| //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass reassociates n-ary add expressions and eliminates the redundancy | 
 | // exposed by the reassociation. | 
 | // | 
 | // A motivating example: | 
 | // | 
 | //   void foo(int a, int b) { | 
 | //     bar(a + b); | 
 | //     bar((a + 2) + b); | 
 | //   } | 
 | // | 
 | // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify | 
 | // the above code to | 
 | // | 
 | //   int t = a + b; | 
 | //   bar(t); | 
 | //   bar(t + 2); | 
 | // | 
 | // However, the Reassociate pass is unable to do that because it processes each | 
 | // instruction individually and believes (a + 2) + b is the best form according | 
 | // to its rank system. | 
 | // | 
 | // To address this limitation, NaryReassociate reassociates an expression in a | 
 | // form that reuses existing instructions. As a result, NaryReassociate can | 
 | // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that | 
 | // (a + b) is computed before. | 
 | // | 
 | // NaryReassociate works as follows. For every instruction in the form of (a + | 
 | // b) + c, it checks whether a + c or b + c is already computed by a dominating | 
 | // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + | 
 | // c) + a and removes the redundancy accordingly. To efficiently look up whether | 
 | // an expression is computed before, we store each instruction seen and its SCEV | 
 | // into an SCEV-to-instruction map. | 
 | // | 
 | // Although the algorithm pattern-matches only ternary additions, it | 
 | // automatically handles many >3-ary expressions by walking through the function | 
 | // in the depth-first order. For example, given | 
 | // | 
 | //   (a + c) + d | 
 | //   ((a + b) + c) + d | 
 | // | 
 | // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites | 
 | // ((a + c) + b) + d into ((a + c) + d) + b. | 
 | // | 
 | // Finally, the above dominator-based algorithm may need to be run multiple | 
 | // iterations before emitting optimal code. One source of this need is that we | 
 | // only split an operand when it is used only once. The above algorithm can | 
 | // eliminate an instruction and decrease the usage count of its operands. As a | 
 | // result, an instruction that previously had multiple uses may become a | 
 | // single-use instruction and thus eligible for split consideration. For | 
 | // example, | 
 | // | 
 | //   ac = a + c | 
 | //   ab = a + b | 
 | //   abc = ab + c | 
 | //   ab2 = ab + b | 
 | //   ab2c = ab2 + c | 
 | // | 
 | // In the first iteration, we cannot reassociate abc to ac+b because ab is used | 
 | // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a | 
 | // result, ab2 becomes dead and ab will be used only once in the second | 
 | // iteration. | 
 | // | 
 | // Limitations and TODO items: | 
 | // | 
 | // 1) We only considers n-ary adds and muls for now. This should be extended | 
 | // and generalized. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Transforms/Scalar/NaryReassociate.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/Analysis/AssumptionCache.h" | 
 | #include "llvm/Analysis/ScalarEvolution.h" | 
 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
 | #include "llvm/Analysis/TargetLibraryInfo.h" | 
 | #include "llvm/Analysis/TargetTransformInfo.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/InstrTypes.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Operator.h" | 
 | #include "llvm/IR/PatternMatch.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/IR/ValueHandle.h" | 
 | #include "llvm/InitializePasses.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Transforms/Utils/Local.h" | 
 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | 
 | #include <cassert> | 
 | #include <cstdint> | 
 |  | 
 | using namespace llvm; | 
 | using namespace PatternMatch; | 
 |  | 
 | #define DEBUG_TYPE "nary-reassociate" | 
 |  | 
 | namespace { | 
 |  | 
 | class NaryReassociateLegacyPass : public FunctionPass { | 
 | public: | 
 |   static char ID; | 
 |  | 
 |   NaryReassociateLegacyPass() : FunctionPass(ID) { | 
 |     initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   bool doInitialization(Module &M) override { | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool runOnFunction(Function &F) override; | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.addPreserved<DominatorTreeWrapperPass>(); | 
