R) | 
|  | return true; | 
|  |  | 
|  | if (!R && Context::shouldBeGloballyIndexed(VD)) { | 
|  | if (auto GlobalIndex = P.getGlobal(VD)) { | 
|  | Block *GlobalBlock = P.getGlobal(*GlobalIndex); | 
|  | GlobalInlineDescriptor &GD = | 
|  | *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); | 
|  |  | 
|  | GD.InitState = GlobalInitState::InitializerFailed; | 
|  | GlobalBlock->invokeDtor(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return R; | 
|  | } | 
|  |  | 
|  | /// Toplevel visitDeclAndReturn(). | 
|  | /// We get here from evaluateAsInitializer(). | 
|  | /// We need to evaluate the initializer and return its value. | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, | 
|  | bool ConstantContext) { | 
|  |  | 
|  | // We only create variables if we're evaluating in a constant context. | 
|  | // Otherwise, just evaluate the initializer and return it. | 
|  | if (!ConstantContext) { | 
|  | DeclScope<Emitter> LS(this, VD); | 
|  | const Expr *Init = VD->getInit(); | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  | return this->emitRet(classify(Init).value_or(PT_Ptr), VD) && | 
|  | LS.destroyLocals() && this->emitCheckAllocations(VD); | 
|  | } | 
|  |  | 
|  | LocalScope<Emitter> VDScope(this, VD); | 
|  | if (!this->visitVarDecl(VD, /*Toplevel=*/true)) | 
|  | return false; | 
|  |  | 
|  | OptPrimType VarT = classify(VD->getType()); | 
|  | if (Context::shouldBeGloballyIndexed(VD)) { | 
|  | auto GlobalIndex = P.getGlobal(VD); | 
|  | assert(GlobalIndex); // visitVarDecl() didn't return false. | 
|  | if (VarT) { | 
|  | if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | auto Local = Locals.find(VD); | 
|  | assert(Local != Locals.end()); // Same here. | 
|  | if (VarT) { | 
|  | if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitGetPtrLocal(Local->second.Offset, VD)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the value. | 
|  | if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { | 
|  | // If the Ret above failed and this is a global variable, mark it as | 
|  | // uninitialized, even everything else succeeded. | 
|  | if (Context::shouldBeGloballyIndexed(VD)) { | 
|  | auto GlobalIndex = P.getGlobal(VD); | 
|  | assert(GlobalIndex); | 
|  | Block *GlobalBlock = P.getGlobal(*GlobalIndex); | 
|  | GlobalInlineDescriptor &GD = | 
|  | *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); | 
|  |  | 
|  | GD.InitState = GlobalInitState::InitializerFailed; | 
|  | GlobalBlock->invokeDtor(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return VDScope.destroyLocals() && this->emitCheckAllocations(VD); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, | 
|  | bool Toplevel, | 
|  | bool IsConstexprUnknown) { | 
|  | // We don't know what to do with these, so just return false. | 
|  | if (VD->getType().isNull()) | 
|  | return false; | 
|  |  | 
|  | // This case is EvalEmitter-only. If we won't create any instructions for the | 
|  | // initializer anyway, don't bother creating the variable in the first place. | 
|  | if (!this->isActive()) | 
|  | return VarCreationState::NotCreated(); | 
|  |  | 
|  | const Expr *Init = VD->getInit(); | 
|  | OptPrimType VarT = classify(VD->getType()); | 
|  |  | 
|  | if (Init && Init->isValueDependent()) | 
|  | return false; | 
|  |  | 
|  | if (Context::shouldBeGloballyIndexed(VD)) { | 
|  | auto checkDecl = [&]() -> bool { | 
|  | bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); | 
|  | return !NeedsOp || this->emitCheckDecl(VD, VD); | 
|  | }; | 
|  |  | 
|  | auto initGlobal = [&](unsigned GlobalIndex) -> bool { | 
|  | assert(Init); | 
|  |  | 
|  | if (VarT) { | 
|  | if (!this->visit(Init)) | 
|  | return checkDecl() && false; | 
|  |  | 
|  | return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); | 
|  | } | 
|  |  | 
|  | if (!checkDecl()) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitGetPtrGlobal(GlobalIndex, Init)) | 
|  | return false; | 
|  |  | 
|  | if (!visitInitializer(Init)) | 
|  | return false; | 
|  |  | 
|  | return this->emitFinishInitGlobal(Init); | 
|  | }; | 
|  |  | 
|  | DeclScope<Emitter> LocalScope(this, VD); | 
|  |  | 
|  | // We've already seen and initialized this global. | 
|  | if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { | 
|  | if (P.getPtrGlobal(*GlobalIndex).isInitialized()) | 
|  | return checkDecl(); | 
|  |  | 
|  | // The previous attempt at initialization might've been unsuccessful, | 
|  | // so let's try this one. | 
|  | return Init && checkDecl() && initGlobal(*GlobalIndex); | 
|  | } | 
|  |  | 
|  | std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); | 
|  |  | 
|  | if (!GlobalIndex) | 
|  | return false; | 
|  |  | 
|  | return !Init || (checkDecl() && initGlobal(*GlobalIndex)); | 
|  | } | 
|  | // Local variables. | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); | 
|  |  | 
|  | if (VarT) { | 
|  | unsigned Offset = this->allocateLocalPrimitive( | 
|  | VD, *VarT, VD->getType().isConstQualified(), nullptr, ScopeKind::Block, | 
|  | IsConstexprUnknown); | 
|  | if (Init) { | 
|  | // If this is a toplevel declaration, create a scope for the | 
|  | // initializer. | 
|  | if (Toplevel) { | 
|  | LocalScope<Emitter> Scope(this); | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  | return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); | 
|  | } else { | 
|  | if (!this->visit(Init)) | 
|  | return false; | 
|  | return this->emitSetLocal(*VarT, Offset, VD); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (std::optional<unsigned> Offset = this->allocateLocal( | 
|  | VD, VD->getType(), nullptr, ScopeKind::Block, IsConstexprUnknown)) { | 
|  | if (!Init) | 
|  | return true; | 
|  |  | 
|  | if (!this->emitGetPtrLocal(*Offset, Init)) | 
|  | return false; | 
|  |  | 
|  | if (!visitInitializer(Init)) | 
|  | return false; | 
|  |  | 
|  | return this->emitFinishInitPop(Init); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, | 
|  | const Expr *E) { | 
|  | assert(!DiscardResult); | 
|  | if (Val.isInt()) | 
|  | return this->emitConst(Val.getInt(), ValType, E); | 
|  | else if (Val.isFloat()) { | 
|  | APFloat F = Val.getFloat(); | 
|  | return this->emitFloat(F, E); | 
|  | } | 
|  |  | 
|  | if (Val.isLValue()) { | 
|  | if (Val.isNullPointer()) | 
|  | return this->emitNull(ValType, 0, nullptr, E); | 
|  | APValue::LValueBase Base = Val.getLValueBase(); | 
|  | if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) | 
|  | return this->visit(BaseExpr); | 
|  | else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { | 
|  | return this->visitDeclRef(VD, E); | 
|  | } | 
|  | } else if (Val.isMemberPointer()) { | 
|  | if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) | 
|  | return this->emitGetMemberPtr(MemberDecl, E); | 
|  | return this->emitNullMemberPtr(0, nullptr, E); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, | 
|  | const Expr *E, QualType T) { | 
|  | if (Val.isStruct()) { | 
|  | const Record *R = this->getRecord(T); | 
|  | assert(R); | 
|  | for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { | 
|  | const APValue &F = Val.getStructField(I); | 
|  | const Record::Field *RF = R->getField(I); | 
|  | QualType FieldType = RF->Decl->getType(); | 
|  |  | 
|  | if (OptPrimType PT = classify(FieldType)) { | 
|  | if (!this->visitAPValue(F, *PT, E)) | 
|  | return false; | 
|  | if (!this->emitInitField(*PT, RF->Offset, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitGetPtrField(RF->Offset, E)) | 
|  | return false; | 
|  | if (!this->visitAPValueInitializer(F, E, FieldType)) | 
|  | return false; | 
|  | if (!this->emitPopPtr(E)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } else if (Val.isUnion()) { | 
|  | const FieldDecl *UnionField = Val.getUnionField(); | 
|  | const Record *R = this->getRecord(UnionField->getParent()); | 
|  | assert(R); | 
|  | const APValue &F = Val.getUnionValue(); | 
|  | const Record::Field *RF = R->getField(UnionField); | 
|  | PrimType T = classifyPrim(RF->Decl->getType()); | 
|  | if (!this->visitAPValue(F, T, E)) | 
|  | return false; | 
|  | return this->emitInitField(T, RF->Offset, E); | 
|  | } else if (Val.isArray()) { | 
|  | const auto *ArrType = T->getAsArrayTypeUnsafe(); | 
|  | QualType ElemType = ArrType->getElementType(); | 
|  | for (unsigned A = 0, AN = Val.getArraySize(); A != AN; ++A) { | 
|  | const APValue &Elem = Val.getArrayInitializedElt(A); | 
|  | if (OptPrimType ElemT = classify(ElemType)) { | 
|  | if (!this->visitAPValue(Elem, *ElemT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(*ElemT, A, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitConstUint32(A, E)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtrUint32(E)) | 
|  | return false; | 
|  | if (!this->visitAPValueInitializer(Elem, E, ElemType)) | 
|  | return false; | 
|  | if (!this->emitPopPtr(E)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | // TODO: Other types. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, | 
|  | unsigned BuiltinID) { | 
|  |  | 
|  | if (BuiltinID == Builtin::BI__builtin_constant_p) { | 
|  | // Void argument is always invalid and harder to handle later. | 
|  | if (E->getArg(0)->getType()->isVoidType()) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitConst(0, E); | 
|  | } | 
|  |  | 
|  | if (!this->emitStartSpeculation(E)) | 
|  | return false; | 
|  | LabelTy EndLabel = this->getLabel(); | 
|  | if (!this->speculate(E, EndLabel)) | 
|  | return false; | 
|  | this->fallthrough(EndLabel); | 
|  | if (!this->emitEndSpeculation(E)) | 
|  | return false; | 
|  | if (DiscardResult) | 
|  | return this->emitPop(classifyPrim(E), E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For these, we're expected to ultimately return an APValue pointing | 
|  | // to the CallExpr. This is needed to get the correct codegen. | 
|  | if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || | 
|  | BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || | 
|  | BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || | 
|  | BuiltinID == Builtin::BI__builtin_function_start) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  | return this->emitDummyPtr(E, E); | 
|  | } | 
|  |  | 
|  | QualType ReturnType = E->getType(); | 
|  | OptPrimType ReturnT = classify(E); | 
|  |  | 
|  | // Non-primitive return type. Prepare storage. | 
