| //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/GlobalDecl.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/VTableBuilder.h" |
| #include "clang/Basic/ABI.h" |
| #include "clang/Basic/DiagnosticOptions.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/CRC.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/StringSaver.h" |
| #include "llvm/Support/xxhash.h" |
| |
| using namespace clang; |
| |
| namespace { |
| |
| // Get GlobalDecl of DeclContext of local entities. |
| static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) { |
| GlobalDecl GD; |
| if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) |
| GD = GlobalDecl(CD, Ctor_Complete); |
| else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) |
| GD = GlobalDecl(DD, Dtor_Complete); |
| else |
| GD = GlobalDecl(cast<FunctionDecl>(DC)); |
| return GD; |
| } |
| |
| struct msvc_hashing_ostream : public llvm::raw_svector_ostream { |
| raw_ostream &OS; |
| llvm::SmallString<64> Buffer; |
| |
| msvc_hashing_ostream(raw_ostream &OS) |
| : llvm::raw_svector_ostream(Buffer), OS(OS) {} |
| ~msvc_hashing_ostream() override { |
| StringRef MangledName = str(); |
| bool StartsWithEscape = MangledName.startswith("\01"); |
| if (StartsWithEscape) |
| MangledName = MangledName.drop_front(1); |
| if (MangledName.size() < 4096) { |
| OS << str(); |
| return; |
| } |
| |
| llvm::MD5 Hasher; |
| llvm::MD5::MD5Result Hash; |
| Hasher.update(MangledName); |
| Hasher.final(Hash); |
| |
| SmallString<32> HexString; |
| llvm::MD5::stringifyResult(Hash, HexString); |
| |
| if (StartsWithEscape) |
| OS << '\01'; |
| OS << "??@" << HexString << '@'; |
| } |
| }; |
| |
| static const DeclContext * |
| getLambdaDefaultArgumentDeclContext(const Decl *D) { |
| if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) |
| if (RD->isLambda()) |
| if (const auto *Parm = |
| dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) |
| return Parm->getDeclContext(); |
| return nullptr; |
| } |
| |
| /// Retrieve the declaration context that should be used when mangling |
| /// the given declaration. |
| static const DeclContext *getEffectiveDeclContext(const Decl *D) { |
| // The ABI assumes that lambda closure types that occur within |
| // default arguments live in the context of the function. However, due to |
| // the way in which Clang parses and creates function declarations, this is |
| // not the case: the lambda closure type ends up living in the context |
| // where the function itself resides, because the function declaration itself |
| // had not yet been created. Fix the context here. |
| if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) |
| return LDADC; |
| |
| // Perform the same check for block literals. |
| if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { |
| if (ParmVarDecl *ContextParam = |
| dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) |
| return ContextParam->getDeclContext(); |
| } |
| |
| const DeclContext *DC = D->getDeclContext(); |
| if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || |
| isa<OMPDeclareMapperDecl>(DC)) { |
| return getEffectiveDeclContext(cast<Decl>(DC)); |
| } |
| |
| return DC->getRedeclContext(); |
| } |
| |
| static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
| return getEffectiveDeclContext(cast<Decl>(DC)); |
| } |
| |
| static const FunctionDecl *getStructor(const NamedDecl *ND) { |
| if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) |
| return FTD->getTemplatedDecl()->getCanonicalDecl(); |
| |
| const auto *FD = cast<FunctionDecl>(ND); |
| if (const auto *FTD = FD->getPrimaryTemplate()) |
| return FTD->getTemplatedDecl()->getCanonicalDecl(); |
| |
| return FD->getCanonicalDecl(); |
| } |
| |
| /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the |
| /// Microsoft Visual C++ ABI. |
| class MicrosoftMangleContextImpl : public MicrosoftMangleContext { |
| typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; |
| llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
| llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; |
| llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; |
| llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds; |
| llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds; |
| SmallString<16> AnonymousNamespaceHash; |
| |
| public: |
| MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags); |
| bool shouldMangleCXXName(const NamedDecl *D) override; |
| bool shouldMangleStringLiteral(const StringLiteral *SL) override; |
| void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override; |
| void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, |
| const MethodVFTableLocation &ML, |
| raw_ostream &Out) override; |
| void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, |
| raw_ostream &) override; |
| void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
| const ThisAdjustment &ThisAdjustment, |
| raw_ostream &) override; |
| void mangleCXXVFTable(const CXXRecordDecl *Derived, |
| ArrayRef<const CXXRecordDecl *> BasePath, |
| raw_ostream &Out) override; |
| void mangleCXXVBTable(const CXXRecordDecl *Derived, |
| ArrayRef<const CXXRecordDecl *> BasePath, |
| raw_ostream &Out) override; |
| void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, |
| const CXXRecordDecl *DstRD, |
| raw_ostream &Out) override; |
| void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, |
| bool IsUnaligned, uint32_t NumEntries, |
| raw_ostream &Out) override; |
| void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, |
| raw_ostream &Out) override; |
| void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, |
| CXXCtorType CT, uint32_t Size, uint32_t NVOffset, |
| int32_t VBPtrOffset, uint32_t VBIndex, |
| raw_ostream &Out) override; |
| void mangleCXXRTTI(QualType T, raw_ostream &Out) override; |
| void mangleCXXRTTIName(QualType T, raw_ostream &Out) override; |
| void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, |
| uint32_t NVOffset, int32_t VBPtrOffset, |
| uint32_t VBTableOffset, uint32_t Flags, |
| raw_ostream &Out) override; |
| void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, |
| raw_ostream &Out) override; |
| void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, |
| raw_ostream &Out) override; |
| void |
| mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, |
| ArrayRef<const CXXRecordDecl *> BasePath, |
| raw_ostream &Out) override; |
| void mangleTypeName(QualType T, raw_ostream &) override; |
| void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, |
| raw_ostream &) override; |
| void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; |
| void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, |
| raw_ostream &Out) override; |
| void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
| void mangleDynamicAtExitDestructor(const VarDecl *D, |
| raw_ostream &Out) override; |
| void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, |
| raw_ostream &Out) override; |
| void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, |
| raw_ostream &Out) override; |
| void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; |
| bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
| const DeclContext *DC = getEffectiveDeclContext(ND); |
| if (!DC->isFunctionOrMethod()) |
| return false; |
| |
| // Lambda closure types are already numbered, give out a phony number so |
| // that they demangle nicely. |
| if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { |
| if (RD->isLambda()) { |
| disc = 1; |
| return true; |
| } |
| } |
| |
| // Use the canonical number for externally visible decls. |
| if (ND->isExternallyVisible()) { |
| disc = getASTContext().getManglingNumber(ND); |
| return true; |
| } |
| |
| // Anonymous tags are already numbered. |
| if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { |
| if (!Tag->hasNameForLinkage() && |
| !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && |
| !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) |
| return false; |
| } |
| |
| // Make up a reasonable number for internal decls. |
| unsigned &discriminator = Uniquifier[ND]; |
| if (!discriminator) |
| discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; |
| disc = discriminator + 1; |
| return true; |
| } |
| |
| std::string getLambdaString(const CXXRecordDecl *Lambda) override { |
| assert(Lambda->isLambda() && "RD must be a lambda!"); |
| std::string Name("<lambda_"); |
| |
| Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); |
| unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); |
| unsigned LambdaId; |
| const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); |
| const FunctionDecl *Func = |
| Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; |
| |
| if (Func) { |
| unsigned DefaultArgNo = |
| Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| Name += llvm::utostr(DefaultArgNo); |
| Name += "_"; |
| } |
| |
| if (LambdaManglingNumber) |
| LambdaId = LambdaManglingNumber; |
| else |
| LambdaId = getLambdaIdForDebugInfo(Lambda); |
| |
| Name += llvm::utostr(LambdaId); |
| Name += ">"; |
| return Name; |
| } |
| |
| unsigned getLambdaId(const CXXRecordDecl *RD) { |
| assert(RD->isLambda() && "RD must be a lambda!"); |
| assert(!RD->isExternallyVisible() && "RD must not be visible!"); |
| assert(RD->getLambdaManglingNumber() == 0 && |
| "RD must not have a mangling number!"); |
| std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> |
| Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); |
| return Result.first->second; |
| } |
| |
| unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) { |
| assert(RD->isLambda() && "RD must be a lambda!"); |
| assert(!RD->isExternallyVisible() && "RD must not be visible!"); |
| assert(RD->getLambdaManglingNumber() == 0 && |
| "RD must not have a mangling number!"); |
| llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator Result = |
| LambdaIds.find(RD); |
| // The lambda should exist, but return 0 in case it doesn't. |
| if (Result == LambdaIds.end()) |
| return 0; |
| return Result->second; |
| } |
| |
| /// Return a character sequence that is (somewhat) unique to the TU suitable |
| /// for mangling anonymous namespaces. |
| StringRef getAnonymousNamespaceHash() const { |
| return AnonymousNamespaceHash; |
| } |
| |
| private: |
| void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); |
| }; |
| |
| /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the |
| /// Microsoft Visual C++ ABI. |
| class MicrosoftCXXNameMangler { |
| MicrosoftMangleContextImpl &Context; |
| raw_ostream &Out; |
| |
| /// The "structor" is the top-level declaration being mangled, if |
| /// that's not a template specialization; otherwise it's the pattern |
| /// for that specialization. |
| const NamedDecl *Structor; |
| unsigned StructorType; |
| |
| typedef llvm::SmallVector<std::string, 10> BackRefVec; |
| BackRefVec NameBackReferences; |
| |
| typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; |
| ArgBackRefMap FunArgBackReferences; |
| ArgBackRefMap TemplateArgBackReferences; |
| |
| typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; |
| TemplateArgStringMap TemplateArgStrings; |
| llvm::StringSaver TemplateArgStringStorage; |
| llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; |
| |
| typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; |
| PassObjectSizeArgsSet PassObjectSizeArgs; |
| |
| ASTContext &getASTContext() const { return Context.getASTContext(); } |
| |
| const bool PointersAre64Bit; |
| |
| public: |
| enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; |
| |
| MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) |
| : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), |
| TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
| PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == |
| 64) {} |
| |
| MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, |
| const CXXConstructorDecl *D, CXXCtorType Type) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
| TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
| PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == |
| 64) {} |
| |
| MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, |
| const CXXDestructorDecl *D, CXXDtorType Type) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
| TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
| PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == |
| 64) {} |
| |
| raw_ostream &getStream() const { return Out; } |
| |
| void mangle(GlobalDecl GD, StringRef Prefix = "?"); |
| void mangleName(GlobalDecl GD); |
| void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle); |
| void mangleVariableEncoding(const VarDecl *VD); |
| void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD, |
| StringRef Prefix = "$"); |
| void mangleMemberFunctionPointer(const CXXRecordDecl *RD, |
| const CXXMethodDecl *MD, |
| StringRef Prefix = "$"); |
| void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, |
| const MethodVFTableLocation &ML); |
| void mangleNumber(int64_t Number); |
| void mangleNumber(llvm::APSInt Number); |
| void mangleFloat(llvm::APFloat Number); |
| void mangleBits(llvm::APInt Number); |
| void mangleTagTypeKind(TagTypeKind TK); |
| void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, |
| ArrayRef<StringRef> NestedNames = None); |
| void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); |
| void mangleType(QualType T, SourceRange Range, |
| QualifierMangleMode QMM = QMM_Mangle); |
| void mangleFunctionType(const FunctionType *T, |
| const FunctionDecl *D = nullptr, |
| bool ForceThisQuals = false, |
| bool MangleExceptionSpec = true); |
| void mangleNestedName(GlobalDecl GD); |
| |
| private: |
| bool isStructorDecl(const NamedDecl *ND) const { |
| return ND == Structor || getStructor(ND) == Structor; |
| } |
| |
| bool is64BitPointer(Qualifiers Quals) const { |
| LangAS AddrSpace = Quals.getAddressSpace(); |
| return AddrSpace == LangAS::ptr64 || |
| (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr || |
| AddrSpace == LangAS::ptr32_uptr)); |
| } |
| |
| void mangleUnqualifiedName(GlobalDecl GD) { |
| mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName()); |
| } |
| void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name); |
| void mangleSourceName(StringRef Name); |
| void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); |
| void mangleCXXDtorType(CXXDtorType T); |
| void mangleQualifiers(Qualifiers Quals, bool IsMember); |
| void mangleRefQualifier(RefQualifierKind RefQualifier); |
| void manglePointerCVQualifiers(Qualifiers Quals); |
| void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); |
| |
| void mangleUnscopedTemplateName(GlobalDecl GD); |
| void |
| mangleTemplateInstantiationName(GlobalDecl GD, |
| const TemplateArgumentList &TemplateArgs); |
| void mangleObjCMethodName(const ObjCMethodDecl *MD); |
| |
| void mangleFunctionArgumentType(QualType T, SourceRange Range); |
| void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); |
| |
| bool isArtificialTagType(QualType T) const; |
| |
| // Declare manglers for every type class. |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) |
| #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ |
| Qualifiers Quals, \ |
| SourceRange Range); |
| #include "clang/AST/TypeNodes.inc" |
| #undef ABSTRACT_TYPE |
| #undef NON_CANONICAL_TYPE |
| #undef TYPE |
| |
| void mangleType(const TagDecl *TD); |
| void mangleDecayedArrayType(const ArrayType *T); |
| void mangleArrayType(const ArrayType *T); |
| void mangleFunctionClass(const FunctionDecl *FD); |
| void mangleCallingConvention(CallingConv CC); |
| void mangleCallingConvention(const FunctionType *T); |
| void mangleIntegerLiteral(const llvm::APSInt &Number, |
| const NonTypeTemplateParmDecl *PD = nullptr, |
| QualType TemplateArgType = QualType()); |
| void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD); |
| void mangleThrowSpecification(const FunctionProtoType *T); |
| |
| void mangleTemplateArgs(const TemplateDecl *TD, |
| const TemplateArgumentList &TemplateArgs); |
| void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, |
| const NamedDecl *Parm); |