 |     AU.addPreserved<ScalarEvolutionWrapperPass>(); | 
 |     AU.addPreserved<TargetLibraryInfoWrapperPass>(); | 
 |     AU.addRequired<AssumptionCacheTracker>(); | 
 |     AU.addRequired<DominatorTreeWrapperPass>(); | 
 |     AU.addRequired<ScalarEvolutionWrapperPass>(); | 
 |     AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
 |     AU.addRequired<TargetTransformInfoWrapperPass>(); | 
 |     AU.setPreservesCFG(); | 
 |   } | 
 |  | 
 | private: | 
 |   NaryReassociatePass Impl; | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char NaryReassociateLegacyPass::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate", | 
 |                       "Nary reassociation", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
 | INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate", | 
 |                     "Nary reassociation", false, false) | 
 |  | 
 | FunctionPass *llvm::createNaryReassociatePass() { | 
 |   return new NaryReassociateLegacyPass(); | 
 | } | 
 |  | 
 | bool NaryReassociateLegacyPass::runOnFunction(Function &F) { | 
 |   if (skipFunction(F)) | 
 |     return false; | 
 |  | 
 |   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
 |   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
 |   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
 |   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | 
 |   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
 |  | 
 |   return Impl.runImpl(F, AC, DT, SE, TLI, TTI); | 
 | } | 
 |  | 
 | PreservedAnalyses NaryReassociatePass::run(Function &F, | 
 |                                            FunctionAnalysisManager &AM) { | 
 |   auto *AC = &AM.getResult<AssumptionAnalysis>(F); | 
 |   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); | 
 |   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); | 
 |   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); | 
 |   auto *TTI = &AM.getResult<TargetIRAnalysis>(F); | 
 |  | 
 |   if (!runImpl(F, AC, DT, SE, TLI, TTI)) | 
 |     return PreservedAnalyses::all(); | 
 |  | 
 |   PreservedAnalyses PA; | 
 |   PA.preserveSet<CFGAnalyses>(); | 
 |   PA.preserve<ScalarEvolutionAnalysis>(); | 
 |   return PA; | 
 | } | 
 |  | 
 | bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_, | 
 |                                   DominatorTree *DT_, ScalarEvolution *SE_, | 
 |                                   TargetLibraryInfo *TLI_, | 
 |                                   TargetTransformInfo *TTI_) { | 
 |   AC = AC_; | 
 |   DT = DT_; | 
 |   SE = SE_; | 
 |   TLI = TLI_; | 
 |   TTI = TTI_; | 
 |   DL = &F.getDataLayout(); | 
 |  | 
 |   bool Changed = false, ChangedInThisIteration; | 
 |   do { | 
 |     ChangedInThisIteration = doOneIteration(F); | 
 |     Changed |= ChangedInThisIteration; | 
 |   } while (ChangedInThisIteration); | 
 |   return Changed; | 
 | } | 
 |  | 
 | bool NaryReassociatePass::doOneIteration(Function &F) { | 
 |   bool Changed = false; | 
 |   SeenExprs.clear(); | 
 |   // Process the basic blocks in a depth first traversal of the dominator | 
 |   // tree. This order ensures that all bases of a candidate are in Candidates | 
 |   // when we process it. | 
 |   SmallVector<WeakTrackingVH, 16> DeadInsts; | 
 |   for (const auto Node : depth_first(DT)) { | 
 |     BasicBlock *BB = Node->getBlock(); | 
 |     for (Instruction &OrigI : *BB) { | 
 |       const SCEV *OrigSCEV = nullptr; | 
 |       if (Instruction *NewI = tryReassociate(&OrigI, OrigSCEV)) { | 
 |         Changed = true; | 
 |         OrigI.replaceAllUsesWith(NewI); | 
 |  | 
 |         // Add 'OrigI' to the list of dead instructions. | 
 |         DeadInsts.push_back(WeakTrackingVH(&OrigI)); | 
 |         // Add the rewritten instruction to SeenExprs; the original | 
 |         // instruction is deleted. | 
 |         const SCEV *NewSCEV = SE->getSCEV(NewI); | 
 |         SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI)); | 
 |  | 
 |         // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I) | 
 |         // is equivalent to I. However, ScalarEvolution::getSCEV may | 
 |         // weaken nsw causing NewSCEV not to equal OldSCEV. For example, | 
 |         // suppose we reassociate | 
 |         //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4 | 
 |         // to | 
 |         //   NewI = &a[sext(i)] + sext(j). | 
 |         // | 
 |         // ScalarEvolution computes | 
 |         //   getSCEV(I)    = a + 4 * sext(i + j) | 
