blob: e5a32c0bbd4e0c8f2c52eaf0a61194f7b706862e [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Linalg/IR/RelayoutOpInterface.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/InferIntRangeInterface.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Interfaces/Utils/InferIntRangeCommon.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <optional>
using namespace mlir;
using namespace mlir::tensor;
using llvm::divideCeilSigned;
using llvm::divideFloorSigned;
using llvm::mod;
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *TensorDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
if (auto op = arith::ConstantOp::materialize(builder, value, type, loc))
return op;
if (complex::ConstantOp::isBuildableWith(value, type))
return builder.create<complex::ConstantOp>(loc, type,
llvm::cast<ArrayAttr>(value));
return nullptr;
}
OpFoldResult tensor::getMixedSize(OpBuilder &builder, Location loc, Value value,
int64_t dim) {
auto tensorType = llvm::cast<RankedTensorType>(value.getType());
SmallVector<OpFoldResult> result;
if (tensorType.isDynamicDim(dim))
return builder.createOrFold<tensor::DimOp>(loc, value, dim);
return builder.getIndexAttr(tensorType.getDimSize(dim));
}
SmallVector<OpFoldResult> tensor::getMixedSizes(OpBuilder &builder,
Location loc, Value value) {
auto tensorType = llvm::cast<RankedTensorType>(value.getType());
SmallVector<OpFoldResult> result;
for (int64_t i = 0; i < tensorType.getRank(); ++i)
result.push_back(getMixedSize(builder, loc, value, i));
return result;
}
FailureOr<Value> tensor::getOrCreateDestination(OpBuilder &b, Location loc,
OpResult opResult) {
auto tensorType = llvm::dyn_cast<TensorType>(opResult.getType());
assert(tensorType && "expected tensor type");
// If the op has a destination, it implements DestinationStyleOpInterface and
// we can query the destination operand from that interface.
auto destOp = opResult.getDefiningOp<DestinationStyleOpInterface>();
if (destOp)
return destOp.getTiedOpOperand(opResult)->get();
// Otherwise, create a new destination tensor with the same shape.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(opResult.getDefiningOp());
// Compute sizes.
SmallVector<OpFoldResult> mixedSizes;
if (!tensorType.hasStaticShape()) {
// Dynamic shape: Query ReifyRankedShapedTypeOpInterface.
ReifiedRankedShapedTypeDims reifiedShapes;
if (failed(reifyResultShapes(b, opResult.getDefiningOp(), reifiedShapes)))
return failure();
mixedSizes = reifiedShapes[opResult.getResultNumber()];
} else {
// Static shape: Take static sizes directly.
for (int64_t sz : tensorType.getShape())
mixedSizes.push_back(b.getIndexAttr(sz));
}
// Create empty tensor.
Value emptyTensor =
b.create<tensor::EmptyOp>(loc, mixedSizes, tensorType.getElementType());
return emptyTensor;
}
LogicalResult tensor::getOrCreateDestinations(OpBuilder &b, Location loc,
Operation *op,
SmallVector<Value> &result) {
for (OpResult opResult : op->getResults()) {
if (llvm::isa<TensorType>(opResult.getType())) {
FailureOr<Value> destination = getOrCreateDestination(b, loc, opResult);
if (failed(destination))
return failure();
result.push_back(*destination);
}
}
return success();
}
bool tensor::isSameTypeWithoutEncoding(Type tp1, Type tp2) {
if (auto rtp1 = llvm::dyn_cast<RankedTensorType>(tp1)) {
if (auto rtp2 = llvm::dyn_cast<RankedTensorType>(tp2))
return rtp1.getShape() == rtp2.getShape() &&
rtp1.getElementType() == rtp2.getElementType();
return false;
}
return tp1 == tp2; // default implementation
}
/// Compute the dropped dimensions of a rank-reducing tensor.extract_slice op or
/// rank-extending tensor.insert_slice op.
static llvm::SmallBitVector getDroppedDims(ArrayRef<int64_t> reducedShape,
ArrayRef<OpFoldResult> mixedSizes) {
llvm::SmallBitVector droppedDims(mixedSizes.size());
int64_t shapePos = reducedShape.size() - 1;
for (const auto &size : enumerate(llvm::reverse(mixedSizes))) {
size_t idx = mixedSizes.size() - size.index() - 1;
// Rank-reduced dims must have a static unit dimension.
bool isStaticUnitSize =
isa<Attribute>(size.value()) &&
llvm::cast<IntegerAttr>(cast<Attribute>(size.value())).getInt() == 1;
if (shapePos < 0) {
// There are no more dims in the reduced shape. All remaining sizes must
// be rank-reduced dims.
assert(isStaticUnitSize && "expected unit dim");
droppedDims.set(idx);
continue;
}
// Dim is preserved if the size is not a static 1.
if (!isStaticUnitSize) {
--shapePos;
continue;
}
// Dim is preserved if the reduced shape dim is also 1.
if (reducedShape[shapePos] == 1) {
--shapePos;
continue;
}
// Otherwise: Dim is dropped.
droppedDims.set(idx);
}
assert(shapePos < 0 && "dimension mismatch");
return droppedDims;
}
/// Given a ranked tensor type and a range of values that defines its dynamic
/// dimension sizes, turn all dynamic sizes that have a constant value into
/// static dimension sizes.
static RankedTensorType
foldDynamicToStaticDimSizes(RankedTensorType type, ValueRange dynamicSizes,
SmallVector<Value> &foldedDynamicSizes) {
SmallVector<int64_t> staticShape(type.getShape());
assert(type.getNumDynamicDims() == dynamicSizes.size() &&
"incorrect number of dynamic sizes");
// Compute new static and dynamic sizes.
unsigned ctr = 0;
for (int64_t i = 0, e = type.getRank(); i < e; ++i) {
if (type.isDynamicDim(i)) {
Value dynamicSize = dynamicSizes[ctr++];
std::optional<int64_t> cst = getConstantIntValue(dynamicSize);
if (cst.has_value()) {
// Dynamic size must be non-negative.
if (cst.value() < 0) {
foldedDynamicSizes.push_back(dynamicSize);
continue;
}
staticShape[i] = *cst;
} else {
foldedDynamicSizes.push_back(dynamicSize);
}
}
}
return RankedTensorType::get(staticShape, type.getElementType(),
type.getEncoding());
}
//===----------------------------------------------------------------------===//
// BitcastOp
//===----------------------------------------------------------------------===//
bool BitcastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
auto aT = dyn_cast<TensorType>(a);
auto bT = dyn_cast<TensorType>(b);
if (!aT || !bT)
return false;
if (aT.getElementTypeBitWidth() != bT.getElementTypeBitWidth())
return false;
return succeeded(verifyCompatibleShape(aT, bT));
}
namespace {
/// Replaces chains of two tensor.bitcast operations by a single tensor.bitcast
/// operation.
struct ChainedTensorBitcast : public OpRewritePattern<BitcastOp> {
using OpRewritePattern<BitcastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BitcastOp tensorBitcast,
PatternRewriter &rewriter) const final {
auto tensorBitcastOperand =
tensorBitcast.getOperand().getDefiningOp<BitcastOp>();
if (!tensorBitcastOperand)
return failure();
auto resultType = cast<TensorType>(tensorBitcast.getType());
rewriter.replaceOpWithNewOp<BitcastOp>(tensorBitcast, resultType,
tensorBitcastOperand.getOperand());
return success();
}
};
} // namespace
void BitcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ChainedTensorBitcast>(context);
}
//===----------------------------------------------------------------------===//
// CastOp
//===----------------------------------------------------------------------===//
void CastOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "cast");
}
/// Returns true if `target` is a ranked tensor type that preserves static
/// information available in the `source` ranked tensor type.
bool mlir::tensor::preservesStaticInformation(Type source, Type target) {
auto sourceType = llvm::dyn_cast<RankedTensorType>(source);
auto targetType = llvm::dyn_cast<RankedTensorType>(target);
// Requires RankedTensorType.
if (!sourceType || !targetType)
return false;
// Requires same elemental type.
if (sourceType.getElementType() != targetType.getElementType())
return false;
// Requires same rank.
if (sourceType.getRank() != targetType.getRank())
return false;
// Requires same encoding.
if (sourceType.getEncoding() != targetType.getEncoding())
return false;
// If cast is towards more static sizes along any dimension, don't fold.
for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) {
if (!ShapedType::isDynamic(std::get<0>(t)) &&
ShapedType::isDynamic(std::get<1>(t)))
return false;
}
return true;
}
/// Determines whether tensor::CastOp casts to a more dynamic version of the
/// source tensor. This is useful to fold a tensor.cast into a consuming op and
/// implement canonicalization patterns for ops in different dialects that may
/// consume the results of tensor.cast operations. Such foldable tensor.cast
/// operations are typically inserted as `slice` ops and are canonicalized,
/// to preserve the type compatibility of their uses.
///
/// Returns true when all conditions are met:
/// 1. source and result are ranked tensors with same element type and rank.
/// 2. the tensor type has more static information than the result
///
/// Example:
/// ```mlir
/// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
/// %2 = consumer %1 ... : tensor<?x?xf32> ...
/// ```
///
/// folds into:
///
/// ```mlir
/// %2 = consumer %0 ... : tensor<8x16xf32> ...
/// ```
bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) {
if (!castOp)
return false;
// Can fold if the source of cast has at least as much static information as
// its results.
return preservesStaticInformation(castOp.getType(),
castOp.getSource().getType());
}
/// Determines whether the tensor::CastOp casts to a more static version of the
/// source tensor. This is useful to fold into a producing op and implement
/// canonicaliation patterns with the `tensor.cast` op as the root, but producer
/// being from different dialects. Returns true when all conditions are met:
/// 1. source and result and ranked tensors with same element type and rank.
