blob: ac4846d63cad5a39b4708f627a3c038e475e3ded [file] [log] [blame]
//===- Deserializer.h - MLIR SPIR-V Deserializer ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the SPIR-V binary to MLIR SPIR-V module deserializer.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_TARGET_SPIRV_DESERIALIZER_H
#define MLIR_TARGET_SPIRV_DESERIALIZER_H
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/IR/Builders.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include <cstdint>
//===----------------------------------------------------------------------===//
// Utility Functions
//===----------------------------------------------------------------------===//
/// Decodes a string literal in `words` starting at `wordIndex`. Update the
/// latter to point to the position in words after the string literal.
static inline llvm::StringRef
decodeStringLiteral(llvm::ArrayRef<uint32_t> words, unsigned &wordIndex) {
llvm::StringRef str(reinterpret_cast<const char *>(words.data() + wordIndex));
wordIndex += str.size() / 4 + 1;
return str;
}
namespace mlir {
namespace spirv {
//===----------------------------------------------------------------------===//
// Utility Definitions
//===----------------------------------------------------------------------===//
/// A struct for containing a header block's merge and continue targets.
///
/// This struct is used to track original structured control flow info from
/// SPIR-V blob. This info will be used to create
/// spv.mlir.selection/spv.mlir.loop later.
struct BlockMergeInfo {
Block *mergeBlock;
Block *continueBlock; // nullptr for spv.mlir.selection
Location loc;
uint32_t control;
BlockMergeInfo(Location location, uint32_t control)
: mergeBlock(nullptr), continueBlock(nullptr), loc(location),
control(control) {}
BlockMergeInfo(Location location, uint32_t control, Block *m,
Block *c = nullptr)
: mergeBlock(m), continueBlock(c), loc(location), control(control) {}
};
/// A struct for containing OpLine instruction information.
struct DebugLine {
uint32_t fileID;
uint32_t line;
uint32_t col;
DebugLine(uint32_t fileIDNum, uint32_t lineNum, uint32_t colNum)
: fileID(fileIDNum), line(lineNum), col(colNum) {}
};
/// Map from a selection/loop's header block to its merge (and continue) target.
using BlockMergeInfoMap = DenseMap<Block *, BlockMergeInfo>;
/// A "deferred struct type" is a struct type with one or more member types not
/// known when the Deserializer first encounters the struct. This happens, for
/// example, with recursive structs where a pointer to the struct type is
/// forward declared through OpTypeForwardPointer in the SPIR-V module before
/// the struct declaration; the actual pointer to struct type should be defined
/// later through an OpTypePointer. For example, the following C struct:
///
/// struct A {
/// A* next;
/// };
///
/// would be represented in the SPIR-V module as:
///
/// OpName %A "A"
/// OpTypeForwardPointer %APtr Generic
/// %A = OpTypeStruct %APtr
/// %APtr = OpTypePointer Generic %A
///
/// This means that the spirv::StructType cannot be fully constructed directly
/// when the Deserializer encounters it. Instead we create a
/// DeferredStructTypeInfo that contains all the information we know about the
/// spirv::StructType. Once all forward references for the struct are resolved,
/// the struct's body is set with all member info.
struct DeferredStructTypeInfo {
spirv::StructType deferredStructType;
// A list of all unresolved member types for the struct. First element of each
// item is operand ID, second element is member index in the struct.
SmallVector<std::pair<uint32_t, unsigned>, 0> unresolvedMemberTypes;
// The list of member types. For unresolved members, this list contains
// place-holder empty types that will be updated later.
SmallVector<Type, 4> memberTypes;
SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo;
SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
};
/// A struct that collects the info needed to materialize/emit a
/// SpecConstantOperation op.
struct SpecConstOperationMaterializationInfo {
spirv::Opcode enclodesOpcode;
uint32_t resultTypeID;
SmallVector<uint32_t> enclosedOpOperands;
};
//===----------------------------------------------------------------------===//
// Deserializer Declaration
//===----------------------------------------------------------------------===//
/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words. The first word of an instruction
/// records the total number of words of that instruction using the 16
/// higher-order bits. So this deserializer uses that to get instruction
/// boundary and parse instructions and build a SPIR-V ModuleOp gradually.