| void mangleTemplateArgValue(QualType T, const APValue &V, |
| bool WithScalarType = false); |
| |
| void mangleObjCProtocol(const ObjCProtocolDecl *PD); |
| void mangleObjCLifetime(const QualType T, Qualifiers Quals, |
| SourceRange Range); |
| void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, |
| SourceRange Range); |
| }; |
| } |
| |
| MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, |
| DiagnosticsEngine &Diags) |
| : MicrosoftMangleContext(Context, Diags) { |
| // To mangle anonymous namespaces, hash the path to the main source file. The |
| // path should be whatever (probably relative) path was passed on the command |
| // line. The goal is for the compiler to produce the same output regardless of |
| // working directory, so use the uncanonicalized relative path. |
| // |
| // It's important to make the mangled names unique because, when CodeView |
| // debug info is in use, the debugger uses mangled type names to distinguish |
| // between otherwise identically named types in anonymous namespaces. |
| // |
| // These symbols are always internal, so there is no need for the hash to |
| // match what MSVC produces. For the same reason, clang is free to change the |
| // hash at any time without breaking compatibility with old versions of clang. |
| // The generated names are intended to look similar to what MSVC generates, |
| // which are something like "?A0x01234567@". |
| SourceManager &SM = Context.getSourceManager(); |
| if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) { |
| // Truncate the hash so we get 8 characters of hexadecimal. |
| uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName())); |
| AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); |
| } else { |
| // If we don't have a path to the main file, we'll just use 0. |
| AnonymousNamespaceHash = "0"; |
| } |
| } |
| |
| bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| LanguageLinkage L = FD->getLanguageLinkage(); |
| // Overloadable functions need mangling. |
| if (FD->hasAttr<OverloadableAttr>()) |
| return true; |
| |
| // The ABI expects that we would never mangle "typical" user-defined entry |
| // points regardless of visibility or freestanding-ness. |
| // |
| // N.B. This is distinct from asking about "main". "main" has a lot of |
| // special rules associated with it in the standard while these |
| // user-defined entry points are outside of the purview of the standard. |
| // For example, there can be only one definition for "main" in a standards |
| // compliant program; however nothing forbids the existence of wmain and |
| // WinMain in the same translation unit. |
| if (FD->isMSVCRTEntryPoint()) |
| return false; |
| |
| // C++ functions and those whose names are not a simple identifier need |
| // mangling. |
| if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
| return true; |
| |
| // C functions are not mangled. |
| if (L == CLanguageLinkage) |
| return false; |
| } |
| |
| // Otherwise, no mangling is done outside C++ mode. |
| if (!getASTContext().getLangOpts().CPlusPlus) |
| return false; |
| |
| const VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (VD && !isa<DecompositionDecl>(D)) { |
| // C variables are not mangled. |
| if (VD->isExternC()) |
| return false; |
| |
| // Variables at global scope with internal linkage are not mangled. |
| const DeclContext *DC = getEffectiveDeclContext(D); |
| // Check for extern variable declared locally. |
| if (DC->isFunctionOrMethod() && D->hasLinkage()) |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| DC = getEffectiveParentContext(DC); |
| |
| if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && |
| !isa<VarTemplateSpecializationDecl>(D) && |
| D->getIdentifier() != nullptr) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { |
| return true; |
| } |
| |
| void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) { |
| const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); |
| // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. |
| // Therefore it's really important that we don't decorate the |
| // name with leading underscores or leading/trailing at signs. So, by |
| // default, we emit an asm marker at the start so we get the name right. |
| // Callers can override this with a custom prefix. |
| |
| // <mangled-name> ::= ? <name> <type-encoding> |
| Out << Prefix; |
| mangleName(GD); |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| mangleFunctionEncoding(GD, Context.shouldMangleDeclName(FD)); |
| else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| mangleVariableEncoding(VD); |
| else if (isa<MSGuidDecl>(D)) |
| // MSVC appears to mangle GUIDs as if they were variables of type |
| // 'const struct __s_GUID'. |
| Out << "3U__s_GUID@@B"; |
| else if (isa<TemplateParamObjectDecl>(D)) { |
| // Template parameter objects don't get a <type-encoding>; their type is |
| // specified as part of their value. |
| } else |
| llvm_unreachable("Tried to mangle unexpected NamedDecl!"); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD, |
| bool ShouldMangle) { |
| const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
| // <type-encoding> ::= <function-class> <function-type> |
| |
| // Since MSVC operates on the type as written and not the canonical type, it |
| // actually matters which decl we have here. MSVC appears to choose the |
| // first, since it is most likely to be the declaration in a header file. |
| FD = FD->getFirstDecl(); |
| |
| // We should never ever see a FunctionNoProtoType at this point. |
| // We don't even know how to mangle their types anyway :). |
| const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); |
| |
| // extern "C" functions can hold entities that must be mangled. |
| // As it stands, these functions still need to get expressed in the full |
| // external name. They have their class and type omitted, replaced with '9'. |
| if (ShouldMangle) { |
| // We would like to mangle all extern "C" functions using this additional |
| // component but this would break compatibility with MSVC's behavior. |
| // Instead, do this when we know that compatibility isn't important (in |
| // other words, when it is an overloaded extern "C" function). |
| if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) |
| Out << "$$J0"; |
| |
| mangleFunctionClass(FD); |
| |
| mangleFunctionType(FT, FD, false, false); |
| } else { |
| Out << '9'; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { |
| // <type-encoding> ::= <storage-class> <variable-type> |
| // <storage-class> ::= 0 # private static member |
| // ::= 1 # protected static member |
| // ::= 2 # public static member |
| // ::= 3 # global |
| // ::= 4 # static local |
| |
| // The first character in the encoding (after the name) is the storage class. |
| if (VD->isStaticDataMember()) { |
| // If it's a static member, it also encodes the access level. |
| switch (VD->getAccess()) { |
| default: |
| case AS_private: Out << '0'; break; |
| case AS_protected: Out << '1'; break; |
| case AS_public: Out << '2'; break; |
| } |
| } |
| else if (!VD->isStaticLocal()) |
| Out << '3'; |
| else |
| Out << '4'; |
| // Now mangle the type. |
| // <variable-type> ::= <type> <cvr-qualifiers> |
| // ::= <type> <pointee-cvr-qualifiers> # pointers, references |
| // Pointers and references are odd. The type of 'int * const foo;' gets |
| // mangled as 'QAHA' instead of 'PAHB', for example. |
| SourceRange SR = VD->getSourceRange(); |
| QualType Ty = VD->getType(); |
| if (Ty->isPointerType() || Ty->isReferenceType() || |
| Ty->isMemberPointerType()) { |
| mangleType(Ty, SR, QMM_Drop); |
| manglePointerExtQualifiers( |
| Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); |
| if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { |
| mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); |
| // Member pointers are suffixed with a back reference to the member |
| // pointer's class name. |
| mangleName(MPT->getClass()->getAsCXXRecordDecl()); |
| } else |
| mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); |
| } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { |
| // Global arrays are funny, too. |
| mangleDecayedArrayType(AT); |
| if (AT->getElementType()->isArrayType()) |
| Out << 'A'; |
| else |
| mangleQualifiers(Ty.getQualifiers(), false); |
| } else { |
| mangleType(Ty, SR, QMM_Drop); |
| mangleQualifiers(Ty.getQualifiers(), false); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, |
| const ValueDecl *VD, |
| StringRef Prefix) { |
| // <member-data-pointer> ::= <integer-literal> |
| // ::= $F <number> <number> |
| // ::= $G <number> <number> <number> |
| |
| int64_t FieldOffset; |
| int64_t VBTableOffset; |
| MSInheritanceModel IM = RD->getMSInheritanceModel(); |
| if (VD) { |
| FieldOffset = getASTContext().getFieldOffset(VD); |
| assert(FieldOffset % getASTContext().getCharWidth() == 0 && |
| "cannot take address of bitfield"); |
| FieldOffset /= getASTContext().getCharWidth(); |
| |
| VBTableOffset = 0; |
| |
| if (IM == MSInheritanceModel::Virtual) |
| FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); |
| } else { |
| FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; |
| |
| VBTableOffset = -1; |
| } |
| |
| char Code = '\0'; |
| switch (IM) { |
| case MSInheritanceModel::Single: Code = '0'; break; |
| case MSInheritanceModel::Multiple: Code = '0'; break; |
| case MSInheritanceModel::Virtual: Code = 'F'; break; |
| case MSInheritanceModel::Unspecified: Code = 'G'; break; |
| } |
| |
| Out << Prefix << Code; |
| |
| mangleNumber(FieldOffset); |
| |
| // The C++ standard doesn't allow base-to-derived member pointer conversions |
| // in template parameter contexts, so the vbptr offset of data member pointers |
| // is always zero. |
| if (inheritanceModelHasVBPtrOffsetField(IM)) |
| mangleNumber(0); |
| if (inheritanceModelHasVBTableOffsetField(IM)) |
| mangleNumber(VBTableOffset); |
| } |
| |
| void |
| MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, |
| const CXXMethodDecl *MD, |
| StringRef Prefix) { |
| // <member-function-pointer> ::= $1? <name> |
| // ::= $H? <name> <number> |
| // ::= $I? <name> <number> <number> |
| // ::= $J? <name> <number> <number> <number> |
| |
| MSInheritanceModel IM = RD->getMSInheritanceModel(); |
| |
| char Code = '\0'; |
| switch (IM) { |
| case MSInheritanceModel::Single: Code = '1'; break; |
| case MSInheritanceModel::Multiple: Code = 'H'; break; |
| case MSInheritanceModel::Virtual: Code = 'I'; break; |
| case MSInheritanceModel::Unspecified: Code = 'J'; break; |
| } |
| |
| // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr |
| // thunk. |
| uint64_t NVOffset = 0; |
| uint64_t VBTableOffset = 0; |
| uint64_t VBPtrOffset = 0; |
| if (MD) { |
| Out << Prefix << Code << '?'; |
| if (MD->isVirtual()) { |
| MicrosoftVTableContext *VTContext = |
| cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); |
| MethodVFTableLocation ML = |
| VTContext->getMethodVFTableLocation(GlobalDecl(MD)); |
| mangleVirtualMemPtrThunk(MD, ML); |
| NVOffset = ML.VFPtrOffset.getQuantity(); |
| VBTableOffset = ML.VBTableIndex * 4; |
| if (ML.VBase) { |
| const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); |
| VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); |
| } |
| } else { |
| mangleName(MD); |
| mangleFunctionEncoding(MD, /*ShouldMangle=*/true); |
| } |
| |
| if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual) |
| NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); |
| } else { |
| // Null single inheritance member functions are encoded as a simple nullptr. |
| if (IM == MSInheritanceModel::Single) { |
| Out << Prefix << "0A@"; |
| return; |
| } |
| if (IM == MSInheritanceModel::Unspecified) |
| VBTableOffset = -1; |
| Out << Prefix << Code; |
| } |
| |
| if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM)) |
| mangleNumber(static_cast<uint32_t>(NVOffset)); |
| if (inheritanceModelHasVBPtrOffsetField(IM)) |
| mangleNumber(VBPtrOffset); |
| if (inheritanceModelHasVBTableOffsetField(IM)) |
| mangleNumber(VBTableOffset); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( |
| const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { |
| // Get the vftable offset. |
| CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( |
| getASTContext().getTargetInfo().getPointerWidth(0)); |
| uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); |
| |
| Out << "?_9"; |
| mangleName(MD->getParent()); |
| Out << "$B"; |
| mangleNumber(OffsetInVFTable); |
| Out << 'A'; |
| mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>()); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) { |
| // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ |
| |
| // Always start with the unqualified name. |
| mangleUnqualifiedName(GD); |
| |
| mangleNestedName(GD); |
| |
| // Terminate the whole name with an '@'. |
| Out << '@'; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { |
| mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false)); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) { |
| // MSVC never mangles any integer wider than 64 bits. In general it appears |
| // to convert every integer to signed 64 bit before mangling (including |
| // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom |
| // 64. |
| llvm::APInt Value = |
| Number.isSigned() ? Number.sextOrSelf(64) : Number.zextOrSelf(64); |
| |
| // <non-negative integer> ::= A@ # when Number == 0 |
| // ::= <decimal digit> # when 1 <= Number <= 10 |
| // ::= <hex digit>+ @ # when Number >= 10 |
| // |
| // <number> ::= [?] <non-negative integer> |
| |
| if (Value.isNegative()) { |
| Value = -Value; |
| Out << '?'; |
| } |
| mangleBits(Value); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) { |
| using llvm::APFloat; |
| |
| switch (APFloat::SemanticsToEnum(Number.getSemantics())) { |
| case APFloat::S_IEEEsingle: Out << 'A'; break; |
| case APFloat::S_IEEEdouble: Out << 'B'; break; |
| |
| // The following are all Clang extensions. We try to pick manglings that are |
| // unlikely to conflict with MSVC's scheme. |
| case APFloat::S_IEEEhalf: Out << 'V'; break; |
| case APFloat::S_BFloat: Out << 'W'; break; |
| case APFloat::S_x87DoubleExtended: Out << 'X'; break; |
| case APFloat::S_IEEEquad: Out << 'Y'; break; |
| case APFloat::S_PPCDoubleDouble: Out << 'Z'; break; |
| } |
| |
| mangleBits(Number.bitcastToAPInt()); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) { |
| if (Value == 0) |
| Out << "A@"; |
| else if (Value.uge(1) && Value.ule(10)) |
| Out << (Value - 1); |
| else { |
| // Numbers that are not encoded as decimal digits are represented as nibbles |
| // in the range of ASCII characters 'A' to 'P'. |
| // The number 0x123450 would be encoded as 'BCDEFA' |
| llvm::SmallString<32> EncodedNumberBuffer; |
| for (; Value != 0; Value.lshrInPlace(4)) |
| EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue()); |
| std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end()); |
| Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size()); |
| Out << '@'; |
| } |
| } |
| |
| static GlobalDecl isTemplate(GlobalDecl GD, |
| const TemplateArgumentList *&TemplateArgs) { |
| const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); |
| // Check if we have a function template. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { |
| if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
| TemplateArgs = FD->getTemplateSpecializationArgs(); |
| return GD.getWithDecl(TD); |
| } |
| } |
| |
| // Check if we have a class template. |
| if (const ClassTemplateSpecializationDecl *Spec = |
| dyn_cast<ClassTemplateSpecializationDecl>(ND)) { |
| TemplateArgs = &Spec->getTemplateArgs(); |
| return GD.getWithDecl(Spec->getSpecializedTemplate()); |
| } |
| |
| // Check if we have a variable template. |
| if (const VarTemplateSpecializationDecl *Spec = |
| dyn_cast<VarTemplateSpecializationDecl>(ND)) { |
| TemplateArgs = &Spec->getTemplateArgs(); |
| return GD.getWithDecl(Spec->getSpecializedTemplate()); |
| } |
| |
| return GlobalDecl(); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, |
| DeclarationName Name) { |
| const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); |
| // <unqualified-name> ::= <operator-name> |