/// 2. the result type has more static information than the source.
///
/// Example:
/// ```mlir
/// %1 = producer ... : tensor<?x?xf32>
/// %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<8x16xf32>
/// ```
///
/// can be canonicalized to :
///
/// ```mlir
/// %2 = producer ... : tensor<8x16xf32>
/// ```
/// Not all ops might be canonicalizable this way, but for those that can be,
/// this method provides a check that it is worth doing the canonicalization.
bool mlir::tensor::canFoldIntoProducerOp(CastOp castOp) {
if (!castOp)
return false;
return preservesStaticInformation(castOp.getSource().getType(),
castOp.getType());
}
bool mlir::tensor::hasFoldableTensorCastOperand(Operation *op) {
return llvm::any_of(op->getOpOperands(), [&](OpOperand &opOperand) {
if (llvm::isa<BlockArgument>(opOperand.get()))
return false;
auto castOp = opOperand.get().getDefiningOp<tensor::CastOp>();
return castOp && canFoldIntoConsumerOp(castOp);
});
}
SmallVector<Value> mlir::tensor::getUpdatedOperandsAfterCastOpFolding(
DestinationStyleOpInterface op, SmallVector<Type> &newResTy) {
SmallVector<Value> newOperands;
newOperands.reserve(op->getNumOperands());
assert(hasFoldableTensorCastOperand(op) && "No foldable CastOp operands!");
// Assumes that the result has dpsInits followed by nonDpsInits.
int64_t dpsInitIdx = 0;
for (OpOperand &opOperand : op->getOpOperands()) {
auto tensorCastOp = opOperand.get().getDefiningOp<tensor::CastOp>();
bool fold = canFoldIntoConsumerOp(tensorCastOp);
newOperands.push_back(fold ? tensorCastOp.getOperand() : opOperand.get());
if (op.isDpsInit(&opOperand) &&
!llvm::isa<MemRefType>(newOperands.back().getType()))
newResTy[dpsInitIdx++] = newOperands.back().getType();
}
return newOperands;
}
/// Performs folding of any operand of `op` if it comes from a tensor::CastOp
/// that can be folded.
LogicalResult mlir::tensor::foldTensorCast(Operation *op) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
operand.set(castOp.getOperand());
folded = true;
}
}
return success(folded);
}
bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
auto aT = llvm::dyn_cast<TensorType>(a);
auto bT = llvm::dyn_cast<TensorType>(b);
if (!aT || !bT)
return false;
if (aT.getElementType() != bT.getElementType())
return false;
return succeeded(verifyCompatibleShape(aT, bT));
}
/// Compute a TensorType that has the joined shape knowledge of the two
/// given TensorTypes. The element types need to match.
static TensorType joinShapes(TensorType one, TensorType two) {
assert(one.getElementType() == two.getElementType());
if (!one.hasRank())
return two;
if (!two.hasRank())
return one;
int64_t rank = one.getRank();
if (rank != two.getRank())
return {};
SmallVector<int64_t, 4> join;
join.reserve(rank);
for (int64_t i = 0; i < rank; ++i) {
if (one.isDynamicDim(i)) {
join.push_back(two.getDimSize(i));
continue;
}
if (two.isDynamicDim(i)) {
join.push_back(one.getDimSize(i));
continue;
}
if (one.getDimSize(i) != two.getDimSize(i))
return {};
join.push_back(one.getDimSize(i));
}
return RankedTensorType::get(join, one.getElementType());
}
namespace {
/// Replaces chains of two tensor.cast operations by a single tensor.cast
/// operation if doing so does not remove runtime constraints.
struct ChainedTensorCast : public OpRewritePattern<CastOp> {
using OpRewritePattern<CastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CastOp tensorCast,
PatternRewriter &rewriter) const final {
auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>();
if (!tensorCastOperand)
return failure();
auto sourceType =
llvm::cast<TensorType>(tensorCastOperand.getOperand().getType());
auto intermediateType = llvm::cast<TensorType>(tensorCastOperand.getType());
auto resultType = llvm::cast<TensorType>(tensorCast.getType());
// We can remove the intermediate cast if joining all three produces the
// same result as just joining the source and result shapes.
auto firstJoin =
joinShapes(joinShapes(sourceType, intermediateType), resultType);
// The join might not exist if the cast sequence would fail at runtime.
if (!firstJoin)
return failure();
// The newJoin always exists if the above join exists, it might just contain
// less information. If so, we cannot drop the intermediate cast, as doing
// so would remove runtime checks.
auto newJoin = joinShapes(sourceType, resultType);
if (firstJoin != newJoin)
return failure();
rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType,
tensorCastOperand.getOperand());
return success();
}
};
/// Fold tensor.cast into tesor.extract_slice producer.
/// Example:
/// ```
/// %0 = tensor.extract_slice %arg0[%o, 0] [%s, 512] [1, 1] :
/// tensor<128x512xf32> to tensor<?x512xf32>
/// %1 = tensor.cast %0 : tensor<?x512xf32> to tensor<16x512xf32>
/// ```
/// ->
/// ```
/// %1 = tensor.extract_slice %arg0[%o, 0] [16, 512] [1, 1] :
/// tensor<128x512xf32> to tensor<16x512xf32>
/// ```
struct TensorCastExtractSlice : public OpRewritePattern<CastOp> {
using OpRewritePattern<CastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CastOp tensorCast,
PatternRewriter &rewriter) const final {
auto extractOperand =
tensorCast.getOperand().getDefiningOp<ExtractSliceOp>();
// Cannot fold cast to unranked tensor.
auto rankedResultType =
llvm::dyn_cast<RankedTensorType>(tensorCast.getType());
if (!rankedResultType)
return failure();
if (!extractOperand || !canFoldIntoProducerOp(tensorCast) ||
rankedResultType.getShape() ==
llvm::cast<RankedTensorType>(tensorCast.getSource().getType())
.getShape())
return failure();
SmallVector<OpFoldResult, 4> sizes = extractOperand.getMixedSizes();
auto dimMask = computeRankReductionMask(
extractOperand.getStaticSizes(), extractOperand.getType().getShape());
size_t dimIndex = 0;
for (size_t i = 0, e = sizes.size(); i < e; i++) {
if (dimMask && dimMask->count(i))
continue;
int64_t dim = rankedResultType.getShape()[dimIndex++];
if (ShapedType::isDynamic(dim))
continue;
sizes[i] = rewriter.getIndexAttr(dim);
}
rewriter.replaceOpWithNewOp<ExtractSliceOp>(
tensorCast, rankedResultType, extractOperand.getSource(),
extractOperand.getMixedOffsets(), sizes,
extractOperand.getMixedStrides());
return success();
}
};
} // namespace
void CastOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ChainedTensorCast, TensorCastExtractSlice>(context);
}
//===----------------------------------------------------------------------===//
// ConcatOp
//===----------------------------------------------------------------------===//
RankedTensorType ConcatOp::inferResultType(int64_t dim, TypeRange inputTypes) {
assert(!inputTypes.empty() && "cannot concatenate 0 tensors");
auto tensorTypes =
llvm::to_vector<4>(llvm::map_range(inputTypes, [](Type type) {
return llvm::cast<RankedTensorType>(type);
}));
int64_t concatRank = tensorTypes[0].getRank();
// The concatenation dim must be in the range [0, rank).