|  | if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(E); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Context::isUnevaluatedBuiltin(BuiltinID)) { | 
|  | // Put arguments on the stack. | 
|  | for (const auto *Arg : E->arguments()) { | 
|  | if (!this->visit(Arg)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!this->emitCallBI(E, BuiltinID, E)) | 
|  | return false; | 
|  |  | 
|  | if (DiscardResult && !ReturnType->isVoidType()) { | 
|  | assert(ReturnT); | 
|  | return this->emitPop(*ReturnT, E); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const Expr *stripDerivedToBaseCasts(const Expr *E) { | 
|  | if (const auto *PE = dyn_cast<ParenExpr>(E)) | 
|  | return stripDerivedToBaseCasts(PE->getSubExpr()); | 
|  |  | 
|  | if (const auto *CE = dyn_cast<CastExpr>(E); | 
|  | CE && | 
|  | (CE->getCastKind() == CK_DerivedToBase || CE->getCastKind() == CK_NoOp)) | 
|  | return stripDerivedToBaseCasts(CE->getSubExpr()); | 
|  |  | 
|  | return E; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { | 
|  | const FunctionDecl *FuncDecl = E->getDirectCallee(); | 
|  |  | 
|  | if (FuncDecl) { | 
|  | if (unsigned BuiltinID = FuncDecl->getBuiltinID()) | 
|  | return VisitBuiltinCallExpr(E, BuiltinID); | 
|  |  | 
|  | // Calls to replaceable operator new/operator delete. | 
|  | if (FuncDecl->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) { | 
|  | if (FuncDecl->getDeclName().isAnyOperatorNew()) { | 
|  | return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); | 
|  | } else { | 
|  | assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); | 
|  | return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Explicit calls to trivial destructors | 
|  | if (const auto *DD = dyn_cast<CXXDestructorDecl>(FuncDecl); | 
|  | DD && DD->isTrivial()) { | 
|  | const auto *MemberCall = cast<CXXMemberCallExpr>(E); | 
|  | if (!this->visit(MemberCall->getImplicitObjectArgument())) | 
|  | return false; | 
|  | return this->emitCheckDestruction(E) && this->emitEndLifetime(E) && | 
|  | this->emitPopPtr(E); | 
|  | } | 
|  | } | 
|  |  | 
|  | BlockScope<Emitter> CallScope(this, ScopeKind::Call); | 
|  |  | 
|  | QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); | 
|  | OptPrimType T = classify(ReturnType); | 
|  | bool HasRVO = !ReturnType->isVoidType() && !T; | 
|  |  | 
|  | if (HasRVO) { | 
|  | if (DiscardResult) { | 
|  | // If we need to discard the return value but the function returns its | 
|  | // value via an RVO pointer, we need to create one such pointer just | 
|  | // for this call. | 
|  | if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // We need the result. Prepare a pointer to return or | 
|  | // dup the current one. | 
|  | if (!Initializing) { | 
|  | if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!this->emitDupPtr(E)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<const Expr *, 8> Args(ArrayRef(E->getArgs(), E->getNumArgs())); | 
|  |  | 
|  | bool IsAssignmentOperatorCall = false; | 
|  | if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); | 
|  | OCE && OCE->isAssignmentOp()) { | 
|  | // Just like with regular assignments, we need to special-case assignment | 
|  | // operators here and evaluate the RHS (the second arg) before the LHS (the | 
|  | // first arg). We fix this by using a Flip op later. | 
|  | assert(Args.size() == 2); | 
|  | IsAssignmentOperatorCall = true; | 
|  | std::reverse(Args.begin(), Args.end()); | 
|  | } | 
|  | // Calling a static operator will still | 
|  | // pass the instance, but we don't need it. | 
|  | // Discard it here. | 
|  | if (isa<CXXOperatorCallExpr>(E)) { | 
|  | if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); | 
|  | MD && MD->isStatic()) { | 
|  | if (!this->discard(E->getArg(0))) | 
|  | return false; | 
|  | // Drop first arg. | 
|  | Args.erase(Args.begin()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Devirtualized = false; | 
|  | std::optional<unsigned> CalleeOffset; | 
|  | // Add the (optional, implicit) This pointer. | 
|  | if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { | 
|  | if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { | 
|  | // If we end up creating a CallPtr op for this, we need the base of the | 
|  | // member pointer as the instance pointer, and later extract the function | 
|  | // decl as the function pointer. | 
|  | const Expr *Callee = E->getCallee(); | 
|  | CalleeOffset = | 
|  | this->allocateLocalPrimitive(Callee, PT_MemberPtr, /*IsConst=*/true); | 
|  | if (!this->visit(Callee)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) | 
|  | return false; | 
|  | if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) | 
|  | return false; | 
|  | if (!this->emitGetMemberPtrBase(E)) | 
|  | return false; | 
|  | } else { | 
|  | const auto *InstancePtr = MC->getImplicitObjectArgument(); | 
|  | if (isa_and_nonnull<CXXDestructorDecl>(CompilingFunction) || | 
|  | isa_and_nonnull<CXXConstructorDecl>(CompilingFunction)) { | 
|  | const auto *Stripped = stripDerivedToBaseCasts(InstancePtr); | 
|  | if (isa<CXXThisExpr>(Stripped)) { | 
|  | FuncDecl = | 
|  | cast<CXXMethodDecl>(FuncDecl)->getCorrespondingMethodInClass( | 
|  | Stripped->getType()->getPointeeType()->getAsCXXRecordDecl()); | 
|  | Devirtualized = true; | 
|  | if (!this->visit(Stripped)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->visit(InstancePtr)) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!this->visit(InstancePtr)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } else if (const auto *PD = | 
|  | dyn_cast<CXXPseudoDestructorExpr>(E->getCallee())) { | 
|  | if (!this->emitCheckPseudoDtor(E)) | 
|  | return false; | 
|  | const Expr *Base = PD->getBase(); | 
|  | if (!Base->isGLValue()) | 
|  | return this->discard(Base); | 
|  | if (!this->visit(Base)) | 
|  | return false; | 
|  | return this->emitEndLifetimePop(E); | 
|  | } else if (!FuncDecl) { | 
|  | const Expr *Callee = E->getCallee(); | 
|  | CalleeOffset = | 
|  | this->allocateLocalPrimitive(Callee, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(Callee)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, *CalleeOffset, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->visitCallArgs(Args, FuncDecl, IsAssignmentOperatorCall)) | 
|  | return false; | 
|  |  | 
|  | // Undo the argument reversal we did earlier. | 
|  | if (IsAssignmentOperatorCall) { | 
|  | assert(Args.size() == 2); | 
|  | PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); | 
|  | PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); | 
|  | if (!this->emitFlip(Arg2T, Arg1T, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FuncDecl) { | 
|  | const Function *Func = getFunction(FuncDecl); | 
|  | if (!Func) | 
|  | return false; | 
|  | assert(HasRVO == Func->hasRVO()); | 
|  |  | 
|  | bool HasQualifier = false; | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) | 
|  | HasQualifier = ME->hasQualifier(); | 
|  |  | 
|  | bool IsVirtual = false; | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) | 
|  | IsVirtual = !Devirtualized && MD->isVirtual(); | 
|  |  | 
|  | // In any case call the function. The return value will end up on the stack | 
|  | // and if the function has RVO, we already have the pointer on the stack to | 
|  | // write the result into. | 
|  | if (IsVirtual && !HasQualifier) { | 
|  | uint32_t VarArgSize = 0; | 
|  | unsigned NumParams = | 
|  | Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); | 
|  | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) | 
|  | VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); | 
|  |  | 
|  | if (!this->emitCallVirt(Func, VarArgSize, E)) | 
|  | return false; | 
|  | } else if (Func->isVariadic()) { | 
|  | uint32_t VarArgSize = 0; | 
|  | unsigned NumParams = | 
|  | Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); | 
|  | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) | 
|  | VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); | 
|  | if (!this->emitCallVar(Func, VarArgSize, E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitCall(Func, 0, E)) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // Indirect call. Visit the callee, which will leave a FunctionPointer on | 
|  | // the stack. Cleanup of the returned value if necessary will be done after | 
|  | // the function call completed. | 
|  |  | 
|  | // Sum the size of all args from the call expr. | 
|  | uint32_t ArgSize = 0; | 
|  | for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) | 
|  | ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); | 
|  |  | 
|  | // Get the callee, either from a member pointer or function pointer saved in | 
|  | // CalleeOffset. | 
|  | if (isa<CXXMemberCallExpr>(E) && CalleeOffset) { | 
|  | if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) | 
|  | return false; | 
|  | if (!this->emitGetMemberPtrDecl(E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitGetLocal(PT_Ptr, *CalleeOffset, E)) | 
|  | return false; | 
|  | } | 
|  | if (!this->emitCallPtr(ArgSize, E, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Cleanup for discarded return values. | 
|  | if (DiscardResult && !ReturnType->isVoidType() && T) | 
|  | return this->emitPop(*T, E) && CallScope.destroyLocals(); | 
|  |  | 
|  | return CallScope.destroyLocals(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { | 
|  | SourceLocScope<Emitter> SLS(this, E); | 
|  |  | 
|  | return this->delegate(E->getExpr()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { | 
|  | SourceLocScope<Emitter> SLS(this, E); | 
|  |  | 
|  | return this->delegate(E->getExpr()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | return this->emitConstBool(E->getValue(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( | 
|  | const CXXNullPtrLiteralExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(E->getType()); | 
|  | return this->emitNullPtr(Val, nullptr, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | assert(E->getType()->isIntegerType()); | 
|  |  | 
|  | PrimType T = classifyPrim(E->getType()); | 
|  | return this->emitZero(T, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | if (this->LambdaThisCapture.Offset > 0) { | 
|  | if (this->LambdaThisCapture.IsPtr) | 
|  | return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); | 
|  | return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); | 
|  | } | 
|  |  | 
|  | // In some circumstances, the 'this' pointer does not actually refer to the | 