 |         //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j) | 
 |         // which are different SCEVs. | 
 |         // | 
 |         // To alleviate this issue of ScalarEvolution not always capturing | 
 |         // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can | 
 |         // map both SCEV before and after tryReassociate(I) to I. | 
 |         // | 
 |         // This improvement is exercised in @reassociate_gep_nsw in | 
 |         // nary-gep.ll. | 
 |         if (NewSCEV != OrigSCEV) | 
 |           SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI)); | 
 |       } else if (OrigSCEV) | 
 |         SeenExprs[OrigSCEV].push_back(WeakTrackingVH(&OrigI)); | 
 |     } | 
 |   } | 
 |   // Delete all dead instructions from 'DeadInsts'. | 
 |   // Please note ScalarEvolution is updated along the way. | 
 |   RecursivelyDeleteTriviallyDeadInstructionsPermissive( | 
 |       DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); }); | 
 |  | 
 |   return Changed; | 
 | } | 
 |  | 
 | template <typename PredT> | 
 | Instruction * | 
 | NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I, | 
 |                                                  const SCEV *&OrigSCEV) { | 
 |   Value *LHS = nullptr; | 
 |   Value *RHS = nullptr; | 
 |  | 
 |   auto MinMaxMatcher = | 
 |       MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>( | 
 |           m_Value(LHS), m_Value(RHS)); | 
 |   if (match(I, MinMaxMatcher)) { | 
 |     OrigSCEV = SE->getSCEV(I); | 
 |     if (auto *NewMinMax = dyn_cast_or_null<Instruction>( | 
 |             tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS))) | 
 |       return NewMinMax; | 
 |     if (auto *NewMinMax = dyn_cast_or_null<Instruction>( | 
 |             tryReassociateMinOrMax(I, MinMaxMatcher, RHS, LHS))) | 
 |       return NewMinMax; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Instruction *NaryReassociatePass::tryReassociate(Instruction * I, | 
 |                                                  const SCEV *&OrigSCEV) { | 
 |  | 
 |   if (!SE->isSCEVable(I->getType())) | 
 |     return nullptr; | 
 |  | 
 |   switch (I->getOpcode()) { | 
 |   case Instruction::Add: | 
 |   case Instruction::Mul: | 
 |     OrigSCEV = SE->getSCEV(I); | 
 |     return tryReassociateBinaryOp(cast<BinaryOperator>(I)); | 
 |   case Instruction::GetElementPtr: | 
 |     OrigSCEV = SE->getSCEV(I); | 
 |     return tryReassociateGEP(cast<GetElementPtrInst>(I)); | 
 |   default: | 
 |     break; | 
 |   } | 
 |  | 
 |   // Try to match signed/unsigned Min/Max. | 
 |   Instruction *ResI = nullptr; | 
 |   // TODO: Currently min/max reassociation is restricted to integer types only | 
 |   // due to use of SCEVExpander which my introduce incompatible forms of min/max | 
 |   // for pointer types. | 
 |   if (I->getType()->isIntegerTy()) | 
 |     if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) || | 
 |         (ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) || | 
 |         (ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) || | 
 |         (ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV))) | 
 |       return ResI; | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static bool isGEPFoldable(GetElementPtrInst *GEP, | 
 |                           const TargetTransformInfo *TTI) { | 
 |   SmallVector<const Value *, 4> Indices(GEP->indices()); | 
 |   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), | 
 |                          Indices) == TargetTransformInfo::TCC_Free; | 
 | } | 
 |  | 
 | Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) { | 
 |   // Not worth reassociating GEP if it is foldable. | 
 |   if (isGEPFoldable(GEP, TTI)) | 
 |     return nullptr; | 
 |  | 
 |   gep_type_iterator GTI = gep_type_begin(*GEP); | 
 |   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { | 
 |     if (GTI.isSequential()) { | 
 |       if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, | 
 |                                                   GTI.getIndexedType())) { | 
 |         return NewGEP; | 
 |       } | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | bool NaryReassociatePass::requiresSignExtension(Value *Index, | 
 |                                                 GetElementPtrInst *GEP) { | 
 |   unsigned IndexSizeInBits = | 
 |       DL->getIndexSizeInBits(GEP->getType()->getPointerAddressSpace()); | 