assert(dim >= 0 && dim < concatRank && "Invalid concatenation dim");
SmallVector<int64_t> sizes(concatRank);
for (int64_t i = 0, e = concatRank; i < e; ++i) {
if (i == dim)
continue;
SaturatedInteger size;
for (auto tensorType : tensorTypes)
size = *size.desaturate(SaturatedInteger::wrap(tensorType.getDimSize(i)));
sizes[i] = size.asInteger();
}
auto concatSize = SaturatedInteger::wrap(0);
for (auto tensorType : tensorTypes)
concatSize =
concatSize + SaturatedInteger::wrap(tensorType.getDimSize(dim));
sizes[dim] = concatSize.asInteger();
return RankedTensorType::get(sizes, tensorTypes[0].getElementType());
}
void ConcatOp::build(OpBuilder &builder, OperationState &result, int64_t dim,
ValueRange inputs) {
FailureOr<RankedTensorType> resultType =
inferResultType(dim, inputs.getTypes());
assert(succeeded(resultType) && "failed to infer concatenation result type");
build(builder, result, *resultType, dim, inputs);
}
LogicalResult ConcatOp::verify() {
if (getInputs().size() < 1)
return emitOpError("requires at least one input");
SmallVector<RankedTensorType> inputTypes;
for (auto input : getInputs())
inputTypes.push_back(cast<RankedTensorType>(input.getType()));
RankedTensorType resultType = getResultType();
int64_t resultRank = getRank();
if (llvm::any_of(inputTypes, [resultRank](RankedTensorType type) {
return type.getRank() != resultRank;
}))
return emitOpError("rank of concatenated inputs must match result rank");
Type resultElementType = resultType.getElementType();
if (llvm::any_of(inputTypes, [&](RankedTensorType type) {
return type.getElementType() != resultElementType;
}))
return emitOpError("inputs and result element type must match");
int64_t dim = getDim();
if (dim >= resultRank)
return emitOpError("concatenation dim must be less than the tensor rank");
SmallVector<int64_t> sizes(resultRank);
for (int64_t i = 0, e = resultRank; i < e; ++i) {
if (i == dim)
continue;
SaturatedInteger size;
for (auto tensorType : inputTypes) {
FailureOr<SaturatedInteger> maybeSize =
size.desaturate(SaturatedInteger::wrap(tensorType.getDimSize(i)));
if (failed(maybeSize))
return emitOpError("static concatenation size mismatch along ")
<< "non-concatenated dimension " << i;
size = *maybeSize;
}
sizes[i] = size.asInteger();
}
auto concatSize = SaturatedInteger::wrap(0);
for (auto tensorType : inputTypes)
concatSize =
concatSize + SaturatedInteger::wrap(tensorType.getDimSize(dim));
sizes[dim] = concatSize.asInteger();
auto inferredResultType =
RankedTensorType::get(sizes, inputTypes[0].getElementType());
for (auto [inferredSize, actualSize] :
llvm::zip_equal(inferredResultType.getShape(), resultType.getShape())) {
bool hasDynamic = ShapedType::isDynamic(inferredSize) ||
ShapedType::isDynamic(actualSize);
if (!hasDynamic && inferredSize != actualSize)
return emitOpError("result type ")
<< resultType << "does not match inferred shape "
<< inferredResultType << " static sizes";
}
return success();
}
FailureOr<SmallVector<Value>> ConcatOp::decomposeOperation(OpBuilder &builder) {
size_t numInputs = getInputs().size();
uint64_t concatDim = getDim();
SmallVector<SmallVector<OpFoldResult>> inputShapes;
inputShapes.reserve(numInputs);
SmallVector<OpFoldResult> concatOffsets;
concatOffsets.reserve(numInputs);
SmallVector<OpFoldResult> outputShape;
AffineExpr addExpr =
builder.getAffineSymbolExpr(0) + builder.getAffineSymbolExpr(1);
OpFoldResult zero = builder.getIndexAttr(0);
Location loc = getLoc();
for (auto [index, input] : llvm::enumerate(getInputs())) {
SmallVector<OpFoldResult> inputShape =
tensor::getMixedSizes(builder, input.getLoc(), input);
if (index == 0) {
outputShape = inputShape;
concatOffsets.push_back(zero);
} else {
concatOffsets.push_back(outputShape[concatDim]);
outputShape[concatDim] = affine::makeComposedFoldedAffineApply(
builder, loc, addExpr,
{outputShape[concatDim], inputShape[concatDim]});
}
inputShapes.emplace_back(std::move(inputShape));
}
Value replacement = builder.create<tensor::EmptyOp>(
loc, outputShape, getType().getElementType());
int64_t rank = getType().getRank();
OpFoldResult one = builder.getIndexAttr(1);
SmallVector<OpFoldResult> strides(rank, one);
SmallVector<OpFoldResult> offsets(rank, zero);
for (auto [index, input] : llvm::enumerate(getInputs())) {
offsets[concatDim] = concatOffsets[index];
auto insertSlice = builder.create<tensor::InsertSliceOp>(
loc, input, replacement, offsets, inputShapes[index], strides);
replacement = insertSlice.getResult();
}
if (replacement.getType() != getType()) {
replacement = builder.create<tensor::CastOp>(loc, getType(), replacement);
}
return SmallVector<Value>{replacement};
}
LogicalResult
ConcatOp::reifyResultShapes(OpBuilder &builder,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
ValueRange inputs = getInputs();
int64_t dim = getDim();
RankedTensorType inferredResultType = inferResultType(dim, inputs.getTypes());
Value init = inputs[0];
int64_t rank = getType().getRank();
reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(rank));
// Pre-populate the result sizes with as much static information as possible
// from the given result type, as well as the inferred result type, otherwise
// use the dim sizes from the first input.
for (int64_t i = 0; i < rank; ++i) {
if (i == dim)
continue;
if (!getType().isDynamicDim(i)) {
reifiedReturnShapes[0][i] = builder.getIndexAttr(getType().getDimSize(i));
} else if (!inferredResultType.isDynamicDim(i)) {
reifiedReturnShapes[0][i] = getValueOrCreateConstantIndexOp(
builder, getLoc(),
builder.getIndexAttr(inferredResultType.getDimSize(i)));
} else {
reifiedReturnShapes[0][i] =
builder.create<tensor::DimOp>(init.getLoc(), init, i).getResult();
}
}
if (getType().isDynamicDim(dim)) {
// Take the sum of the input sizes along the concatenated dim.
AffineExpr sum = builder.getAffineDimExpr(0);
SmallVector<OpFoldResult> sizes = {
builder.createOrFold<tensor::DimOp>(init.getLoc(), init, dim)};
for (auto [idx, input] : llvm::enumerate(inputs.drop_front())) {
sum = sum + builder.getAffineDimExpr(idx + 1);
sizes.push_back(
builder.createOrFold<tensor::DimOp>(input.getLoc(), input, dim));
}
reifiedReturnShapes[0][dim] = getValueOrCreateConstantIndexOp(
builder, getLoc(),
affine::makeComposedFoldedAffineApply(builder, getLoc(), sum, sizes));
} else {
// If the result shape is static along the concatenated dim, use the static
// shape.
reifiedReturnShapes[0][dim] =
builder.getIndexAttr(getType().getDimSize(dim));
}
return success();
}
void ConcatOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "concat");
}
OpFoldResult ConcatOp::fold(FoldAdaptor) {
ValueRange inputs = getInputs();
if (inputs.size() == 1 && inputs[0].getType() == getResultType())
return inputs[0];
return {};
}
namespace {
/// Fold a concat op with a single input to a cast.
struct SingleInputConcatOp : public OpRewritePattern<ConcatOp> {
using OpRewritePattern<ConcatOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ConcatOp concatOp,
PatternRewriter &rewriter) const override {
if (concatOp.getInputs().size() != 1)
return failure();
rewriter.replaceOpWithNewOp<CastOp>(concatOp, concatOp.getResultType(),
concatOp.getInputs()[0]);
return success();
}
};
} // namespace
void ConcatOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SingleInputConcatOp>(context);
}
//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//
void DimOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "dim");
}
void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
int64_t index) {
auto loc = result.location;
Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index);
build(builder, result, source, indexValue);
}
std::optional<int64_t> DimOp::getConstantIndex() {
return getConstantIntValue(getIndex());
}
Speculation::Speculatability DimOp::getSpeculatability() {
auto constantIndex = getConstantIndex();
if (!constantIndex)
return Speculation::NotSpeculatable;
auto rankedSourceType = dyn_cast<RankedTensorType>(getSource().getType());
if (!rankedSourceType)
return Speculation::NotSpeculatable;
if (rankedSourceType.getRank() <= constantIndex)
return Speculation::NotSpeculatable;
return Speculation::Speculatable;
}
void DimOp::inferResultRangesFromOptional(ArrayRef<IntegerValueRange> argRanges,
SetIntLatticeFn setResultRange) {
setResultRange(getResult(),
intrange::inferShapedDimOpInterface(*this, argRanges[1]));
}
OpFoldResult DimOp::fold(FoldAdaptor adaptor) {
// All forms of folding require a known index.
auto index = llvm::dyn_cast_if_present<IntegerAttr>(adaptor.getIndex());
if (!index)
return {};
// Folding for unranked types (UnrankedTensorType) is not supported.
auto tensorType = llvm::dyn_cast<RankedTensorType>(getSource().getType());
if (!tensorType)
return {};
// Out of bound indices produce undefined behavior but are still valid IR.
// Don't choke on them.
int64_t indexVal = index.getInt();
if (indexVal < 0 || indexVal >= tensorType.getRank())
return {};
// Fold if the shape extent along the given index is known.
if (!tensorType.isDynamicDim(index.getInt())) {
Builder builder(getContext());
return builder.getIndexAttr(tensorType.getShape()[index.getInt()]);
}
Operation *definingOp = getSource().getDefiningOp();
// Fold dim to the operand of tensor.generate.
if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) {
auto resultType =
llvm::cast<RankedTensorType>(fromElements.getResult().getType());
// The case where the type encodes the size of the dimension is handled
// above.
assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()]));
// Find the operand of the fromElements that corresponds to this index.
auto dynExtents = fromElements.getDynamicExtents().begin();
for (auto dim : resultType.getShape().take_front(index.getInt()))
if (ShapedType::isDynamic(dim))
dynExtents++;
return Value{*dynExtents};
}
// The size at the given index is now known to be a dynamic size.
unsigned unsignedIndex = index.getValue().getZExtValue();
if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) {
// Fold only for non-rank reduced ops. For the rank-reduced version, rely on
// `resolve-shaped-type-result-dims` pass.
if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() &&
sliceOp.isDynamicSize(unsignedIndex)) {
return {sliceOp.getDynamicSize(unsignedIndex)};
}
}
// dim(cast) -> dim
if (succeeded(foldTensorCast(*this)))
return getResult();
return {};
}
namespace {
/// Fold dim of a cast into the dim of the source of the tensor cast.
struct DimOfCastOp : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DimOp dimOp,
PatternRewriter &rewriter) const override {
auto castOp = dimOp.getSource().getDefiningOp<CastOp>();
if (!castOp)
return failure();
Value newSource = castOp.getOperand();
rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.getIndex());
return success();
}
};
/// Fold dim of a destination passing style op into the dim of the corresponding
/// init.
struct DimOfDestStyleOp : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DimOp dimOp,
PatternRewriter &rewriter) const override {
auto source = dimOp.getSource();
auto destOp = source.getDefiningOp<DestinationStyleOpInterface>();
if (!destOp)
return failure();
auto resultIndex = cast<OpResult>(source).getResultNumber();
auto *initOperand = destOp.getDpsInitOperand(resultIndex);
rewriter.modifyOpInPlace(
dimOp, [&]() { dimOp.getSourceMutable().assign(initOperand->get()); });
return success();
}
};
/// Fold dim of a tensor reshape operation to a extract into the reshape's shape
/// operand.
