| //===-- runtime/transformational.cpp --------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // Implements the transformational intrinsic functions of Fortran 2018 that |
| // rearrange or duplicate data without (much) regard to type. These are |
| // CSHIFT, EOSHIFT, PACK, RESHAPE, SPREAD, TRANSPOSE, and UNPACK. |
| // |
| // Many of these are defined in the 2018 standard with text that makes sense |
| // only if argument arrays have lower bounds of one. Rather than interpret |
| // these cases as implying a hidden constraint, these implementations |
| // work with arbitrary lower bounds. This may be technically an extension |
| // of the standard but it more likely to conform with its intent. |
| |
| #include "flang/Runtime/transformational.h" |
| #include "copy.h" |
| #include "terminator.h" |
| #include "tools.h" |
| #include <algorithm> |
| |
| namespace Fortran::runtime { |
| |
| // Utility for CSHIFT & EOSHIFT rank > 1 cases that determines the shift count |
| // for each of the vector sections of the result. |
| class ShiftControl { |
| public: |
| ShiftControl(const Descriptor &s, Terminator &t, int dim) |
| : shift_{s}, terminator_{t}, shiftRank_{s.rank()}, dim_{dim} {} |
| void Init(const Descriptor &source) { |
| int rank{source.rank()}; |
| RUNTIME_CHECK(terminator_, shiftRank_ == 0 || shiftRank_ == rank - 1); |
| auto catAndKind{shift_.type().GetCategoryAndKind()}; |
| RUNTIME_CHECK( |
| terminator_, catAndKind && catAndKind->first == TypeCategory::Integer); |
| shiftElemLen_ = catAndKind->second; |
| if (shiftRank_ > 0) { |
| int k{0}; |
| for (int j{0}; j < rank; ++j) { |
| if (j + 1 != dim_) { |
| const Dimension &shiftDim{shift_.GetDimension(k)}; |
| lb_[k++] = shiftDim.LowerBound(); |
| RUNTIME_CHECK(terminator_, |
| shiftDim.Extent() == source.GetDimension(j).Extent()); |
| } |
| } |
| } else { |
| shiftCount_ = |
| GetInt64(shift_.OffsetElement<char>(), shiftElemLen_, terminator_); |
| } |
| } |
| SubscriptValue GetShift(const SubscriptValue resultAt[]) const { |
| if (shiftRank_ > 0) { |
| SubscriptValue shiftAt[maxRank]; |
| int k{0}; |
| for (int j{0}; j < shiftRank_ + 1; ++j) { |
| if (j + 1 != dim_) { |
| shiftAt[k] = lb_[k] + resultAt[j] - 1; |
| ++k; |
| } |
| } |
| return GetInt64( |
| shift_.Element<char>(shiftAt), shiftElemLen_, terminator_); |
| } else { |
| return shiftCount_; // invariant count extracted in Init() |
| } |
| } |
| |
| private: |
| const Descriptor &shift_; |
| Terminator &terminator_; |
| int shiftRank_; |
| int dim_; |
| SubscriptValue lb_[maxRank]; |
| std::size_t shiftElemLen_; |
| SubscriptValue shiftCount_{}; |
| }; |
| |
| // Fill an EOSHIFT result with default boundary values |
| static void DefaultInitialize( |
| const Descriptor &result, Terminator &terminator) { |
| auto catAndKind{result.type().GetCategoryAndKind()}; |
| RUNTIME_CHECK( |
| terminator, catAndKind && catAndKind->first != TypeCategory::Derived); |
| std::size_t elementLen{result.ElementBytes()}; |
| std::size_t bytes{result.Elements() * elementLen}; |
| if (catAndKind->first == TypeCategory::Character) { |
| switch (int kind{catAndKind->second}) { |
| case 1: |
| std::fill_n(result.OffsetElement<char>(), bytes, ' '); |
| break; |
| case 2: |
| std::fill_n(result.OffsetElement<char16_t>(), bytes / 2, |