///
// TODO: clean up created ops on errors
class Deserializer {
public:
/// Creates a deserializer for the given SPIR-V `binary` module.
/// The SPIR-V ModuleOp will be created into `context.
explicit Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context);
/// Deserializes the remembered SPIR-V binary module.
LogicalResult deserialize();
/// Collects the final SPIR-V ModuleOp.
OwningOpRef<spirv::ModuleOp> collect();
private:
//===--------------------------------------------------------------------===//
// Module structure
//===--------------------------------------------------------------------===//
/// Initializes the `module` ModuleOp in this deserializer instance.
OwningOpRef<spirv::ModuleOp> createModuleOp();
/// Processes SPIR-V module header in `binary`.
LogicalResult processHeader();
/// Processes the SPIR-V OpCapability with `operands` and updates bookkeeping
/// in the deserializer.
LogicalResult processCapability(ArrayRef<uint32_t> operands);
/// Processes the SPIR-V OpExtension with `operands` and updates bookkeeping
/// in the deserializer.
LogicalResult processExtension(ArrayRef<uint32_t> words);
/// Processes the SPIR-V OpExtInstImport with `operands` and updates
/// bookkeeping in the deserializer.
LogicalResult processExtInstImport(ArrayRef<uint32_t> words);
/// Attaches (version, capabilities, extensions) triple to `module` as an
/// attribute.
void attachVCETriple();
/// Processes the SPIR-V OpMemoryModel with `operands` and updates `module`.
LogicalResult processMemoryModel(ArrayRef<uint32_t> operands);
/// Process SPIR-V OpName with `operands`.
LogicalResult processName(ArrayRef<uint32_t> operands);
/// Processes an OpDecorate instruction.
LogicalResult processDecoration(ArrayRef<uint32_t> words);
// Processes an OpMemberDecorate instruction.
LogicalResult processMemberDecoration(ArrayRef<uint32_t> words);
/// Processes an OpMemberName instruction.
LogicalResult processMemberName(ArrayRef<uint32_t> words);
/// Gets the function op associated with a result <id> of OpFunction.
spirv::FuncOp getFunction(uint32_t id) { return funcMap.lookup(id); }
/// Processes the SPIR-V function at the current `offset` into `binary`.
/// The operands to the OpFunction instruction is passed in as ``operands`.
/// This method processes each instruction inside the function and dispatches
/// them to their handler method accordingly.
LogicalResult processFunction(ArrayRef<uint32_t> operands);
/// Processes OpFunctionEnd and finalizes function. This wires up block
/// argument created from OpPhi instructions and also structurizes control
/// flow.
LogicalResult processFunctionEnd(ArrayRef<uint32_t> operands);
/// Gets the constant's attribute and type associated with the given <id>.
Optional<std::pair<Attribute, Type>> getConstant(uint32_t id);
/// Gets the info needed to materialize the spec constant operation op
/// associated with the given <id>.
Optional<SpecConstOperationMaterializationInfo>
getSpecConstantOperation(uint32_t id);
/// Gets the constant's integer attribute with the given <id>. Returns a
/// null IntegerAttr if the given is not registered or does not correspond
/// to an integer constant.