 |   return cast<IntegerType>(Index->getType())->getBitWidth() < IndexSizeInBits; | 
 | } | 
 |  | 
 | GetElementPtrInst * | 
 | NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, | 
 |                                               unsigned I, Type *IndexedType) { | 
 |   SimplifyQuery SQ(*DL, DT, AC, GEP); | 
 |   Value *IndexToSplit = GEP->getOperand(I + 1); | 
 |   if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) { | 
 |     IndexToSplit = SExt->getOperand(0); | 
 |   } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) { | 
 |     // zext can be treated as sext if the source is non-negative. | 
 |     if (isKnownNonNegative(ZExt->getOperand(0), SQ)) | 
 |       IndexToSplit = ZExt->getOperand(0); | 
 |   } | 
 |  | 
 |   if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) { | 
 |     // If the I-th index needs sext and the underlying add is not equipped with | 
 |     // nsw, we cannot split the add because | 
 |     //   sext(LHS + RHS) != sext(LHS) + sext(RHS). | 
 |     if (requiresSignExtension(IndexToSplit, GEP) && | 
 |         computeOverflowForSignedAdd(AO, SQ) != OverflowResult::NeverOverflows) | 
 |       return nullptr; | 
 |  | 
 |     Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1); | 
 |     // IndexToSplit = LHS + RHS. | 
 |     if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType)) | 
 |       return NewGEP; | 
 |     // Symmetrically, try IndexToSplit = RHS + LHS. | 
 |     if (LHS != RHS) { | 
 |       if (auto *NewGEP = | 
 |               tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType)) | 
 |         return NewGEP; | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | GetElementPtrInst * | 
 | NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, | 
 |                                               unsigned I, Value *LHS, | 
 |                                               Value *RHS, Type *IndexedType) { | 
 |   // Look for GEP's closest dominator that has the same SCEV as GEP except that | 
 |   // the I-th index is replaced with LHS. | 
 |   SmallVector<const SCEV *, 4> IndexExprs; | 
 |   for (Use &Index : GEP->indices()) | 
 |     IndexExprs.push_back(SE->getSCEV(Index)); | 
 |   // Replace the I-th index with LHS. | 
 |   IndexExprs[I] = SE->getSCEV(LHS); | 
 |   Type *GEPArgType = SE->getEffectiveSCEVType(GEP->getOperand(I)->getType()); | 
 |   Type *LHSType = SE->getEffectiveSCEVType(LHS->getType()); | 
 |   size_t LHSSize = DL->getTypeSizeInBits(LHSType).getFixedValue(); | 
 |   size_t GEPArgSize = DL->getTypeSizeInBits(GEPArgType).getFixedValue(); | 
 |   if (isKnownNonNegative(LHS, SimplifyQuery(*DL, DT, AC, GEP)) && | 
 |       LHSSize < GEPArgSize) { | 
 |     // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to | 
 |     // zext if the source operand is proved non-negative. We should do that | 
 |     // consistently so that CandidateExpr more likely appears before. See | 
 |     // @reassociate_gep_assume for an example of this canonicalization. | 
 |     IndexExprs[I] = SE->getZeroExtendExpr(IndexExprs[I], GEPArgType); | 
 |   } | 
 |   const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), | 
 |                                              IndexExprs); | 
 |  | 
 |   Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP); | 
 |   if (Candidate == nullptr) | 
 |     return nullptr; | 
 |  | 
 |   IRBuilder<> Builder(GEP); | 
 |   // Candidate should have the same pointer type as GEP. | 
 |   assert(Candidate->getType() == GEP->getType()); | 
 |  | 
 |   // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType) | 
 |   uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType); | 
 |   Type *ElementType = GEP->getResultElementType(); | 
 |   uint64_t ElementSize = DL->getTypeAllocSize(ElementType); | 
 |   // Another less rare case: because I is not necessarily the last index of the | 
 |   // GEP, the size of the type at the I-th index (IndexedSize) is not | 
 |   // necessarily divisible by ElementSize. For example, | 
 |   // | 
 |   // #pragma pack(1) | 
 |   // struct S { | 
 |   //   int a[3]; | 
 |   //   int64 b[8]; | 
 |   // }; | 
 |   // #pragma pack() | 
 |   // | 
 |   // sizeof(S) = 100 is indivisible by sizeof(int64) = 8. | 
 |   // | 
 |   // TODO: bail out on this case for now. We could emit uglygep. | 
 |   if (IndexedSize % ElementSize != 0) | 
 |     return nullptr; | 
 |  | 