| static_cast<char16_t>(' ')); |
| break; |
| case 4: |
| std::fill_n(result.OffsetElement<char32_t>(), bytes / 4, |
| static_cast<char32_t>(' ')); |
| break; |
| default: |
| terminator.Crash("EOSHIFT: bad CHARACTER kind %d", kind); |
| } |
| } else { |
| std::memset(result.raw().base_addr, 0, bytes); |
| } |
| } |
| |
| static inline std::size_t AllocateResult(Descriptor &result, |
| const Descriptor &source, int rank, const SubscriptValue extent[], |
| Terminator &terminator, const char *function) { |
| std::size_t elementLen{source.ElementBytes()}; |
| const DescriptorAddendum *sourceAddendum{source.Addendum()}; |
| result.Establish(source.type(), elementLen, nullptr, rank, extent, |
| CFI_attribute_allocatable, sourceAddendum != nullptr); |
| if (sourceAddendum) { |
| *result.Addendum() = *sourceAddendum; |
| } |
| for (int j{0}; j < rank; ++j) { |
| result.GetDimension(j).SetBounds(1, extent[j]); |
| } |
| if (int stat{result.Allocate()}) { |
| terminator.Crash( |
| "%s: Could not allocate memory for result (stat=%d)", function, stat); |
| } |
| return elementLen; |
| } |
| |
| extern "C" { |
| |
| // CSHIFT where rank of ARRAY argument > 1 |
| void RTNAME(Cshift)(Descriptor &result, const Descriptor &source, |
| const Descriptor &shift, int dim, const char *sourceFile, int line) { |
| Terminator terminator{sourceFile, line}; |
| int rank{source.rank()}; |
| RUNTIME_CHECK(terminator, rank > 1); |
| RUNTIME_CHECK(terminator, dim >= 1 && dim <= rank); |
| ShiftControl shiftControl{shift, terminator, dim}; |
| shiftControl.Init(source); |
| SubscriptValue extent[maxRank]; |
| source.GetShape(extent); |
| AllocateResult(result, source, rank, extent, terminator, "CSHIFT"); |
| SubscriptValue resultAt[maxRank]; |
| for (int j{0}; j < rank; ++j) { |
| resultAt[j] = 1; |
| } |
| SubscriptValue sourceLB[maxRank]; |
| source.GetLowerBounds(sourceLB); |
| SubscriptValue dimExtent{extent[dim - 1]}; |
| SubscriptValue dimLB{sourceLB[dim - 1]}; |
| SubscriptValue &resDim{resultAt[dim - 1]}; |
| for (std::size_t n{result.Elements()}; n > 0; n -= dimExtent) { |
| SubscriptValue shiftCount{shiftControl.GetShift(resultAt)}; |
| SubscriptValue sourceAt[maxRank]; |
| for (int j{0}; j < rank; ++j) { |
| sourceAt[j] = sourceLB[j] + resultAt[j] - 1; |
| } |
| SubscriptValue &sourceDim{sourceAt[dim - 1]}; |
| sourceDim = dimLB + shiftCount % dimExtent; |
| if (shiftCount < 0) { |
| sourceDim += dimExtent; |
| } |
| for (resDim = 1; resDim <= dimExtent; ++resDim) { |
| CopyElement(result, resultAt, source, sourceAt, terminator); |
| if (++sourceDim == dimLB + dimExtent) { |
| sourceDim = dimLB; |
| } |
| } |
| result.IncrementSubscripts(resultAt); |
| } |
| } |
| |
| // CSHIFT where rank of ARRAY argument == 1 |
| void RTNAME(CshiftVector)(Descriptor &result, const Descriptor &source, |
| std::int64_t shift, const char *sourceFile, int line) { |
| Terminator terminator{sourceFile, line}; |
| RUNTIME_CHECK(terminator, source.rank() == 1); |
| const Dimension &sourceDim{source.GetDimension(0)}; |
| SubscriptValue extent{sourceDim.Extent()}; |
| AllocateResult(result, source, 1, &extent, terminator, "CSHIFT"); |
| SubscriptValue lb{sourceDim.LowerBound()}; |
| for (SubscriptValue j{0}; j < extent; ++j) { |