|  | // instance pointer of the current function frame, but e.g. to the declaration | 
|  | // currently being initialized. Here we emit the necessary instruction(s) for | 
|  | // this scenario. | 
|  | if (!InitStackActive) | 
|  | return this->emitThis(E); | 
|  |  | 
|  | if (!InitStack.empty()) { | 
|  | // If our init stack is, for example: | 
|  | // 0 Stack: 3 (decl) | 
|  | // 1 Stack: 6 (init list) | 
|  | // 2 Stack: 1 (field) | 
|  | // 3 Stack: 6 (init list) | 
|  | // 4 Stack: 1 (field) | 
|  | // | 
|  | // We want to find the LAST element in it that's an init list, | 
|  | // which is marked with the K_InitList marker. The index right | 
|  | // before that points to an init list. We need to find the | 
|  | // elements before the K_InitList element that point to a base | 
|  | // (e.g. a decl or This), optionally followed by field, elem, etc. | 
|  | // In the example above, we want to emit elements [0..2]. | 
|  | unsigned StartIndex = 0; | 
|  | unsigned EndIndex = 0; | 
|  | // Find the init list. | 
|  | for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { | 
|  | if (InitStack[StartIndex].Kind == InitLink::K_InitList || | 
|  | InitStack[StartIndex].Kind == InitLink::K_This) { | 
|  | EndIndex = StartIndex; | 
|  | --StartIndex; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Walk backwards to find the base. | 
|  | for (; StartIndex > 0; --StartIndex) { | 
|  | if (InitStack[StartIndex].Kind == InitLink::K_InitList) | 
|  | continue; | 
|  |  | 
|  | if (InitStack[StartIndex].Kind != InitLink::K_Field && | 
|  | InitStack[StartIndex].Kind != InitLink::K_Elem) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Emit the instructions. | 
|  | for (unsigned I = StartIndex; I != EndIndex; ++I) { | 
|  | if (InitStack[I].Kind == InitLink::K_InitList) | 
|  | continue; | 
|  | if (!InitStack[I].template emit<Emitter>(this, E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return this->emitThis(E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { | 
|  | switch (S->getStmtClass()) { | 
|  | case Stmt::CompoundStmtClass: | 
|  | return visitCompoundStmt(cast<CompoundStmt>(S)); | 
|  | case Stmt::DeclStmtClass: | 
|  | return visitDeclStmt(cast<DeclStmt>(S), /*EvaluateConditionDecl=*/true); | 
|  | case Stmt::ReturnStmtClass: | 
|  | return visitReturnStmt(cast<ReturnStmt>(S)); | 
|  | case Stmt::IfStmtClass: | 
|  | return visitIfStmt(cast<IfStmt>(S)); | 
|  | case Stmt::WhileStmtClass: | 
|  | return visitWhileStmt(cast<WhileStmt>(S)); | 
|  | case Stmt::DoStmtClass: | 
|  | return visitDoStmt(cast<DoStmt>(S)); | 
|  | case Stmt::ForStmtClass: | 
|  | return visitForStmt(cast<ForStmt>(S)); | 
|  | case Stmt::CXXForRangeStmtClass: | 
|  | return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); | 
|  | case Stmt::BreakStmtClass: | 
|  | return visitBreakStmt(cast<BreakStmt>(S)); | 
|  | case Stmt::ContinueStmtClass: | 
|  | return visitContinueStmt(cast<ContinueStmt>(S)); | 
|  | case Stmt::SwitchStmtClass: | 
|  | return visitSwitchStmt(cast<SwitchStmt>(S)); | 
|  | case Stmt::CaseStmtClass: | 
|  | return visitCaseStmt(cast<CaseStmt>(S)); | 
|  | case Stmt::DefaultStmtClass: | 
|  | return visitDefaultStmt(cast<DefaultStmt>(S)); | 
|  | case Stmt::AttributedStmtClass: | 
|  | return visitAttributedStmt(cast<AttributedStmt>(S)); | 
|  | case Stmt::CXXTryStmtClass: | 
|  | return visitCXXTryStmt(cast<CXXTryStmt>(S)); | 
|  | case Stmt::NullStmtClass: | 
|  | return true; | 
|  | // Always invalid statements. | 
|  | case Stmt::GCCAsmStmtClass: | 
|  | case Stmt::MSAsmStmtClass: | 
|  | case Stmt::GotoStmtClass: | 
|  | return this->emitInvalid(S); | 
|  | case Stmt::LabelStmtClass: | 
|  | return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); | 
|  | default: { | 
|  | if (const auto *E = dyn_cast<Expr>(S)) | 
|  | return this->discard(E); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { | 
|  | BlockScope<Emitter> Scope(this); | 
|  | for (const auto *InnerStmt : S->body()) | 
|  | if (!visitStmt(InnerStmt)) | 
|  | return false; | 
|  | return Scope.destroyLocals(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::maybeEmitDeferredVarInit(const VarDecl *VD) { | 
|  | if (auto *DD = dyn_cast_if_present<DecompositionDecl>(VD)) { | 
|  | for (auto *BD : DD->flat_bindings()) | 
|  | if (auto *KD = BD->getHoldingVar(); KD && !this->visitVarDecl(KD)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hasTrivialDefaultCtorParent(const FieldDecl *FD) { | 
|  | assert(FD); | 
|  | assert(FD->getParent()->isUnion()); | 
|  | const auto *CXXRD = dyn_cast<CXXRecordDecl>(FD->getParent()); | 
|  | return !CXXRD || CXXRD->hasTrivialDefaultConstructor(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> bool Compiler<Emitter>::refersToUnion(const Expr *E) { | 
|  | for (;;) { | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(E)) { | 
|  | if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); | 
|  | FD && FD->getParent()->isUnion() && hasTrivialDefaultCtorParent(FD)) | 
|  | return true; | 
|  | E = ME->getBase(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { | 
|  | E = ASE->getBase()->IgnoreImplicit(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E); | 
|  | ICE && (ICE->getCastKind() == CK_NoOp || | 
|  | ICE->getCastKind() == CK_DerivedToBase || | 
|  | ICE->getCastKind() == CK_UncheckedDerivedToBase)) { | 
|  | E = ICE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const auto *This = dyn_cast<CXXThisExpr>(E)) { | 
|  | const auto *ThisRecord = | 
|  | This->getType()->getPointeeType()->getAsRecordDecl(); | 
|  | if (!ThisRecord->isUnion()) | 
|  | return false; | 
|  | // Otherwise, always activate if we're in the ctor. | 
|  | if (const auto *Ctor = | 
|  | dyn_cast_if_present<CXXConstructorDecl>(CompilingFunction)) | 
|  | return Ctor->getParent() == ThisRecord; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS, | 
|  | bool EvaluateConditionDecl) { | 
|  | for (const auto *D : DS->decls()) { | 
|  | if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, BaseUsingDecl, | 
|  | FunctionDecl, NamespaceAliasDecl, UsingDirectiveDecl>(D)) | 
|  | continue; | 
|  |  | 
|  | const auto *VD = dyn_cast<VarDecl>(D); | 
|  | if (!VD) | 
|  | return false; | 
|  | if (!this->visitVarDecl(VD)) | 
|  | return false; | 
|  |  | 
|  | // Register decomposition decl holding vars. | 
|  | if (EvaluateConditionDecl && !this->maybeEmitDeferredVarInit(VD)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { | 
|  | if (this->InStmtExpr) | 
|  | return this->emitUnsupported(RS); | 
|  |  | 
|  | if (const Expr *RE = RS->getRetValue()) { | 
|  | LocalScope<Emitter> RetScope(this); | 
|  | if (ReturnType) { | 
|  | // Primitive types are simply returned. | 
|  | if (!this->visit(RE)) | 
|  | return false; | 
|  | this->emitCleanup(); | 
|  | return this->emitRet(*ReturnType, RS); | 
|  | } else if (RE->getType()->isVoidType()) { | 
|  | if (!this->visit(RE)) | 
|  | return false; | 
|  | } else { | 
|  | InitLinkScope<Emitter> ILS(this, InitLink::RVO()); | 
|  | // RVO - construct the value in the return location. | 
|  | if (!this->emitRVOPtr(RE)) | 
|  | return false; | 
|  | if (!this->visitInitializer(RE)) | 
|  | return false; | 
|  | if (!this->emitPopPtr(RE)) | 
|  | return false; | 
|  |  | 
|  | this->emitCleanup(); | 
|  | return this->emitRetVoid(RS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Void return. | 
|  | this->emitCleanup(); | 
|  | return this->emitRetVoid(RS); | 
|  | } | 
|  |  | 
|  | template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { | 
|  | auto visitChildStmt = [&](const Stmt *S) -> bool { | 
|  | LocalScope<Emitter> SScope(this); | 
|  | if (!visitStmt(S)) | 
|  | return false; | 
|  | return SScope.destroyLocals(); | 
|  | }; | 
|  | if (auto *CondInit = IS->getInit()) | 
|  | if (!visitStmt(CondInit)) | 
|  | return false; | 
|  |  | 
|  | if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) | 
|  | if (!visitDeclStmt(CondDecl)) | 
|  | return false; | 
|  |  | 
|  | // Save ourselves compiling some code and the jumps, etc. if the condition is | 
|  | // stataically known to be either true or false. We could look at more cases | 
|  | // here, but I think all the ones that actually happen are using a | 
|  | // ConstantExpr. | 
|  | if (std::optional<bool> BoolValue = getBoolValue(IS->getCond())) { | 
|  | if (*BoolValue) | 
|  | return visitChildStmt(IS->getThen()); | 
|  | else if (const Stmt *Else = IS->getElse()) | 
|  | return visitChildStmt(Else); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, compile the condition. | 
|  | if (IS->isNonNegatedConsteval()) { | 
|  | if (!this->emitIsConstantContext(IS)) | 
|  | return false; | 
|  | } else if (IS->isNegatedConsteval()) { | 
|  | if (!this->emitIsConstantContext(IS)) | 
|  | return false; | 
|  | if (!this->emitInv(IS)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->visitBool(IS->getCond())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->maybeEmitDeferredVarInit(IS->getConditionVariable())) | 
|  | return false; | 
|  |  | 
|  | if (const Stmt *Else = IS->getElse()) { | 
|  | LabelTy LabelElse = this->getLabel(); | 
|  | LabelTy LabelEnd = this->getLabel(); | 
|  | if (!this->jumpFalse(LabelElse)) | 
|  | return false; | 
|  | if (!visitChildStmt(IS->getThen())) | 
|  | return false; | 
|  | if (!this->jump(LabelEnd)) | 
|  | return false; | 
|  | this->emitLabel(LabelElse); | 
|  | if (!visitChildStmt(Else)) | 
|  | return false; | 
|  | this->emitLabel(LabelEnd); | 
|  | } else { | 
|  | LabelTy LabelEnd = this->getLabel(); | 
|  | if (!this->jumpFalse(LabelEnd)) | 
|  | return false; | 
|  | if (!visitChildStmt(IS->getThen())) | 
|  | return false; | 
|  | this->emitLabel(LabelEnd); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { | 
|  | const Expr *Cond = S->getCond(); | 
|  | const Stmt *Body = S->getBody(); | 
|  |  | 
|  | LabelTy CondLabel = this->getLabel(); // Label before the condition. | 
|  | LabelTy EndLabel = this->getLabel();  // Label after the loop. | 
|  | LoopScope<Emitter> LS(this, EndLabel, CondLabel); | 
|  |  | 
|  | this->fallthrough(CondLabel); | 
|  | this->emitLabel(CondLabel); | 
|  |  | 
|  | { | 
|  | LocalScope<Emitter> CondScope(this); | 
|  | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) | 
|  | if (!visitDeclStmt(CondDecl)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitBool(Cond)) | 