| // ::= <ctor-dtor-name> |
| // ::= <source-name> |
| // ::= <template-name> |
| |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = nullptr; |
| if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
| // Function templates aren't considered for name back referencing. This |
| // makes sense since function templates aren't likely to occur multiple |
| // times in a symbol. |
| if (isa<FunctionTemplateDecl>(TD.getDecl())) { |
| mangleTemplateInstantiationName(TD, *TemplateArgs); |
| Out << '@'; |
| return; |
| } |
| |
| // Here comes the tricky thing: if we need to mangle something like |
| // void foo(A::X<Y>, B::X<Y>), |
| // the X<Y> part is aliased. However, if you need to mangle |
| // void foo(A::X<A::Y>, A::X<B::Y>), |
| // the A::X<> part is not aliased. |
| // That is, from the mangler's perspective we have a structure like this: |
| // namespace[s] -> type[ -> template-parameters] |
| // but from the Clang perspective we have |
| // type [ -> template-parameters] |
| // \-> namespace[s] |
| // What we do is we create a new mangler, mangle the same type (without |
| // a namespace suffix) to a string using the extra mangler and then use |
| // the mangled type name as a key to check the mangling of different types |
| // for aliasing. |
| |
| // It's important to key cache reads off ND, not TD -- the same TD can |
| // be used with different TemplateArgs, but ND uniquely identifies |
| // TD / TemplateArg pairs. |
| ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND); |
| if (Found == TemplateArgBackReferences.end()) { |
| |
| TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND); |
| if (Found == TemplateArgStrings.end()) { |
| // Mangle full template name into temporary buffer. |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); |
| |
| // Use the string backref vector to possibly get a back reference. |
| mangleSourceName(TemplateMangling); |
| |
| // Memoize back reference for this type if one exist, else memoize |
| // the mangling itself. |
| BackRefVec::iterator StringFound = |
| llvm::find(NameBackReferences, TemplateMangling); |
| if (StringFound != NameBackReferences.end()) { |
| TemplateArgBackReferences[ND] = |
| StringFound - NameBackReferences.begin(); |
| } else { |
| TemplateArgStrings[ND] = |
| TemplateArgStringStorage.save(TemplateMangling.str()); |
| } |
| } else { |
| Out << Found->second << '@'; // Outputs a StringRef. |
| } |
| } else { |
| Out << Found->second; // Outputs a back reference (an int). |
| } |
| return; |
| } |
| |
| switch (Name.getNameKind()) { |
| case DeclarationName::Identifier: { |
| if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { |
| bool IsDeviceStub = |
| ND && |
| ((isa<FunctionDecl>(ND) && ND->hasAttr<CUDAGlobalAttr>()) || |
| (isa<FunctionTemplateDecl>(ND) && |
| cast<FunctionTemplateDecl>(ND) |
| ->getTemplatedDecl() |
| ->hasAttr<CUDAGlobalAttr>())) && |
| GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
| if (IsDeviceStub) |
| mangleSourceName( |
| (llvm::Twine("__device_stub__") + II->getName()).str()); |
| else |
| mangleSourceName(II->getName()); |
| break; |
| } |
| |
| // Otherwise, an anonymous entity. We must have a declaration. |
| assert(ND && "mangling empty name without declaration"); |
| |
| if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (NS->isAnonymousNamespace()) { |
| Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; |
| break; |
| } |
| } |
| |
| if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { |
| // Decomposition declarations are considered anonymous, and get |
| // numbered with a $S prefix. |
| llvm::SmallString<64> Name("$S"); |
| // Get a unique id for the anonymous struct. |
| Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1); |
| mangleSourceName(Name); |
| break; |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { |
| // We must have an anonymous union or struct declaration. |
| const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); |
| assert(RD && "expected variable decl to have a record type"); |
| // Anonymous types with no tag or typedef get the name of their |
| // declarator mangled in. If they have no declarator, number them with |
| // a $S prefix. |
| llvm::SmallString<64> Name("$S"); |
| // Get a unique id for the anonymous struct. |
| Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); |
| mangleSourceName(Name.str()); |
| break; |
| } |
| |
| if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) { |
| // Mangle a GUID object as if it were a variable with the corresponding |
| // mangled name. |
| SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; |
| llvm::raw_svector_ostream GUIDOS(GUID); |
| Context.mangleMSGuidDecl(GD, GUIDOS); |
| mangleSourceName(GUID); |
| break; |
| } |
| |
| if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { |
| Out << "?__N"; |
| mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), |
| TPO->getValue()); |
| break; |
| } |
| |
| // We must have an anonymous struct. |
| const TagDecl *TD = cast<TagDecl>(ND); |
| if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
| assert(TD->getDeclContext() == D->getDeclContext() && |
| "Typedef should not be in another decl context!"); |
| assert(D->getDeclName().getAsIdentifierInfo() && |
| "Typedef was not named!"); |
| mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); |
| break; |
| } |
| |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { |
| if (Record->isLambda()) { |
| llvm::SmallString<10> Name("<lambda_"); |
| |
| Decl *LambdaContextDecl = Record->getLambdaContextDecl(); |
| unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); |
| unsigned LambdaId; |
| const ParmVarDecl *Parm = |
| dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); |
| const FunctionDecl *Func = |
| Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; |
| |
| if (Func) { |
| unsigned DefaultArgNo = |
| Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| Name += llvm::utostr(DefaultArgNo); |
| Name += "_"; |
| } |
| |
| if (LambdaManglingNumber) |
| LambdaId = LambdaManglingNumber; |
| else |
| LambdaId = Context.getLambdaId(Record); |
| |
| Name += llvm::utostr(LambdaId); |
| Name += ">"; |
| |
| mangleSourceName(Name); |
| |
| // If the context is a variable or a class member and not a parameter, |
| // it is encoded in a qualified name. |
| if (LambdaManglingNumber && LambdaContextDecl) { |
| if ((isa<VarDecl>(LambdaContextDecl) || |
| isa<FieldDecl>(LambdaContextDecl)) && |
| !isa<ParmVarDecl>(LambdaContextDecl)) { |
| mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); |
| } |
| } |
| break; |
| } |
| } |
| |
| llvm::SmallString<64> Name; |
| if (DeclaratorDecl *DD = |
| Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { |
| // Anonymous types without a name for linkage purposes have their |
| // declarator mangled in if they have one. |
| Name += "<unnamed-type-"; |
| Name += DD->getName(); |
| } else if (TypedefNameDecl *TND = |
| Context.getASTContext().getTypedefNameForUnnamedTagDecl( |
| TD)) { |
| // Anonymous types without a name for linkage purposes have their |
| // associate typedef mangled in if they have one. |
| Name += "<unnamed-type-"; |
| Name += TND->getName(); |
| } else if (isa<EnumDecl>(TD) && |
| cast<EnumDecl>(TD)->enumerator_begin() != |
| cast<EnumDecl>(TD)->enumerator_end()) { |
| // Anonymous non-empty enums mangle in the first enumerator. |
| auto *ED = cast<EnumDecl>(TD); |
| Name += "<unnamed-enum-"; |
| Name += ED->enumerator_begin()->getName(); |
| } else { |
| // Otherwise, number the types using a $S prefix. |
| Name += "<unnamed-type-$S"; |
| Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); |
| } |
| Name += ">"; |
| mangleSourceName(Name.str()); |
| break; |
| } |
| |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: { |
| // This is reachable only when constructing an outlined SEH finally |
| // block. Nothing depends on this mangling and it's used only with |
| // functinos with internal linkage. |
| llvm::SmallString<64> Name; |
| mangleSourceName(Name.str()); |
| break; |
| } |
| |
| case DeclarationName::CXXConstructorName: |
| if (isStructorDecl(ND)) { |
| if (StructorType == Ctor_CopyingClosure) { |
| Out << "?_O"; |
| return; |
| } |
| if (StructorType == Ctor_DefaultClosure) { |
| Out << "?_F"; |
| return; |
| } |
| } |
| Out << "?0"; |
| return; |
| |
| case DeclarationName::CXXDestructorName: |
| if (isStructorDecl(ND)) |
| // If the named decl is the C++ destructor we're mangling, |
| // use the type we were given. |
| mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); |
| else |
| // Otherwise, use the base destructor name. This is relevant if a |
| // class with a destructor is declared within a destructor. |
| mangleCXXDtorType(Dtor_Base); |
| break; |
| |
| case DeclarationName::CXXConversionFunctionName: |
| // <operator-name> ::= ?B # (cast) |
| // The target type is encoded as the return type. |
| Out << "?B"; |
| break; |
| |
| case DeclarationName::CXXOperatorName: |
| mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); |
| break; |
| |
| case DeclarationName::CXXLiteralOperatorName: { |
| Out << "?__K"; |
| mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); |
| break; |
| } |
| |
| case DeclarationName::CXXDeductionGuideName: |
| llvm_unreachable("Can't mangle a deduction guide name!"); |
| |
| case DeclarationName::CXXUsingDirective: |
| llvm_unreachable("Can't mangle a using directive name!"); |
| } |
| } |
| |
| // <postfix> ::= <unqualified-name> [<postfix>] |
| // ::= <substitution> [<postfix>] |
| void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) { |
| const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); |
| const DeclContext *DC = getEffectiveDeclContext(ND); |
| while (!DC->isTranslationUnit()) { |
| if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { |
| unsigned Disc; |
| if (Context.getNextDiscriminator(ND, Disc)) { |
| Out << '?'; |
| mangleNumber(Disc); |
| Out << '?'; |
| } |
| } |
| |
| if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { |
| auto Discriminate = |
| [](StringRef Name, const unsigned Discriminator, |
| const unsigned ParameterDiscriminator) -> std::string { |
| std::string Buffer; |
| llvm::raw_string_ostream Stream(Buffer); |
| Stream << Name; |
| if (Discriminator) |
| Stream << '_' << Discriminator; |
| if (ParameterDiscriminator) |
| Stream << '_' << ParameterDiscriminator; |
| return Stream.str(); |
| }; |
| |
| unsigned Discriminator = BD->getBlockManglingNumber(); |
| if (!Discriminator) |
| Discriminator = Context.getBlockId(BD, /*Local=*/false); |
| |
| // Mangle the parameter position as a discriminator to deal with unnamed |
| // parameters. Rather than mangling the unqualified parameter name, |
| // always use the position to give a uniform mangling. |
| unsigned ParameterDiscriminator = 0; |
| if (const auto *MC = BD->getBlockManglingContextDecl()) |
| if (const auto *P = dyn_cast<ParmVarDecl>(MC)) |
| if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) |
| ParameterDiscriminator = |
| F->getNumParams() - P->getFunctionScopeIndex(); |
| |
| DC = getEffectiveDeclContext(BD); |
| |
| Out << '?'; |
| mangleSourceName(Discriminate("_block_invoke", Discriminator, |
| ParameterDiscriminator)); |
| // If we have a block mangling context, encode that now. This allows us |
| // to discriminate between named static data initializers in the same |
| // scope. This is handled differently from parameters, which use |
| // positions to discriminate between multiple instances. |
| if (const auto *MC = BD->getBlockManglingContextDecl()) |
| if (!isa<ParmVarDecl>(MC)) |
| if (const auto *ND = dyn_cast<NamedDecl>(MC)) |
| mangleUnqualifiedName(ND); |
| // MS ABI and Itanium manglings are in inverted scopes. In the case of a |
| // RecordDecl, mangle the entire scope hierarchy at this point rather than |
| // just the unqualified name to get the ordering correct. |
| if (const auto *RD = dyn_cast<RecordDecl>(DC)) |
| mangleName(RD); |
| else |
| Out << '@'; |
| // void __cdecl |
| Out << "YAX"; |
| // struct __block_literal * |
| Out << 'P'; |
| // __ptr64 |
| if (PointersAre64Bit) |
| Out << 'E'; |
| Out << 'A'; |
| mangleArtificialTagType(TTK_Struct, |
| Discriminate("__block_literal", Discriminator, |
| ParameterDiscriminator)); |
| Out << "@Z"; |
| |
| // If the effective context was a Record, we have fully mangled the |
| // qualified name and do not need to continue. |
| if (isa<RecordDecl>(DC)) |
| break; |
| continue; |
| } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { |
| mangleObjCMethodName(Method); |
| } else if (isa<NamedDecl>(DC)) { |
| ND = cast<NamedDecl>(DC); |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { |
| mangle(getGlobalDeclAsDeclContext(FD), "?"); |
| break; |
| } else { |
| mangleUnqualifiedName(ND); |
| // Lambdas in default arguments conceptually belong to the function the |
| // parameter corresponds to. |
| if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { |
| DC = LDADC; |
| continue; |
| } |
| } |
| } |
| DC = DC->getParent(); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
| // Microsoft uses the names on the case labels for these dtor variants. Clang |
| // uses the Itanium terminology internally. Everything in this ABI delegates |
| // towards the base dtor. |
| switch (T) { |
| // <operator-name> ::= ?1 # destructor |
| case Dtor_Base: Out << "?1"; return; |
| // <operator-name> ::= ?_D # vbase destructor |
| case Dtor_Complete: Out << "?_D"; return; |
| // <operator-name> ::= ?_G # scalar deleting destructor |
| case Dtor_Deleting: Out << "?_G"; return; |
| // <operator-name> ::= ?_E # vector deleting destructor |
| // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need |
| // it. |
| case Dtor_Comdat: |
| llvm_unreachable("not expecting a COMDAT"); |
| } |
| llvm_unreachable("Unsupported dtor type?"); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, |
| SourceLocation Loc) { |
| switch (OO) { |
| // ?0 # constructor |
| // ?1 # destructor |
| // <operator-name> ::= ?2 # new |
| case OO_New: Out << "?2"; break; |
| // <operator-name> ::= ?3 # delete |
| case OO_Delete: Out << "?3"; break; |
| // <operator-name> ::= ?4 # = |
| case OO_Equal: Out << "?4"; break; |
| // <operator-name> ::= ?5 # >> |
| case OO_GreaterGreater: Out << "?5"; break; |
| // <operator-name> ::= ?6 # << |
| case OO_LessLess: Out << "?6"; break; |
| // <operator-name> ::= ?7 # ! |
| case OO_Exclaim: Out << "?7"; break; |
| // <operator-name> ::= ?8 # == |
| case OO_EqualEqual: Out << "?8"; break; |
| // <operator-name> ::= ?9 # != |
| case OO_ExclaimEqual: Out << "?9"; break; |
| // <operator-name> ::= ?A # [] |
| case OO_Subscript: Out << "?A"; break; |
| // ?B # conversion |
| // <operator-name> ::= ?C # -> |
| case OO_Arrow: Out << "?C"; break; |
| // <operator-name> ::= ?D # * |
| case OO_Star: Out << "?D"; break; |
| // <operator-name> ::= ?E # ++ |
| case OO_PlusPlus: Out << "?E"; break; |
| // <operator-name> ::= ?F # -- |
| case OO_MinusMinus: Out << "?F"; break; |
| // <operator-name> ::= ?G # - |
| case OO_Minus: Out << "?G"; break; |
| // <operator-name> ::= ?H # + |
| case OO_Plus: Out << "?H"; break; |
| // <operator-name> ::= ?I # & |
| case OO_Amp: Out << "?I"; break; |
| // <operator-name> ::= ?J # ->* |
| case OO_ArrowStar: Out << "?J"; break; |
| // <operator-name> ::= ?K # / |
| case OO_Slash: Out << "?K"; break; |
| // <operator-name> ::= ?L # % |
| case OO_Percent: Out << "?L"; break; |
| // <operator-name> ::= ?M # < |
| case OO_Less: Out << "?M"; break; |
| // <operator-name> ::= ?N # <= |
| case OO_LessEqual: Out << "?N"; break; |
| // <operator-name> ::= ?O # > |
| case OO_Greater: Out << "?O"; break; |
| // <operator-name> ::= ?P # >= |
| case OO_GreaterEqual: Out << "?P"; break; |
| // <operator-name> ::= ?Q # , |
| case OO_Comma: Out << "?Q"; break; |
| // <operator-name> ::= ?R # () |
| case OO_Call: Out << "?R"; break; |
| // <operator-name> ::= ?S # ~ |
| case OO_Tilde: Out << "?S"; break; |
| // <operator-name> ::= ?T # ^ |
| case OO_Caret: Out << "?T"; break; |
| // <operator-name> ::= ?U # | |
| case OO_Pipe: Out << "?U"; break; |
| // <operator-name> ::= ?V # && |