struct DimOfReshapeOp : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DimOp dim,
PatternRewriter &rewriter) const override {
auto reshape = dim.getSource().getDefiningOp<ReshapeOp>();
if (!reshape)
return failure();
// Since tensors are immutable we don't need to worry about where to place
// the extract call
rewriter.setInsertionPointAfter(dim);
Location loc = dim.getLoc();
Value extract =
rewriter.create<ExtractOp>(loc, reshape.getShape(), dim.getIndex());
if (extract.getType() != dim.getType())
extract =
rewriter.create<arith::IndexCastOp>(loc, dim.getType(), extract);
rewriter.replaceOp(dim, extract);
return success();
}
};
} // namespace
void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<DimOfCastOp, DimOfDestStyleOp, DimOfReshapeOp>(context);
}
//===----------------------------------------------------------------------===//
// EmptyOp
//===----------------------------------------------------------------------===//
void EmptyOp::build(OpBuilder &builder, OperationState &result,
ArrayRef<int64_t> staticShape, Type elementType,
Attribute encoding) {
assert(all_of(staticShape,
[](int64_t sz) { return !ShapedType::isDynamic(sz); }) &&
"expected only static sizes");
build(builder, result, staticShape, elementType, ValueRange{}, encoding);
}
void EmptyOp::build(OpBuilder &builder, OperationState &result,
ArrayRef<int64_t> staticShape, Type elementType,
ValueRange dynamicSizes, Attribute encoding) {
auto tensorType = RankedTensorType::get(staticShape, elementType, encoding);
build(builder, result, tensorType, dynamicSizes);
}
void EmptyOp::build(OpBuilder &builder, OperationState &result,
ArrayRef<OpFoldResult> sizes, Type elementType,
Attribute encoding) {
SmallVector<int64_t> staticShape;
SmallVector<Value> dynamicSizes;
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticShape);
build(builder, result, staticShape, elementType, dynamicSizes, encoding);
}
LogicalResult EmptyOp::verify() {
if (getType().getNumDynamicDims() != getDynamicSizes().size())
return emitOpError("incorrect number of dynamic sizes, has ")
<< getDynamicSizes().size() << ", expected "
<< getType().getNumDynamicDims();
return success();
}
LogicalResult
EmptyOp::reifyResultShapes(OpBuilder &builder,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank()));
unsigned ctr = 0;
for (int64_t i = 0; i < getType().getRank(); ++i) {
if (getType().isDynamicDim(i)) {
reifiedReturnShapes[0][i] = getDynamicSizes()[ctr++];
} else {
reifiedReturnShapes[0][i] = builder.getIndexAttr(getType().getDimSize(i));
}
}
return success();
}
Value EmptyOp::getDynamicSize(unsigned idx) {
assert(getType().isDynamicDim(idx) && "expected dynamic dim");
unsigned ctr = 0;
for (int64_t i = 0; i < static_cast<int64_t>(idx); ++i)
if (getType().isDynamicDim(i))
++ctr;
return getDynamicSizes()[ctr];
}
SmallVector<OpFoldResult> EmptyOp::getMixedSizes() {
SmallVector<OpFoldResult> result;
unsigned ctr = 0;
OpBuilder b(getContext());
for (int64_t i = 0; i < getType().getRank(); ++i) {
if (getType().isDynamicDim(i)) {
result.push_back(getDynamicSizes()[ctr++]);
} else {
result.push_back(b.getIndexAttr(getType().getShape()[i]));
}
}
return result;
}
namespace {
/// Change the type of the result of a `tensor.empty` by making the result
/// type statically sized along dimensions that in the original operation were
/// defined as dynamic, but the size was defined using a `constant` op. For
/// example
///
/// %c5 = arith.constant 5: index
/// %0 = tensor.empty(%arg0, %c5) : tensor<?x?xf32>
///
/// to
///
/// %0 = tensor.empty(%arg0) : tensor<?x5xf32>
struct ReplaceEmptyTensorStaticShapeDims : OpRewritePattern<EmptyOp> {
using OpRewritePattern<EmptyOp>::OpRewritePattern;
LogicalResult matchAndRewrite(EmptyOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value> foldedDynamicSizes;
RankedTensorType foldedTensorType = foldDynamicToStaticDimSizes(
op.getType(), op.getDynamicSizes(), foldedDynamicSizes);
// Stop here if no dynamic size was promoted to static.
if (foldedTensorType == op.getType())
return failure();
auto newOp = rewriter.create<EmptyOp>(op.getLoc(), foldedTensorType,
foldedDynamicSizes);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp);
return success();
}
};
struct FoldEmptyTensorWithDimOp : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
PatternRewriter &rewriter) const override {
std::optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex();
auto emptyTensorOp = dimOp.getSource().getDefiningOp<EmptyOp>();
if (!emptyTensorOp || !maybeConstantIndex)
return failure();
auto emptyTensorType = emptyTensorOp.getType();
if (*maybeConstantIndex < 0 ||
*maybeConstantIndex >= emptyTensorType.getRank() ||
!emptyTensorType.isDynamicDim(*maybeConstantIndex))
return failure();
rewriter.replaceOp(dimOp,
emptyTensorOp.getDynamicSize(*maybeConstantIndex));
return success();
}
};
/// Canonicalize
///
/// ```mlir
/// %0 = tensor.empty(%d0, %d1) : tensor<?x?xf32>
/// %1 = tensor.cast %0 : tensor<?x?xf32> to tensor<4x?xf32>
/// ```
///
/// into
///
/// ```mlir
/// %0 = tensor.empty(%d1) : tensor<4x?xf32>
/// ```
///
/// This assumes the input program is correct in terms of its shape. So it is
/// safe to assume that `%d0` is in fact 4.
struct FoldEmptyTensorWithCastOp : public OpRewritePattern<CastOp> {
using OpRewritePattern<CastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CastOp castOp,
PatternRewriter &rewriter) const override {
if (!canFoldIntoProducerOp(castOp))
return failure();
auto producer = castOp.getSource().getDefiningOp<EmptyOp>();
if (!producer)
return failure();
auto resultType =
llvm::cast<RankedTensorType>(castOp->getResult(0).getType());
ArrayRef<int64_t> resultShape = resultType.getShape();
SmallVector<OpFoldResult> currMixedSizes = producer.getMixedSizes();
SmallVector<OpFoldResult> newMixedSizes;
newMixedSizes.reserve(currMixedSizes.size());
assert(resultShape.size() == currMixedSizes.size() &&
"mismatch in result shape and sizes of empty op");
for (auto it : llvm::zip(resultShape, currMixedSizes)) {
int64_t newDim = std::get<0>(it);
OpFoldResult currDim = std::get<1>(it);
// Case 1: The empty tensor dim is static. Check that the tensor cast
// result dim matches.
if (auto attr = llvm::dyn_cast_if_present<Attribute>(currDim)) {
if (ShapedType::isDynamic(newDim) ||
newDim != llvm::cast<IntegerAttr>(attr).getInt()) {
// Something is off, the cast result shape cannot be more dynamic
// than the empty tensor result shape (enforced by
// `canFoldIntoProducer`). Abort for now.
return rewriter.notifyMatchFailure(
producer, "mismatch in static value of shape of empty tensor "
"result and cast result");
}
newMixedSizes.push_back(attr);
continue;
}
// Case 2 : The tensor cast shape is static, but empty tensor result
// shape is dynamic.
if (!ShapedType::isDynamic(newDim)) {
newMixedSizes.push_back(rewriter.getIndexAttr(newDim));
continue;
}
// Case 3 : The tensor cast shape is dynamic and empty tensor result
// shape is dynamic. Use the dynamic value from the empty tensor op.
newMixedSizes.push_back(currDim);
}
// TODO: Do not drop tensor encoding.
rewriter.replaceOpWithNewOp<EmptyOp>(castOp, newMixedSizes,
resultType.getElementType());
return success();
}
};
} // namespace
void EmptyOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldEmptyTensorWithCastOp, FoldEmptyTensorWithDimOp,
ReplaceEmptyTensorStaticShapeDims>(context);
}
//===----------------------------------------------------------------------===//
// ExtractOp
//===----------------------------------------------------------------------===//
namespace {
/// Canonicalizes the pattern of the form
///
/// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32>
/// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32>
///
/// to
///
/// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32>
struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
PatternRewriter &rewriter) const final {
auto tensorCast = extract.getTensor().getDefiningOp<tensor::CastOp>();
if (!tensorCast)
return failure();
if (!llvm::isa<RankedTensorType>(tensorCast.getSource().getType()))
return failure();
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
extract, tensorCast.getSource(), extract.getIndices());
return success();
}
};
} // namespace
void ExtractOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "extracted");
}
LogicalResult ExtractOp::verify() {
// Verify the # indices match if we have a ranked type.
auto tensorType = llvm::cast<RankedTensorType>(getTensor().getType());
if (tensorType.getRank() != static_cast<int64_t>(getIndices().size()))
return emitOpError("incorrect number of indices for extract_element");
return success();
}
OpFoldResult ExtractOp::fold(FoldAdaptor adaptor) {
if (Attribute tensor = adaptor.getTensor()) {
// If this is a splat elements attribute, simply return the value.
// All of the elements of a splat attribute are the same.
if (auto splatTensor = llvm::dyn_cast<SplatElementsAttr>(tensor))
return splatTensor.getSplatValue<Attribute>();
// If this is a dense resource elements attribute, return.
if (isa<DenseResourceElementsAttr>(tensor))
return {};
}
// Collect the constant indices into the tensor.