| SubscriptValue resultAt{1 + j}; |
| SubscriptValue sourceAt{lb + (j + shift) % extent}; |
| if (sourceAt < lb) { |
| sourceAt += extent; |
| } |
| CopyElement(result, &resultAt, source, &sourceAt, terminator); |
| } |
| } |
| |
| // EOSHIFT of rank > 1 |
| void RTNAME(Eoshift)(Descriptor &result, const Descriptor &source, |
| const Descriptor &shift, const Descriptor *boundary, int dim, |
| const char *sourceFile, int line) { |
| Terminator terminator{sourceFile, line}; |
| SubscriptValue extent[maxRank]; |
| int rank{source.GetShape(extent)}; |
| RUNTIME_CHECK(terminator, rank > 1); |
| RUNTIME_CHECK(terminator, dim >= 1 && dim <= rank); |
| std::size_t elementLen{ |
| AllocateResult(result, source, rank, extent, terminator, "EOSHIFT")}; |
| int boundaryRank{-1}; |
| if (boundary) { |
| boundaryRank = boundary->rank(); |
| RUNTIME_CHECK(terminator, boundaryRank == 0 || boundaryRank == rank - 1); |
| RUNTIME_CHECK(terminator, |
| boundary->type() == source.type() && |
| boundary->ElementBytes() == elementLen); |
| if (boundaryRank > 0) { |
| int k{0}; |
| for (int j{0}; j < rank; ++j) { |
| if (j != dim - 1) { |
| RUNTIME_CHECK( |
| terminator, boundary->GetDimension(k).Extent() == extent[j]); |
| ++k; |
| } |
| } |
| } |
| } |
| ShiftControl shiftControl{shift, terminator, dim}; |
| shiftControl.Init(source); |
| SubscriptValue resultAt[maxRank]; |
| for (int j{0}; j < rank; ++j) { |
| resultAt[j] = 1; |
| } |
| if (!boundary) { |
| DefaultInitialize(result, terminator); |
| } |
| SubscriptValue sourceLB[maxRank]; |
| source.GetLowerBounds(sourceLB); |
| SubscriptValue boundaryAt[maxRank]; |
| if (boundaryRank > 0) { |
| boundary->GetLowerBounds(boundaryAt); |
| } |
| SubscriptValue dimExtent{extent[dim - 1]}; |
| SubscriptValue dimLB{sourceLB[dim - 1]}; |
| SubscriptValue &resDim{resultAt[dim - 1]}; |
| for (std::size_t n{result.Elements()}; n > 0; n -= dimExtent) { |
| SubscriptValue shiftCount{shiftControl.GetShift(resultAt)}; |
| SubscriptValue sourceAt[maxRank]; |
| for (int j{0}; j < rank; ++j) { |
| sourceAt[j] = sourceLB[j] + resultAt[j] - 1; |
| } |
| SubscriptValue &sourceDim{sourceAt[dim - 1]}; |
| sourceDim = dimLB + shiftCount; |
| for (resDim = 1; resDim <= dimExtent; ++resDim) { |
| if (sourceDim >= dimLB && sourceDim < dimLB + dimExtent) { |
| CopyElement(result, resultAt, source, sourceAt, terminator); |
| } else if (boundary) { |
| CopyElement(result, resultAt, *boundary, boundaryAt, terminator); |
| } |
| ++sourceDim; |
| } |
| result.IncrementSubscripts(resultAt); |
| if (boundaryRank > 0) { |
| boundary->IncrementSubscripts(boundaryAt); |
| } |
| } |
| } |
| |
| // EOSHIFT of vector |
| void RTNAME(EoshiftVector)(Descriptor &result, const Descriptor &source, |
| std::int64_t shift, const Descriptor *boundary, const char *sourceFile, |
| int line) { |
| Terminator terminator{sourceFile, line}; |
| RUNTIME_CHECK(terminator, source.rank() == 1); |
| SubscriptValue extent{source.GetDimension(0).Extent()}; |
| std::size_t elementLen{ |
| AllocateResult(result, source, 1, &extent, terminator, "EOSHIFT")}; |
| if (boundary) { |
| RUNTIME_CHECK(terminator, boundary->rank() == 0); |
| RUNTIME_CHECK(terminator, |
| boundary->type() == source.type() && |
| boundary->ElementBytes() == elementLen); |
| } |
