| // RUN: mlir-opt %s -linalg-tile="tile-sizes=2,3,4" -split-input-file | FileCheck %s |
| // RUN: mlir-opt %s -linalg-tile="tile-sizes=2,3,4 loop-type=tiled_loop distribution-types=block_x,block_y,none" -split-input-file | FileCheck %s -check-prefix=TLOOP |
| |
| // CHECK-LABEL: func @matmul_tensors( |
| // CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<?x?xf32> |
| // CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor<?x?xf32> |
| // CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor<?x?xf32>) -> tensor<?x?xf32> { |
| func @matmul_tensors( |
| %arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>) |
| -> tensor<?x?xf32> { |
| // CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<?x?xf32>) { |
| // CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?xf32>) { |
| // CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<?x?xf32>) { |
| // CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32> |
| // CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32> |
| // CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32> |
| // CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x?xf32>, tensor<?x?xf32>) |
| // CHECK-SAME: outs(%[[sTC]] : tensor<?x?xf32>) -> tensor<?x?xf32> |
| // CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xf32> into tensor<?x?xf32> |
| // CHECK: scf.yield %[[TD]] : tensor<?x?xf32> |
| // CHECK: scf.yield %[[TD2]] : tensor<?x?xf32> |
| // CHECK: scf.yield %[[TD1]] : tensor<?x?xf32> |
| %0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>) |
| outs(%arg2: tensor<?x?xf32>) |
| -> tensor<?x?xf32> |
| |
| // CHECK: return %[[TD0]] : tensor<?x?xf32> |
| return %0 : tensor<?x?xf32> |
| } |
| |
| // TLOOP-LABEL: func @matmul_tensors |
| // TLOOP-SAME: (%[[ARG_0:.*]]: [[TY:.*]], %[[ARG_1:.*]]: [[TY]], |
| // TLOOP-SAME: %[[ARG_2:.*]]: [[TY]]) -> [[TY]] { |
| |
| // TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index |
| // TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index |
| // TLOOP-DAG: %[[C2:.*]] = arith.constant 2 : index |
| // TLOOP-DAG: %[[C3:.*]] = arith.constant 3 : index |
| // TLOOP-DAG: %[[C4:.*]] = arith.constant 4 : index |
| |
| // TLOOP: %[[ARG_0_X:.*]] = tensor.dim %[[ARG_0]], %[[C0]] : [[TY]] |
| // TLOOP: %[[ARG_0_Y:.*]] = tensor.dim %[[ARG_0]], %[[C1]] : [[TY]] |
| // TLOOP: %[[ARG_1_Y:.*]] = tensor.dim %[[ARG_1]], %[[C1]] : [[TY]] |
| |
| // TLOOP: %{{.*}} = linalg.tiled_loop (%[[I:.*]], %[[J:.*]], %[[K:.*]]) = |
| // TLOOP-SAME: (%[[C0]], %[[C0]], %[[C0]]) |
| // TLOOP-SAME: to (%[[ARG_0_X]], %[[ARG_1_Y]], %[[ARG_0_Y]]) |
| // TLOOP-SAME: step (%[[C2]], %[[C3]], %[[C4]]) |
| // TLOOP-SAME: ins (%[[A0:.*]] = %[[ARG_0]]: [[TY]], %[[A1:.*]] = %[[ARG_1]]: [[TY]]) |
| // TLOOP-SAME: outs (%[[A2:.*]] = %[[ARG_2]]: [[TY]]) |
| // TLOOP-SAME: iterators["parallel", "parallel", "reduction"] |
| // TLOOP-SAME: distribution["block_x", "block_y", "none"] { |
| |
| // TLOOP: %[[SUB_ARG_0:.*]] = tensor.extract_slice %[[A0]][%[[I]], %[[K]]] |
| // TLOOP: %[[SUB_ARG_1:.*]] = tensor.extract_slice %[[A1]][%[[K]], %[[J]]] |
| // TLOOP: %[[SUB_ARG_2:.*]] = tensor.extract_slice %[[A2]][%[[I]], %[[J]]] |
| |
| // TLOOP: %[[PROD:.*]] = linalg.matmul ins(%[[SUB_ARG_0]], %[[SUB_ARG_1]] |
| // TLOOP-SE: outs(%[[SUB_ARG_2]] : [[TY]]) -> [[TY]] |
| |
| // TLOOP: %[[O:.*]] = tensor.insert_slice %[[PROD]] into %[[A2]][%[[I]], %[[J]]] |
| // TLOOP: linalg.yield %[[O]] : [[TY]] |
| |
| // ----- |
| |
| func @generic_op_tensors( |
| %arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> { |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 1 : index |
| %c2 = arith.constant 2 : index |
| %0 = tensor.dim %arg0, %c0 : tensor<?x?x?xf32> |
| %1 = tensor.dim %arg0, %c1 : tensor<?x?x?xf32> |
| %2 = tensor.dim %arg0, %c2 : tensor<?x?x?xf32> |
| %3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32> |
| %4 = linalg.generic |
| {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| affine_map<(d0, d1, d2) -> (d0, d2, d1)>, |
| affine_map<(d0, d1, d2) -> (d2, d1, d0)>], |
| iterator_types = ["parallel", "parallel", "parallel"]} |
| ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>) |
| outs(%3 : tensor<?x?x?xf32>) { |
| ^bb0(%arg2 : f32, %arg3: f32, %arg4: f32): |
| %5 = arith.addf %arg2, %arg3 : f32 |
| linalg.yield %5 : f32 |
| } -> tensor<?x?x?xf32> |
| return %4 : tensor<?x?x?xf32> |
| } |
| |
| // CHECK-LABEL: func @generic_op_tensors |
| // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32> |
| // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32> |
| // CHECK: %[[INIT:.+]] = linalg.init_tensor |
| // CHECK: %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor<?x?x?xf32>) { |
| // CHECK: %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor<?x?x?xf32>) { |
| // CHECK: %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor<?x?x?xf32>) { |
| // CHECK: %[[STARG0:.+]] = tensor.extract_slice %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32> |
| // CHECK: %[[STARG1:.+]] = tensor.extract_slice %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32> |
| // CHECK: %[[STARG2:.+]] = tensor.extract_slice %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32> |
| // CHECK: %[[STRETURN:.+]] = linalg.generic |
| // CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) |
| // CHECK-SAME: outs(%[[STARG2]] : tensor<?x?x?xf32>) |
| // CHECK: %[[TD:.+]] = tensor.insert_slice %[[STRETURN]] into %[[TC2]] |
| // CHECK: scf.yield %[[TD]] |
| // CHECK: } |
| // CHECK: scf.yield %[[TD2]] |
| // CHECK: } |
| // CHECK: scf.yield %[[TD1]] |
| // CHECK: } |
| // CHECK: return %[[TD0]] |
| |
| // TLOOP-LABEL: func @generic_op_tensors( |
| // TLOOP-SAME: %[[ARG_0:.*]]: [[TY:.*]], |
| // TLOOP-SAME: %[[ARG_1:.*]]: [[TY]]) -> [[TY]] { |
| |
| // TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index |
| // TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index |
| // TLOOP-DAG: %[[C2:.*]] = arith.constant 2 : index |
| // TLOOP-DAG: %[[C3:.*]] = arith.constant 3 : index |
| // TLOOP-DAG: %[[C4:.*]] = arith.constant 4 : index |
| |
| // TLOOP: %[[INIT:.*]] = linalg.init_tensor |
| // TLOOP: %[[ARG_0_X:.*]] = tensor.dim %[[ARG_0]], %[[C0]] : [[TY]] |
| // TLOOP: %[[ARG_0_Y:.*]] = tensor.dim %[[ARG_0]], %[[C1]] : [[TY]] |
| // TLOOP: %[[ARG_0_Z:.*]] = tensor.dim %[[ARG_0]], %[[C2]] : [[TY]] |
| |
| // TLOOP: %{{.*}} = linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = |
| // TLOOP-SAME: (%[[C0]], %[[C0]], %[[C0]]) |
| // TLOOP-SAME: to (%[[ARG_0_X]], %[[ARG_0_Y]], %[[ARG_0_Z]]) |
| // TLOOP-SAME: step (%[[C2]], %[[C3]], %[[C4]]) |
| // TLOOP-SAME: ins (%{{.*}} = %[[ARG_0]]: [[TY]], %{{.*}} = %[[ARG_1]]: [[TY]]) |
| // TLOOP-SAME: outs (%{{.*}} = %[[INIT]]: [[TY]]) |
| // TLOOP-SAME: distribution["block_x", "block_y", "none"] { |
| |
| // ----- |
| |
| // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0)[s0] -> (2, -d0 + s0)> |
| // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0) -> (d0 + 3)> |
| // CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0) -> (d0 + 4)> |
| |
| // CHECK: fold_extract_slice |
| // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]*]]: tensor<?x128xf32> |
| // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]*]]: tensor<?x42xf32> |
| func @fold_extract_slice( |
| %arg0 : tensor<?x128xf32>, %arg1 : tensor<?x42xf32>, %arg2 : tensor<?x42x?xf32>) -> tensor<?x42xf32> { |
| |
| // CHECK: %[[C0:.*]] = arith.constant 0 |
| %c0 = arith.constant 0 : index |
| |
| // CHECK: %[[DIM:.*]] = tensor.dim %[[ARG1]], %[[C0]] |
| %0 = tensor.dim %arg1, %c0 : tensor<?x42xf32> |
| %1 = tensor.extract_slice %arg0[3, 4] [%0, 42] [1, 1] : tensor<?x128xf32> to tensor<?x42xf32> |
| |
| // CHECK: scf.for %[[IV0:[0-9a-zA-Z]*]] = |
| // CHECK: scf.for %[[IV1:[0-9a-zA-Z]*]] = |
| |
| // Fold the existing extract slice op into the one created by the tiling. |
| // CHECK: %[[SIZE0:.*]] = affine.min #[[MAP0]](%[[IV0]])[%[[DIM]] |
| // CHECK: %[[OFF0:.*]] = affine.apply #[[MAP1]](%[[IV0]] |
| // CHECK: %[[OFF1:.*]] = affine.apply #[[MAP2]](%[[IV1]] |
| // CHECK: %[[T0:.*]] = tensor.extract_slice %[[ARG0]] |
| // CHECK-SAME: %[[OFF0]], %[[OFF1]] |
| // CHECK-SAME: %[[SIZE0]], 3 |
| // CHECK-SAME: 1, 1 |
| // CHECK: {{.*}} = linalg.generic {{.*}} ins(%[[T0]] |
| %2 = linalg.generic |
| {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1)>, |
| affine_map<(d0, d1, d2) -> (d0, d1, d2)>, |
| affine_map<(d0, d1, d2) -> (d0, d1)>], |
| iterator_types = ["parallel", "parallel", "parallel"]} |
| ins(%1, %arg2 : tensor<?x42xf32>, tensor<?x42x?xf32>) |
| outs(%arg1 : tensor<?x42xf32>) { |
| ^bb0(%arg3 : f32, %arg4: f32, %arg5: f32): |
| %5 = arith.addf %arg3, %arg5 : f32 |
| linalg.yield %5 : f32 |
| } -> tensor<?x42xf32> |
| return %2 : tensor<?x42xf32> |
| } |
| |