SmallVector<uint64_t, 8> indices;
for (Attribute indice : adaptor.getIndices()) {
if (!indice || !llvm::isa<IntegerAttr>(indice))
return {};
indices.push_back(llvm::cast<IntegerAttr>(indice).getInt());
}
// Fold extract(from_elements(...)).
if (auto fromElementsOp = getTensor().getDefiningOp<FromElementsOp>()) {
auto tensorType = llvm::cast<RankedTensorType>(fromElementsOp.getType());
auto rank = tensorType.getRank();
assert(static_cast<int64_t>(indices.size()) == tensorType.getRank() &&
"rank mismatch");
int flatIndex = 0;
int stride = 1;
for (int i = rank - 1; i >= 0; --i) {
flatIndex += indices[i] * stride;
stride *= tensorType.getDimSize(i);
}
// Prevent out of bounds accesses. This can happen in invalid code that
// will never execute.
if (static_cast<int>(fromElementsOp.getElements().size()) <= flatIndex ||
flatIndex < 0)
return {};
return fromElementsOp.getElements()[flatIndex];
}
// If this is an elements attribute, query the value at the given indices.
if (Attribute tensor = adaptor.getTensor()) {
auto elementsAttr = llvm::dyn_cast<ElementsAttr>(tensor);
if (elementsAttr && elementsAttr.isValidIndex(indices))
return elementsAttr.getValues<Attribute>()[indices];
}
return {};
}
void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ExtractFromTensorCast>(context);
}
//===----------------------------------------------------------------------===//
// FromElementsOp
//===----------------------------------------------------------------------===//
void FromElementsOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "from_elements");
}
void FromElementsOp::build(OpBuilder &builder, OperationState &result,
ValueRange elements) {
assert(!elements.empty() && "expected at least one element");
Type resultType = RankedTensorType::get(
{static_cast<int64_t>(elements.size())}, elements.front().getType());
build(builder, result, resultType, elements);
}
OpFoldResult FromElementsOp::fold(FoldAdaptor adaptor) {
if (!llvm::is_contained(adaptor.getElements(), nullptr))
return DenseElementsAttr::get(getType(), adaptor.getElements());
return {};
}
namespace {
// Pushes the index_casts that occur before extractions to after the extract.
// This minimizes type conversion in some cases and enables the extract
// canonicalizer. This changes:
//
// %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex>
// %extract = tensor.extract %cast[%index] : tensor<1xindex>
//
// to the following:
//
// %extract = tensor.extract %tensor[%index] : tensor<1xindex>
// %cast = arith.index_cast %extract : i32 to index
//
// to just %element.
//
// Consider expanding this to a template and handle all tensor cast
// operations.
struct ExtractElementFromIndexCast
: public OpRewritePattern<tensor::ExtractOp> {
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
PatternRewriter &rewriter) const final {
Location loc = extract.getLoc();
auto indexCast = extract.getTensor().getDefiningOp<arith::IndexCastOp>();
if (!indexCast)
return failure();
Type elementTy = getElementTypeOrSelf(indexCast.getIn());
auto newExtract = rewriter.create<tensor::ExtractOp>(
loc, elementTy, indexCast.getIn(), extract.getIndices());
rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(),
newExtract);
return success();
}
};
} // namespace
void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ExtractElementFromIndexCast>(context);
}
//===----------------------------------------------------------------------===//
// GatherOp
//===----------------------------------------------------------------------===//
void GatherOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "gather");
}
/// Return the inferred result type for a gatherOp where:
/// - sourceType is the type of the source tensor gathered from
/// - indicesType is the type of the indices used to gather
/// - gatherDims are the dims along which the gather occurs.
/// Return a full rank or ranked-reduced variant of the type depending on
/// the value of rankReduced.
///
/// The leading dimensions of the index tensor give the result tensor its
/// leading dimensions.
/// The trailing dimensions of the result tensor are obtained from the source
/// tensor by setting the dimensions specified in gather_dims to `1` (if
/// rankedReduced is false), or skipping them (otherwise).
RankedTensorType GatherOp::inferResultType(RankedTensorType sourceType,
RankedTensorType indicesType,
ArrayRef<int64_t> gatherDims,
bool rankReduced) {
SmallVector<int64_t> resultShape(indicesType.getShape().drop_back());
resultShape.reserve(resultShape.size() + sourceType.getRank());
for (int64_t idx : llvm::seq<int64_t>(0, sourceType.getRank())) {
if (std::binary_search(gatherDims.begin(), gatherDims.end(), idx)) {
if (!rankReduced)
resultShape.push_back(1);
continue;
}
resultShape.push_back(sourceType.getDimSize(idx));
}
return RankedTensorType::Builder(sourceType).setShape(resultShape);
}
static LogicalResult
verifyGatherOrScatterDims(Operation *op, ArrayRef<int64_t> dims,
ArrayRef<int64_t> indices, int64_t rank,
StringRef gatherOrScatter, StringRef sourceOrDest) {
if (dims.empty())
return op->emitOpError(gatherOrScatter) << "_dims must be non-empty";
int64_t numGatherDims = dims.size();
if (numGatherDims > rank)
return op->emitOpError(gatherOrScatter)
<< "_dims overflow " << sourceOrDest << " rank";
if (indices.empty() || indices.back() != numGatherDims)
return op->emitOpError(gatherOrScatter)
<< "_dims length must match the size of last dimension of indices";
for (int64_t val : dims) {
if (val < 0)
return op->emitOpError(gatherOrScatter)
<< "_dims value must be non-negative";
if (val >= rank)
return op->emitOpError(gatherOrScatter)
<< "_dims value must be smaller than " << sourceOrDest << " rank";
}
for (int64_t i = 1; i < numGatherDims; ++i) {
if (dims[i - 1] >= dims[i])
return op->emitOpError(gatherOrScatter)
<< "_dims values must be strictly increasing";
}
return success();
}
LogicalResult GatherOp::verify() {
int64_t sourceRank = getSourceType().getRank();
ArrayRef<int64_t> gatherDims = getGatherDims();
if (failed(verifyGatherOrScatterDims(getOperation(), gatherDims,
getIndicesType().getShape(), sourceRank,
"gather", "source")))
return failure();
RankedTensorType expectedResultType = GatherOp::inferResultType(
getSourceType(), getIndicesType(), gatherDims, /*rankReduced=*/false);
RankedTensorType expectedRankReducedResultType = GatherOp::inferResultType(
getSourceType(), getIndicesType(), gatherDims, /*rankReduced=*/true);
if (getResultType() != expectedResultType &&
getResultType() != expectedRankReducedResultType) {
return emitOpError("result type "
"mismatch: "
"expected ")
<< expectedResultType << " or its rank-reduced variant "
<< expectedRankReducedResultType << " (got: " << getResultType()
<< ")";
}
return success();
}
OpFoldResult GatherOp::fold(FoldAdaptor adaptor) {
if (OpFoldResult reshapedSource = reshapeConstantSource(
llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getSource()),
getResult().getType()))
return reshapedSource;
return {};
}
//===----------------------------------------------------------------------===//
// InsertOp
//===----------------------------------------------------------------------===//
void InsertOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "inserted");
}
LogicalResult InsertOp::verify() {
// Verify the # indices match if we have a ranked type.
auto destType = llvm::cast<RankedTensorType>(getDest().getType());
if (destType.getRank() != static_cast<int64_t>(getIndices().size()))
return emitOpError("incorrect number of indices");
return success();
}
OpFoldResult InsertOp::fold(FoldAdaptor adaptor) {
Attribute scalar = adaptor.getScalar();
Attribute dest = adaptor.getDest();
if (scalar && dest)
if (auto splatDest = llvm::dyn_cast<SplatElementsAttr>(dest))
if (scalar == splatDest.getSplatValue<Attribute>())
return dest;
return {};
}
//===----------------------------------------------------------------------===//
// GenerateOp
//===----------------------------------------------------------------------===//
void GenerateOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "generated");
}
LogicalResult GenerateOp::reifyResultShapes(
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank()));
int idx = 0;
for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) {
if (getType().isDynamicDim(dim)) {
reifiedReturnShapes[0][dim] = getOperand(idx++);
} else {
reifiedReturnShapes[0][dim] =
builder.getIndexAttr(getType().getDimSize(dim));
}
}
return success();
}
LogicalResult GenerateOp::verify() {
// Ensure that the tensor type has as many dynamic dimensions as are
// specified by the operands.
RankedTensorType resultType = llvm::cast<RankedTensorType>(getType());
if (getNumOperands() != resultType.getNumDynamicDims())
return emitError("must have as many index operands as dynamic extents "
"in the result type");
return success();
}
LogicalResult GenerateOp::verifyRegions() {
RankedTensorType resultTy = llvm::cast<RankedTensorType>(getType());
// Ensure that region arguments span the index space.
if (!llvm::all_of(getBody().getArgumentTypes(),
[](Type ty) { return ty.isIndex(); }))
return emitError("all body arguments must be index");
if (getBody().getNumArguments() != resultTy.getRank())
return emitError("must have one body argument per input dimension");
// Ensure that the region yields an element of the right type.
auto yieldOp = cast<YieldOp>(getBody().getBlocks().front().getTerminator());
if (yieldOp.getValue().getType() != resultTy.getElementType())
return emitOpError(
"body must be terminated with a `yield` operation of the tensor "
"element type");
return success();
}
void GenerateOp::build(
OpBuilder &b, OperationState &result, Type resultTy,
ValueRange dynamicExtents,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
build(b, result, resultTy, dynamicExtents);
// Build and populate body.