|  | return false; | 
|  |  | 
|  | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) | 
|  | return false; | 
|  |  | 
|  | if (!this->jumpFalse(EndLabel)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitStmt(Body)) | 
|  | return false; | 
|  |  | 
|  | if (!CondScope.destroyLocals()) | 
|  | return false; | 
|  | } | 
|  | if (!this->jump(CondLabel)) | 
|  | return false; | 
|  | this->fallthrough(EndLabel); | 
|  | this->emitLabel(EndLabel); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { | 
|  | const Expr *Cond = S->getCond(); | 
|  | const Stmt *Body = S->getBody(); | 
|  |  | 
|  | LabelTy StartLabel = this->getLabel(); | 
|  | LabelTy EndLabel = this->getLabel(); | 
|  | LabelTy CondLabel = this->getLabel(); | 
|  | LoopScope<Emitter> LS(this, EndLabel, CondLabel); | 
|  |  | 
|  | this->fallthrough(StartLabel); | 
|  | this->emitLabel(StartLabel); | 
|  |  | 
|  | { | 
|  | LocalScope<Emitter> CondScope(this); | 
|  | if (!this->visitStmt(Body)) | 
|  | return false; | 
|  | this->fallthrough(CondLabel); | 
|  | this->emitLabel(CondLabel); | 
|  | if (!this->visitBool(Cond)) | 
|  | return false; | 
|  |  | 
|  | if (!CondScope.destroyLocals()) | 
|  | return false; | 
|  | } | 
|  | if (!this->jumpTrue(StartLabel)) | 
|  | return false; | 
|  |  | 
|  | this->fallthrough(EndLabel); | 
|  | this->emitLabel(EndLabel); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { | 
|  | // for (Init; Cond; Inc) { Body } | 
|  | const Stmt *Init = S->getInit(); | 
|  | const Expr *Cond = S->getCond(); | 
|  | const Expr *Inc = S->getInc(); | 
|  | const Stmt *Body = S->getBody(); | 
|  |  | 
|  | LabelTy EndLabel = this->getLabel(); | 
|  | LabelTy CondLabel = this->getLabel(); | 
|  | LabelTy IncLabel = this->getLabel(); | 
|  | LoopScope<Emitter> LS(this, EndLabel, IncLabel); | 
|  |  | 
|  | if (Init && !this->visitStmt(Init)) | 
|  | return false; | 
|  |  | 
|  | this->fallthrough(CondLabel); | 
|  | this->emitLabel(CondLabel); | 
|  |  | 
|  | // Start of loop body. | 
|  | LocalScope<Emitter> CondScope(this); | 
|  | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) | 
|  | if (!visitDeclStmt(CondDecl)) | 
|  | return false; | 
|  |  | 
|  | if (Cond) { | 
|  | if (!this->visitBool(Cond)) | 
|  | return false; | 
|  | if (!this->jumpFalse(EndLabel)) | 
|  | return false; | 
|  | } | 
|  | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) | 
|  | return false; | 
|  |  | 
|  | if (Body && !this->visitStmt(Body)) | 
|  | return false; | 
|  |  | 
|  | this->fallthrough(IncLabel); | 
|  | this->emitLabel(IncLabel); | 
|  | if (Inc && !this->discard(Inc)) | 
|  | return false; | 
|  |  | 
|  | if (!CondScope.destroyLocals()) | 
|  | return false; | 
|  | if (!this->jump(CondLabel)) | 
|  | return false; | 
|  | // End of loop body. | 
|  |  | 
|  | this->emitLabel(EndLabel); | 
|  | // If we jumped out of the loop above, we still need to clean up the condition | 
|  | // scope. | 
|  | return CondScope.destroyLocals(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { | 
|  | const Stmt *Init = S->getInit(); | 
|  | const Expr *Cond = S->getCond(); | 
|  | const Expr *Inc = S->getInc(); | 
|  | const Stmt *Body = S->getBody(); | 
|  | const Stmt *BeginStmt = S->getBeginStmt(); | 
|  | const Stmt *RangeStmt = S->getRangeStmt(); | 
|  | const Stmt *EndStmt = S->getEndStmt(); | 
|  |  | 
|  | LabelTy EndLabel = this->getLabel(); | 
|  | LabelTy CondLabel = this->getLabel(); | 
|  | LabelTy IncLabel = this->getLabel(); | 
|  | LoopScope<Emitter> LS(this, EndLabel, IncLabel); | 
|  |  | 
|  | // Emit declarations needed in the loop. | 
|  | if (Init && !this->visitStmt(Init)) | 
|  | return false; | 
|  | if (!this->visitStmt(RangeStmt)) | 
|  | return false; | 
|  | if (!this->visitStmt(BeginStmt)) | 
|  | return false; | 
|  | if (!this->visitStmt(EndStmt)) | 
|  | return false; | 
|  |  | 
|  | // Now the condition as well as the loop variable assignment. | 
|  | this->fallthrough(CondLabel); | 
|  | this->emitLabel(CondLabel); | 
|  | if (!this->visitBool(Cond)) | 
|  | return false; | 
|  | if (!this->jumpFalse(EndLabel)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitDeclStmt(S->getLoopVarStmt(), /*EvaluateConditionDecl=*/true)) | 
|  | return false; | 
|  |  | 
|  | // Body. | 
|  | { | 
|  | if (!this->visitStmt(Body)) | 
|  | return false; | 
|  |  | 
|  | this->fallthrough(IncLabel); | 
|  | this->emitLabel(IncLabel); | 
|  | if (!this->discard(Inc)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->jump(CondLabel)) | 
|  | return false; | 
|  |  | 
|  | this->fallthrough(EndLabel); | 
|  | this->emitLabel(EndLabel); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { | 
|  | if (!BreakLabel) | 
|  | return false; | 
|  |  | 
|  | for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; | 
|  | C = C->getParent()) | 
|  | C->emitDestruction(); | 
|  | return this->jump(*BreakLabel); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { | 
|  | if (!ContinueLabel) | 
|  | return false; | 
|  |  | 
|  | for (VariableScope<Emitter> *C = VarScope; | 
|  | C && C->getParent() != ContinueVarScope; C = C->getParent()) | 
|  | C->emitDestruction(); | 
|  | return this->jump(*ContinueLabel); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { | 
|  | const Expr *Cond = S->getCond(); | 
|  | if (Cond->containsErrors()) | 
|  | return false; | 
|  |  | 
|  | PrimType CondT = this->classifyPrim(Cond->getType()); | 
|  | LocalScope<Emitter> LS(this); | 
|  |  | 
|  | LabelTy EndLabel = this->getLabel(); | 
|  | OptLabelTy DefaultLabel = std::nullopt; | 
|  | unsigned CondVar = | 
|  | this->allocateLocalPrimitive(Cond, CondT, /*IsConst=*/true); | 
|  |  | 
|  | if (const auto *CondInit = S->getInit()) | 
|  | if (!visitStmt(CondInit)) | 
|  | return false; | 
|  |  | 
|  | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) | 
|  | if (!visitDeclStmt(CondDecl)) | 
|  | return false; | 
|  |  | 
|  | // Initialize condition variable. | 
|  | if (!this->visit(Cond)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(CondT, CondVar, S)) | 
|  | return false; | 
|  |  | 
|  | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) | 
|  | return false; | 
|  |  | 
|  | CaseMap CaseLabels; | 
|  | // Create labels and comparison ops for all case statements. | 
|  | for (const SwitchCase *SC = S->getSwitchCaseList(); SC; | 
|  | SC = SC->getNextSwitchCase()) { | 
|  | if (const auto *CS = dyn_cast<CaseStmt>(SC)) { | 
|  | // FIXME: Implement ranges. | 
|  | if (CS->caseStmtIsGNURange()) | 
|  | return false; | 
|  | CaseLabels[SC] = this->getLabel(); | 
|  |  | 
|  | const Expr *Value = CS->getLHS(); | 
|  | PrimType ValueT = this->classifyPrim(Value->getType()); | 
|  |  | 
|  | // Compare the case statement's value to the switch condition. | 
|  | if (!this->emitGetLocal(CondT, CondVar, CS)) | 
|  | return false; | 
|  | if (!this->visit(Value)) | 
|  | return false; | 
|  |  | 
|  | // Compare and jump to the case label. | 
|  | if (!this->emitEQ(ValueT, S)) | 
|  | return false; | 
|  | if (!this->jumpTrue(CaseLabels[CS])) | 
|  | return false; | 
|  | } else { | 
|  | assert(!DefaultLabel); | 
|  | DefaultLabel = this->getLabel(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If none of the conditions above were true, fall through to the default | 
|  | // statement or jump after the switch statement. | 
|  | if (DefaultLabel) { | 
|  | if (!this->jump(*DefaultLabel)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->jump(EndLabel)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); | 
|  | if (!this->visitStmt(S->getBody())) | 
|  | return false; | 
|  | this->emitLabel(EndLabel); | 
|  |  | 
|  | return LS.destroyLocals(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { | 
|  | this->emitLabel(CaseLabels[S]); | 
|  | return this->visitStmt(S->getSubStmt()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { | 
|  | this->emitLabel(*DefaultLabel); | 
|  | return this->visitStmt(S->getSubStmt()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { | 
|  | if (this->Ctx.getLangOpts().CXXAssumptions && | 
|  | !this->Ctx.getLangOpts().MSVCCompat) { | 
|  | for (const Attr *A : S->getAttrs()) { | 
|  | auto *AA = dyn_cast<CXXAssumeAttr>(A); | 
|  | if (!AA) | 
|  | continue; | 
|  |  | 
|  | assert(isa<NullStmt>(S->getSubStmt())); | 
|  |  | 
|  | const Expr *Assumption = AA->getAssumption(); | 
|  | if (Assumption->isValueDependent()) | 
|  | return false; | 
|  |  | 
|  | if (Assumption->HasSideEffects(this->Ctx.getASTContext())) | 
|  | continue; | 
|  |  | 
|  | // Evaluate assumption. | 
|  | if (!this->visitBool(Assumption)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitAssume(Assumption)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ignore other attributes. | 
|  | return this->visitStmt(S->getSubStmt()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { | 
|  | // Ignore all handlers. | 
|  | return this->visitStmt(S->getTryBlock()); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { | 
|  | assert(MD->isLambdaStaticInvoker()); | 
|  | assert(MD->hasBody()); | 
|  | assert(cast<CompoundStmt>(MD->getBody())->body_empty()); | 
|  |  | 
|  | const CXXRecordDecl *ClosureClass = MD->getParent(); | 
|  | const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); | 
|  | assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); | 
|  | const Function *Func = this->getFunction(LambdaCallOp); | 
|  | if (!Func) | 
|  | return false; | 
|  | assert(Func->hasThisPointer()); | 
|  | assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); | 
|  |  | 
|  | if (Func->hasRVO()) { | 
|  | if (!this->emitRVOPtr(MD)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The lambda call operator needs an instance pointer, but we don't have | 
|  | // one here, and we don't need one either because the lambda cannot have | 
|  | // any captures, as verified above. Emit a null pointer. This is then | 
|  | // special-cased when interpreting to not emit any misleading diagnostics. | 
|  | if (!this->emitNullPtr(0, nullptr, MD)) | 
|  | return false; | 
|  |  | 
|  | // Forward all arguments from the static invoker to the lambda call operator. | 
|  | for (const ParmVarDecl *PVD : MD->parameters()) { | 
|  | auto It = this->Params.find(PVD); | 
|  | assert(It != this->Params.end()); | 
|  |  | 
|  | // We do the lvalue-to-rvalue conversion manually here, so no need | 