| case OO_AmpAmp: Out << "?V"; break; |
| // <operator-name> ::= ?W # || |
| case OO_PipePipe: Out << "?W"; break; |
| // <operator-name> ::= ?X # *= |
| case OO_StarEqual: Out << "?X"; break; |
| // <operator-name> ::= ?Y # += |
| case OO_PlusEqual: Out << "?Y"; break; |
| // <operator-name> ::= ?Z # -= |
| case OO_MinusEqual: Out << "?Z"; break; |
| // <operator-name> ::= ?_0 # /= |
| case OO_SlashEqual: Out << "?_0"; break; |
| // <operator-name> ::= ?_1 # %= |
| case OO_PercentEqual: Out << "?_1"; break; |
| // <operator-name> ::= ?_2 # >>= |
| case OO_GreaterGreaterEqual: Out << "?_2"; break; |
| // <operator-name> ::= ?_3 # <<= |
| case OO_LessLessEqual: Out << "?_3"; break; |
| // <operator-name> ::= ?_4 # &= |
| case OO_AmpEqual: Out << "?_4"; break; |
| // <operator-name> ::= ?_5 # |= |
| case OO_PipeEqual: Out << "?_5"; break; |
| // <operator-name> ::= ?_6 # ^= |
| case OO_CaretEqual: Out << "?_6"; break; |
| // ?_7 # vftable |
| // ?_8 # vbtable |
| // ?_9 # vcall |
| // ?_A # typeof |
| // ?_B # local static guard |
| // ?_C # string |
| // ?_D # vbase destructor |
| // ?_E # vector deleting destructor |
| // ?_F # default constructor closure |
| // ?_G # scalar deleting destructor |
| // ?_H # vector constructor iterator |
| // ?_I # vector destructor iterator |
| // ?_J # vector vbase constructor iterator |
| // ?_K # virtual displacement map |
| // ?_L # eh vector constructor iterator |
| // ?_M # eh vector destructor iterator |
| // ?_N # eh vector vbase constructor iterator |
| // ?_O # copy constructor closure |
| // ?_P<name> # udt returning <name> |
| // ?_Q # <unknown> |
| // ?_R0 # RTTI Type Descriptor |
| // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) |
| // ?_R2 # RTTI Base Class Array |
| // ?_R3 # RTTI Class Hierarchy Descriptor |
| // ?_R4 # RTTI Complete Object Locator |
| // ?_S # local vftable |
| // ?_T # local vftable constructor closure |
| // <operator-name> ::= ?_U # new[] |
| case OO_Array_New: Out << "?_U"; break; |
| // <operator-name> ::= ?_V # delete[] |
| case OO_Array_Delete: Out << "?_V"; break; |
| // <operator-name> ::= ?__L # co_await |
| case OO_Coawait: Out << "?__L"; break; |
| // <operator-name> ::= ?__M # <=> |
| case OO_Spaceship: Out << "?__M"; break; |
| |
| case OO_Conditional: { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this conditional operator yet"); |
| Diags.Report(Loc, DiagID); |
| break; |
| } |
| |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| llvm_unreachable("Not an overloaded operator"); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { |
| // <source name> ::= <identifier> @ |
| BackRefVec::iterator Found = llvm::find(NameBackReferences, Name); |
| if (Found == NameBackReferences.end()) { |
| if (NameBackReferences.size() < 10) |
| NameBackReferences.push_back(std::string(Name)); |
| Out << Name << '@'; |
| } else { |
| Out << (Found - NameBackReferences.begin()); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
| Context.mangleObjCMethodNameAsSourceName(MD, Out); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( |
| GlobalDecl GD, const TemplateArgumentList &TemplateArgs) { |
| // <template-name> ::= <unscoped-template-name> <template-args> |
| // ::= <substitution> |
| // Always start with the unqualified name. |
| |
| // Templates have their own context for back references. |
| ArgBackRefMap OuterFunArgsContext; |
| ArgBackRefMap OuterTemplateArgsContext; |
| BackRefVec OuterTemplateContext; |
| PassObjectSizeArgsSet OuterPassObjectSizeArgs; |
| NameBackReferences.swap(OuterTemplateContext); |
| FunArgBackReferences.swap(OuterFunArgsContext); |
| TemplateArgBackReferences.swap(OuterTemplateArgsContext); |
| PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); |
| |
| mangleUnscopedTemplateName(GD); |
| mangleTemplateArgs(cast<TemplateDecl>(GD.getDecl()), TemplateArgs); |
| |
| // Restore the previous back reference contexts. |
| NameBackReferences.swap(OuterTemplateContext); |
| FunArgBackReferences.swap(OuterFunArgsContext); |
| TemplateArgBackReferences.swap(OuterTemplateArgsContext); |
| PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) { |
| // <unscoped-template-name> ::= ?$ <unqualified-name> |
| Out << "?$"; |
| mangleUnqualifiedName(GD); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleIntegerLiteral( |
| const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD, |
| QualType TemplateArgType) { |
| // <integer-literal> ::= $0 <number> |
| Out << "$"; |
| |
| // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when |
| // argument is integer. |
| if (getASTContext().getLangOpts().isCompatibleWithMSVC( |
| LangOptions::MSVC2019) && |
| PD && PD->getType()->getTypeClass() == Type::Auto && |
| !TemplateArgType.isNull()) { |
| Out << "M"; |
| mangleType(TemplateArgType, SourceRange(), QMM_Drop); |
| } |
| |
| Out << "0"; |
| |
| mangleNumber(Value); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleExpression( |
| const Expr *E, const NonTypeTemplateParmDecl *PD) { |
| // See if this is a constant expression. |
| if (Optional<llvm::APSInt> Value = |
| E->getIntegerConstantExpr(Context.getASTContext())) { |
| mangleIntegerLiteral(*Value, PD, E->getType()); |
| return; |
| } |
| |
| // As bad as this diagnostic is, it's better than crashing. |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); |
| Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() |
| << E->getSourceRange(); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleTemplateArgs( |
| const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { |
| // <template-args> ::= <template-arg>+ |
| const TemplateParameterList *TPL = TD->getTemplateParameters(); |
| assert(TPL->size() == TemplateArgs.size() && |
| "size mismatch between args and parms!"); |
| |
| for (size_t i = 0; i < TemplateArgs.size(); ++i) { |
| const TemplateArgument &TA = TemplateArgs[i]; |
| |
| // Separate consecutive packs by $$Z. |
| if (i > 0 && TA.getKind() == TemplateArgument::Pack && |
| TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) |
| Out << "$$Z"; |
| |
| mangleTemplateArg(TD, TA, TPL->getParam(i)); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, |
| const TemplateArgument &TA, |
| const NamedDecl *Parm) { |
| // <template-arg> ::= <type> |
| // ::= <integer-literal> |
| // ::= <member-data-pointer> |
| // ::= <member-function-pointer> |
| // ::= $ <constant-value> |
| // ::= <template-args> |
| // |
| // <constant-value> ::= 0 <number> # integer |
| // ::= 1 <mangled-name> # address of D |
| // ::= 2 <type> <typed-constant-value>* @ # struct |
| // ::= 3 <type> <constant-value>* @ # array |
| // ::= 4 ??? # string |
| // ::= 5 <constant-value> @ # address of subobject |
| // ::= 6 <constant-value> <unqualified-name> @ # a.b |
| // ::= 7 <type> [<unqualified-name> <constant-value>] @ |
| // # union, with or without an active member |
| // # pointer to member, symbolically |
| // ::= 8 <class> <unqualified-name> @ |
| // ::= A <type> <non-negative integer> # float |
| // ::= B <type> <non-negative integer> # double |
| // ::= E <mangled-name> # reference to D |
| // # pointer to member, by component value |
| // ::= F <number> <number> |
| // ::= G <number> <number> <number> |
| // ::= H <mangled-name> <number> |
| // ::= I <mangled-name> <number> <number> |
| // ::= J <mangled-name> <number> <number> <number> |
| // |
| // <typed-constant-value> ::= [<type>] <constant-value> |
| // |
| // The <type> appears to be included in a <typed-constant-value> only in the |
| // '0', '1', '8', 'A', 'B', and 'E' cases. |
| |
| switch (TA.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Can't mangle null template arguments!"); |
| case TemplateArgument::TemplateExpansion: |
| llvm_unreachable("Can't mangle template expansion arguments!"); |
| case TemplateArgument::Type: { |
| QualType T = TA.getAsType(); |
| mangleType(T, SourceRange(), QMM_Escape); |
| break; |
| } |
| case TemplateArgument::Declaration: { |
| const NamedDecl *ND = TA.getAsDecl(); |
| if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { |
| mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) |
| ->getMostRecentNonInjectedDecl(), |
| cast<ValueDecl>(ND)); |
| } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
| if (MD && MD->isInstance()) { |
| mangleMemberFunctionPointer( |
| MD->getParent()->getMostRecentNonInjectedDecl(), MD); |
| } else { |
| Out << "$1?"; |
| mangleName(FD); |
| mangleFunctionEncoding(FD, /*ShouldMangle=*/true); |
| } |
| } else if (TA.getParamTypeForDecl()->isRecordType()) { |
| Out << "$"; |
| auto *TPO = cast<TemplateParamObjectDecl>(ND); |
| mangleTemplateArgValue(TPO->getType().getUnqualifiedType(), |
| TPO->getValue()); |
| } else { |
| mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?"); |
| } |
| break; |
| } |
| case TemplateArgument::Integral: { |
| QualType T = TA.getIntegralType(); |
| mangleIntegerLiteral(TA.getAsIntegral(), |
| cast<NonTypeTemplateParmDecl>(Parm), T); |
| break; |
| } |
| case TemplateArgument::NullPtr: { |
| QualType T = TA.getNullPtrType(); |
| if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { |
| const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| if (MPT->isMemberFunctionPointerType() && |
| !isa<FunctionTemplateDecl>(TD)) { |
| mangleMemberFunctionPointer(RD, nullptr); |
| return; |
| } |
| if (MPT->isMemberDataPointer()) { |
| if (!isa<FunctionTemplateDecl>(TD)) { |
| mangleMemberDataPointer(RD, nullptr); |
| return; |
| } |
| // nullptr data pointers are always represented with a single field |
| // which is initialized with either 0 or -1. Why -1? Well, we need to |
| // distinguish the case where the data member is at offset zero in the |
| // record. |
| // However, we are free to use 0 *if* we would use multiple fields for |
| // non-nullptr member pointers. |
| if (!RD->nullFieldOffsetIsZero()) { |
| mangleIntegerLiteral(llvm::APSInt::get(-1), |
| cast<NonTypeTemplateParmDecl>(Parm), T); |
| return; |
| } |
| } |
| } |
| mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), |
| cast<NonTypeTemplateParmDecl>(Parm), T); |
| break; |
| } |
| case TemplateArgument::Expression: |
| mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm)); |
| break; |
| case TemplateArgument::Pack: { |
| ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); |
| if (TemplateArgs.empty()) { |
| if (isa<TemplateTypeParmDecl>(Parm) || |
| isa<TemplateTemplateParmDecl>(Parm)) |
| // MSVC 2015 changed the mangling for empty expanded template packs, |
| // use the old mangling for link compatibility for old versions. |
| Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( |
| LangOptions::MSVC2015) |
| ? "$$V" |
| : "$$$V"); |
| else if (isa<NonTypeTemplateParmDecl>(Parm)) |
| Out << "$S"; |
| else |
| llvm_unreachable("unexpected template parameter decl!"); |
| } else { |
| for (const TemplateArgument &PA : TemplateArgs) |
| mangleTemplateArg(TD, PA, Parm); |
| } |
| break; |
| } |
| case TemplateArgument::Template: { |
| const NamedDecl *ND = |
| TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); |
| if (const auto *TD = dyn_cast<TagDecl>(ND)) { |
| mangleType(TD); |
| } else if (isa<TypeAliasDecl>(ND)) { |
| Out << "$$Y"; |
| mangleName(ND); |
| } else { |
| llvm_unreachable("unexpected template template NamedDecl!"); |
| } |
| break; |
| } |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T, |
| const APValue &V, |
| bool WithScalarType) { |
| switch (V.getKind()) { |
| case APValue::None: |
| case APValue::Indeterminate: |
| // FIXME: MSVC doesn't allow this, so we can't be sure how it should be |
| // mangled. |
| if (WithScalarType) |
| mangleType(T, SourceRange(), QMM_Escape); |
| Out << '@'; |
| return; |
| |
| case APValue::Int: |
| if (WithScalarType) |
| mangleType(T, SourceRange(), QMM_Escape); |
| Out << '0'; |
| mangleNumber(V.getInt()); |
| return; |
| |
| case APValue::Float: |
| if (WithScalarType) |
| mangleType(T, SourceRange(), QMM_Escape); |
| mangleFloat(V.getFloat()); |
| return; |
| |
| case APValue::LValue: { |
| if (WithScalarType) |
| mangleType(T, SourceRange(), QMM_Escape); |
| |
| // We don't know how to mangle past-the-end pointers yet. |
| if (V.isLValueOnePastTheEnd()) |
| break; |
| |
| APValue::LValueBase Base = V.getLValueBase(); |
| if (!V.hasLValuePath() || V.getLValuePath().empty()) { |
| // Taking the address of a complete object has a special-case mangling. |
| if (Base.isNull()) { |
| // MSVC emits 0A@ for null pointers. Generalize this for arbitrary |
| // integers cast to pointers. |
| // FIXME: This mangles 0 cast to a pointer the same as a null pointer, |
| // even in cases where the two are different values. |
| Out << "0"; |
| mangleNumber(V.getLValueOffset().getQuantity()); |
| } else if (!V.hasLValuePath()) { |
| // FIXME: This can only happen as an extension. Invent a mangling. |
| break; |
| } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) { |
| Out << (T->isReferenceType() ? "E" : "1"); |
| mangle(VD); |
| } else { |
| break; |
| } |
| } else { |
| unsigned NumAts = 0; |
| if (T->isPointerType()) { |
| Out << "5"; |
| ++NumAts; |
| } |
| |
| QualType T = Base.getType(); |
| for (APValue::LValuePathEntry E : V.getLValuePath()) { |
| // We don't know how to mangle array subscripting yet. |
| if (T->isArrayType()) |
| goto mangling_unknown; |
| |
| const Decl *D = E.getAsBaseOrMember().getPointer(); |
| auto *FD = dyn_cast<FieldDecl>(D); |
| // We don't know how to mangle derived-to-base conversions yet. |
| if (!FD) |
| goto mangling_unknown; |
| |
| Out << "6"; |
| ++NumAts; |
| T = FD->getType(); |
| } |
| |
| auto *VD = Base.dyn_cast<const ValueDecl*>(); |
| if (!VD) |
| break; |
| Out << "E"; |
| mangle(VD); |
| |
| for (APValue::LValuePathEntry E : V.getLValuePath()) { |
| const Decl *D = E.getAsBaseOrMember().getPointer(); |
| mangleUnqualifiedName(cast<FieldDecl>(D)); |
| } |
| for (unsigned I = 0; I != NumAts; ++I) |
| Out << '@'; |
| } |
| |
| return; |
| } |
| |
| case APValue::MemberPointer: { |
| if (WithScalarType) |
| mangleType(T, SourceRange(), QMM_Escape); |
| |
| // FIXME: The below manglings don't include a conversion, so bail if there |
| // would be one. MSVC mangles the (possibly converted) value of the |
| // pointer-to-member object as if it were a struct, leading to collisions |
| // in some cases. |
| if (!V.getMemberPointerPath().empty()) |
| break; |
| |
| const CXXRecordDecl *RD = |
| T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl(); |
| const ValueDecl *D = V.getMemberPointerDecl(); |
| if (T->isMemberDataPointerType()) |
| mangleMemberDataPointer(RD, D, ""); |
| else |
| mangleMemberFunctionPointer(RD, cast_or_null<CXXMethodDecl>(D), ""); |
| return; |
| } |
| |
| case APValue::Struct: { |
| Out << '2'; |
| mangleType(T, SourceRange(), QMM_Escape); |
| const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
| assert(RD && "unexpected type for record value"); |
| |
| unsigned BaseIndex = 0; |
| for (const CXXBaseSpecifier &B : RD->bases()) |
| mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++)); |
| for (const FieldDecl *FD : RD->fields()) |
| if (!FD->isUnnamedBitfield()) |
| mangleTemplateArgValue(FD->getType(), |
| V.getStructField(FD->getFieldIndex()), |
| /*WithScalarType*/ true); |
| Out << '@'; |
| return; |
| } |
| |
| case APValue::Union: |
| Out << '7'; |
| mangleType(T, SourceRange(), QMM_Escape); |
| if (const FieldDecl *FD = V.getUnionField()) { |
| mangleUnqualifiedName(FD); |
| mangleTemplateArgValue(FD->getType(), V.getUnionValue()); |
| } |
| Out << '@'; |
| return; |
| |
| case APValue::ComplexInt: |
| // We mangle complex types as structs, so mangle the value as a struct too. |
| Out << '2'; |
| mangleType(T, SourceRange(), QMM_Escape); |
| Out << '0'; |
| mangleNumber(V.getComplexIntReal()); |
| Out << '0'; |
| mangleNumber(V.getComplexIntImag()); |
| Out << '@'; |
| return; |
| |
| case APValue::ComplexFloat: |
| Out << '2'; |
| mangleType(T, SourceRange(), QMM_Escape); |
| mangleFloat(V.getComplexFloatReal()); |
| mangleFloat(V.getComplexFloatImag()); |
| Out << '@'; |
| return; |
| |
| case APValue::Array: { |
| Out << '3'; |
| QualType ElemT = getASTContext().getAsArrayType(T)->getElementType(); |