OpBuilder::InsertionGuard guard(b);
Region *bodyRegion = result.regions.front().get();
auto rank = llvm::cast<RankedTensorType>(resultTy).getRank();
SmallVector<Type, 2> argumentTypes(rank, b.getIndexType());
SmallVector<Location, 2> argumentLocs(rank, result.location);
Block *bodyBlock =
b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs);
bodyBuilder(b, result.location, bodyBlock->getArguments());
}
namespace {
/// Canonicalizes tensor.generate operations with a constant
/// operand into the equivalent operation with the operand expressed in the
/// result type, instead. We also insert a type cast to make sure that the
/// resulting IR is still well-typed.
struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> {
using OpRewritePattern<GenerateOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenerateOp generateOp,
PatternRewriter &rewriter) const final {
SmallVector<Value> foldedDynamicSizes;
RankedTensorType foldedTensorType = foldDynamicToStaticDimSizes(
generateOp.getType(), generateOp.getDynamicExtents(),
foldedDynamicSizes);
// Stop here if no dynamic size was promoted to static.
if (foldedTensorType == generateOp.getType())
return failure();
auto loc = generateOp.getLoc();
auto newOp =
rewriter.create<GenerateOp>(loc, foldedTensorType, foldedDynamicSizes);
rewriter.inlineRegionBefore(generateOp.getBody(), newOp.getBody(),
newOp.getBody().begin());
rewriter.replaceOpWithNewOp<tensor::CastOp>(generateOp,
generateOp.getType(), newOp);
return success();
}
};
/// Canonicalizes the pattern of the form
///
/// %tensor = tensor.generate %x {
/// ^bb0(%arg0: index):
/// <computation>
/// yield %1 : index
/// } : tensor<?xindex>
/// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32>
///
/// to just <computation> with %arg0 replaced by %c0. We only do this if the
/// tensor.generate operation has no side-effects.
struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> {
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
PatternRewriter &rewriter) const final {
auto tensorFromElements = extract.getTensor().getDefiningOp<GenerateOp>();
if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
return failure();
IRMapping mapping;
Block *body = &tensorFromElements.getBody().front();
mapping.map(body->getArguments(), extract.getIndices());
for (auto &op : body->without_terminator())
rewriter.clone(op, mapping);
auto yield = cast<YieldOp>(body->getTerminator());
rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.getValue()));
return success();
}
};
} // namespace
void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
// TODO: Move extract pattern to tensor::ExtractOp.
results.add<ExtractFromTensorGenerate, StaticTensorGenerate>(context);
}
//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//
void RankOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "rank");
}
OpFoldResult RankOp::fold(FoldAdaptor adaptor) {
// Constant fold rank when the rank of the operand is known.
auto type = getOperand().getType();
auto shapedType = llvm::dyn_cast<ShapedType>(type);
if (shapedType && shapedType.hasRank())
return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank());
return IntegerAttr();
}
//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//
void ReshapeOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "reshape");
}
static int64_t getNumElements(ShapedType type) {
int64_t numElements = 1;
for (auto dim : type.getShape())
numElements *= dim;
return numElements;
}
LogicalResult ReshapeOp::verify() {
TensorType operandType = llvm::cast<TensorType>(getSource().getType());
TensorType resultType = llvm::cast<TensorType>(getResult().getType());
if (operandType.getElementType() != resultType.getElementType())
return emitOpError("element types of source and destination tensor "
"types should be the same");
int64_t shapeSize =
llvm::cast<RankedTensorType>(getShape().getType()).getDimSize(0);
auto resultRankedType = llvm::dyn_cast<RankedTensorType>(resultType);
auto operandRankedType = llvm::dyn_cast<RankedTensorType>(operandType);
if (resultRankedType) {
if (operandRankedType && resultRankedType.hasStaticShape() &&
operandRankedType.hasStaticShape()) {
if (getNumElements(operandRankedType) != getNumElements(resultRankedType))
return emitOpError("source and destination tensor should have the "
"same number of elements");
}
if (ShapedType::isDynamic(shapeSize))
return emitOpError("cannot use shape operand with dynamic length to "
"reshape to statically-ranked tensor type");
if (shapeSize != resultRankedType.getRank())
return emitOpError(
"length of shape operand differs from the result's tensor rank");
}
return success();
}
OpFoldResult ReshapeOp::fold(FoldAdaptor adaptor) {
if (OpFoldResult reshapedSource = reshapeConstantSource(
llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getSource()),
getResult().getType()))
return reshapedSource;
// If the producer of operand 'source' is another 'tensor.reshape' op, use the
// producer's input instead as the original tensor to reshape. This could
// render such producer dead code.
if (auto reshapeOpProducer = getSource().getDefiningOp<ReshapeOp>()) {
getSourceMutable().assign(reshapeOpProducer.getSource());
return getResult();
}
auto source = getSource();
auto sourceTy = dyn_cast<RankedTensorType>(source.getType());
auto resultTy = dyn_cast<RankedTensorType>(getType());
if (!sourceTy || !resultTy || sourceTy != resultTy)
return {};
// If the source and result are both 1D tensors and have the same type, the
// reshape has no effect, even if the tensor is dynamically shaped.
if (sourceTy.getRank() == 1)
return source;
if (auto fromElements = getShape().getDefiningOp<tensor::FromElementsOp>()) {
auto elements = fromElements.getElements();
bool dynamicNoop =
sourceTy.getRank() == static_cast<int64_t>(elements.size());
for (int id = 0, s = elements.size(); id < s && dynamicNoop; ++id) {
auto element = elements[id];
if (auto cst = getConstantIntValue(element)) {
dynamicNoop &= cst.value() == sourceTy.getDimSize(id);
continue;
}
if (auto dimOp = element.getDefiningOp<tensor::DimOp>()) {
dynamicNoop &= dimOp.getSource() == source;
APSInt dim;
auto cst = getConstantIntValue(dimOp.getIndex());
dynamicNoop &=
cst.has_value() && cst.value() == static_cast<int64_t>(id);
continue;
}
dynamicNoop = false;
break;
}
if (dynamicNoop)
return source;
}
return {};
}
//===----------------------------------------------------------------------===//
// Reassociative reshape ops
//===----------------------------------------------------------------------===//
void CollapseShapeOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "collapsed");
}
void ExpandShapeOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "expanded");
}
int64_t ExpandShapeOp::getCorrespondingSourceDim(int64_t resultDim) {
assert(resultDim >= 0 && resultDim < getResultType().getRank() &&
"invalid resultDim");
for (const auto &it : llvm::enumerate(getReassociationIndices()))
if (llvm::is_contained(it.value(), resultDim))
return it.index();
llvm_unreachable("could not find reassociation group");
}
FailureOr<SmallVector<OpFoldResult>>
ExpandShapeOp::inferOutputShape(OpBuilder &b, Location loc,
RankedTensorType expandedType,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<OpFoldResult> inputShape) {
std::optional<SmallVector<OpFoldResult>> outputShape =
inferExpandShapeOutputShape(b, loc, expandedType, reassociation,
inputShape);
if (!outputShape)
return failure();
return *outputShape;
}
SmallVector<OpFoldResult> ExpandShapeOp::getMixedOutputShape() {
return getMixedValues(getStaticOutputShape(), getOutputShape(), getContext());
}
void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
Type resultType, Value src,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<OpFoldResult> outputShape) {
auto [staticOutputShape, dynamicOutputShape] =
decomposeMixedValues(SmallVector<OpFoldResult>(outputShape));
build(builder, result, cast<RankedTensorType>(resultType), src,
getReassociationIndicesAttribute(builder, reassociation),
dynamicOutputShape, staticOutputShape);
}
void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
Type resultType, Value src,
ArrayRef<ReassociationIndices> reassociation) {
SmallVector<OpFoldResult> inputShape =
getMixedSizes(builder, result.location, src);
auto tensorResultTy = cast<RankedTensorType>(resultType);
FailureOr<SmallVector<OpFoldResult>> outputShape = inferOutputShape(
builder, result.location, tensorResultTy, reassociation, inputShape);
SmallVector<OpFoldResult> outputShapeOrEmpty;
if (succeeded(outputShape)) {
outputShapeOrEmpty = *outputShape;
}
build(builder, result, tensorResultTy, src, reassociation,
outputShapeOrEmpty);
}
SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() {
return getSymbolLessAffineMaps(getReassociationExprs());
}
SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() {
return convertReassociationIndicesToExprs(getContext(),
getReassociationIndices());
}
SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() {
return getSymbolLessAffineMaps(getReassociationExprs());
}
SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() {
return convertReassociationIndicesToExprs(getContext(),
getReassociationIndices());
}
RankedTensorType CollapseShapeOp::inferCollapsedType(
RankedTensorType type, SmallVector<ReassociationIndices> reassociation) {
return inferCollapsedType(
type, getSymbolLessAffineMaps(convertReassociationIndicesToExprs(
type.getContext(), reassociation)));
}
/// Compute the RankedTensorType obtained by applying `reassociation` to
/// `type`.