|  | // to care about references. | 
|  | PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); | 
|  | if (!this->emitGetParam(ParamType, It->second.Offset, MD)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->emitCall(Func, 0, LambdaCallOp)) | 
|  | return false; | 
|  |  | 
|  | this->emitCleanup(); | 
|  | if (ReturnType) | 
|  | return this->emitRet(*ReturnType, MD); | 
|  |  | 
|  | // Nothing to do, since we emitted the RVO pointer above. | 
|  | return this->emitRetVoid(MD); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::checkLiteralType(const Expr *E) { | 
|  | if (Ctx.getLangOpts().CPlusPlus23) | 
|  | return true; | 
|  |  | 
|  | if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext())) | 
|  | return true; | 
|  |  | 
|  | return this->emitCheckLiteralType(E->getType().getTypePtr(), E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { | 
|  | assert(!ReturnType); | 
|  |  | 
|  | auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, | 
|  | const Expr *InitExpr, | 
|  | bool Activate = false) -> bool { | 
|  | // We don't know what to do with these, so just return false. | 
|  | if (InitExpr->getType().isNull()) | 
|  | return false; | 
|  |  | 
|  | if (OptPrimType T = this->classify(InitExpr)) { | 
|  | if (Activate && !this->emitActivateThisField(FieldOffset, InitExpr)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visit(InitExpr)) | 
|  | return false; | 
|  |  | 
|  | bool BitField = F->isBitField(); | 
|  | if (BitField) | 
|  | return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); | 
|  | return this->emitInitThisField(*T, FieldOffset, InitExpr); | 
|  | } | 
|  | // Non-primitive case. Get a pointer to the field-to-initialize | 
|  | // on the stack and call visitInitialzer() for it. | 
|  | InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); | 
|  | if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) | 
|  | return false; | 
|  |  | 
|  | if (Activate && !this->emitActivate(InitExpr)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitInitializer(InitExpr)) | 
|  | return false; | 
|  |  | 
|  | return this->emitFinishInitPop(InitExpr); | 
|  | }; | 
|  |  | 
|  | const RecordDecl *RD = Ctor->getParent(); | 
|  | const Record *R = this->getRecord(RD); | 
|  | if (!R) | 
|  | return false; | 
|  | bool IsUnion = R->isUnion(); | 
|  |  | 
|  | if (IsUnion && Ctor->isCopyOrMoveConstructor()) { | 
|  | if (R->getNumFields() == 0) | 
|  | return this->emitRetVoid(Ctor); | 
|  | // union copy and move ctors are special. | 
|  | assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); | 
|  | if (!this->emitThis(Ctor)) | 
|  | return false; | 
|  |  | 
|  | auto PVD = Ctor->getParamDecl(0); | 
|  | ParamOffset PO = this->Params[PVD]; // Must exist. | 
|  |  | 
|  | if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) | 
|  | return false; | 
|  |  | 
|  | return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && | 
|  | this->emitRetVoid(Ctor); | 
|  | } | 
|  |  | 
|  | InitLinkScope<Emitter> InitScope(this, InitLink::This()); | 
|  | for (const auto *Init : Ctor->inits()) { | 
|  | // Scope needed for the initializers. | 
|  | BlockScope<Emitter> Scope(this); | 
|  |  | 
|  | const Expr *InitExpr = Init->getInit(); | 
|  | if (const FieldDecl *Member = Init->getMember()) { | 
|  | const Record::Field *F = R->getField(Member); | 
|  |  | 
|  | if (!emitFieldInitializer(F, F->Offset, InitExpr, IsUnion)) | 
|  | return false; | 
|  | } else if (const Type *Base = Init->getBaseClass()) { | 
|  | const auto *BaseDecl = Base->getAsCXXRecordDecl(); | 
|  | assert(BaseDecl); | 
|  |  | 
|  | if (Init->isBaseVirtual()) { | 
|  | assert(R->getVirtualBase(BaseDecl)); | 
|  | if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) | 
|  | return false; | 
|  |  | 
|  | } else { | 
|  | // Base class initializer. | 
|  | // Get This Base and call initializer on it. | 
|  | const Record::Base *B = R->getBase(BaseDecl); | 
|  | assert(B); | 
|  | if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (IsUnion && !this->emitActivate(InitExpr)) | 
|  | return false; | 
|  |  | 
|  | if (!this->visitInitializer(InitExpr)) | 
|  | return false; | 
|  | if (!this->emitFinishInitPop(InitExpr)) | 
|  | return false; | 
|  | } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { | 
|  |  | 
|  | assert(IFD->getChainingSize() >= 2); | 
|  |  | 
|  | unsigned NestedFieldOffset = 0; | 
|  | const Record::Field *NestedField = nullptr; | 
|  | for (const NamedDecl *ND : IFD->chain()) { | 
|  | const auto *FD = cast<FieldDecl>(ND); | 
|  | const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); | 
|  | assert(FieldRecord); | 
|  |  | 
|  | NestedField = FieldRecord->getField(FD); | 
|  | assert(NestedField); | 
|  | IsUnion = IsUnion || FieldRecord->isUnion(); | 
|  |  | 
|  | NestedFieldOffset += NestedField->Offset; | 
|  | } | 
|  | assert(NestedField); | 
|  |  | 
|  | if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr, | 
|  | IsUnion)) | 
|  | return false; | 
|  |  | 
|  | // Mark all chain links as initialized. | 
|  | unsigned InitFieldOffset = 0; | 
|  | for (const NamedDecl *ND : IFD->chain().drop_back()) { | 
|  | const auto *FD = cast<FieldDecl>(ND); | 
|  | const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); | 
|  | assert(FieldRecord); | 
|  | NestedField = FieldRecord->getField(FD); | 
|  | InitFieldOffset += NestedField->Offset; | 
|  | assert(NestedField); | 
|  | if (!this->emitGetPtrThisField(InitFieldOffset, InitExpr)) | 
|  | return false; | 
|  | if (!this->emitFinishInitPop(InitExpr)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | assert(Init->isDelegatingInitializer()); | 
|  | if (!this->emitThis(InitExpr)) | 
|  | return false; | 
|  | if (!this->visitInitializer(Init->getInit())) | 
|  | return false; | 
|  | if (!this->emitPopPtr(InitExpr)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!Scope.destroyLocals()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const auto *Body = Ctor->getBody()) | 
|  | if (!visitStmt(Body)) | 
|  | return false; | 
|  |  | 
|  | return this->emitRetVoid(SourceInfo{}); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { | 
|  | const RecordDecl *RD = Dtor->getParent(); | 
|  | const Record *R = this->getRecord(RD); | 
|  | if (!R) | 
|  | return false; | 
|  |  | 
|  | if (!Dtor->isTrivial() && Dtor->getBody()) { | 
|  | if (!this->visitStmt(Dtor->getBody())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!this->emitThis(Dtor)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitCheckDestruction(Dtor)) | 
|  | return false; | 
|  |  | 
|  | assert(R); | 
|  | if (!R->isUnion()) { | 
|  | // First, destroy all fields. | 
|  | for (const Record::Field &Field : llvm::reverse(R->fields())) { | 
|  | const Descriptor *D = Field.Desc; | 
|  | if (!D->isPrimitive() && !D->isPrimitiveArray()) { | 
|  | if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) | 
|  | return false; | 
|  | if (!this->emitDestruction(D, SourceInfo{})) | 
|  | return false; | 
|  | if (!this->emitPopPtr(SourceInfo{})) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const Record::Base &Base : llvm::reverse(R->bases())) { | 
|  | if (Base.R->isAnonymousUnion()) | 
|  | continue; | 
|  |  | 
|  | if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) | 
|  | return false; | 
|  | if (!this->emitRecordDestruction(Base.R, {})) | 
|  | return false; | 
|  | if (!this->emitPopPtr(SourceInfo{})) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: Virtual bases. | 
|  | return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::compileUnionAssignmentOperator( | 
|  | const CXXMethodDecl *MD) { | 
|  | if (!this->emitThis(MD)) | 
|  | return false; | 
|  |  | 
|  | auto PVD = MD->getParamDecl(0); | 
|  | ParamOffset PO = this->Params[PVD]; // Must exist. | 
|  |  | 
|  | if (!this->emitGetParam(PT_Ptr, PO.Offset, MD)) | 
|  | return false; | 
|  |  | 
|  | return this->emitMemcpy(MD) && this->emitRet(PT_Ptr, MD); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { | 
|  | // Classify the return type. | 
|  | ReturnType = this->classify(F->getReturnType()); | 
|  |  | 
|  | this->CompilingFunction = F; | 
|  |  | 
|  | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) | 
|  | return this->compileConstructor(Ctor); | 
|  | if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F)) | 
|  | return this->compileDestructor(Dtor); | 
|  |  | 
|  | // Emit custom code if this is a lambda static invoker. | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(F)) { | 
|  | const RecordDecl *RD = MD->getParent(); | 
|  |  | 
|  | if (RD->isUnion() && | 
|  | (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) | 
|  | return this->compileUnionAssignmentOperator(MD); | 
|  |  | 
|  | if (MD->isLambdaStaticInvoker()) | 
|  | return this->emitLambdaStaticInvokerBody(MD); | 
|  | } | 
|  |  | 
|  | // Regular functions. | 
|  | if (const auto *Body = F->getBody()) | 
|  | if (!visitStmt(Body)) | 
|  | return false; | 
|  |  | 
|  | // Emit a guard return to protect against a code path missing one. | 
|  | if (F->getReturnType()->isVoidType()) | 
|  | return this->emitRetVoid(SourceInfo{}); | 
|  | return this->emitNoRet(SourceInfo{}); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | if (SubExpr->getType()->isAnyComplexType()) | 
|  | return this->VisitComplexUnaryOperator(E); | 
|  | if (SubExpr->getType()->isVectorType()) | 
|  | return this->VisitVectorUnaryOperator(E); | 
|  | if (SubExpr->getType()->isFixedPointType()) | 
|  | return this->VisitFixedPointUnaryOperator(E); | 
|  | OptPrimType T = classify(SubExpr->getType()); | 
|  |  | 
|  | switch (E->getOpcode()) { | 
|  | case UO_PostInc: { // x++ | 
|  | if (!Ctx.getLangOpts().CPlusPlus14) | 
|  | return this->emitInvalid(E); | 
|  | if (!T) | 
|  | return this->emitError(E); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (T == PT_Ptr) { | 
|  | if (!this->emitIncPtr(E)) | 
|  | return false; | 
|  |  | 
|  | return DiscardResult ? this->emitPopPtr(E) : true; | 
|  | } | 
|  |  | 
|  | if (T == PT_Float) { | 
|  | return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) | 
|  | : this->emitIncf(getFPOptions(E), E); | 
|  | } | 
|  |  | 
|  | return DiscardResult ? this->emitIncPop(*T, E->canOverflow(), E) | 
|  | : this->emitInc(*T, E->canOverflow(), E); | 
|  | } | 
|  | case UO_PostDec: { // x-- | 