| if (!boundary) { |
| DefaultInitialize(result, terminator); |
| } |
| SubscriptValue lb{source.GetDimension(0).LowerBound()}; |
| for (SubscriptValue j{1}; j <= extent; ++j) { |
| SubscriptValue sourceAt{lb + j - 1 + shift}; |
| if (sourceAt >= lb && sourceAt < lb + extent) { |
| CopyElement(result, &j, source, &sourceAt, terminator); |
| } else if (boundary) { |
| CopyElement(result, &j, *boundary, 0, terminator); |
| } |
| } |
| } |
| |
| // PACK |
| void RTNAME(Pack)(Descriptor &result, const Descriptor &source, |
| const Descriptor &mask, const Descriptor *vector, const char *sourceFile, |
| int line) { |
| Terminator terminator{sourceFile, line}; |
| CheckConformability(source, mask, terminator, "PACK", "ARRAY=", "MASK="); |
| auto maskType{mask.type().GetCategoryAndKind()}; |
| RUNTIME_CHECK( |
| terminator, maskType && maskType->first == TypeCategory::Logical); |
| SubscriptValue trues{0}; |
| if (mask.rank() == 0) { |
| if (IsLogicalElementTrue(mask, nullptr)) { |
| trues = source.Elements(); |
| } |
| } else { |
| SubscriptValue maskAt[maxRank]; |
| mask.GetLowerBounds(maskAt); |
| for (std::size_t n{mask.Elements()}; n > 0; --n) { |
| if (IsLogicalElementTrue(mask, maskAt)) { |
| ++trues; |
| } |
| mask.IncrementSubscripts(maskAt); |
| } |
| } |
| SubscriptValue extent{trues}; |
| if (vector) { |
| RUNTIME_CHECK(terminator, vector->rank() == 1); |
| RUNTIME_CHECK(terminator, |
| source.type() == vector->type() && |
| source.ElementBytes() == vector->ElementBytes()); |
| extent = vector->GetDimension(0).Extent(); |
| RUNTIME_CHECK(terminator, extent >= trues); |
| } |
| AllocateResult(result, source, 1, &extent, terminator, "PACK"); |
| SubscriptValue sourceAt[maxRank], resultAt{1}; |
| source.GetLowerBounds(sourceAt); |
| if (mask.rank() == 0) { |
| if (IsLogicalElementTrue(mask, nullptr)) { |
| for (SubscriptValue n{trues}; n > 0; --n) { |
| CopyElement(result, &resultAt, source, sourceAt, terminator); |
| ++resultAt; |
| source.IncrementSubscripts(sourceAt); |
| } |
| } |
| } else { |
| SubscriptValue maskAt[maxRank]; |
| mask.GetLowerBounds(maskAt); |
| for (std::size_t n{source.Elements()}; n > 0; --n) { |
| if (IsLogicalElementTrue(mask, maskAt)) { |
| CopyElement(result, &resultAt, source, sourceAt, terminator); |
| ++resultAt; |
| } |
| source.IncrementSubscripts(sourceAt); |
| mask.IncrementSubscripts(maskAt); |
| } |
| } |
| if (vector) { |
| SubscriptValue vectorAt{ |
| vector->GetDimension(0).LowerBound() + resultAt - 1}; |
| for (; resultAt <= extent; ++resultAt, ++vectorAt) { |
| CopyElement(result, &resultAt, *vector, &vectorAt, terminator); |
| } |
| } |
| } |
| |
| // RESHAPE |
| // F2018 16.9.163 |
| void RTNAME(Reshape)(Descriptor &result, const Descriptor &source, |
| const Descriptor &shape, const Descriptor *pad, const Descriptor *order, |
| const char *sourceFile, int line) { |
| // Compute and check the rank of the result. |
| Terminator terminator{sourceFile, line}; |
| RUNTIME_CHECK(terminator, shape.rank() == 1); |
| RUNTIME_CHECK(terminator, shape.type().IsInteger()); |
| SubscriptValue resultRank{shape.GetDimension(0).Extent()}; |
| RUNTIME_CHECK(terminator, |
| resultRank >= 0 && resultRank <= static_cast<SubscriptValue>(maxRank)); |
| |