| mangleType(ElemT, SourceRange(), QMM_Escape); |
| for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) { |
| const APValue &ElemV = I < V.getArrayInitializedElts() |
| ? V.getArrayInitializedElt(I) |
| : V.getArrayFiller(); |
| mangleTemplateArgValue(ElemT, ElemV); |
| Out << '@'; |
| } |
| Out << '@'; |
| return; |
| } |
| |
| case APValue::Vector: { |
| // __m128 is mangled as a struct containing an array. We follow this |
| // approach for all vector types. |
| Out << '2'; |
| mangleType(T, SourceRange(), QMM_Escape); |
| Out << '3'; |
| QualType ElemT = T->castAs<VectorType>()->getElementType(); |
| mangleType(ElemT, SourceRange(), QMM_Escape); |
| for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) { |
| const APValue &ElemV = V.getVectorElt(I); |
| mangleTemplateArgValue(ElemT, ElemV); |
| Out << '@'; |
| } |
| Out << "@@"; |
| return; |
| } |
| |
| case APValue::AddrLabelDiff: |
| case APValue::FixedPoint: |
| break; |
| } |
| |
| mangling_unknown: |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, "cannot mangle this template argument yet"); |
| Diags.Report(DiagID); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| |
| Stream << "?$"; |
| Extra.mangleSourceName("Protocol"); |
| Extra.mangleArtificialTagType(TTK_Struct, PD->getName()); |
| |
| mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, |
| Qualifiers Quals, |
| SourceRange Range) { |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| |
| Stream << "?$"; |
| switch (Quals.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| break; |
| case Qualifiers::OCL_Autoreleasing: |
| Extra.mangleSourceName("Autoreleasing"); |
| break; |
| case Qualifiers::OCL_Strong: |
| Extra.mangleSourceName("Strong"); |
| break; |
| case Qualifiers::OCL_Weak: |
| Extra.mangleSourceName("Weak"); |
| break; |
| } |
| Extra.manglePointerCVQualifiers(Quals); |
| Extra.manglePointerExtQualifiers(Quals, Type); |
| Extra.mangleType(Type, Range); |
| |
| mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, |
| Qualifiers Quals, |
| SourceRange Range) { |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| |
| Stream << "?$"; |
| Extra.mangleSourceName("KindOf"); |
| Extra.mangleType(QualType(T, 0) |
| .stripObjCKindOfType(getASTContext()) |
| ->getAs<ObjCObjectType>(), |
| Quals, Range); |
| |
| mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, |
| bool IsMember) { |
| // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> |
| // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); |
| // 'I' means __restrict (32/64-bit). |
| // Note that the MSVC __restrict keyword isn't the same as the C99 restrict |
| // keyword! |
| // <base-cvr-qualifiers> ::= A # near |
| // ::= B # near const |
| // ::= C # near volatile |
| // ::= D # near const volatile |
| // ::= E # far (16-bit) |
| // ::= F # far const (16-bit) |
| // ::= G # far volatile (16-bit) |
| // ::= H # far const volatile (16-bit) |
| // ::= I # huge (16-bit) |
| // ::= J # huge const (16-bit) |
| // ::= K # huge volatile (16-bit) |
| // ::= L # huge const volatile (16-bit) |
| // ::= M <basis> # based |
| // ::= N <basis> # based const |
| // ::= O <basis> # based volatile |
| // ::= P <basis> # based const volatile |
| // ::= Q # near member |
| // ::= R # near const member |
| // ::= S # near volatile member |
| // ::= T # near const volatile member |
| // ::= U # far member (16-bit) |
| // ::= V # far const member (16-bit) |
| // ::= W # far volatile member (16-bit) |
| // ::= X # far const volatile member (16-bit) |
| // ::= Y # huge member (16-bit) |
| // ::= Z # huge const member (16-bit) |
| // ::= 0 # huge volatile member (16-bit) |
| // ::= 1 # huge const volatile member (16-bit) |
| // ::= 2 <basis> # based member |
| // ::= 3 <basis> # based const member |
| // ::= 4 <basis> # based volatile member |
| // ::= 5 <basis> # based const volatile member |
| // ::= 6 # near function (pointers only) |
| // ::= 7 # far function (pointers only) |
| // ::= 8 # near method (pointers only) |
| // ::= 9 # far method (pointers only) |
| // ::= _A <basis> # based function (pointers only) |
| // ::= _B <basis> # based function (far?) (pointers only) |
| // ::= _C <basis> # based method (pointers only) |
| // ::= _D <basis> # based method (far?) (pointers only) |
| // ::= _E # block (Clang) |
| // <basis> ::= 0 # __based(void) |
| // ::= 1 # __based(segment)? |
| // ::= 2 <name> # __based(name) |
| // ::= 3 # ? |
| // ::= 4 # ? |
| // ::= 5 # not really based |
| bool HasConst = Quals.hasConst(), |
| HasVolatile = Quals.hasVolatile(); |
| |
| if (!IsMember) { |
| if (HasConst && HasVolatile) { |
| Out << 'D'; |
| } else if (HasVolatile) { |
| Out << 'C'; |
| } else if (HasConst) { |
| Out << 'B'; |
| } else { |
| Out << 'A'; |
| } |
| } else { |
| if (HasConst && HasVolatile) { |
| Out << 'T'; |
| } else if (HasVolatile) { |
| Out << 'S'; |
| } else if (HasConst) { |
| Out << 'R'; |
| } else { |
| Out << 'Q'; |
| } |
| } |
| |
| // FIXME: For now, just drop all extension qualifiers on the floor. |
| } |
| |
| void |
| MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
| // <ref-qualifier> ::= G # lvalue reference |
| // ::= H # rvalue-reference |
| switch (RefQualifier) { |
| case RQ_None: |
| break; |
| |
| case RQ_LValue: |
| Out << 'G'; |
| break; |
| |
| case RQ_RValue: |
| Out << 'H'; |
| break; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, |
| QualType PointeeType) { |
| // Check if this is a default 64-bit pointer or has __ptr64 qualifier. |
| bool is64Bit = PointeeType.isNull() ? PointersAre64Bit : |
| is64BitPointer(PointeeType.getQualifiers()); |
| if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType())) |
| Out << 'E'; |
| |
| if (Quals.hasRestrict()) |
| Out << 'I'; |
| |
| if (Quals.hasUnaligned() || |
| (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) |
| Out << 'F'; |
| } |
| |
| void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { |
| // <pointer-cv-qualifiers> ::= P # no qualifiers |
| // ::= Q # const |
| // ::= R # volatile |
| // ::= S # const volatile |
| bool HasConst = Quals.hasConst(), |
| HasVolatile = Quals.hasVolatile(); |
| |
| if (HasConst && HasVolatile) { |
| Out << 'S'; |
| } else if (HasVolatile) { |
| Out << 'R'; |
| } else if (HasConst) { |
| Out << 'Q'; |
| } else { |
| Out << 'P'; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, |
| SourceRange Range) { |
| // MSVC will backreference two canonically equivalent types that have slightly |
| // different manglings when mangled alone. |
| |
| // Decayed types do not match up with non-decayed versions of the same type. |
| // |
| // e.g. |
| // void (*x)(void) will not form a backreference with void x(void) |
| void *TypePtr; |
| if (const auto *DT = T->getAs<DecayedType>()) { |
| QualType OriginalType = DT->getOriginalType(); |
| // All decayed ArrayTypes should be treated identically; as-if they were |
| // a decayed IncompleteArrayType. |
| if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) |
| OriginalType = getASTContext().getIncompleteArrayType( |
| AT->getElementType(), AT->getSizeModifier(), |
| AT->getIndexTypeCVRQualifiers()); |
| |
| TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); |
| // If the original parameter was textually written as an array, |
| // instead treat the decayed parameter like it's const. |
| // |
| // e.g. |
| // int [] -> int * const |
| if (OriginalType->isArrayType()) |
| T = T.withConst(); |
| } else { |
| TypePtr = T.getCanonicalType().getAsOpaquePtr(); |
| } |
| |
| ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); |
| |
| if (Found == FunArgBackReferences.end()) { |
| size_t OutSizeBefore = Out.tell(); |
| |
| mangleType(T, Range, QMM_Drop); |
| |
| // See if it's worth creating a back reference. |
| // Only types longer than 1 character are considered |
| // and only 10 back references slots are available: |
| bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); |
| if (LongerThanOneChar && FunArgBackReferences.size() < 10) { |
| size_t Size = FunArgBackReferences.size(); |
| FunArgBackReferences[TypePtr] = Size; |
| } |
| } else { |
| Out << Found->second; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::manglePassObjectSizeArg( |
| const PassObjectSizeAttr *POSA) { |
| int Type = POSA->getType(); |
| bool Dynamic = POSA->isDynamic(); |
| |
| auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first; |
| auto *TypePtr = (const void *)&*Iter; |
| ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); |
| |
| if (Found == FunArgBackReferences.end()) { |
| std::string Name = |
| Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size"; |
| mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"}); |
| |
| if (FunArgBackReferences.size() < 10) { |
| size_t Size = FunArgBackReferences.size(); |
| FunArgBackReferences[TypePtr] = Size; |
| } |
| } else { |
| Out << Found->second; |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, |
| Qualifiers Quals, |
| SourceRange Range) { |
| // Address space is mangled as an unqualified templated type in the __clang |
| // namespace. The demangled version of this is: |
| // In the case of a language specific address space: |
| // __clang::struct _AS[language_addr_space]<Type> |
| // where: |
| // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> |
| // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
| // "private"| "generic" | "device" | "host" ] |
| // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
| // Note that the above were chosen to match the Itanium mangling for this. |
| // |
| // In the case of a non-language specific address space: |
| // __clang::struct _AS<TargetAS, Type> |
| assert(Quals.hasAddressSpace() && "Not valid without address space"); |
| llvm::SmallString<32> ASMangling; |
| llvm::raw_svector_ostream Stream(ASMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| Stream << "?$"; |
| |
| LangAS AS = Quals.getAddressSpace(); |
| if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
| unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
| Extra.mangleSourceName("_AS"); |
| Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS)); |
| } else { |
| switch (AS) { |
| default: |
| llvm_unreachable("Not a language specific address space"); |
| case LangAS::opencl_global: |
| Extra.mangleSourceName("_ASCLglobal"); |
| break; |
| case LangAS::opencl_global_device: |
| Extra.mangleSourceName("_ASCLdevice"); |
| break; |
| case LangAS::opencl_global_host: |
| Extra.mangleSourceName("_ASCLhost"); |
| break; |
| case LangAS::opencl_local: |
| Extra.mangleSourceName("_ASCLlocal"); |
| break; |
| case LangAS::opencl_constant: |
| Extra.mangleSourceName("_ASCLconstant"); |
| break; |
| case LangAS::opencl_private: |
| Extra.mangleSourceName("_ASCLprivate"); |
| break; |
| case LangAS::opencl_generic: |
| Extra.mangleSourceName("_ASCLgeneric"); |
| break; |
| case LangAS::cuda_device: |
| Extra.mangleSourceName("_ASCUdevice"); |
| break; |
| case LangAS::cuda_constant: |
| Extra.mangleSourceName("_ASCUconstant"); |
| break; |
| case LangAS::cuda_shared: |
| Extra.mangleSourceName("_ASCUshared"); |
| break; |
| case LangAS::ptr32_sptr: |
| case LangAS::ptr32_uptr: |
| case LangAS::ptr64: |
| llvm_unreachable("don't mangle ptr address spaces with _AS"); |
| } |
| } |
| |
| Extra.mangleType(T, Range, QMM_Escape); |
| mangleQualifiers(Qualifiers(), false); |
| mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"}); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, |
| QualifierMangleMode QMM) { |
| // Don't use the canonical types. MSVC includes things like 'const' on |
| // pointer arguments to function pointers that canonicalization strips away. |
| T = T.getDesugaredType(getASTContext()); |
| Qualifiers Quals = T.getLocalQualifiers(); |
| |
| if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { |
| // If there were any Quals, getAsArrayType() pushed them onto the array |
| // element type. |
| if (QMM == QMM_Mangle) |
| Out << 'A'; |
| else if (QMM == QMM_Escape || QMM == QMM_Result) |
| Out << "$$B"; |
| mangleArrayType(AT); |
| return; |
| } |
| |
| bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || |
| T->isReferenceType() || T->isBlockPointerType(); |
| |
| switch (QMM) { |
| case QMM_Drop: |
| if (Quals.hasObjCLifetime()) |
| Quals = Quals.withoutObjCLifetime(); |
| break; |
| case QMM_Mangle: |
| if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { |
| Out << '6'; |
| mangleFunctionType(FT); |
| return; |
| } |
| mangleQualifiers(Quals, false); |
| break; |
| case QMM_Escape: |
| if (!IsPointer && Quals) { |
| Out << "$$C"; |
| mangleQualifiers(Quals, false); |
| } |
| break; |
| case QMM_Result: |
| // Presence of __unaligned qualifier shouldn't affect mangling here. |
| Quals.removeUnaligned(); |
| if (Quals.hasObjCLifetime()) |
| Quals = Quals.withoutObjCLifetime(); |
| if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { |
| Out << '?'; |
| mangleQualifiers(Quals, false); |
| } |
| break; |
| } |
| |
| const Type *ty = T.getTypePtr(); |
| |
| switch (ty->getTypeClass()) { |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
| return; |
| #define TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| mangleType(cast<CLASS##Type>(ty), Quals, Range); \ |
| break; |
| #include "clang/AST/TypeNodes.inc" |
| #undef ABSTRACT_TYPE |
| #undef NON_CANONICAL_TYPE |
| #undef TYPE |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, |
| SourceRange Range) { |
| // <type> ::= <builtin-type> |
| // <builtin-type> ::= X # void |
| // ::= C # signed char |
| // ::= D # char |
| // ::= E # unsigned char |
| // ::= F # short |
| // ::= G # unsigned short (or wchar_t if it's not a builtin) |
| // ::= H # int |
| // ::= I # unsigned int |
| // ::= J # long |
| // ::= K # unsigned long |
| // L # <none> |
| // ::= M # float |
| // ::= N # double |
| // ::= O # long double (__float80 is mangled differently) |
| // ::= _J # long long, __int64 |
| // ::= _K # unsigned long long, __int64 |
| // ::= _L # __int128 |
| // ::= _M # unsigned __int128 |
| // ::= _N # bool |
| // _O # <array in parameter> |
| // ::= _Q # char8_t |
| // ::= _S # char16_t |
| // ::= _T # __float80 (Intel) |
| // ::= _U # char32_t |
| // ::= _W # wchar_t |
| // ::= _Z # __float80 (Digital Mars) |
| switch (T->getKind()) { |
| case BuiltinType::Void: |
| Out << 'X'; |
| break; |
| case BuiltinType::SChar: |
| Out << 'C'; |
| break; |
| case BuiltinType::Char_U: |
| case BuiltinType::Char_S: |
| Out << 'D'; |
| break; |
| case BuiltinType::UChar: |
| Out << 'E'; |
| break; |
| case BuiltinType::Short: |
| Out << 'F'; |
| break; |
| case BuiltinType::UShort: |
| Out << 'G'; |
| break; |
| case BuiltinType::Int: |
| Out << 'H'; |
| break; |
| case BuiltinType::UInt: |
| Out << 'I'; |
| break; |
| case BuiltinType::Long: |
| Out << 'J'; |
| break; |
| case BuiltinType::ULong: |
| Out << 'K'; |
| break; |
| case BuiltinType::Float: |
| Out << 'M'; |
| break; |
| case BuiltinType::Double: |
| Out << 'N'; |
| break; |
| // TODO: Determine size and mangle accordingly |
| case BuiltinType::LongDouble: |
| Out << 'O'; |
| break; |
| case BuiltinType::LongLong: |
| Out << "_J"; |
| break; |
| case BuiltinType::ULongLong: |
| Out << "_K"; |
| break; |
| case BuiltinType::Int128: |
| Out << "_L"; |
| break; |
| case BuiltinType::UInt128: |
| Out << "_M"; |
| break; |
| case BuiltinType::Bool: |
| Out << "_N"; |
| break; |
| case BuiltinType::Char8: |
| Out << "_Q"; |
| break; |
| case BuiltinType::Char16: |
| Out << "_S"; |
| break; |
| case BuiltinType::Char32: |
| Out << "_U"; |
| break; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: |
| Out << "_W"; |
| break; |
| |
| #define BUILTIN_TYPE(Id, SingletonId) |
| #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/AST/BuiltinTypes.def" |
| case BuiltinType::Dependent: |
| llvm_unreachable("placeholder types shouldn't get to name mangling"); |
| |
| case BuiltinType::ObjCId: |
| mangleArtificialTagType(TTK_Struct, "objc_object"); |
| break; |
| case BuiltinType::ObjCClass: |
| mangleArtificialTagType(TTK_Struct, "objc_class"); |
| break; |
| case BuiltinType::ObjCSel: |
| mangleArtificialTagType(TTK_Struct, "objc_selector"); |