|  | if (!Ctx.getLangOpts().CPlusPlus14) | 
|  | return this->emitInvalid(E); | 
|  | if (!T) | 
|  | return this->emitError(E); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (T == PT_Ptr) { | 
|  | if (!this->emitDecPtr(E)) | 
|  | return false; | 
|  |  | 
|  | return DiscardResult ? this->emitPopPtr(E) : true; | 
|  | } | 
|  |  | 
|  | if (T == PT_Float) { | 
|  | return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) | 
|  | : this->emitDecf(getFPOptions(E), E); | 
|  | } | 
|  |  | 
|  | return DiscardResult ? this->emitDecPop(*T, E->canOverflow(), E) | 
|  | : this->emitDec(*T, E->canOverflow(), E); | 
|  | } | 
|  | case UO_PreInc: { // ++x | 
|  | if (!Ctx.getLangOpts().CPlusPlus14) | 
|  | return this->emitInvalid(E); | 
|  | if (!T) | 
|  | return this->emitError(E); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (T == PT_Ptr) { | 
|  | if (!this->emitLoadPtr(E)) | 
|  | return false; | 
|  | if (!this->emitConstUint8(1, E)) | 
|  | return false; | 
|  | if (!this->emitAddOffsetUint8(E)) | 
|  | return false; | 
|  | return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); | 
|  | } | 
|  |  | 
|  | // Post-inc and pre-inc are the same if the value is to be discarded. | 
|  | if (DiscardResult) { | 
|  | if (T == PT_Float) | 
|  | return this->emitIncfPop(getFPOptions(E), E); | 
|  | return this->emitIncPop(*T, E->canOverflow(), E); | 
|  | } | 
|  |  | 
|  | if (T == PT_Float) { | 
|  | const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); | 
|  | if (!this->emitLoadFloat(E)) | 
|  | return false; | 
|  | APFloat F(TargetSemantics, 1); | 
|  | if (!this->emitFloat(F, E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitAddf(getFPOptions(E), E)) | 
|  | return false; | 
|  | if (!this->emitStoreFloat(E)) | 
|  | return false; | 
|  | } else { | 
|  | assert(isIntegralType(*T)); | 
|  | if (!this->emitPreInc(*T, E->canOverflow(), E)) | 
|  | return false; | 
|  | } | 
|  | return E->isGLValue() || this->emitLoadPop(*T, E); | 
|  | } | 
|  | case UO_PreDec: { // --x | 
|  | if (!Ctx.getLangOpts().CPlusPlus14) | 
|  | return this->emitInvalid(E); | 
|  | if (!T) | 
|  | return this->emitError(E); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (T == PT_Ptr) { | 
|  | if (!this->emitLoadPtr(E)) | 
|  | return false; | 
|  | if (!this->emitConstUint8(1, E)) | 
|  | return false; | 
|  | if (!this->emitSubOffsetUint8(E)) | 
|  | return false; | 
|  | return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); | 
|  | } | 
|  |  | 
|  | // Post-dec and pre-dec are the same if the value is to be discarded. | 
|  | if (DiscardResult) { | 
|  | if (T == PT_Float) | 
|  | return this->emitDecfPop(getFPOptions(E), E); | 
|  | return this->emitDecPop(*T, E->canOverflow(), E); | 
|  | } | 
|  |  | 
|  | if (T == PT_Float) { | 
|  | const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); | 
|  | if (!this->emitLoadFloat(E)) | 
|  | return false; | 
|  | APFloat F(TargetSemantics, 1); | 
|  | if (!this->emitFloat(F, E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitSubf(getFPOptions(E), E)) | 
|  | return false; | 
|  | if (!this->emitStoreFloat(E)) | 
|  | return false; | 
|  | } else { | 
|  | assert(isIntegralType(*T)); | 
|  | if (!this->emitPreDec(*T, E->canOverflow(), E)) | 
|  | return false; | 
|  | } | 
|  | return E->isGLValue() || this->emitLoadPop(*T, E); | 
|  | } | 
|  | case UO_LNot: // !x | 
|  | if (!T) | 
|  | return this->emitError(E); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->discard(SubExpr); | 
|  |  | 
|  | if (!this->visitBool(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitInv(E)) | 
|  | return false; | 
|  |  | 
|  | if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) | 
|  | return this->emitCast(PT_Bool, ET, E); | 
|  | return true; | 
|  | case UO_Minus: // -x | 
|  | if (!T) | 
|  | return this->emitError(E); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); | 
|  | case UO_Plus: // +x | 
|  | if (!T) | 
|  | return this->emitError(E); | 
|  |  | 
|  | if (!this->visit(SubExpr)) // noop | 
|  | return false; | 
|  | return DiscardResult ? this->emitPop(*T, E) : true; | 
|  | case UO_AddrOf: // &x | 
|  | if (E->getType()->isMemberPointerType()) { | 
|  | // C++11 [expr.unary.op]p3 has very strict rules on how the address of a | 
|  | // member can be formed. | 
|  | return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); | 
|  | } | 
|  | // We should already have a pointer when we get here. | 
|  | return this->delegate(SubExpr); | 
|  | case UO_Deref: // *x | 
|  | if (DiscardResult) | 
|  | return this->discard(SubExpr); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitCheckNull(E)) | 
|  | return false; | 
|  |  | 
|  | if (classifyPrim(SubExpr) == PT_Ptr) | 
|  | return this->emitNarrowPtr(E); | 
|  | return true; | 
|  |  | 
|  | case UO_Not: // ~x | 
|  | if (!T) | 
|  | return this->emitError(E); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); | 
|  | case UO_Real: // __real x | 
|  | assert(T); | 
|  | return this->delegate(SubExpr); | 
|  | case UO_Imag: { // __imag x | 
|  | assert(T); | 
|  | if (!this->discard(SubExpr)) | 
|  | return false; | 
|  | return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); | 
|  | } | 
|  | case UO_Extension: | 
|  | return this->delegate(SubExpr); | 
|  | case UO_Coawait: | 
|  | assert(false && "Unhandled opcode"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | assert(SubExpr->getType()->isAnyComplexType()); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->discard(SubExpr); | 
|  |  | 
|  | OptPrimType ResT = classify(E); | 
|  | auto prepareResult = [=]() -> bool { | 
|  | if (!ResT && !Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | return this->emitGetPtrLocal(*LocalIndex, E); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // The offset of the temporary, if we created one. | 
|  | unsigned SubExprOffset = ~0u; | 
|  | auto createTemp = [=, &SubExprOffset]() -> bool { | 
|  | SubExprOffset = | 
|  | this->allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | return this->emitSetLocal(PT_Ptr, SubExprOffset, E); | 
|  | }; | 
|  |  | 
|  | PrimType ElemT = classifyComplexElementType(SubExpr->getType()); | 
|  | auto getElem = [=](unsigned Offset, unsigned Index) -> bool { | 
|  | if (!this->emitGetLocal(PT_Ptr, Offset, E)) | 
|  | return false; | 
|  | return this->emitArrayElemPop(ElemT, Index, E); | 
|  | }; | 
|  |  | 
|  | switch (E->getOpcode()) { | 
|  | case UO_Minus: | 
|  | if (!prepareResult()) | 
|  | return false; | 
|  | if (!createTemp()) | 
|  | return false; | 
|  | for (unsigned I = 0; I != 2; ++I) { | 
|  | if (!getElem(SubExprOffset, I)) | 
|  | return false; | 
|  | if (!this->emitNeg(ElemT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case UO_Plus:   // +x | 
|  | case UO_AddrOf: // &x | 
|  | case UO_Deref:  // *x | 
|  | return this->delegate(SubExpr); | 
|  |  | 
|  | case UO_LNot: | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (!this->emitComplexBoolCast(SubExpr)) | 
|  | return false; | 
|  | if (!this->emitInv(E)) | 
|  | return false; | 
|  | if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) | 
|  | return this->emitCast(PT_Bool, ET, E); | 
|  | return true; | 
|  |  | 
|  | case UO_Real: | 
|  | return this->emitComplexReal(SubExpr); | 
|  |  | 
|  | case UO_Imag: | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  |  | 
|  | if (SubExpr->isLValue()) { | 
|  | if (!this->emitConstUint8(1, E)) | 
|  | return false; | 
|  | return this->emitArrayElemPtrPopUint8(E); | 
|  | } | 
|  |  | 
|  | // Since our _Complex implementation does not map to a primitive type, | 
|  | // we sometimes have to do the lvalue-to-rvalue conversion here manually. | 
|  | return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); | 
|  |  | 
|  | case UO_Not: // ~x | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | // Negate the imaginary component. | 
|  | if (!this->emitArrayElem(ElemT, 1, E)) | 
|  | return false; | 
|  | if (!this->emitNeg(ElemT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, 1, E)) | 
|  | return false; | 
|  | return DiscardResult ? this->emitPopPtr(E) : true; | 
|  |  | 
|  | case UO_Extension: | 
|  | return this->delegate(SubExpr); | 
|  |  | 
|  | default: | 
|  | return this->emitInvalid(E); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | assert(SubExpr->getType()->isVectorType()); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->discard(SubExpr); | 
|  |  | 
|  | auto UnaryOp = E->getOpcode(); | 
|  | if (UnaryOp == UO_Extension) | 
|  | return this->delegate(SubExpr); | 
|  |  | 
|  | if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && | 
|  | UnaryOp != UO_Not && UnaryOp != UO_AddrOf) | 
|  | return this->emitInvalid(E); | 
|  |  | 
|  | // Nothing to do here. | 
|  | if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) | 
|  | return this->delegate(SubExpr); | 
|  |  | 
|  | if (!Initializing) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The offset of the temporary, if we created one. | 
|  | unsigned SubExprOffset = | 
|  | this->allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) | 
|  | return false; | 
|  |  | 
|  | const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); | 
|  | PrimType ElemT = classifyVectorElementType(SubExpr->getType()); | 
|  | auto getElem = [=](unsigned Offset, unsigned Index) -> bool { | 
|  | if (!this->emitGetLocal(PT_Ptr, Offset, E)) | 
|  | return false; | 
|  | return this->emitArrayElemPop(ElemT, Index, E); | 
|  | }; | 
|  |  | 
|  | switch (UnaryOp) { | 
|  | case UO_Minus: | 
|  | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { | 
|  | if (!getElem(SubExprOffset, I)) | 
|  | return false; | 
|  | if (!this->emitNeg(ElemT, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case UO_LNot: { // !x | 
|  | // In C++, the logic operators !, &&, || are available for vectors. !v is | 
|  | // equivalent to v == 0. | 
|  | // | 
|  | // The result of the comparison is a vector of the same width and number of | 
|  | // elements as the comparison operands with a signed integral element type. | 
|  | // | 
|  | // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html | 
|  | QualType ResultVecTy = E->getType(); | 
|  | PrimType ResultVecElemT = | 
|  | classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); | 
|  | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { | 