| // Extract and check the shape of the result; compute its element count. |
| SubscriptValue resultExtent[maxRank]; |
| std::size_t shapeElementBytes{shape.ElementBytes()}; |
| std::size_t resultElements{1}; |
| SubscriptValue shapeSubscript{shape.GetDimension(0).LowerBound()}; |
| for (SubscriptValue j{0}; j < resultRank; ++j, ++shapeSubscript) { |
| resultExtent[j] = GetInt64( |
| shape.Element<char>(&shapeSubscript), shapeElementBytes, terminator); |
| RUNTIME_CHECK(terminator, resultExtent[j] >= 0); |
| resultElements *= resultExtent[j]; |
| } |
| |
| // Check that there are sufficient elements in the SOURCE=, or that |
| // the optional PAD= argument is present and nonempty. |
| std::size_t elementBytes{source.ElementBytes()}; |
| std::size_t sourceElements{source.Elements()}; |
| std::size_t padElements{pad ? pad->Elements() : 0}; |
| if (resultElements > sourceElements) { |
| RUNTIME_CHECK(terminator, padElements > 0); |
| RUNTIME_CHECK(terminator, pad->ElementBytes() == elementBytes); |
| } |
| |
| // Extract and check the optional ORDER= argument, which must be a |
| // permutation of [1..resultRank]. |
| int dimOrder[maxRank]; |
| if (order) { |
| RUNTIME_CHECK(terminator, order->rank() == 1); |
| RUNTIME_CHECK(terminator, order->type().IsInteger()); |
| RUNTIME_CHECK(terminator, order->GetDimension(0).Extent() == resultRank); |
| std::uint64_t values{0}; |
| SubscriptValue orderSubscript{order->GetDimension(0).LowerBound()}; |
| std::size_t orderElementBytes{order->ElementBytes()}; |
| for (SubscriptValue j{0}; j < resultRank; ++j, ++orderSubscript) { |
| auto k{GetInt64(order->Element<char>(&orderSubscript), orderElementBytes, |
| terminator)}; |
| RUNTIME_CHECK( |
| terminator, k >= 1 && k <= resultRank && !((values >> k) & 1)); |
| values |= std::uint64_t{1} << k; |
| dimOrder[j] = k - 1; |
| } |
| } else { |
| for (int j{0}; j < resultRank; ++j) { |
| dimOrder[j] = j; |
| } |
| } |
| |
| // Allocate result descriptor |
| AllocateResult( |
| result, source, resultRank, resultExtent, terminator, "RESHAPE"); |
| |
| // Populate the result's elements. |
| SubscriptValue resultSubscript[maxRank]; |
| result.GetLowerBounds(resultSubscript); |
| SubscriptValue sourceSubscript[maxRank]; |
| source.GetLowerBounds(sourceSubscript); |
| std::size_t resultElement{0}; |
| std::size_t elementsFromSource{std::min(resultElements, sourceElements)}; |
| for (; resultElement < elementsFromSource; ++resultElement) { |
| CopyElement(result, resultSubscript, source, sourceSubscript, terminator); |
| source.IncrementSubscripts(sourceSubscript); |
| result.IncrementSubscripts(resultSubscript, dimOrder); |
| } |
| if (resultElement < resultElements) { |
| // Remaining elements come from the optional PAD= argument. |
| SubscriptValue padSubscript[maxRank]; |
| pad->GetLowerBounds(padSubscript); |
| for (; resultElement < resultElements; ++resultElement) { |
| CopyElement(result, resultSubscript, *pad, padSubscript, terminator); |
| pad->IncrementSubscripts(padSubscript); |
| result.IncrementSubscripts(resultSubscript, dimOrder); |
| } |
| } |
| } |
| |
| // SPREAD |
| void RTNAME(Spread)(Descriptor &result, const Descriptor &source, int dim, |
| std::int64_t ncopies, const char *sourceFile, int line) { |
| Terminator terminator{sourceFile, line}; |