IntegerAttr getConstantInt(uint32_t id);
/// Returns a symbol to be used for the function name with the given
/// result <id>. This tries to use the function's OpName if
/// exists; otherwise creates one based on the <id>.
std::string getFunctionSymbol(uint32_t id);
/// Returns a symbol to be used for the specialization constant with the given
/// result <id>. This tries to use the specialization constant's OpName if
/// exists; otherwise creates one based on the <id>.
std::string getSpecConstantSymbol(uint32_t id);
/// Gets the specialization constant with the given result <id>.
spirv::SpecConstantOp getSpecConstant(uint32_t id) {
return specConstMap.lookup(id);
}
/// Gets the composite specialization constant with the given result <id>.
spirv::SpecConstantCompositeOp getSpecConstantComposite(uint32_t id) {
return specConstCompositeMap.lookup(id);
}
/// Creates a spirv::SpecConstantOp.
spirv::SpecConstantOp createSpecConstant(Location loc, uint32_t resultID,
Attribute defaultValue);
/// Processes the OpVariable instructions at current `offset` into `binary`.
/// It is expected that this method is used for variables that are to be
/// defined at module scope and will be deserialized into a spv.GlobalVariable
/// instruction.
LogicalResult processGlobalVariable(ArrayRef<uint32_t> operands);
/// Gets the global variable associated with a result <id> of OpVariable.
spirv::GlobalVariableOp getGlobalVariable(uint32_t id) {
return globalVariableMap.lookup(id);
}
//===--------------------------------------------------------------------===//
// Type
//===--------------------------------------------------------------------===//
/// Gets type for a given result <id>.
Type getType(uint32_t id) { return typeMap.lookup(id); }
/// Get the type associated with the result <id> of an OpUndef.
Type getUndefType(uint32_t id) { return undefMap.lookup(id); }
/// Returns true if the given `type` is for SPIR-V void type.
bool isVoidType(Type type) const { return type.isa<NoneType>(); }
/// Processes a SPIR-V type instruction with given `opcode` and `operands` and
/// registers the type into `module`.
LogicalResult processType(spirv::Opcode opcode, ArrayRef<uint32_t> operands);
LogicalResult processOpTypePointer(ArrayRef<uint32_t> operands);
LogicalResult processArrayType(ArrayRef<uint32_t> operands);
LogicalResult processCooperativeMatrixType(ArrayRef<uint32_t> operands);
LogicalResult processFunctionType(ArrayRef<uint32_t> operands);
LogicalResult processImageType(ArrayRef<uint32_t> operands);
LogicalResult processSampledImageType(ArrayRef<uint32_t> operands);
LogicalResult processRuntimeArrayType(ArrayRef<uint32_t> operands);
LogicalResult processStructType(ArrayRef<uint32_t> operands);
LogicalResult processMatrixType(ArrayRef<uint32_t> operands);
LogicalResult processTypeForwardPointer(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Constant
//===--------------------------------------------------------------------===//
/// Processes a SPIR-V Op{|Spec}Constant instruction with the given
/// `operands`. `isSpec` indicates whether this is a specialization constant.
LogicalResult processConstant(ArrayRef<uint32_t> operands, bool isSpec);
/// Processes a SPIR-V Op{|Spec}Constant{True|False} instruction with the
/// given `operands`. `isSpec` indicates whether this is a specialization
/// constant.
LogicalResult processConstantBool(bool isTrue, ArrayRef<uint32_t> operands,
bool isSpec);
/// Processes a SPIR-V OpConstantComposite instruction with the given
/// `operands`.
LogicalResult processConstantComposite(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpSpecConstantComposite instruction with the given
/// `operands`.
LogicalResult processSpecConstantComposite(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpSpecConstantOp instruction with the given
/// `operands`.
LogicalResult processSpecConstantOperation(ArrayRef<uint32_t> operands);
/// Materializes/emits an OpSpecConstantOp instruction.
Value materializeSpecConstantOperation(uint32_t resultID,
spirv::Opcode enclosedOpcode,
uint32_t resultTypeID,
ArrayRef<uint32_t> enclosedOpOperands);
/// Processes a SPIR-V OpConstantNull instruction with the given `operands`.