|  | if (!getElem(SubExprOffset, I)) | 
|  | return false; | 
|  | // operator ! on vectors returns -1 for 'truth', so negate it. | 
|  | if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) | 
|  | return false; | 
|  | if (!this->emitInv(E)) | 
|  | return false; | 
|  | if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) | 
|  | return false; | 
|  | if (!this->emitNeg(ElemT, E)) | 
|  | return false; | 
|  | if (ElemT != ResultVecElemT && | 
|  | !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) | 
|  | return false; | 
|  | if (!this->emitInitElem(ResultVecElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case UO_Not: // ~x | 
|  | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { | 
|  | if (!getElem(SubExprOffset, I)) | 
|  | return false; | 
|  | if (ElemT == PT_Bool) { | 
|  | if (!this->emitInv(E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitComp(ElemT, E)) | 
|  | return false; | 
|  | } | 
|  | if (!this->emitInitElem(ElemT, I, E)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unsupported unary operators should be handled up front"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { | 
|  | if (DiscardResult) | 
|  | return true; | 
|  |  | 
|  | if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) | 
|  | return this->emitConst(ECD->getInitVal(), E); | 
|  | if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { | 
|  | const Function *F = getFunction(FuncDecl); | 
|  | return F && this->emitGetFnPtr(F, E); | 
|  | } | 
|  | if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { | 
|  | if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { | 
|  | if (!this->emitGetPtrGlobal(*Index, E)) | 
|  | return false; | 
|  | if (OptPrimType T = classify(E->getType())) { | 
|  | if (!this->visitAPValue(TPOD->getValue(), *T, E)) | 
|  | return false; | 
|  | return this->emitInitGlobal(*T, *Index, E); | 
|  | } | 
|  | return this->visitAPValueInitializer(TPOD->getValue(), E, | 
|  | TPOD->getType()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // References are implemented via pointers, so when we see a DeclRefExpr | 
|  | // pointing to a reference, we need to get its value directly (i.e. the | 
|  | // pointer to the actual value) instead of a pointer to the pointer to the | 
|  | // value. | 
|  | bool IsReference = D->getType()->isReferenceType(); | 
|  |  | 
|  | // Local variables. | 
|  | if (auto It = Locals.find(D); It != Locals.end()) { | 
|  | const unsigned Offset = It->second.Offset; | 
|  | if (IsReference) | 
|  | return this->emitGetLocal(classifyPrim(E), Offset, E); | 
|  | return this->emitGetPtrLocal(Offset, E); | 
|  | } | 
|  | // Global variables. | 
|  | if (auto GlobalIndex = P.getGlobal(D)) { | 
|  | if (IsReference) { | 
|  | if (!Ctx.getLangOpts().CPlusPlus11) | 
|  | return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); | 
|  | return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); | 
|  | } | 
|  |  | 
|  | return this->emitGetPtrGlobal(*GlobalIndex, E); | 
|  | } | 
|  | // Function parameters. | 
|  | if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { | 
|  | if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && | 
|  | !D->getType()->isIntegralOrEnumerationType()) { | 
|  | return this->emitInvalidDeclRef(cast<DeclRefExpr>(E), | 
|  | /*InitializerFailed=*/false, E); | 
|  | } | 
|  | if (auto It = this->Params.find(PVD); It != this->Params.end()) { | 
|  | if (IsReference || !It->second.IsPtr) | 
|  | return this->emitGetParam(classifyPrim(E), It->second.Offset, E); | 
|  |  | 
|  | return this->emitGetPtrParam(It->second.Offset, E); | 
|  | } | 
|  | } | 
|  |  | 
|  | // In case we need to re-visit a declaration. | 
|  | auto revisit = [&](const VarDecl *VD) -> bool { | 
|  | if (!this->emitPushCC(VD->hasConstantInitialization(), E)) | 
|  | return false; | 
|  | auto VarState = this->visitDecl(VD, /*IsConstexprUnknown=*/true); | 
|  |  | 
|  | if (!this->emitPopCC(E)) | 
|  | return false; | 
|  |  | 
|  | if (VarState.notCreated()) | 
|  | return true; | 
|  | if (!VarState) | 
|  | return false; | 
|  | // Retry. | 
|  | return this->visitDeclRef(D, E); | 
|  | }; | 
|  |  | 
|  | // Lambda captures. | 
|  | if (auto It = this->LambdaCaptures.find(D); | 
|  | It != this->LambdaCaptures.end()) { | 
|  | auto [Offset, IsPtr] = It->second; | 
|  |  | 
|  | if (IsPtr) | 
|  | return this->emitGetThisFieldPtr(Offset, E); | 
|  | return this->emitGetPtrThisField(Offset, E); | 
|  | } | 
|  |  | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(E); | 
|  | DRE && DRE->refersToEnclosingVariableOrCapture()) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) | 
|  | return revisit(VD); | 
|  | } | 
|  |  | 
|  | if (const auto *BD = dyn_cast<BindingDecl>(D)) | 
|  | return this->visit(BD->getBinding()); | 
|  |  | 
|  | // Avoid infinite recursion. | 
|  | if (D == InitializingDecl) | 
|  | return this->emitDummyPtr(D, E); | 
|  |  | 
|  | // Try to lazily visit (or emit dummy pointers for) declarations | 
|  | // we haven't seen yet. | 
|  | // For C. | 
|  | if (!Ctx.getLangOpts().CPlusPlus) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D); | 
|  | VD && VD->getAnyInitializer() && | 
|  | VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) | 
|  | return revisit(VD); | 
|  | return this->emitDummyPtr(D, E); | 
|  | } | 
|  |  | 
|  | // ... and C++. | 
|  | const auto *VD = dyn_cast<VarDecl>(D); | 
|  | if (!VD) | 
|  | return this->emitDummyPtr(D, E); | 
|  |  | 
|  | const auto typeShouldBeVisited = [&](QualType T) -> bool { | 
|  | if (T.isConstant(Ctx.getASTContext())) | 
|  | return true; | 
|  | return T->isReferenceType(); | 
|  | }; | 
|  |  | 
|  | if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && | 
|  | typeShouldBeVisited(VD->getType())) { | 
|  | if (const Expr *Init = VD->getAnyInitializer(); | 
|  | Init && !Init->isValueDependent()) { | 
|  | // Whether or not the evaluation is successul doesn't really matter | 
|  | // here -- we will create a global variable in any case, and that | 
|  | // will have the state of initializer evaluation attached. | 
|  | APValue V; | 
|  | SmallVector<PartialDiagnosticAt> Notes; | 
|  | (void)Init->EvaluateAsInitializer(V, Ctx.getASTContext(), VD, Notes, | 
|  | true); | 
|  | return this->visitDeclRef(D, E); | 
|  | } | 
|  | return revisit(VD); | 
|  | } | 
|  |  | 
|  | // FIXME: The evaluateValue() check here is a little ridiculous, since | 
|  | // it will ultimately call into Context::evaluateAsInitializer(). In | 
|  | // other words, we're evaluating the initializer, just to know if we can | 
|  | // evaluate the initializer. | 
|  | if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && | 
|  | VD->getInit() && !VD->getInit()->isValueDependent()) { | 
|  |  | 
|  | if (VD->evaluateValue()) | 
|  | return revisit(VD); | 
|  |  | 
|  | if (!IsReference) | 
|  | return this->emitDummyPtr(D, E); | 
|  |  | 
|  | return this->emitInvalidDeclRef(cast<DeclRefExpr>(E), | 
|  | /*InitializerFailed=*/true, E); | 
|  | } | 
|  |  | 
|  | return this->emitDummyPtr(D, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { | 
|  | const auto *D = E->getDecl(); | 
|  | return this->visitDeclRef(D, E); | 
|  | } | 
|  |  | 
|  | template <class Emitter> void Compiler<Emitter>::emitCleanup() { | 
|  | for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) | 
|  | C->emitDestruction(); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, | 
|  | const QualType DerivedType) { | 
|  | const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { | 
|  | if (const auto *R = Ty->getPointeeCXXRecordDecl()) | 
|  | return R; | 
|  | return Ty->getAsCXXRecordDecl(); | 
|  | }; | 
|  | const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); | 
|  | const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); | 
|  |  | 
|  | return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); | 
|  | } | 
|  |  | 
|  | /// Emit casts from a PrimType to another PrimType. | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, | 
|  | QualType ToQT, const Expr *E) { | 
|  |  | 
|  | if (FromT == PT_Float) { | 
|  | // Floating to floating. | 
|  | if (ToT == PT_Float) { | 
|  | const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); | 
|  | return this->emitCastFP(ToSem, getRoundingMode(E), E); | 
|  | } | 
|  |  | 
|  | if (ToT == PT_IntAP) | 
|  | return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), | 
|  | getFPOptions(E), E); | 
|  | if (ToT == PT_IntAPS) | 
|  | return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), | 
|  | getFPOptions(E), E); | 
|  |  | 
|  | // Float to integral. | 
|  | if (isIntegralType(ToT) || ToT == PT_Bool) | 
|  | return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); | 
|  | } | 
|  |  | 
|  | if (isIntegralType(FromT) || FromT == PT_Bool) { | 
|  | if (ToT == PT_IntAP) | 
|  | return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); | 
|  | if (ToT == PT_IntAPS) | 
|  | return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); | 
|  |  | 
|  | // Integral to integral. | 
|  | if (isIntegralType(ToT) || ToT == PT_Bool) | 
|  | return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; | 
|  |  | 
|  | if (ToT == PT_Float) { | 
|  | // Integral to floating. | 
|  | const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); | 
|  | return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Emits __real(SubExpr) | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { | 
|  | assert(SubExpr->getType()->isAnyComplexType()); | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->discard(SubExpr); | 
|  |  | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (SubExpr->isLValue()) { | 
|  | if (!this->emitConstUint8(0, SubExpr)) | 
|  | return false; | 
|  | return this->emitArrayElemPtrPopUint8(SubExpr); | 
|  | } | 
|  |  | 
|  | // Rvalue, load the actual element. | 
|  | return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), | 
|  | 0, SubExpr); | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { | 
|  | assert(!DiscardResult); | 
|  | PrimType ElemT = classifyComplexElementType(E->getType()); | 
|  | // We emit the expression (__real(E) != 0 || __imag(E) != 0) | 
|  | // for us, that means (bool)E[0] || (bool)E[1] | 
|  | if (!this->emitArrayElem(ElemT, 0, E)) | 
|  | return false; | 
|  | if (ElemT == PT_Float) { | 