 |   // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0]))); | 
 |   Type *PtrIdxTy = DL->getIndexType(GEP->getType()); | 
 |   if (RHS->getType() != PtrIdxTy) | 
 |     RHS = Builder.CreateSExtOrTrunc(RHS, PtrIdxTy); | 
 |   if (IndexedSize != ElementSize) { | 
 |     RHS = Builder.CreateMul( | 
 |         RHS, ConstantInt::get(PtrIdxTy, IndexedSize / ElementSize)); | 
 |   } | 
 |   GetElementPtrInst *NewGEP = cast<GetElementPtrInst>( | 
 |       Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS)); | 
 |   NewGEP->setIsInBounds(GEP->isInBounds()); | 
 |   NewGEP->takeName(GEP); | 
 |   return NewGEP; | 
 | } | 
 |  | 
 | Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) { | 
 |   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); | 
 |   // There is no need to reassociate 0. | 
 |   if (SE->getSCEV(I)->isZero()) | 
 |     return nullptr; | 
 |   if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I)) | 
 |     return NewI; | 
 |   if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I)) | 
 |     return NewI; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS, | 
 |                                                          BinaryOperator *I) { | 
 |   Value *A = nullptr, *B = nullptr; | 
 |   // To be conservative, we reassociate I only when it is the only user of (A op | 
 |   // B). | 
 |   if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) { | 
 |     // I = (A op B) op RHS | 
 |     //   = (A op RHS) op B or (B op RHS) op A | 
 |     const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B); | 
 |     const SCEV *RHSExpr = SE->getSCEV(RHS); | 
 |     if (BExpr != RHSExpr) { | 
 |       if (auto *NewI = | 
 |               tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I)) | 
 |         return NewI; | 
 |     } | 
 |     if (AExpr != RHSExpr) { | 
 |       if (auto *NewI = | 
 |               tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I)) | 
 |         return NewI; | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr, | 
 |                                                           Value *RHS, | 
 |                                                           BinaryOperator *I) { | 
 |   // Look for the closest dominator LHS of I that computes LHSExpr, and replace | 
 |   // I with LHS op RHS. | 
 |   auto *LHS = findClosestMatchingDominator(LHSExpr, I); | 
 |   if (LHS == nullptr) | 
 |     return nullptr; | 
 |  | 
 |   Instruction *NewI = nullptr; | 
 |   switch (I->getOpcode()) { | 
 |   case Instruction::Add: | 
 |     NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I->getIterator()); | 
 |     break; | 
 |   case Instruction::Mul: | 
 |     NewI = BinaryOperator::CreateMul(LHS, RHS, "", I->getIterator()); | 
 |     break; | 
 |   default: | 
 |     llvm_unreachable("Unexpected instruction."); | 
 |   } | 
 |   NewI->setDebugLoc(I->getDebugLoc()); | 
 |   NewI->takeName(I); | 
 |   return NewI; | 
 | } | 
 |  | 
 | bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V, | 
 |                                          Value *&Op1, Value *&Op2) { | 
 |   switch (I->getOpcode()) { | 
 |   case Instruction::Add: | 
 |     return match(V, m_Add(m_Value(Op1), m_Value(Op2))); | 
 |   case Instruction::Mul: | 
 |     return match(V, m_Mul(m_Value(Op1), m_Value(Op2))); | 
 |   default: | 
 |     llvm_unreachable("Unexpected instruction."); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I, | 
 |                                                const SCEV *LHS, | 
 |                                                const SCEV *RHS) { | 
 |   switch (I->getOpcode()) { | 
 |   case Instruction::Add: | 
 |     return SE->getAddExpr(LHS, RHS); | 
 |   case Instruction::Mul: | 
 |     return SE->getMulExpr(LHS, RHS); | 
 |   default: | 
 |     llvm_unreachable("Unexpected instruction."); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Instruction * | 
 | NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr, | 
 |                                                   Instruction *Dominatee) { | 
 |   auto Pos = SeenExprs.find(CandidateExpr); | 
 |   if (Pos == SeenExprs.end()) | 
 |     return nullptr; | 
 |  | 
 |   auto &Candidates = Pos->second; | 
 |   // Because we process the basic blocks in pre-order of the dominator tree, a | 
 |   // candidate that doesn't dominate the current instruction won't dominate any | 
 |   // future instruction either. Therefore, we pop it out of the stack. This | 