| break; |
| |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: \ |
| Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ |
| break; |
| #include "clang/Basic/OpenCLImageTypes.def" |
| case BuiltinType::OCLSampler: |
| Out << "PA"; |
| mangleArtificialTagType(TTK_Struct, "ocl_sampler"); |
| break; |
| case BuiltinType::OCLEvent: |
| Out << "PA"; |
| mangleArtificialTagType(TTK_Struct, "ocl_event"); |
| break; |
| case BuiltinType::OCLClkEvent: |
| Out << "PA"; |
| mangleArtificialTagType(TTK_Struct, "ocl_clkevent"); |
| break; |
| case BuiltinType::OCLQueue: |
| Out << "PA"; |
| mangleArtificialTagType(TTK_Struct, "ocl_queue"); |
| break; |
| case BuiltinType::OCLReserveID: |
| Out << "PA"; |
| mangleArtificialTagType(TTK_Struct, "ocl_reserveid"); |
| break; |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| case BuiltinType::Id: \ |
| mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \ |
| break; |
| #include "clang/Basic/OpenCLExtensionTypes.def" |
| |
| case BuiltinType::NullPtr: |
| Out << "$$T"; |
| break; |
| |
| case BuiltinType::Float16: |
| mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"}); |
| break; |
| |
| case BuiltinType::Half: |
| mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"}); |
| break; |
| |
| #define SVE_TYPE(Name, Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/AArch64SVEACLETypes.def" |
| #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/PPCTypes.def" |
| #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| #include "clang/Basic/RISCVVTypes.def" |
| case BuiltinType::ShortAccum: |
| case BuiltinType::Accum: |
| case BuiltinType::LongAccum: |
| case BuiltinType::UShortAccum: |
| case BuiltinType::UAccum: |
| case BuiltinType::ULongAccum: |
| case BuiltinType::ShortFract: |
| case BuiltinType::Fract: |
| case BuiltinType::LongFract: |
| case BuiltinType::UShortFract: |
| case BuiltinType::UFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatShortAccum: |
| case BuiltinType::SatAccum: |
| case BuiltinType::SatLongAccum: |
| case BuiltinType::SatUShortAccum: |
| case BuiltinType::SatUAccum: |
| case BuiltinType::SatULongAccum: |
| case BuiltinType::SatShortFract: |
| case BuiltinType::SatFract: |
| case BuiltinType::SatLongFract: |
| case BuiltinType::SatUShortFract: |
| case BuiltinType::SatUFract: |
| case BuiltinType::SatULongFract: |
| case BuiltinType::BFloat16: |
| case BuiltinType::Ibm128: |
| case BuiltinType::Float128: { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; |
| break; |
| } |
| } |
| } |
| |
| // <type> ::= <function-type> |
| void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, |
| SourceRange) { |
| // Structors only appear in decls, so at this point we know it's not a |
| // structor type. |
| // FIXME: This may not be lambda-friendly. |
| if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { |
| Out << "$$A8@@"; |
| mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); |
| } else { |
| Out << "$$A6"; |
| mangleFunctionType(T); |
| } |
| } |
| void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, |
| Qualifiers, SourceRange) { |
| Out << "$$A6"; |
| mangleFunctionType(T); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, |
| const FunctionDecl *D, |
| bool ForceThisQuals, |
| bool MangleExceptionSpec) { |
| // <function-type> ::= <this-cvr-qualifiers> <calling-convention> |
| // <return-type> <argument-list> <throw-spec> |
| const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); |
| |
| SourceRange Range; |
| if (D) Range = D->getSourceRange(); |
| |
| bool IsInLambda = false; |
| bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; |
| CallingConv CC = T->getCallConv(); |
| if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { |
| if (MD->getParent()->isLambda()) |
| IsInLambda = true; |
| if (MD->isInstance()) |
| HasThisQuals = true; |
| if (isa<CXXDestructorDecl>(MD)) { |
| IsStructor = true; |
| } else if (isa<CXXConstructorDecl>(MD)) { |
| IsStructor = true; |
| IsCtorClosure = (StructorType == Ctor_CopyingClosure || |
| StructorType == Ctor_DefaultClosure) && |
| isStructorDecl(MD); |
| if (IsCtorClosure) |
| CC = getASTContext().getDefaultCallingConvention( |
| /*IsVariadic=*/false, /*IsCXXMethod=*/true); |
| } |
| } |
| |
| // If this is a C++ instance method, mangle the CVR qualifiers for the |
| // this pointer. |
| if (HasThisQuals) { |
| Qualifiers Quals = Proto->getMethodQuals(); |
| manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); |
| mangleRefQualifier(Proto->getRefQualifier()); |
| mangleQualifiers(Quals, /*IsMember=*/false); |
| } |
| |
| mangleCallingConvention(CC); |
| |
| // <return-type> ::= <type> |
| // ::= @ # structors (they have no declared return type) |
| if (IsStructor) { |
| if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { |
| // The scalar deleting destructor takes an extra int argument which is not |
| // reflected in the AST. |
| if (StructorType == Dtor_Deleting) { |
| Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); |
| return; |
| } |
| // The vbase destructor returns void which is not reflected in the AST. |
| if (StructorType == Dtor_Complete) { |
| Out << "XXZ"; |
| return; |
| } |
| } |
| if (IsCtorClosure) { |
| // Default constructor closure and copy constructor closure both return |
| // void. |
| Out << 'X'; |
| |
| if (StructorType == Ctor_DefaultClosure) { |
| // Default constructor closure always has no arguments. |
| Out << 'X'; |
| } else if (StructorType == Ctor_CopyingClosure) { |
| // Copy constructor closure always takes an unqualified reference. |
| mangleFunctionArgumentType(getASTContext().getLValueReferenceType( |
| Proto->getParamType(0) |
| ->getAs<LValueReferenceType>() |
| ->getPointeeType(), |
| /*SpelledAsLValue=*/true), |
| Range); |
| Out << '@'; |
| } else { |
| llvm_unreachable("unexpected constructor closure!"); |
| } |
| Out << 'Z'; |
| return; |
| } |
| Out << '@'; |
| } else if (IsInLambda && D && isa<CXXConversionDecl>(D)) { |
| // The only lambda conversion operators are to function pointers, which |
| // can differ by their calling convention and are typically deduced. So |
| // we make sure that this type gets mangled properly. |
| mangleType(T->getReturnType(), Range, QMM_Result); |
| } else { |
| QualType ResultType = T->getReturnType(); |
| if (IsInLambda && isa<CXXConversionDecl>(D)) { |
| // The only lambda conversion operators are to function pointers, which |
| // can differ by their calling convention and are typically deduced. So |
| // we make sure that this type gets mangled properly. |
| mangleType(ResultType, Range, QMM_Result); |
| } else if (const auto *AT = dyn_cast_or_null<AutoType>( |
| ResultType->getContainedAutoType())) { |
| Out << '?'; |
| mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); |
| Out << '?'; |
| assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && |
| "shouldn't need to mangle __auto_type!"); |
| mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); |
| Out << '@'; |
| } else if (IsInLambda) { |
| Out << '@'; |
| } else { |
| if (ResultType->isVoidType()) |
| ResultType = ResultType.getUnqualifiedType(); |
| mangleType(ResultType, Range, QMM_Result); |
| } |
| } |
| |
| // <argument-list> ::= X # void |
| // ::= <type>+ @ |
| // ::= <type>* Z # varargs |
| if (!Proto) { |
| // Function types without prototypes can arise when mangling a function type |
| // within an overloadable function in C. We mangle these as the absence of |
| // any parameter types (not even an empty parameter list). |
| Out << '@'; |
| } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
| Out << 'X'; |
| } else { |
| // Happens for function pointer type arguments for example. |
| for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
| mangleFunctionArgumentType(Proto->getParamType(I), Range); |
| // Mangle each pass_object_size parameter as if it's a parameter of enum |
| // type passed directly after the parameter with the pass_object_size |
| // attribute. The aforementioned enum's name is __pass_object_size, and we |
| // pretend it resides in a top-level namespace called __clang. |
| // |
| // FIXME: Is there a defined extension notation for the MS ABI, or is it |
| // necessary to just cross our fingers and hope this type+namespace |
| // combination doesn't conflict with anything? |
| if (D) |
| if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) |
| manglePassObjectSizeArg(P); |
| } |
| // <builtin-type> ::= Z # ellipsis |
| if (Proto->isVariadic()) |
| Out << 'Z'; |
| else |
| Out << '@'; |
| } |
| |
| if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && |
| getASTContext().getLangOpts().isCompatibleWithMSVC( |
| LangOptions::MSVC2017_5)) |
| mangleThrowSpecification(Proto); |
| else |
| Out << 'Z'; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { |
| // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' |
| // # pointer. in 64-bit mode *all* |
| // # 'this' pointers are 64-bit. |
| // ::= <global-function> |
| // <member-function> ::= A # private: near |
| // ::= B # private: far |
| // ::= C # private: static near |
| // ::= D # private: static far |
| // ::= E # private: virtual near |
| // ::= F # private: virtual far |
| // ::= I # protected: near |
| // ::= J # protected: far |
| // ::= K # protected: static near |
| // ::= L # protected: static far |
| // ::= M # protected: virtual near |
| // ::= N # protected: virtual far |
| // ::= Q # public: near |
| // ::= R # public: far |
| // ::= S # public: static near |
| // ::= T # public: static far |
| // ::= U # public: virtual near |
| // ::= V # public: virtual far |
| // <global-function> ::= Y # global near |
| // ::= Z # global far |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| bool IsVirtual = MD->isVirtual(); |
| // When mangling vbase destructor variants, ignore whether or not the |
| // underlying destructor was defined to be virtual. |
| if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && |
| StructorType == Dtor_Complete) { |
| IsVirtual = false; |
| } |
| switch (MD->getAccess()) { |
| case AS_none: |
| llvm_unreachable("Unsupported access specifier"); |
| case AS_private: |
| if (MD->isStatic()) |
| Out << 'C'; |
| else if (IsVirtual) |
| Out << 'E'; |
| else |
| Out << 'A'; |
| break; |
| case AS_protected: |
| if (MD->isStatic()) |
| Out << 'K'; |
| else if (IsVirtual) |
| Out << 'M'; |
| else |
| Out << 'I'; |
| break; |
| case AS_public: |
| if (MD->isStatic()) |
| Out << 'S'; |
| else if (IsVirtual) |
| Out << 'U'; |
| else |
| Out << 'Q'; |
| } |
| } else { |
| Out << 'Y'; |
| } |
| } |
| void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { |
| // <calling-convention> ::= A # __cdecl |
| // ::= B # __export __cdecl |
| // ::= C # __pascal |
| // ::= D # __export __pascal |
| // ::= E # __thiscall |
| // ::= F # __export __thiscall |
| // ::= G # __stdcall |
| // ::= H # __export __stdcall |
| // ::= I # __fastcall |
| // ::= J # __export __fastcall |
| // ::= Q # __vectorcall |
| // ::= S # __attribute__((__swiftcall__)) // Clang-only |
| // ::= T # __attribute__((__swiftasynccall__)) |
| // // Clang-only |
| // ::= w # __regcall |
| // The 'export' calling conventions are from a bygone era |
| // (*cough*Win16*cough*) when functions were declared for export with |
| // that keyword. (It didn't actually export them, it just made them so |
| // that they could be in a DLL and somebody from another module could call |
| // them.) |
| |
| switch (CC) { |
| default: |
| llvm_unreachable("Unsupported CC for mangling"); |
| case CC_Win64: |
| case CC_X86_64SysV: |
| case CC_C: Out << 'A'; break; |
| case CC_X86Pascal: Out << 'C'; break; |
| case CC_X86ThisCall: Out << 'E'; break; |
| case CC_X86StdCall: Out << 'G'; break; |
| case CC_X86FastCall: Out << 'I'; break; |
| case CC_X86VectorCall: Out << 'Q'; break; |
| case CC_Swift: Out << 'S'; break; |
| case CC_SwiftAsync: Out << 'W'; break; |
| case CC_PreserveMost: Out << 'U'; break; |
| case CC_X86RegCall: Out << 'w'; break; |
| } |
| } |
| void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { |
| mangleCallingConvention(T->getCallConv()); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleThrowSpecification( |
| const FunctionProtoType *FT) { |
| // <throw-spec> ::= Z # (default) |
| // ::= _E # noexcept |
| if (FT->canThrow()) |
| Out << 'Z'; |
| else |
| Out << "_E"; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, |
| Qualifiers, SourceRange Range) { |
| // Probably should be mangled as a template instantiation; need to see what |
| // VC does first. |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this unresolved dependent type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> |
| // <union-type> ::= T <name> |
| // <struct-type> ::= U <name> |
| // <class-type> ::= V <name> |
| // <enum-type> ::= W4 <name> |
| void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { |
| switch (TTK) { |
| case TTK_Union: |
| Out << 'T'; |
| break; |
| case TTK_Struct: |
| case TTK_Interface: |
| Out << 'U'; |
| break; |
| case TTK_Class: |
| Out << 'V'; |
| break; |
| case TTK_Enum: |
| Out << "W4"; |
| break; |
| } |
| } |
| void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, |
| SourceRange) { |
| mangleType(cast<TagType>(T)->getDecl()); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, |
| SourceRange) { |
| mangleType(cast<TagType>(T)->getDecl()); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { |
| mangleTagTypeKind(TD->getTagKind()); |
| mangleName(TD); |
| } |
| |
| // If you add a call to this, consider updating isArtificialTagType() too. |
| void MicrosoftCXXNameMangler::mangleArtificialTagType( |
| TagTypeKind TK, StringRef UnqualifiedName, |
| ArrayRef<StringRef> NestedNames) { |
| // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ |
| mangleTagTypeKind(TK); |
| |
| // Always start with the unqualified name. |
| mangleSourceName(UnqualifiedName); |
| |
| for (StringRef N : llvm::reverse(NestedNames)) |
| mangleSourceName(N); |
| |
| // Terminate the whole name with an '@'. |
| Out << '@'; |
| } |
| |
| // <type> ::= <array-type> |
| // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> |
| // [Y <dimension-count> <dimension>+] |
| // <element-type> # as global, E is never required |
| // It's supposed to be the other way around, but for some strange reason, it |
| // isn't. Today this behavior is retained for the sole purpose of backwards |
| // compatibility. |
| void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { |
| // This isn't a recursive mangling, so now we have to do it all in this |
| // one call. |
| manglePointerCVQualifiers(T->getElementType().getQualifiers()); |
| mangleType(T->getElementType(), SourceRange()); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, |
| SourceRange) { |
| llvm_unreachable("Should have been special cased"); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, |
| SourceRange) { |
| llvm_unreachable("Should have been special cased"); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, |
| Qualifiers, SourceRange) { |
| llvm_unreachable("Should have been special cased"); |
| } |
| void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, |
| Qualifiers, SourceRange) { |
| llvm_unreachable("Should have been special cased"); |
| } |
| void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { |
| QualType ElementTy(T, 0); |
| SmallVector<llvm::APInt, 3> Dimensions; |
| for (;;) { |
| if (ElementTy->isConstantArrayType()) { |
| const ConstantArrayType *CAT = |
| getASTContext().getAsConstantArrayType(ElementTy); |
| Dimensions.push_back(CAT->getSize()); |
| ElementTy = CAT->getElementType(); |
| } else if (ElementTy->isIncompleteArrayType()) { |
| const IncompleteArrayType *IAT = |
| getASTContext().getAsIncompleteArrayType(ElementTy); |
| Dimensions.push_back(llvm::APInt(32, 0)); |
| ElementTy = IAT->getElementType(); |
| } else if (ElementTy->isVariableArrayType()) { |
| const VariableArrayType *VAT = |
| getASTContext().getAsVariableArrayType(ElementTy); |
| Dimensions.push_back(llvm::APInt(32, 0)); |
| ElementTy = VAT->getElementType(); |
| } else if (ElementTy->isDependentSizedArrayType()) { |