|  | if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitCast(ElemT, PT_Bool, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We now have the bool value of E[0] on the stack. | 
|  | LabelTy LabelTrue = this->getLabel(); | 
|  | if (!this->jumpTrue(LabelTrue)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitArrayElemPop(ElemT, 1, E)) | 
|  | return false; | 
|  | if (ElemT == PT_Float) { | 
|  | if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) | 
|  | return false; | 
|  | } else { | 
|  | if (!this->emitCast(ElemT, PT_Bool, E)) | 
|  | return false; | 
|  | } | 
|  | // Leave the boolean value of E[1] on the stack. | 
|  | LabelTy EndLabel = this->getLabel(); | 
|  | this->jump(EndLabel); | 
|  |  | 
|  | this->emitLabel(LabelTrue); | 
|  | if (!this->emitPopPtr(E)) | 
|  | return false; | 
|  | if (!this->emitConstBool(true, E)) | 
|  | return false; | 
|  |  | 
|  | this->fallthrough(EndLabel); | 
|  | this->emitLabel(EndLabel); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, | 
|  | const BinaryOperator *E) { | 
|  | assert(E->isComparisonOp()); | 
|  | assert(!Initializing); | 
|  | assert(!DiscardResult); | 
|  |  | 
|  | PrimType ElemT; | 
|  | bool LHSIsComplex; | 
|  | unsigned LHSOffset; | 
|  | if (LHS->getType()->isAnyComplexType()) { | 
|  | LHSIsComplex = true; | 
|  | ElemT = classifyComplexElementType(LHS->getType()); | 
|  | LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) | 
|  | return false; | 
|  | } else { | 
|  | LHSIsComplex = false; | 
|  | PrimType LHST = classifyPrim(LHS->getType()); | 
|  | LHSOffset = this->allocateLocalPrimitive(LHS, LHST, /*IsConst=*/true); | 
|  | if (!this->visit(LHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(LHST, LHSOffset, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool RHSIsComplex; | 
|  | unsigned RHSOffset; | 
|  | if (RHS->getType()->isAnyComplexType()) { | 
|  | RHSIsComplex = true; | 
|  | ElemT = classifyComplexElementType(RHS->getType()); | 
|  | RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true); | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) | 
|  | return false; | 
|  | } else { | 
|  | RHSIsComplex = false; | 
|  | PrimType RHST = classifyPrim(RHS->getType()); | 
|  | RHSOffset = this->allocateLocalPrimitive(RHS, RHST, /*IsConst=*/true); | 
|  | if (!this->visit(RHS)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(RHST, RHSOffset, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto getElem = [&](unsigned LocalOffset, unsigned Index, | 
|  | bool IsComplex) -> bool { | 
|  | if (IsComplex) { | 
|  | if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) | 
|  | return false; | 
|  | return this->emitArrayElemPop(ElemT, Index, E); | 
|  | } | 
|  | return this->emitGetLocal(ElemT, LocalOffset, E); | 
|  | }; | 
|  |  | 
|  | for (unsigned I = 0; I != 2; ++I) { | 
|  | // Get both values. | 
|  | if (!getElem(LHSOffset, I, LHSIsComplex)) | 
|  | return false; | 
|  | if (!getElem(RHSOffset, I, RHSIsComplex)) | 
|  | return false; | 
|  | // And compare them. | 
|  | if (!this->emitEQ(ElemT, E)) | 
|  | return false; | 
|  |  | 
|  | if (!this->emitCastBoolUint8(E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We now have two bool values on the stack. Compare those. | 
|  | if (!this->emitAddUint8(E)) | 
|  | return false; | 
|  | if (!this->emitConstUint8(2, E)) | 
|  | return false; | 
|  |  | 
|  | if (E->getOpcode() == BO_EQ) { | 
|  | if (!this->emitEQUint8(E)) | 
|  | return false; | 
|  | } else if (E->getOpcode() == BO_NE) { | 
|  | if (!this->emitNEUint8(E)) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // In C, this returns an int. | 
|  | if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) | 
|  | return this->emitCast(PT_Bool, ResT, E); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// When calling this, we have a pointer of the local-to-destroy | 
|  | /// on the stack. | 
|  | /// Emit destruction of record types (or arrays of record types). | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { | 
|  | assert(R); | 
|  | assert(!R->isAnonymousUnion()); | 
|  | const CXXDestructorDecl *Dtor = R->getDestructor(); | 
|  | if (!Dtor || Dtor->isTrivial()) | 
|  | return true; | 
|  |  | 
|  | assert(Dtor); | 
|  | const Function *DtorFunc = getFunction(Dtor); | 
|  | if (!DtorFunc) | 
|  | return false; | 
|  | assert(DtorFunc->hasThisPointer()); | 
|  | assert(DtorFunc->getNumParams() == 1); | 
|  | if (!this->emitDupPtr(Loc)) | 
|  | return false; | 
|  | return this->emitCall(DtorFunc, 0, Loc); | 
|  | } | 
|  | /// When calling this, we have a pointer of the local-to-destroy | 
|  | /// on the stack. | 
|  | /// Emit destruction of record types (or arrays of record types). | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, | 
|  | SourceInfo Loc) { | 
|  | assert(Desc); | 
|  | assert(!Desc->isPrimitive()); | 
|  | assert(!Desc->isPrimitiveArray()); | 
|  |  | 
|  | // Can happen if the decl is invalid. | 
|  | if (Desc->isDummy()) | 
|  | return true; | 
|  |  | 
|  | // Arrays. | 
|  | if (Desc->isArray()) { | 
|  | const Descriptor *ElemDesc = Desc->ElemDesc; | 
|  | assert(ElemDesc); | 
|  |  | 
|  | // Don't need to do anything for these. | 
|  | if (ElemDesc->isPrimitiveArray()) | 
|  | return true; | 
|  |  | 
|  | // If this is an array of record types, check if we need | 
|  | // to call the element destructors at all. If not, try | 
|  | // to save the work. | 
|  | if (const Record *ElemRecord = ElemDesc->ElemRecord) { | 
|  | if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); | 
|  | !Dtor || Dtor->isTrivial()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (unsigned N = Desc->getNumElems()) { | 
|  | for (ssize_t I = N - 1; I >= 0; --I) { | 
|  | if (!this->emitConstUint64(I, Loc)) | 
|  | return false; | 
|  | if (!this->emitArrayElemPtrUint64(Loc)) | 
|  | return false; | 
|  | if (!this->emitDestruction(ElemDesc, Loc)) | 
|  | return false; | 
|  | if (!this->emitPopPtr(Loc)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | assert(Desc->ElemRecord); | 
|  | if (Desc->ElemRecord->isAnonymousUnion()) | 
|  | return true; | 
|  |  | 
|  | return this->emitRecordDestruction(Desc->ElemRecord, Loc); | 
|  | } | 
|  |  | 
|  | /// Create a dummy pointer for the given decl (or expr) and | 
|  | /// push a pointer to it on the stack. | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) { | 
|  | assert(!DiscardResult && "Should've been checked before"); | 
|  |  | 
|  | unsigned DummyID = P.getOrCreateDummy(D); | 
|  |  | 
|  | if (!this->emitGetPtrGlobal(DummyID, E)) | 
|  | return false; | 
|  | if (E->getType()->isVoidType()) | 
|  | return true; | 
|  |  | 
|  | // Convert the dummy pointer to another pointer type if we have to. | 
|  | if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { | 
|  | if (isPtrType(PT)) | 
|  | return this->emitDecayPtr(PT_Ptr, PT, E); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitFloat(const APFloat &F, const Expr *E) { | 
|  | assert(!DiscardResult && "Should've been checked before"); | 
|  |  | 
|  | if (Floating::singleWord(F.getSemantics())) | 
|  | return this->emitConstFloat(Floating(F), E); | 
|  |  | 
|  | APInt I = F.bitcastToAPInt(); | 
|  | return this->emitConstFloat( | 
|  | Floating(const_cast<uint64_t *>(I.getRawData()), | 
|  | llvm::APFloatBase::SemanticsToEnum(F.getSemantics())), | 
|  | E); | 
|  | } | 
|  |  | 
|  | //  This function is constexpr if and only if To, From, and the types of | 
|  | //  all subobjects of To and From are types T such that... | 
|  | //  (3.1) - is_union_v<T> is false; | 
|  | //  (3.2) - is_pointer_v<T> is false; | 
|  | //  (3.3) - is_member_pointer_v<T> is false; | 
|  | //  (3.4) - is_volatile_v<T> is false; and | 
|  | //  (3.5) - T has no non-static data members of reference type | 
|  | template <class Emitter> | 
|  | bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) { | 
|  | const Expr *SubExpr = E->getSubExpr(); | 
|  | QualType FromType = SubExpr->getType(); | 
|  | QualType ToType = E->getType(); | 
|  | OptPrimType ToT = classify(ToType); | 
|  |  | 
|  | assert(!ToType->isReferenceType()); | 
|  |  | 
|  | // Prepare storage for the result in case we discard. | 
|  | if (DiscardResult && !Initializing && !ToT) { | 
|  | std::optional<unsigned> LocalIndex = allocateLocal(E); | 
|  | if (!LocalIndex) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(*LocalIndex, E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get a pointer to the value-to-cast on the stack. | 
|  | // For CK_LValueToRValueBitCast, this is always an lvalue and | 
|  | // we later assume it to be one (i.e. a PT_Ptr). However, | 
|  | // we call this function for other utility methods where | 
|  | // a bitcast might be useful, so convert it to a PT_Ptr in that case. | 
|  | if (SubExpr->isGLValue() || FromType->isVectorType()) { | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | } else if (OptPrimType FromT = classify(SubExpr)) { | 
|  | unsigned TempOffset = | 
|  | allocateLocalPrimitive(SubExpr, *FromT, /*IsConst=*/true); | 
|  | if (!this->visit(SubExpr)) | 
|  | return false; | 
|  | if (!this->emitSetLocal(*FromT, TempOffset, E)) | 
|  | return false; | 
|  | if (!this->emitGetPtrLocal(TempOffset, E)) | 
|  | return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ToT) { | 
|  | if (!this->emitBitCast(E)) | 
|  | return false; | 
|  | return DiscardResult ? this->emitPopPtr(E) : true; | 
|  | } | 
|  | assert(ToT); | 
|  |  | 
|  | const llvm::fltSemantics *TargetSemantics = nullptr; | 
|  | if (ToT == PT_Float) | 
|  | TargetSemantics = &Ctx.getFloatSemantics(ToType); | 
|  |  | 
|  | // Conversion to a primitive type. FromType can be another | 
|  | // primitive type, or a record/array. | 
|  | bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) || | 
|  | ToType->isSpecificBuiltinType(BuiltinType::Char_U)); | 
|  | uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u); | 
|  |  | 
|  | if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(), | 
|  | ResultBitWidth, TargetSemantics, E)) | 
|  | return false; | 
|  |  | 
|  | if (DiscardResult) | 
|  | return this->emitPop(*ToT, E); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace clang { | 
|  | namespace interp { | 
|  |  | 
|  | template class Compiler<ByteCodeEmitter>; | 
|  | template class Compiler<EvalEmitter>; | 
|  |  | 
|  | } // namespace interp | 
|  | } // namespace clang |