RankedTensorType
CollapseShapeOp::inferCollapsedType(RankedTensorType type,
ArrayRef<AffineMap> reassociation) {
auto shape = type.getShape();
SmallVector<int64_t, 4> newShape;
newShape.reserve(reassociation.size());
// Use the fact that reassociation is valid to simplify the logic: only use
// each map's rank.
assert(isReassociationValid(reassociation) && "invalid reassociation");
unsigned currentDim = 0;
for (AffineMap m : reassociation) {
unsigned dim = m.getNumResults();
auto band = shape.slice(currentDim, dim);
int64_t size = 1;
if (llvm::is_contained(band, ShapedType::kDynamic))
size = ShapedType::kDynamic;
else
for (unsigned d = 0; d < dim; ++d)
size *= shape[currentDim + d];
newShape.push_back(size);
currentDim += dim;
}
return RankedTensorType::get(newShape, type.getElementType());
}
void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<NamedAttribute> attrs) {
auto resultType = inferCollapsedType(
llvm::cast<RankedTensorType>(src.getType()),
getSymbolLessAffineMaps(
convertReassociationIndicesToExprs(b.getContext(), reassociation)));
result.addAttribute(getReassociationAttrStrName(),
getReassociationIndicesAttribute(b, reassociation));
build(b, result, resultType, src, attrs);
}
template <typename TensorReshapeOp, bool isExpansion = std::is_same<
TensorReshapeOp, ExpandShapeOp>::value>
static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op,
RankedTensorType expandedType,
RankedTensorType collapsedType) {
if (failed(
verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
return failure();
auto maps = op.getReassociationMaps();
RankedTensorType expectedType =
CollapseShapeOp::inferCollapsedType(expandedType, maps);
if (!isSameTypeWithoutEncoding(collapsedType, expectedType))
return op.emitOpError("expected collapsed type to be ")
<< expectedType << ", but got " << collapsedType;
return success();
}
LogicalResult ExpandShapeOp::verify() {
auto srcType = getSrcType();
auto resultType = getResultType();
if ((int64_t)getStaticOutputShape().size() != resultType.getRank())
return emitOpError("expected number of static shape dims to be equal to "
"the output rank (")
<< resultType.getRank() << ") but found "
<< getStaticOutputShape().size() << " inputs instead";
if ((int64_t)getOutputShape().size() !=
llvm::count(getStaticOutputShape(), ShapedType::kDynamic))
return emitOpError("mismatch in dynamic dims in output_shape and "
"static_output_shape: static_output_shape has ")
<< llvm::count(getStaticOutputShape(), ShapedType::kDynamic)
<< " dynamic dims while output_shape has " << getOutputShape().size()
<< " values";
return verifyTensorReshapeOp(*this, resultType, srcType);
}
LogicalResult CollapseShapeOp::verify() {
return verifyTensorReshapeOp(*this, getSrcType(), getResultType());
}
namespace {
/// Reshape of a splat constant can be replaced with a constant of the result
/// type.
template <typename TensorReshapeOp>
struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
DenseElementsAttr attr;
if (!matchPattern(reshapeOp.getSrc(), m_Constant(&attr)))
return failure();
if (!attr || !attr.isSplat())
return failure();
DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer(
reshapeOp.getResultType(), attr.getRawData());
rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr);
return success();
}
};
// Folds TensorReshapeOp(splat x : src_type) : res_type into splat x : res_type.
template <typename TensorReshapeOp>
class FoldReshapeWithSplat : public OpRewritePattern<TensorReshapeOp> {
public:
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
auto splatOp = reshapeOp.getSrc().template getDefiningOp<tensor::SplatOp>();
if (!splatOp || !splatOp.getAggregate().getType().hasStaticShape())
return failure();
rewriter.replaceOpWithNewOp<tensor::SplatOp>(
reshapeOp, reshapeOp.getResultType(), splatOp.getInput());
return success();
}
};
/// Reshape of a FromElements can be replaced with a FromElements of the
/// result type
template <typename TensorReshapeOp>
struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
auto fromElements =
reshapeOp.getSrc().template getDefiningOp<FromElementsOp>();
if (!fromElements)
return failure();
auto shapedTy = llvm::cast<ShapedType>(reshapeOp.getType());
if (!shapedTy.hasStaticShape())
return failure();
rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(),
fromElements.getElements());
return success();
}
};
// Fold CastOp into CollapseShapeOp when adding static information.
struct FoldCollapseOfCastOp : public OpRewritePattern<CollapseShapeOp> {
using OpRewritePattern<CollapseShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CollapseShapeOp collapseShapeOp,
PatternRewriter &rewriter) const override {
auto castOp = collapseShapeOp.getSrc().getDefiningOp<tensor::CastOp>();
if (!tensor::canFoldIntoConsumerOp(castOp))
return failure();
RankedTensorType srcType =
llvm::cast<RankedTensorType>(castOp.getSource().getType());
RankedTensorType newResultType = CollapseShapeOp::inferCollapsedType(
srcType, collapseShapeOp.getReassociationMaps());
if (newResultType == collapseShapeOp.getResultType()) {
rewriter.modifyOpInPlace(collapseShapeOp, [&]() {
collapseShapeOp.getSrcMutable().assign(castOp.getSource());
});
} else {
auto newOp = rewriter.create<CollapseShapeOp>(
collapseShapeOp.getLoc(), newResultType, castOp.getSource(),
collapseShapeOp.getReassociation());
rewriter.replaceOpWithNewOp<tensor::CastOp>(
collapseShapeOp, collapseShapeOp.getResultType(), newOp);
}
return success();
}
};
struct FoldDimOfExpandShape : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DimOp dimOp,
PatternRewriter &rewriter) const override {
auto expandShapeOp = dimOp.getSource().getDefiningOp<ExpandShapeOp>();
if (!expandShapeOp)
return failure();
// Only constant dimension values are supported.
std::optional<int64_t> dim = dimOp.getConstantIndex();
if (!dim.has_value())
return failure();
// Skip static dims. These are folded to constant ops.
RankedTensorType resultType = expandShapeOp.getResultType();
if (!resultType.isDynamicDim(*dim))
return failure();
// Find reassociation group that contains this result dimension.
int64_t srcDim = expandShapeOp.getCorrespondingSourceDim(*dim);
// `dim` is the only dynamic dimension in `group`. (Otherwise, the
// ExpandShapeOp would be ambiguous.)
int64_t product = 1;
ReassociationIndices grp = expandShapeOp.getReassociationIndices()[srcDim];
for (int64_t d : grp) {
if (d != dim) {
assert(!resultType.isDynamicDim(d) && "expected static dim");
product *= resultType.getDimSize(d);
}
}
// result dim size = src dim size / (product(other dims in reassoc group))
Value srcDimSz =
rewriter.create<DimOp>(dimOp.getLoc(), expandShapeOp.getSrc(), srcDim);
AffineExpr expr;
bindSymbols(dimOp.getContext(), expr);
rewriter.replaceOpWithNewOp<affine::AffineApplyOp>(
dimOp, expr.floorDiv(product), srcDimSz);
return success();
}
};
struct FoldDimOfCollapseShape : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DimOp dimOp,
PatternRewriter &rewriter) const override {
auto collapseShapeOp = dimOp.getSource().getDefiningOp<CollapseShapeOp>();
if (!collapseShapeOp)
return failure();
// Only constant dimension values are supported.
std::optional<int64_t> dim = dimOp.getConstantIndex();
if (!dim.has_value() ||
dim.value() >= collapseShapeOp.getResultType().getRank())
return failure();
// Skip static dims. These are folded to constant ops.
RankedTensorType resultType = collapseShapeOp.getResultType();
if (!resultType.isDynamicDim(*dim))
return failure();
// Get reassociation group of the result dimension.
ReassociationIndices group =
collapseShapeOp.getReassociationIndices()[*dim];
// result dim size = product(dims in reassoc group)
SmallVector<Value> srcDimSizes;
SmallVector<AffineExpr> syms;
AffineExpr product;
for (const auto &it : llvm::enumerate(group)) {
srcDimSizes.push_back(rewriter.create<DimOp>(
dimOp.getLoc(), collapseShapeOp.getSrc(), it.value()));
syms.push_back(rewriter.getAffineSymbolExpr(it.index()));
product = product ? product * syms.back() : syms.back();
}
rewriter.replaceOpWithNewOp<affine::AffineApplyOp>(dimOp, product,
srcDimSizes);
return success();
}
};
/// Fold/sink a producer `tensor.cast` with a consumer `tensor.expand_shape` by
/// matching constant output_shape operands of the expand. This makes the
/// `tensor.expand_shape` more static and creates a consumer cast that can be
/// propagated further.
struct ConvertToStaticExpandShape : public OpRewritePattern<ExpandShapeOp> {
using OpRewritePattern<ExpandShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExpandShapeOp expandOp,
PatternRewriter &rewriter) const override {
auto castOp = expandOp.getSrc().getDefiningOp<CastOp>();
if (!canFoldIntoConsumerOp(castOp))
return failure();
ArrayRef<int64_t> castSrcShape = castOp.getSource().getType().getShape();
SmallVector<ReassociationIndices, 4> reassoc =
expandOp.getReassociationIndices();
SmallVector<int64_t> newOutputShape(expandOp.getResultType().getShape());
SmallVector<Value> dynamicOutputShape;
auto outputIt = expandOp.getOutputShape().begin();
for (const auto &[inputDim, innerReassoc] : llvm::enumerate(reassoc)) {
for (uint64_t outDim : innerReassoc) {
if (!ShapedType::isDynamic(newOutputShape[outDim]))
continue;
// If the cast's src type is dynamic, don't infer any of the
// corresponding expanded dimensions. `tensor.expand_shape` requires at
// least one of the expanded dimensions to be dynamic if the input is
// dynamic.