| // The dependent expression has to be folded into a constant (TODO). |
| const DependentSizedArrayType *DSAT = |
| getASTContext().getAsDependentSizedArrayType(ElementTy); |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this dependent-length array yet"); |
| Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) |
| << DSAT->getBracketsRange(); |
| return; |
| } else { |
| break; |
| } |
| } |
| Out << 'Y'; |
| // <dimension-count> ::= <number> # number of extra dimensions |
| mangleNumber(Dimensions.size()); |
| for (const llvm::APInt &Dimension : Dimensions) |
| mangleNumber(Dimension.getLimitedValue()); |
| mangleType(ElementTy, SourceRange(), QMM_Escape); |
| } |
| |
| // <type> ::= <pointer-to-member-type> |
| // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> |
| // <class name> <type> |
| void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, |
| Qualifiers Quals, SourceRange Range) { |
| QualType PointeeType = T->getPointeeType(); |
| manglePointerCVQualifiers(Quals); |
| manglePointerExtQualifiers(Quals, PointeeType); |
| if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { |
| Out << '8'; |
| mangleName(T->getClass()->castAs<RecordType>()->getDecl()); |
| mangleFunctionType(FPT, nullptr, true); |
| } else { |
| mangleQualifiers(PointeeType.getQualifiers(), true); |
| mangleName(T->getClass()->castAs<RecordType>()->getDecl()); |
| mangleType(PointeeType, Range, QMM_Drop); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, |
| Qualifiers, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this template type parameter type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, |
| Qualifiers, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this substituted parameter pack yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| // <type> ::= <pointer-type> |
| // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> |
| // # the E is required for 64-bit non-static pointers |
| void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, |
| SourceRange Range) { |
| QualType PointeeType = T->getPointeeType(); |
| manglePointerCVQualifiers(Quals); |
| manglePointerExtQualifiers(Quals, PointeeType); |
| |
| // For pointer size address spaces, go down the same type mangling path as |
| // non address space types. |
| LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace(); |
| if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default) |
| mangleType(PointeeType, Range); |
| else |
| mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, |
| Qualifiers Quals, SourceRange Range) { |
| QualType PointeeType = T->getPointeeType(); |
| switch (Quals.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| break; |
| case Qualifiers::OCL_Autoreleasing: |
| case Qualifiers::OCL_Strong: |
| case Qualifiers::OCL_Weak: |
| return mangleObjCLifetime(PointeeType, Quals, Range); |
| } |
| manglePointerCVQualifiers(Quals); |
| manglePointerExtQualifiers(Quals, PointeeType); |
| mangleType(PointeeType, Range); |
| } |
| |
| // <type> ::= <reference-type> |
| // <reference-type> ::= A E? <cvr-qualifiers> <type> |
| // # the E is required for 64-bit non-static lvalue references |
| void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, |
| Qualifiers Quals, SourceRange Range) { |
| QualType PointeeType = T->getPointeeType(); |
| assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); |
| Out << 'A'; |
| manglePointerExtQualifiers(Quals, PointeeType); |
| mangleType(PointeeType, Range); |
| } |
| |
| // <type> ::= <r-value-reference-type> |
| // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> |
| // # the E is required for 64-bit non-static rvalue references |
| void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, |
| Qualifiers Quals, SourceRange Range) { |
| QualType PointeeType = T->getPointeeType(); |
| assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); |
| Out << "$$Q"; |
| manglePointerExtQualifiers(Quals, PointeeType); |
| mangleType(PointeeType, Range); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, |
| SourceRange Range) { |
| QualType ElementType = T->getElementType(); |
| |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| Stream << "?$"; |
| Extra.mangleSourceName("_Complex"); |
| Extra.mangleType(ElementType, Range, QMM_Escape); |
| |
| mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); |
| } |
| |
| // Returns true for types that mangleArtificialTagType() gets called for with |
| // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's |
| // mangling matters. |
| // (It doesn't matter for Objective-C types and the like that cl.exe doesn't |
| // support.) |
| bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { |
| const Type *ty = T.getTypePtr(); |
| switch (ty->getTypeClass()) { |
| default: |
| return false; |
| |
| case Type::Vector: { |
| // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, |
| // but since mangleType(VectorType*) always calls mangleArtificialTagType() |
| // just always return true (the other vector types are clang-only). |
| return true; |
| } |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, |
| SourceRange Range) { |
| const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>(); |
| assert(ET && "vectors with non-builtin elements are unsupported"); |
| uint64_t Width = getASTContext().getTypeSize(T); |
| // Pattern match exactly the typedefs in our intrinsic headers. Anything that |
| // doesn't match the Intel types uses a custom mangling below. |
| size_t OutSizeBefore = Out.tell(); |
| if (!isa<ExtVectorType>(T)) { |
| if (getASTContext().getTargetInfo().getTriple().isX86()) { |
| if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { |
| mangleArtificialTagType(TTK_Union, "__m64"); |
| } else if (Width >= 128) { |
| if (ET->getKind() == BuiltinType::Float) |
| mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width)); |
| else if (ET->getKind() == BuiltinType::LongLong) |
| mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i'); |
| else if (ET->getKind() == BuiltinType::Double) |
| mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd'); |
| } |
| } |
| } |
| |
| bool IsBuiltin = Out.tell() != OutSizeBefore; |
| if (!IsBuiltin) { |
| // The MS ABI doesn't have a special mangling for vector types, so we define |
| // our own mangling to handle uses of __vector_size__ on user-specified |
| // types, and for extensions like __v4sf. |
| |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| Stream << "?$"; |
| Extra.mangleSourceName("__vector"); |
| Extra.mangleType(QualType(ET, 0), Range, QMM_Escape); |
| Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements())); |
| |
| mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"}); |
| } |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, |
| Qualifiers Quals, SourceRange Range) { |
| mangleType(static_cast<const VectorType *>(T), Quals, Range); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, |
| Qualifiers, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "cannot mangle this dependent-sized vector type yet"); |
| Diags.Report(Range.getBegin(), DiagID) << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, |
| Qualifiers, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this dependent-sized extended vector type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T, |
| Qualifiers quals, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "Cannot mangle this matrix type yet"); |
| Diags.Report(Range.getBegin(), DiagID) << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T, |
| Qualifiers quals, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "Cannot mangle this dependent-sized matrix type yet"); |
| Diags.Report(Range.getBegin(), DiagID) << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, |
| Qualifiers, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, |
| "cannot mangle this dependent address space type yet"); |
| Diags.Report(Range.getBegin(), DiagID) << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, |
| SourceRange) { |
| // ObjC interfaces have structs underlying them. |
| mangleTagTypeKind(TTK_Struct); |
| mangleName(T->getDecl()); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, |
| Qualifiers Quals, SourceRange Range) { |
| if (T->isKindOfType()) |
| return mangleObjCKindOfType(T, Quals, Range); |
| |
| if (T->qual_empty() && !T->isSpecialized()) |
| return mangleType(T->getBaseType(), Range, QMM_Drop); |
| |
| ArgBackRefMap OuterFunArgsContext; |
| ArgBackRefMap OuterTemplateArgsContext; |
| BackRefVec OuterTemplateContext; |
| |
| FunArgBackReferences.swap(OuterFunArgsContext); |
| TemplateArgBackReferences.swap(OuterTemplateArgsContext); |
| NameBackReferences.swap(OuterTemplateContext); |
| |
| mangleTagTypeKind(TTK_Struct); |
| |
| Out << "?$"; |
| if (T->isObjCId()) |
| mangleSourceName("objc_object"); |
| else if (T->isObjCClass()) |
| mangleSourceName("objc_class"); |
| else |
| mangleSourceName(T->getInterface()->getName()); |
| |
| for (const auto &Q : T->quals()) |
| mangleObjCProtocol(Q); |
| |
| if (T->isSpecialized()) |
| for (const auto &TA : T->getTypeArgs()) |
| mangleType(TA, Range, QMM_Drop); |
| |
| Out << '@'; |
| |
| Out << '@'; |
| |
| FunArgBackReferences.swap(OuterFunArgsContext); |
| TemplateArgBackReferences.swap(OuterTemplateArgsContext); |
| NameBackReferences.swap(OuterTemplateContext); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, |
| Qualifiers Quals, SourceRange Range) { |
| QualType PointeeType = T->getPointeeType(); |
| manglePointerCVQualifiers(Quals); |
| manglePointerExtQualifiers(Quals, PointeeType); |
| |
| Out << "_E"; |
| |
| mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, |
| Qualifiers, SourceRange) { |
| llvm_unreachable("Cannot mangle injected class name type."); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, |
| Qualifiers, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this template specialization type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this dependent name type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType( |
| const DependentTemplateSpecializationType *T, Qualifiers, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this dependent template specialization type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this pack expansion yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this typeof(type) yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this typeof(expression) yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, |
| SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this decltype() yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, |
| Qualifiers, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this unary transform type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, |
| SourceRange Range) { |
| assert(T->getDeducedType().isNull() && "expecting a dependent type!"); |
| |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this 'auto' type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType( |
| const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { |
| assert(T->getDeducedType().isNull() && "expecting a dependent type!"); |
| |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot mangle this deduced class template specialization type yet"); |
| Diags.Report(Range.getBegin(), DiagID) |
| << Range; |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, |
| SourceRange Range) { |
| QualType ValueType = T->getValueType(); |
| |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| Stream << "?$"; |
| Extra.mangleSourceName("_Atomic"); |
| Extra.mangleType(ValueType, Range, QMM_Escape); |
| |
| mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, |
| SourceRange Range) { |
| QualType ElementType = T->getElementType(); |
| |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| Stream << "?$"; |
| Extra.mangleSourceName("ocl_pipe"); |
| Extra.mangleType(ElementType, Range, QMM_Escape); |
| Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly())); |
| |
| mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD, |
| raw_ostream &Out) { |
| const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); |
| PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
| getASTContext().getSourceManager(), |
| "Mangling declaration"); |
| |
| msvc_hashing_ostream MHO(Out); |
| |
| if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { |
| auto Type = GD.getCtorType(); |
| MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type); |
| return mangler.mangle(GD); |
| } |
| |
| if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { |
| auto Type = GD.getDtorType(); |
| MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type); |
| return mangler.mangle(GD); |
| } |
| |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| return Mangler.mangle(GD); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const ExtIntType *T, Qualifiers, |
| SourceRange Range) { |
| llvm::SmallString<64> TemplateMangling; |
| llvm::raw_svector_ostream Stream(TemplateMangling); |
| MicrosoftCXXNameMangler Extra(Context, Stream); |
| Stream << "?$"; |
| if (T->isUnsigned()) |
| Extra.mangleSourceName("_UExtInt"); |
| else |
| Extra.mangleSourceName("_ExtInt"); |
| Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits())); |
| |
| mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"}); |
| } |
| |
| void MicrosoftCXXNameMangler::mangleType(const DependentExtIntType *T, |
| Qualifiers, SourceRange Range) { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID( |
| DiagnosticsEngine::Error, "cannot mangle this DependentExtInt type yet"); |
| Diags.Report(Range.getBegin(), DiagID) << Range; |
| } |
| |
| // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | |
| // <virtual-adjustment> |
| // <no-adjustment> ::= A # private near |
| // ::= B # private far |
| // ::= I # protected near |
| // ::= J # protected far |
| // ::= Q # public near |
| // ::= R # public far |
| // <static-adjustment> ::= G <static-offset> # private near |
| // ::= H <static-offset> # private far |
| // ::= O <static-offset> # protected near |
| // ::= P <static-offset> # protected far |
| // ::= W <static-offset> # public near |
| // ::= X <static-offset> # public far |
| // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near |
| // ::= $1 <virtual-shift> <static-offset> # private far |
| // ::= $2 <virtual-shift> <static-offset> # protected near |
| // ::= $3 <virtual-shift> <static-offset> # protected far |
| // ::= $4 <virtual-shift> <static-offset> # public near |
| // ::= $5 <virtual-shift> <static-offset> # public far |
| // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> |
| // <vtordisp-shift> ::= <offset-to-vtordisp> |
| // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> |
| // <offset-to-vtordisp> |
| static void mangleThunkThisAdjustment(AccessSpecifier AS, |
| const ThisAdjustment &Adjustment, |
| MicrosoftCXXNameMangler &Mangler, |
| raw_ostream &Out) { |
| if (!Adjustment.Virtual.isEmpty()) { |
| Out << '$'; |
| char AccessSpec; |
| switch (AS) { |
| case AS_none: |
| llvm_unreachable("Unsupported access specifier"); |
| case AS_private: |
| AccessSpec = '0'; |
| break; |
| case AS_protected: |
| AccessSpec = '2'; |
| break; |
| case AS_public: |
| AccessSpec = '4'; |
| } |
| if (Adjustment.Virtual.Microsoft.VBPtrOffset) { |
| Out << 'R' << AccessSpec; |
| Mangler.mangleNumber( |
| static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); |
| Mangler.mangleNumber( |
| static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); |
| Mangler.mangleNumber( |
| static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); |
| Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); |
| } else { |
| Out << AccessSpec; |
| Mangler.mangleNumber( |
| static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); |
| Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); |
| } |
| } else if (Adjustment.NonVirtual != 0) { |
| switch (AS) { |
| case AS_none: |
| llvm_unreachable("Unsupported access specifier"); |
| case AS_private: |
| Out << 'G'; |
| break; |
| case AS_protected: |
| Out << 'O'; |
| break; |
| case AS_public: |
| Out << 'W'; |
| } |
| Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); |