LogicalResult processConstantNull(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Debug
//===--------------------------------------------------------------------===//
/// Discontinues any source-level location information that might be active
/// from a previous OpLine instruction.
LogicalResult clearDebugLine();
/// Creates a FileLineColLoc with the OpLine location information.
Location createFileLineColLoc(OpBuilder opBuilder);
/// Processes a SPIR-V OpLine instruction with the given `operands`.
LogicalResult processDebugLine(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpString instruction with the given `operands`.
LogicalResult processDebugString(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// Returns the block for the given label <id>.
Block *getBlock(uint32_t id) const { return blockMap.lookup(id); }
// In SPIR-V, structured control flow is explicitly declared using merge
// instructions (OpSelectionMerge and OpLoopMerge). In the SPIR-V dialect,
// we use spv.mlir.selection and spv.mlir.loop to group structured control
// flow. The deserializer need to turn structured control flow marked with
// merge instructions into using spv.mlir.selection/spv.mlir.loop ops.
//
// Because structured control flow can nest and the basic block order have
// flexibility, we cannot isolate a structured selection/loop without
// deserializing all the blocks. So we use the following approach:
//
// 1. Deserialize all basic blocks in a function and create MLIR blocks for
// them into the function's region. In the meanwhile, keep a map between
// selection/loop header blocks to their corresponding merge (and continue)
// target blocks.
// 2. For each selection/loop header block, recursively get all basic blocks
// reachable (except the merge block) and put them in a newly created
// spv.mlir.selection/spv.mlir.loop's region. Structured control flow
// guarantees that we enter and exit in structured ways and the construct
// is nestable.
// 3. Put the new spv.mlir.selection/spv.mlir.loop op at the beginning of the
// old merge
// block and redirect all branches to the old header block to the old
// merge block (which contains the spv.mlir.selection/spv.mlir.loop op
// now).
/// For OpPhi instructions, we use block arguments to represent them. OpPhi
/// encodes a list of (value, predecessor) pairs. At the time of handling the
/// block containing an OpPhi instruction, the predecessor block might not be
/// processed yet, also the value sent by it. So we need to defer handling
/// the block argument from the predecessors. We use the following approach:
///
/// 1. For each OpPhi instruction, add a block argument to the current block
/// in construction. Record the block argument in `valueMap` so its uses
/// can be resolved. For the list of (value, predecessor) pairs, update
/// `blockPhiInfo` for bookkeeping.
/// 2. After processing all blocks, loop over `blockPhiInfo` to fix up each
/// block recorded there to create the proper block arguments on their
/// terminators.
/// A data structure for containing a SPIR-V block's phi info. It will be
/// represented as block argument in SPIR-V dialect.
using BlockPhiInfo =
SmallVector<uint32_t, 2>; // The result <id> of the values sent
/// Gets or creates the block corresponding to the given label <id>. The newly
/// created block will always be placed at the end of the current function.
Block *getOrCreateBlock(uint32_t id);
LogicalResult processBranch(ArrayRef<uint32_t> operands);
LogicalResult processBranchConditional(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpLabel instruction with the given `operands`.
LogicalResult processLabel(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpSelectionMerge instruction with the given `operands`.
LogicalResult processSelectionMerge(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpLoopMerge instruction with the given `operands`.
LogicalResult processLoopMerge(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpPhi instruction with the given `operands`.
LogicalResult processPhi(ArrayRef<uint32_t> operands);
/// Creates block arguments on predecessors previously recorded when handling
/// OpPhi instructions.
LogicalResult wireUpBlockArgument();
/// Extracts blocks belonging to a structured selection/loop into a
/// spv.mlir.selection/spv.mlir.loop op. This method iterates until all blocks
/// declared as selection/loop headers are handled.
LogicalResult structurizeControlFlow();
//===--------------------------------------------------------------------===//
// Instruction
//===--------------------------------------------------------------------===//
/// Get the Value associated with a result <id>.