| int rank{source.rank() + 1}; |
| RUNTIME_CHECK(terminator, rank <= maxRank); |
| ncopies = std::max<std::int64_t>(ncopies, 0); |
| SubscriptValue extent[maxRank]; |
| int k{0}; |
| for (int j{0}; j < rank; ++j) { |
| extent[j] = j == dim - 1 ? ncopies : source.GetDimension(k++).Extent(); |
| } |
| AllocateResult(result, source, rank, extent, terminator, "SPREAD"); |
| SubscriptValue resultAt[maxRank]; |
| for (int j{0}; j < rank; ++j) { |
| resultAt[j] = 1; |
| } |
| SubscriptValue &resultDim{resultAt[dim - 1]}; |
| SubscriptValue sourceAt[maxRank]; |
| source.GetLowerBounds(sourceAt); |
| for (std::size_t n{result.Elements()}; n > 0; n -= ncopies) { |
| for (resultDim = 1; resultDim <= ncopies; ++resultDim) { |
| CopyElement(result, resultAt, source, sourceAt, terminator); |
| } |
| result.IncrementSubscripts(resultAt); |
| source.IncrementSubscripts(sourceAt); |
| } |
| } |
| |
| // TRANSPOSE |
| void RTNAME(Transpose)(Descriptor &result, const Descriptor &matrix, |
| const char *sourceFile, int line) { |
| Terminator terminator{sourceFile, line}; |
| RUNTIME_CHECK(terminator, matrix.rank() == 2); |
| SubscriptValue extent[2]{ |
| matrix.GetDimension(1).Extent(), matrix.GetDimension(0).Extent()}; |
| AllocateResult(result, matrix, 2, extent, terminator, "TRANSPOSE"); |
| SubscriptValue resultAt[2]{1, 1}; |
| SubscriptValue matrixLB[2]; |
| matrix.GetLowerBounds(matrixLB); |
| for (std::size_t n{result.Elements()}; n-- > 0; |
| result.IncrementSubscripts(resultAt)) { |
| SubscriptValue matrixAt[2]{ |
| matrixLB[0] + resultAt[1] - 1, matrixLB[1] + resultAt[0] - 1}; |
| CopyElement(result, resultAt, matrix, matrixAt, terminator); |
| } |
| } |
| |
| // UNPACK |
| void RTNAME(Unpack)(Descriptor &result, const Descriptor &vector, |
| const Descriptor &mask, const Descriptor &field, const char *sourceFile, |
| int line) { |
| Terminator terminator{sourceFile, line}; |
| RUNTIME_CHECK(terminator, vector.rank() == 1); |
| int rank{mask.rank()}; |
| RUNTIME_CHECK(terminator, rank > 0); |
| SubscriptValue extent[maxRank]; |
| mask.GetShape(extent); |
| CheckConformability(mask, field, terminator, "UNPACK", "MASK=", "FIELD="); |
| std::size_t elementLen{ |
| AllocateResult(result, field, rank, extent, terminator, "UNPACK")}; |
| RUNTIME_CHECK(terminator, |
| vector.type() == field.type() && vector.ElementBytes() == elementLen); |
| SubscriptValue resultAt[maxRank], maskAt[maxRank], fieldAt[maxRank], |
| vectorAt{vector.GetDimension(0).LowerBound()}; |
| for (int j{0}; j < rank; ++j) { |
| resultAt[j] = 1; |
| } |
| mask.GetLowerBounds(maskAt); |
| field.GetLowerBounds(fieldAt); |
| SubscriptValue vectorLeft{vector.GetDimension(0).Extent()}; |
| for (std::size_t n{result.Elements()}; n-- > 0;) { |
| if (IsLogicalElementTrue(mask, maskAt)) { |
| if (vectorLeft-- == 0) { |
| terminator.Crash("UNPACK: VECTOR= argument has fewer elements than " |
| "MASK= has .TRUE. entries"); |
| } |
| CopyElement(result, resultAt, vector, &vectorAt, terminator); |
| ++vectorAt; |
| } else { |
| CopyElement(result, resultAt, field, fieldAt, terminator); |
| } |
| result.IncrementSubscripts(resultAt); |
| mask.IncrementSubscripts(maskAt); |
| field.IncrementSubscripts(fieldAt); |
| } |
| } |
| |
| } // extern "C" |
| } // namespace Fortran::runtime |