| } else { |
| switch (AS) { |
| case AS_none: |
| llvm_unreachable("Unsupported access specifier"); |
| case AS_private: |
| Out << 'A'; |
| break; |
| case AS_protected: |
| Out << 'I'; |
| break; |
| case AS_public: |
| Out << 'Q'; |
| } |
| } |
| } |
| |
| void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( |
| const CXXMethodDecl *MD, const MethodVFTableLocation &ML, |
| raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << '?'; |
| Mangler.mangleVirtualMemPtrThunk(MD, ML); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, |
| const ThunkInfo &Thunk, |
| raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << '?'; |
| Mangler.mangleName(MD); |
| |
| // Usually the thunk uses the access specifier of the new method, but if this |
| // is a covariant return thunk, then MSVC always uses the public access |
| // specifier, and we do the same. |
| AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; |
| mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO); |
| |
| if (!Thunk.Return.isEmpty()) |
| assert(Thunk.Method != nullptr && |
| "Thunk info should hold the overridee decl"); |
| |
| const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; |
| Mangler.mangleFunctionType( |
| DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXDtorThunk( |
| const CXXDestructorDecl *DD, CXXDtorType Type, |
| const ThisAdjustment &Adjustment, raw_ostream &Out) { |
| // FIXME: Actually, the dtor thunk should be emitted for vector deleting |
| // dtors rather than scalar deleting dtors. Just use the vector deleting dtor |
| // mangling manually until we support both deleting dtor types. |
| assert(Type == Dtor_Deleting); |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); |
| Mangler.getStream() << "??_E"; |
| Mangler.mangleName(DD->getParent()); |
| mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); |
| Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXVFTable( |
| const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
| raw_ostream &Out) { |
| // <mangled-name> ::= ?_7 <class-name> <storage-class> |
| // <cvr-qualifiers> [<name>] @ |
| // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
| // is always '6' for vftables. |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| if (Derived->hasAttr<DLLImportAttr>()) |
| Mangler.getStream() << "??_S"; |
| else |
| Mangler.getStream() << "??_7"; |
| Mangler.mangleName(Derived); |
| Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. |
| for (const CXXRecordDecl *RD : BasePath) |
| Mangler.mangleName(RD); |
| Mangler.getStream() << '@'; |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXVBTable( |
| const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
| raw_ostream &Out) { |
| // <mangled-name> ::= ?_8 <class-name> <storage-class> |
| // <cvr-qualifiers> [<name>] @ |
| // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
| // is always '7' for vbtables. |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "??_8"; |
| Mangler.mangleName(Derived); |
| Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const. |
| for (const CXXRecordDecl *RD : BasePath) |
| Mangler.mangleName(RD); |
| Mangler.getStream() << '@'; |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "??_R0"; |
| Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); |
| Mangler.getStream() << "@8"; |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, |
| raw_ostream &Out) { |
| MicrosoftCXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << '.'; |
| Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( |
| const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "??_K"; |
| Mangler.mangleName(SrcRD); |
| Mangler.getStream() << "$C"; |
| Mangler.mangleName(DstRD); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, |
| bool IsVolatile, |
| bool IsUnaligned, |
| uint32_t NumEntries, |
| raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "_TI"; |
| if (IsConst) |
| Mangler.getStream() << 'C'; |
| if (IsVolatile) |
| Mangler.getStream() << 'V'; |
| if (IsUnaligned) |
| Mangler.getStream() << 'U'; |
| Mangler.getStream() << NumEntries; |
| Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( |
| QualType T, uint32_t NumEntries, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "_CTA"; |
| Mangler.getStream() << NumEntries; |
| Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXCatchableType( |
| QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, |
| uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, |
| raw_ostream &Out) { |
| MicrosoftCXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_CT"; |
| |
| llvm::SmallString<64> RTTIMangling; |
| { |
| llvm::raw_svector_ostream Stream(RTTIMangling); |
| msvc_hashing_ostream MHO(Stream); |
| mangleCXXRTTI(T, MHO); |
| } |
| Mangler.getStream() << RTTIMangling; |
| |
| // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but |
| // both older and newer versions include it. |
| // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 |
| // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 |
| // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? |
| // Or 1912, 1913 already?). |
| bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( |
| LangOptions::MSVC2015) && |
| !getASTContext().getLangOpts().isCompatibleWithMSVC( |
| LangOptions::MSVC2017_7); |
| llvm::SmallString<64> CopyCtorMangling; |
| if (!OmitCopyCtor && CD) { |
| llvm::raw_svector_ostream Stream(CopyCtorMangling); |
| msvc_hashing_ostream MHO(Stream); |
| mangleCXXName(GlobalDecl(CD, CT), MHO); |
| } |
| Mangler.getStream() << CopyCtorMangling; |
| |
| Mangler.getStream() << Size; |
| if (VBPtrOffset == -1) { |
| if (NVOffset) { |
| Mangler.getStream() << NVOffset; |
| } |
| } else { |
| Mangler.getStream() << NVOffset; |
| Mangler.getStream() << VBPtrOffset; |
| Mangler.getStream() << VBIndex; |
| } |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( |
| const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, |
| uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "??_R1"; |
| Mangler.mangleNumber(NVOffset); |
| Mangler.mangleNumber(VBPtrOffset); |
| Mangler.mangleNumber(VBTableOffset); |
| Mangler.mangleNumber(Flags); |
| Mangler.mangleName(Derived); |
| Mangler.getStream() << "8"; |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( |
| const CXXRecordDecl *Derived, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "??_R2"; |
| Mangler.mangleName(Derived); |
| Mangler.getStream() << "8"; |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( |
| const CXXRecordDecl *Derived, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "??_R3"; |
| Mangler.mangleName(Derived); |
| Mangler.getStream() << "8"; |
| } |
| |
| void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( |
| const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
| raw_ostream &Out) { |
| // <mangled-name> ::= ?_R4 <class-name> <storage-class> |
| // <cvr-qualifiers> [<name>] @ |
| // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
| // is always '6' for vftables. |
| llvm::SmallString<64> VFTableMangling; |
| llvm::raw_svector_ostream Stream(VFTableMangling); |
| mangleCXXVFTable(Derived, BasePath, Stream); |
| |
| if (VFTableMangling.startswith("??@")) { |
| assert(VFTableMangling.endswith("@")); |
| Out << VFTableMangling << "??_R4@"; |
| return; |
| } |
| |
| assert(VFTableMangling.startswith("??_7") || |
| VFTableMangling.startswith("??_S")); |
| |
| Out << "??_R4" << VFTableMangling.str().drop_front(4); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleSEHFilterExpression( |
| const NamedDecl *EnclosingDecl, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| // The function body is in the same comdat as the function with the handler, |
| // so the numbering here doesn't have to be the same across TUs. |
| // |
| // <mangled-name> ::= ?filt$ <filter-number> @0 |
| Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; |
| Mangler.mangleName(EnclosingDecl); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( |
| const NamedDecl *EnclosingDecl, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| // The function body is in the same comdat as the function with the handler, |
| // so the numbering here doesn't have to be the same across TUs. |
| // |
| // <mangled-name> ::= ?fin$ <filter-number> @0 |
| Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; |
| Mangler.mangleName(EnclosingDecl); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) { |
| // This is just a made up unique string for the purposes of tbaa. undname |
| // does *not* know how to demangle it. |
| MicrosoftCXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << '?'; |
| Mangler.mangleType(T, SourceRange()); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleReferenceTemporary( |
| const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| |
| Mangler.getStream() << "?$RT" << ManglingNumber << '@'; |
| Mangler.mangle(VD, ""); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( |
| const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| |
| Mangler.getStream() << "?$TSS" << GuardNum << '@'; |
| Mangler.mangleNestedName(VD); |
| Mangler.getStream() << "@4HA"; |
| } |
| |
| void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, |
| raw_ostream &Out) { |
| // <guard-name> ::= ?_B <postfix> @5 <scope-depth> |
| // ::= ?__J <postfix> @5 <scope-depth> |
| // ::= ?$S <guard-num> @ <postfix> @4IA |
| |
| // The first mangling is what MSVC uses to guard static locals in inline |
| // functions. It uses a different mangling in external functions to support |
| // guarding more than 32 variables. MSVC rejects inline functions with more |
| // than 32 static locals. We don't fully implement the second mangling |
| // because those guards are not externally visible, and instead use LLVM's |
| // default renaming when creating a new guard variable. |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| |
| bool Visible = VD->isExternallyVisible(); |
| if (Visible) { |
| Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); |
| } else { |
| Mangler.getStream() << "?$S1@"; |
| } |
| unsigned ScopeDepth = 0; |
| if (Visible && !getNextDiscriminator(VD, ScopeDepth)) |
| // If we do not have a discriminator and are emitting a guard variable for |
| // use at global scope, then mangling the nested name will not be enough to |
| // remove ambiguities. |
| Mangler.mangle(VD, ""); |
| else |
| Mangler.mangleNestedName(VD); |
| Mangler.getStream() << (Visible ? "@5" : "@4IA"); |
| if (ScopeDepth) |
| Mangler.mangleNumber(ScopeDepth); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, |
| char CharCode, |
| raw_ostream &Out) { |
| msvc_hashing_ostream MHO(Out); |
| MicrosoftCXXNameMangler Mangler(*this, MHO); |
| Mangler.getStream() << "??__" << CharCode; |
| if (D->isStaticDataMember()) { |
| Mangler.getStream() << '?'; |
| Mangler.mangleName(D); |
| Mangler.mangleVariableEncoding(D); |
| Mangler.getStream() << "@@"; |
| } else { |
| Mangler.mangleName(D); |
| } |
| // This is the function class mangling. These stubs are global, non-variadic, |
| // cdecl functions that return void and take no args. |
| Mangler.getStream() << "YAXXZ"; |
| } |
| |
| void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, |
| raw_ostream &Out) { |
| // <initializer-name> ::= ?__E <name> YAXXZ |
| mangleInitFiniStub(D, 'E', Out); |
| } |
| |
| void |
| MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, |
| raw_ostream &Out) { |
| // <destructor-name> ::= ?__F <name> YAXXZ |
| mangleInitFiniStub(D, 'F', Out); |
| } |
| |
| void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, |
| raw_ostream &Out) { |
| // <char-type> ::= 0 # char, char16_t, char32_t |
| // # (little endian char data in mangling) |
| // ::= 1 # wchar_t (big endian char data in mangling) |
| // |
| // <literal-length> ::= <non-negative integer> # the length of the literal |
| // |
| // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including |
| // # trailing null bytes |
| // |
| // <encoded-string> ::= <simple character> # uninteresting character |
| // ::= '?$' <hex digit> <hex digit> # these two nibbles |
| // # encode the byte for the |
| // # character |
| // ::= '?' [a-z] # \xe1 - \xfa |
| // ::= '?' [A-Z] # \xc1 - \xda |
| // ::= '?' [0-9] # [,/\:. \n\t'-] |
| // |
| // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> |
| // <encoded-string> '@' |
| MicrosoftCXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "??_C@_"; |
| |
| // The actual string length might be different from that of the string literal |
| // in cases like: |
| // char foo[3] = "foobar"; |
| // char bar[42] = "foobar"; |
| // Where it is truncated or zero-padded to fit the array. This is the length |
| // used for mangling, and any trailing null-bytes also need to be mangled. |
| unsigned StringLength = getASTContext() |
| .getAsConstantArrayType(SL->getType()) |
| ->getSize() |
| .getZExtValue(); |
| unsigned StringByteLength = StringLength * SL->getCharByteWidth(); |
| |
| // <char-type>: The "kind" of string literal is encoded into the mangled name. |
| if (SL->isWide()) |
| Mangler.getStream() << '1'; |
| else |
| Mangler.getStream() << '0'; |
| |
| // <literal-length>: The next part of the mangled name consists of the length |
| // of the string in bytes. |
| Mangler.mangleNumber(StringByteLength); |
| |
| auto GetLittleEndianByte = [&SL](unsigned Index) { |
| unsigned CharByteWidth = SL->getCharByteWidth(); |
| if (Index / CharByteWidth >= SL->getLength()) |
| return static_cast<char>(0); |
| uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); |
| unsigned OffsetInCodeUnit = Index % CharByteWidth; |
| return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); |
| }; |
| |
| auto GetBigEndianByte = [&SL](unsigned Index) { |
| unsigned CharByteWidth = SL->getCharByteWidth(); |
| if (Index / CharByteWidth >= SL->getLength()) |
| return static_cast<char>(0); |
| uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); |
| unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); |
| return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); |
| }; |
| |
| // CRC all the bytes of the StringLiteral. |
| llvm::JamCRC JC; |
| for (unsigned I = 0, E = StringByteLength; I != E; ++I) |
| JC.update(GetLittleEndianByte(I)); |
| |
| // <encoded-crc>: The CRC is encoded utilizing the standard number mangling |
| // scheme. |
| Mangler.mangleNumber(JC.getCRC()); |
| |
| // <encoded-string>: The mangled name also contains the first 32 bytes |
| // (including null-terminator bytes) of the encoded StringLiteral. |
| // Each character is encoded by splitting them into bytes and then encoding |
| // the constituent bytes. |
| auto MangleByte = [&Mangler](char Byte) { |
| // There are five different manglings for characters: |
| // - [a-zA-Z0-9_$]: A one-to-one mapping. |
| // - ?[a-z]: The range from \xe1 to \xfa. |
| // - ?[A-Z]: The range from \xc1 to \xda. |
| // - ?[0-9]: The set of [,/\:. \n\t'-]. |
| // - ?$XX: A fallback which maps nibbles. |
| if (isAsciiIdentifierContinue(Byte, /*AllowDollar=*/true)) { |
| Mangler.getStream() << Byte; |
| } else if (isLetter(Byte & 0x7f)) { |
| Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); |
| } else { |
| const char SpecialChars[] = {',', '/', '\\', ':', '.', |
| ' ', '\n', '\t', '\'', '-'}; |
| const char *Pos = llvm::find(SpecialChars, Byte); |
| if (Pos != std::end(SpecialChars)) { |
| Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); |
| } else { |
| Mangler.getStream() << "?$"; |
| Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); |
| Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); |
| } |
| } |
| }; |
| |
| // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. |
| unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; |
| unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); |
| for (unsigned I = 0; I != NumBytesToMangle; ++I) { |
| if (SL->isWide()) |
| MangleByte(GetBigEndianByte(I)); |
| else |
| MangleByte(GetLittleEndianByte(I)); |
| } |
| |
| Mangler.getStream() << '@'; |
| } |
| |
| MicrosoftMangleContext * |
| MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { |
| return new MicrosoftMangleContextImpl(Context, Diags); |
| } |