 |   // optimization makes the algorithm O(n). | 
 |   while (!Candidates.empty()) { | 
 |     // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's | 
 |     // removed during rewriting. | 
 |     if (Value *Candidate = Candidates.pop_back_val()) { | 
 |       Instruction *CandidateInstruction = cast<Instruction>(Candidate); | 
 |       if (!DT->dominates(CandidateInstruction, Dominatee)) | 
 |         continue; | 
 |  | 
 |       // Make sure that the instruction is safe to reuse without introducing | 
 |       // poison. | 
 |       SmallVector<Instruction *> DropPoisonGeneratingInsts; | 
 |       if (!SE->canReuseInstruction(CandidateExpr, CandidateInstruction, | 
 |                                    DropPoisonGeneratingInsts)) | 
 |         continue; | 
 |  | 
 |       for (Instruction *I : DropPoisonGeneratingInsts) | 
 |         I->dropPoisonGeneratingAnnotations(); | 
 |  | 
 |       return CandidateInstruction; | 
 |     } | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) { | 
 |   if (std::is_same_v<smax_pred_ty, typename MaxMinT::PredType>) | 
 |     return scSMaxExpr; | 
 |   else if (std::is_same_v<umax_pred_ty, typename MaxMinT::PredType>) | 
 |     return scUMaxExpr; | 
 |   else if (std::is_same_v<smin_pred_ty, typename MaxMinT::PredType>) | 
 |     return scSMinExpr; | 
 |   else if (std::is_same_v<umin_pred_ty, typename MaxMinT::PredType>) | 
 |     return scUMinExpr; | 
 |  | 
 |   llvm_unreachable("Can't convert MinMax pattern to SCEV type"); | 
 |   return scUnknown; | 
 | } | 
 |  | 
 | // Parameters: | 
 | //  I - instruction matched by MaxMinMatch matcher | 
 | //  MaxMinMatch - min/max idiom matcher | 
 | //  LHS - first operand of I | 
 | //  RHS - second operand of I | 
 | template <typename MaxMinT> | 
 | Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I, | 
 |                                                    MaxMinT MaxMinMatch, | 
 |                                                    Value *LHS, Value *RHS) { | 
 |   Value *A = nullptr, *B = nullptr; | 
 |   MaxMinT m_MaxMin(m_Value(A), m_Value(B)); | 
 |  | 
 |   if (LHS->hasNUsesOrMore(3) || | 
 |       // The optimization is profitable only if LHS can be removed in the end. | 
 |       // In other words LHS should be used (directly or indirectly) by I only. | 
 |       llvm::any_of(LHS->users(), | 
 |                     [&](auto *U) { | 
 |                       return U != I && | 
 |                              !(U->hasOneUser() && *U->users().begin() == I); | 
 |                     }) || | 
 |       !match(LHS, m_MaxMin)) | 
 |     return nullptr; | 
 |  | 
 |   auto tryCombination = [&](Value *A, const SCEV *AExpr, Value *B, | 
 |                             const SCEV *BExpr, Value *C, | 
 |                             const SCEV *CExpr) -> Value * { | 
 |     SmallVector<const SCEV *, 2> Ops1{BExpr, AExpr}; | 
 |     const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin); | 
 |     const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1); | 
 |  | 
 |     Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I); | 
 |  | 
 |     if (!R1MinMax) | 
 |       return nullptr; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax << "\n"); | 
 |  | 
 |     SmallVector<const SCEV *, 2> Ops2{SE->getUnknown(C), | 
 |                                       SE->getUnknown(R1MinMax)}; | 
 |     const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2); | 
 |  | 
 |     SCEVExpander Expander(*SE, *DL, "nary-reassociate"); | 
 |     Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I); | 
 |     NewMinMax->setName(Twine(I->getName()).concat(".nary")); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "NARY: Deleting:  " << *I << "\n" | 
 |                       << "NARY: Inserting: " << *NewMinMax << "\n"); | 
 |     return NewMinMax; | 
 |   }; | 
 |  | 
 |   const SCEV *AExpr = SE->getSCEV(A); | 
 |   const SCEV *BExpr = SE->getSCEV(B); | 
 |   const SCEV *RHSExpr = SE->getSCEV(RHS); | 
 |  | 
 |   if (BExpr != RHSExpr) { | 
 |     // Try (A op RHS) op B | 
 |     if (auto *NewMinMax = tryCombination(A, AExpr, RHS, RHSExpr, B, BExpr)) | 
 |       return NewMinMax; | 
 |   } | 
 |  | 
 |   if (AExpr != RHSExpr) { | 
 |     // Try (RHS op B) op A | 
 |     if (auto *NewMinMax = tryCombination(RHS, RHSExpr, B, BExpr, A, AExpr)) | 
 |       return NewMinMax; | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } |