blob: 3e56c21b049c368f089bb3f55bde79a5dd16a1fd [file] [log] [blame]
// RUN: mlir-opt %s -linalg-tile="tile-sizes=2,3,4" -split-input-file | FileCheck %s
// RUN: mlir-opt %s -linalg-tile="tile-sizes=2,3,4 loop-type=tiled_loop distribution-types=block_x,block_y,none" -split-input-file | FileCheck %s -check-prefix=TLOOP
// CHECK-LABEL: func @matmul_tensors(
// CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor<?x?xf32>
// CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
func @matmul_tensors(
%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>)
-> tensor<?x?xf32> {
// CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<?x?xf32>) {
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?xf32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<?x?xf32>) {
// CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
// CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x?xf32>, tensor<?x?xf32>)
// CHECK-SAME: outs(%[[sTC]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xf32> into tensor<?x?xf32>
// CHECK: scf.yield %[[TD]] : tensor<?x?xf32>
// CHECK: scf.yield %[[TD2]] : tensor<?x?xf32>
// CHECK: scf.yield %[[TD1]] : tensor<?x?xf32>
%0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%arg2: tensor<?x?xf32>)
-> tensor<?x?xf32>
// CHECK: return %[[TD0]] : tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
// TLOOP-LABEL: func @matmul_tensors
// TLOOP-SAME: (%[[ARG_0:.*]]: [[TY:.*]], %[[ARG_1:.*]]: [[TY]],
// TLOOP-SAME: %[[ARG_2:.*]]: [[TY]]) -> [[TY]] {
// TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index
// TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index
// TLOOP-DAG: %[[C2:.*]] = arith.constant 2 : index
// TLOOP-DAG: %[[C3:.*]] = arith.constant 3 : index
// TLOOP-DAG: %[[C4:.*]] = arith.constant 4 : index
// TLOOP: %[[ARG_0_X:.*]] = tensor.dim %[[ARG_0]], %[[C0]] : [[TY]]
// TLOOP: %[[ARG_0_Y:.*]] = tensor.dim %[[ARG_0]], %[[C1]] : [[TY]]
// TLOOP: %[[ARG_1_Y:.*]] = tensor.dim %[[ARG_1]], %[[C1]] : [[TY]]
// TLOOP: %{{.*}} = linalg.tiled_loop (%[[I:.*]], %[[J:.*]], %[[K:.*]]) =
// TLOOP-SAME: (%[[C0]], %[[C0]], %[[C0]])
// TLOOP-SAME: to (%[[ARG_0_X]], %[[ARG_1_Y]], %[[ARG_0_Y]])
// TLOOP-SAME: step (%[[C2]], %[[C3]], %[[C4]])
// TLOOP-SAME: ins (%[[A0:.*]] = %[[ARG_0]]: [[TY]], %[[A1:.*]] = %[[ARG_1]]: [[TY]])
// TLOOP-SAME: outs (%[[A2:.*]] = %[[ARG_2]]: [[TY]])
// TLOOP-SAME: iterators["parallel", "parallel", "reduction"]
// TLOOP-SAME: distribution["block_x", "block_y", "none"] {
// TLOOP: %[[SUB_ARG_0:.*]] = tensor.extract_slice %[[A0]][%[[I]], %[[K]]]
// TLOOP: %[[SUB_ARG_1:.*]] = tensor.extract_slice %[[A1]][%[[K]], %[[J]]]
// TLOOP: %[[SUB_ARG_2:.*]] = tensor.extract_slice %[[A2]][%[[I]], %[[J]]]
// TLOOP: %[[PROD:.*]] = linalg.matmul ins(%[[SUB_ARG_0]], %[[SUB_ARG_1]]
// TLOOP-SE: outs(%[[SUB_ARG_2]] : [[TY]]) -> [[TY]]
// TLOOP: %[[O:.*]] = tensor.insert_slice %[[PROD]] into %[[A2]][%[[I]], %[[J]]]
// TLOOP: linalg.yield %[[O]] : [[TY]]
// -----
func @generic_op_tensors(
%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%0 = tensor.dim %arg0, %c0 : tensor<?x?x?xf32>
%1 = tensor.dim %arg0, %c1 : tensor<?x?x?xf32>
%2 = tensor.dim %arg0, %c2 : tensor<?x?x?xf32>
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
%4 = linalg.generic
{indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d2, d1)>,
affine_map<(d0, d1, d2) -> (d2, d1, d0)>],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
outs(%3 : tensor<?x?x?xf32>) {
^bb0(%arg2 : f32, %arg3: f32, %arg4: f32):
%5 = arith.addf %arg2, %arg3 : f32
linalg.yield %5 : f32
} -> tensor<?x?x?xf32>
return %4 : tensor<?x?x?xf32>
}
// CHECK-LABEL: func @generic_op_tensors
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
// CHECK: %[[INIT:.+]] = linalg.init_tensor
// CHECK: %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[STARG0:.+]] = tensor.extract_slice %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STARG1:.+]] = tensor.extract_slice %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STARG2:.+]] = tensor.extract_slice %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STRETURN:.+]] = linalg.generic
// CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
// CHECK-SAME: outs(%[[STARG2]] : tensor<?x?x?xf32>)
// CHECK: %[[TD:.+]] = tensor.insert_slice %[[STRETURN]] into %[[TC2]]
// CHECK: scf.yield %[[TD]]
// CHECK: }
// CHECK: scf.yield %[[TD2]]
// CHECK: }
// CHECK: scf.yield %[[TD1]]
// CHECK: }
// CHECK: return %[[TD0]]
// TLOOP-LABEL: func @generic_op_tensors(
// TLOOP-SAME: %[[ARG_0:.*]]: [[TY:.*]],
// TLOOP-SAME: %[[ARG_1:.*]]: [[TY]]) -> [[TY]] {
// TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index
// TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index
// TLOOP-DAG: %[[C2:.*]] = arith.constant 2 : index
// TLOOP-DAG: %[[C3:.*]] = arith.constant 3 : index
// TLOOP-DAG: %[[C4:.*]] = arith.constant 4 : index
// TLOOP: %[[INIT:.*]] = linalg.init_tensor
// TLOOP: %[[ARG_0_X:.*]] = tensor.dim %[[ARG_0]], %[[C0]] : [[TY]]
// TLOOP: %[[ARG_0_Y:.*]] = tensor.dim %[[ARG_0]], %[[C1]] : [[TY]]
// TLOOP: %[[ARG_0_Z:.*]] = tensor.dim %[[ARG_0]], %[[C2]] : [[TY]]
// TLOOP: %{{.*}} = linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) =
// TLOOP-SAME: (%[[C0]], %[[C0]], %[[C0]])
// TLOOP-SAME: to (%[[ARG_0_X]], %[[ARG_0_Y]], %[[ARG_0_Z]])
// TLOOP-SAME: step (%[[C2]], %[[C3]], %[[C4]])
// TLOOP-SAME: ins (%{{.*}} = %[[ARG_0]]: [[TY]], %{{.*}} = %[[ARG_1]]: [[TY]])
// TLOOP-SAME: outs (%{{.*}} = %[[INIT]]: [[TY]])
// TLOOP-SAME: distribution["block_x", "block_y", "none"] {
// -----
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0)[s0] -> (2, -d0 + s0)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0) -> (d0 + 3)>
// CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0) -> (d0 + 4)>
// CHECK: fold_extract_slice
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z]*]]: tensor<?x128xf32>
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z]*]]: tensor<?x42xf32>
func @fold_extract_slice(
%arg0 : tensor<?x128xf32>, %arg1 : tensor<?x42xf32>, %arg2 : tensor<?x42x?xf32>) -> tensor<?x42xf32> {
// CHECK: %[[C0:.*]] = arith.constant 0
%c0 = arith.constant 0 : index
// CHECK: %[[DIM:.*]] = tensor.dim %[[ARG1]], %[[C0]]
%0 = tensor.dim %arg1, %c0 : tensor<?x42xf32>
%1 = tensor.extract_slice %arg0[3, 4] [%0, 42] [1, 1] : tensor<?x128xf32> to tensor<?x42xf32>
// CHECK: scf.for %[[IV0:[0-9a-zA-Z]*]] =
// CHECK: scf.for %[[IV1:[0-9a-zA-Z]*]] =
// Fold the existing extract slice op into the one created by the tiling.
// CHECK: %[[SIZE0:.*]] = affine.min #[[MAP0]](%[[IV0]])[%[[DIM]]
// CHECK: %[[OFF0:.*]] = affine.apply #[[MAP1]](%[[IV0]]
// CHECK: %[[OFF1:.*]] = affine.apply #[[MAP2]](%[[IV1]]
// CHECK: %[[T0:.*]] = tensor.extract_slice %[[ARG0]]
// CHECK-SAME: %[[OFF0]], %[[OFF1]]
// CHECK-SAME: %[[SIZE0]], 3
// CHECK-SAME: 1, 1
// CHECK: {{.*}} = linalg.generic {{.*}} ins(%[[T0]]
%2 = linalg.generic
{indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%1, %arg2 : tensor<?x42xf32>, tensor<?x42x?xf32>)
outs(%arg1 : tensor<?x42xf32>) {
^bb0(%arg3 : f32, %arg4: f32, %arg5: f32):
%5 = arith.addf %arg3, %arg5 : f32
linalg.yield %5 : f32
} -> tensor<?x42xf32>
return %2 : tensor<?x42xf32>
}