///
/// This method materializes normal constants and inserts "casting" ops
/// (`spv.mlir.addressof` and `spv.mlir.referenceof`) to turn an symbol into a
/// SSA value for handling uses of module scope constants/variables in
/// functions.
Value getValue(uint32_t id);
/// Slices the first instruction out of `binary` and returns its opcode and
/// operands via `opcode` and `operands` respectively. Returns failure if
/// there is no more remaining instructions (`expectedOpcode` will be used to
/// compose the error message) or the next instruction is malformed.
LogicalResult
sliceInstruction(spirv::Opcode &opcode, ArrayRef<uint32_t> &operands,
Optional<spirv::Opcode> expectedOpcode = llvm::None);
/// Processes a SPIR-V instruction with the given `opcode` and `operands`.
/// This method is the main entrance for handling SPIR-V instruction; it
/// checks the instruction opcode and dispatches to the corresponding handler.
/// Processing of Some instructions (like OpEntryPoint and OpExecutionMode)
/// might need to be deferred, since they contain forward references to <id>s
/// in the deserialized binary, but module in SPIR-V dialect expects these to
/// be ssa-uses.
LogicalResult processInstruction(spirv::Opcode opcode,
ArrayRef<uint32_t> operands,
bool deferInstructions = true);
/// Processes a SPIR-V instruction from the given `operands`. It should
/// deserialize into an op with the given `opName` and `numOperands`.
/// This method is a generic one for dispatching any SPIR-V ops without
/// variadic operands and attributes in TableGen definitions.
LogicalResult processOpWithoutGrammarAttr(ArrayRef<uint32_t> words,
StringRef opName, bool hasResult,
unsigned numOperands);
/// Processes a OpUndef instruction. Adds a spv.Undef operation at the current
/// insertion point.
LogicalResult processUndef(ArrayRef<uint32_t> operands);
/// Method to dispatch to the specialized deserialization function for an
/// operation in SPIR-V dialect that is a mirror of an instruction in the
/// SPIR-V spec. This is auto-generated from ODS. Dispatch is handled for
/// all operations in SPIR-V dialect that have hasOpcode == 1.
LogicalResult dispatchToAutogenDeserialization(spirv::Opcode opcode,
ArrayRef<uint32_t> words);
/// Processes a SPIR-V OpExtInst with given `operands`. This slices the
/// entries of `operands` that specify the extended instruction set <id> and
/// the instruction opcode. The op deserializer is then invoked using the
/// other entries.
LogicalResult processExtInst(ArrayRef<uint32_t> operands);
/// Dispatches the deserialization of extended instruction set operation based
/// on the extended instruction set name, and instruction opcode. This is
/// autogenerated from ODS.
LogicalResult
dispatchToExtensionSetAutogenDeserialization(StringRef extensionSetName,
uint32_t instructionID,
ArrayRef<uint32_t> words);
/// Method to deserialize an operation in the SPIR-V dialect that is a mirror
/// of an instruction in the SPIR-V spec. This is auto generated if hasOpcode
/// == 1 and autogenSerialization == 1 in ODS.
template <typename OpTy> LogicalResult processOp(ArrayRef<uint32_t> words) {
return emitError(unknownLoc, "unsupported deserialization for ")
<< OpTy::getOperationName() << " op";
}
private:
/// The SPIR-V binary module.
ArrayRef<uint32_t> binary;
/// Contains the data of the OpLine instruction which precedes the current
/// processing instruction.
llvm::Optional<DebugLine> debugLine;
/// The current word offset into the binary module.
unsigned curOffset = 0;
/// MLIRContext to create SPIR-V ModuleOp into.
MLIRContext *context;
// TODO: create Location subclass for binary blob
Location unknownLoc;
/// The SPIR-V ModuleOp.
OwningOpRef<spirv::ModuleOp> module;
/// The current function under construction.
Optional<spirv::FuncOp> curFunction;
/// The current block under construction.
Block *curBlock = nullptr;
OpBuilder opBuilder;
spirv::Version version;
/// The list of capabilities used by the module.
llvm::SmallSetVector<spirv::Capability, 4> capabilities;
/// The list of extensions used by the module.
llvm::SmallSetVector<spirv::Extension, 2> extensions;
// Result <id> to type mapping.
DenseMap<uint32_t, Type> typeMap;
// Result <id> to constant attribute and type mapping.
///
/// In the SPIR-V binary format, all constants are placed in the module and
/// shared by instructions at module level and in subsequent functions. But in
/// the SPIR-V dialect, we materialize the constant to where it's used in the
/// function. So when seeing a constant instruction in the binary format, we
/// don't immediately emit a constant op into the module, we keep its value
/// (and type) here. Later when it's used, we materialize the constant.
DenseMap<uint32_t, std::pair<Attribute, Type>> constantMap;
// Result <id> to spec constant mapping.
DenseMap<uint32_t, spirv::SpecConstantOp> specConstMap;
// Result <id> to composite spec constant mapping.
DenseMap<uint32_t, spirv::SpecConstantCompositeOp> specConstCompositeMap;
/// Result <id> to info needed to materialize an OpSpecConstantOp
/// mapping.
DenseMap<uint32_t, SpecConstOperationMaterializationInfo>
specConstOperationMap;
// Result <id> to variable mapping.
DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;
// Result <id> to function mapping.
DenseMap<uint32_t, spirv::FuncOp> funcMap;
// Result <id> to block mapping.
DenseMap<uint32_t, Block *> blockMap;
// Header block to its merge (and continue) target mapping.
BlockMergeInfoMap blockMergeInfo;
// Block to its phi (block argument) mapping.
DenseMap<Block *, BlockPhiInfo> blockPhiInfo;
// Result <id> to value mapping.
DenseMap<uint32_t, Value> valueMap;
// Mapping from result <id> to undef value of a type.
DenseMap<uint32_t, Type> undefMap;
// Result <id> to name mapping.
DenseMap<uint32_t, StringRef> nameMap;
// Result <id> to debug info mapping.
DenseMap<uint32_t, StringRef> debugInfoMap;
// Result <id> to decorations mapping.
DenseMap<uint32_t, NamedAttrList> decorations;
// Result <id> to type decorations.
DenseMap<uint32_t, uint32_t> typeDecorations;
// Result <id> to member decorations.
// decorated-struct-type-<id> ->
// (struct-member-index -> (decoration -> decoration-operands))
DenseMap<uint32_t,
DenseMap<uint32_t, DenseMap<spirv::Decoration, ArrayRef<uint32_t>>>>
memberDecorationMap;
// Result <id> to member name.
// struct-type-<id> -> (struct-member-index -> name)
DenseMap<uint32_t, DenseMap<uint32_t, StringRef>> memberNameMap;
// Result <id> to extended instruction set name.
DenseMap<uint32_t, StringRef> extendedInstSets;
// List of instructions that are processed in a deferred fashion (after an
// initial processing of the entire binary). Some operations like
// OpEntryPoint, and OpExecutionMode use forward references to function
// <id>s. In SPIR-V dialect the corresponding operations (spv.EntryPoint and
// spv.ExecutionMode) need these references resolved. So these instructions
// are deserialized and stored for processing once the entire binary is
// processed.
SmallVector<std::pair<spirv::Opcode, ArrayRef<uint32_t>>, 4>
deferredInstructions;
/// A list of IDs for all types forward-declared through OpTypeForwardPointer
/// instructions.
SetVector<uint32_t> typeForwardPointerIDs;
/// A list of all structs which have unresolved member types.
SmallVector<DeferredStructTypeInfo, 0> deferredStructTypesInfos;
};
} // namespace spirv
} // namespace mlir
#endif // MLIR_TARGET_SPIRV_DESERIALIZER_H