Value val = *outputIt;
++outputIt;
if (ShapedType::isDynamic(castSrcShape[inputDim])) {
dynamicOutputShape.push_back(val);
continue;
}
APInt cst;
if (matchPattern(val, m_ConstantInt(&cst))) {
newOutputShape[outDim] = cst.getSExtValue();
} else {
dynamicOutputShape.push_back(val);
}
}
}
// Couldn't match any values, nothing to change
if (expandOp.getOutputShape().size() == dynamicOutputShape.size())
return failure();
// Calculate the input shape from the output
SmallVector<int64_t> newInputShape(expandOp.getSrcType().getRank(), 1l);
for (auto inDim : llvm::seq<int>(0, newInputShape.size())) {
for (auto outDim : reassoc[inDim]) {
auto ofr = newOutputShape[outDim];
if (ShapedType::isDynamic(ofr)) {
newInputShape[inDim] = ShapedType::kDynamic;
break;
}
newInputShape[inDim] *= ofr;
}
}
SmallVector<OpFoldResult> outputOfr =
getMixedValues(newOutputShape, dynamicOutputShape, rewriter);
auto inputType = RankedTensorType::get(
newInputShape, expandOp.getSrcType().getElementType());
auto outputType = RankedTensorType::get(
newOutputShape, expandOp.getSrcType().getElementType());
auto inputCast = rewriter.create<CastOp>(expandOp.getLoc(), inputType,
expandOp.getSrc());
auto newExpand = rewriter.create<ExpandShapeOp>(
expandOp.getLoc(), outputType, inputCast.getResult(),
expandOp.getReassociationIndices(), outputOfr);
rewriter.replaceOpWithNewOp<CastOp>(expandOp, expandOp.getType(),
newExpand.getResult());
return success();
}
};
} // namespace
void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<
ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>,
ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>,
ConvertToStaticExpandShape, FoldReshapeWithConstant<ExpandShapeOp>,
FoldReshapeWithSplat<ExpandShapeOp>,
FoldReshapeWithFromElements<ExpandShapeOp>, FoldDimOfExpandShape,
FoldDimOfCollapseShape>(context);
}
void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<
ComposeReassociativeReshapeOps<CollapseShapeOp, ReshapeOpKind::kCollapse>,
ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp,
tensor::DimOp, RankedTensorType>,
FoldReshapeWithConstant<CollapseShapeOp>,
FoldReshapeWithSplat<CollapseShapeOp>,
FoldReshapeWithFromElements<CollapseShapeOp>, FoldCollapseOfCastOp>(
context);
}
OpFoldResult ExpandShapeOp::fold(FoldAdaptor adaptor) {
return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this,
adaptor.getOperands());
}
OpFoldResult CollapseShapeOp::fold(FoldAdaptor adaptor) {
return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this,
adaptor.getOperands());
}
//===----------------------------------------------------------------------===//
// ExtractSliceOp
//===----------------------------------------------------------------------===//
void ExtractSliceOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "extracted_slice");
}
/// An extract_slice result type can be inferred, when it is not
/// rank-reduced, from the source type and the static representation of
/// offsets, sizes and strides. Special sentinels encode the dynamic case.
RankedTensorType ExtractSliceOp::inferResultType(
RankedTensorType sourceTensorType, ArrayRef<int64_t> staticOffsets,
ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) {
// An extract_slice op may specify only a leading subset of offset/sizes/
// strides in which case we complete with offset=0, sizes from memref type
// and strides=1.
assert(static_cast<int64_t>(staticSizes.size()) ==
sourceTensorType.getRank() &&
"unexpected staticSizes not equal to rank of source");
return RankedTensorType::get(staticSizes, sourceTensorType.getElementType(),
sourceTensorType.getEncoding());
}
RankedTensorType ExtractSliceOp::inferResultType(
RankedTensorType sourceTensorType, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
return ExtractSliceOp::inferResultType(sourceTensorType, staticOffsets,
staticSizes, staticStrides);
}
/// If the rank is reduced (i.e. the desiredResultRank is smaller than the
/// number of sizes), drop as many size 1 as needed to produce an inferred
/// type with the desired rank.
///
/// Note that there may be multiple ways to compute this rank-reduced type:
/// e.g. 1x6x1 can rank-reduce to either 1x6 or 6x1 2-D tensors.
///
/// To disambiguate, this function always drops the first 1 sizes occurrences.
RankedTensorType ExtractSliceOp::inferCanonicalRankReducedResultType(
unsigned desiredResultRank, RankedTensorType sourceRankedTensorType,
ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
// Type inferred in the absence of rank-reducing behavior.
auto inferredType = llvm::cast<RankedTensorType>(
inferResultType(sourceRankedTensorType, offsets, sizes, strides));
int rankDiff = inferredType.getRank() - desiredResultRank;
if (rankDiff > 0) {
auto shape = inferredType.getShape();
llvm::SmallBitVector dimsToProject =
getPositionsOfShapeOne(rankDiff, shape);
SmallVector<int64_t> projectedShape;
// Best effort rank-reducing: drop 1s in order.
for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
if (!dimsToProject.test(pos))
projectedShape.push_back(shape[pos]);
inferredType =
RankedTensorType::get(projectedShape, inferredType.getElementType());
}
return inferredType;
}
RankedTensorType ExtractSliceOp::inferCanonicalRankReducedResultType(
unsigned desiredResultRank, RankedTensorType sourceRankedTensorType,
ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
return ExtractSliceOp::inferCanonicalRankReducedResultType(
desiredResultRank, sourceRankedTensorType, staticOffsets, staticSizes,
staticStrides);
}
/// Build an ExtractSliceOp with mixed static and dynamic entries and custom
/// result type. If the type passed is nullptr, it is inferred.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
RankedTensorType resultType, Value source,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
auto sourceRankedTensorType = llvm::cast<RankedTensorType>(source.getType());
// Structuring implementation this way avoids duplication between builders.
if (!resultType) {
resultType = llvm::cast<RankedTensorType>(ExtractSliceOp::inferResultType(
sourceRankedTensorType, staticOffsets, staticSizes, staticStrides));
}
result.addAttributes(attrs);
build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets),
b.getDenseI64ArrayAttr(staticSizes),
b.getDenseI64ArrayAttr(staticStrides));
}
/// Build an ExtractSliceOp with mixed static and dynamic entries and inferred
/// result type.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}
/// Build an ExtractSliceOp with mixed static and dynamic entries packed into
/// a Range vector.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
ArrayRef<Range> ranges,
ArrayRef<NamedAttribute> attrs) {
auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges);
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}
/// Build an ExtractSliceOp with dynamic entries and custom result type. If
/// the type passed is nullptr, it is inferred.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
RankedTensorType resultType, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
}
/// Build an ExtractSliceOp with dynamic entries and inferred result type.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}
static LogicalResult produceSliceErrorMsg(SliceVerificationResult result,
Operation *op,
RankedTensorType expectedType) {
switch (result) {
case SliceVerificationResult::Success:
return success();
case SliceVerificationResult::RankTooLarge:
return op->emitError("expected rank to be smaller or equal to ")
<< "the other rank. ";
case SliceVerificationResult::SizeMismatch:
return op->emitError("expected type to be ")
<< expectedType << " or a rank-reduced version. (size mismatch) ";
case SliceVerificationResult::ElemTypeMismatch:
return op->emitError("expected element type to be ")
<< expectedType.getElementType();
default:
llvm_unreachable("unexpected extract_slice op verification result");
}
}
/// Verify that the offsets/sizes/strides-style access into the given tensor
/// is in-bounds. Only static information is verified.
static LogicalResult verifyInBoundsSlice(Operation *op,
RankedTensorType tensorType,
ArrayRef<int64_t> staticOffsets,
ArrayRef<int64_t> staticSizes,
ArrayRef<int64_t> staticStrides) {
for (int64_t i = 0, e = tensorType.getRank(); i < e; ++i) {
// Nothing to verify for dynamic source dims.
if (tensorType.isDynamicDim(i))
continue;
// Nothing to verify if the offset is dynamic.
if (ShapedType::isDynamic(staticOffsets[i]))
continue;
if (staticOffsets[i] >= tensorType.getDimSize(i))
return op->emitOpError("offset ")
<< i << " is out-of-bounds: " << staticOffsets[i]
<< " >= " << tensorType.getDimSize(i);
if (ShapedType::isDynamic(staticSizes[i]) ||
ShapedType::isDynamic(staticStrides[i]))
continue;
int64_t lastPos =
staticOffsets[i] + (staticSizes[i] - 1) * staticStrides[i];
if (lastPos >= tensorType.getDimSize(i))
return op->emitOpError("slice along dimension ")
<< i << " runs out-of-bounds: " << lastPos
<< " >= " << tensorType.getDimSize(i);
}
return success();
}
/// Verifier for ExtractSliceOp.
LogicalResult ExtractSliceOp::verify() {
RankedTensorType sourceType = getSourceType();
// Verify result type against inferred type.
RankedTensorType expectedType = ExtractSliceOp::inferResultType(
sourceType, getMixedOffsets(), getMixedSizes(), getMixedStrides());
SliceVerificationResult result = isRankReducedType(expectedType, getType());
if (result != SliceVerificationResult::Success)
return produceSliceErrorMsg(result, *this, expectedType);
// Verify that offsets, sizes, strides do not run out-of-bounds with respect
// to the source tensor.
return verifyInBoundsSlice(getOperation(), sourceType, getStaticOffsets(),
getStaticSizes(), getStaticStrides());
}
llvm::SmallBitVector ExtractSliceOp::getDroppedDims() {
return ::getDroppedDims(getType().getShape(), getMixedSizes());
}
FailureOr<Value>
ExtractSliceOp::rankReduceIfNeeded(OpBuilder &b, Location loc, Value value,
ArrayRef<int64_t> desiredShape) {
auto sourceTensorType = llvm::dyn_cast<RankedTensorType>(value.getType());
assert(sourceTensorType && "not a ranked tensor type");
auto sourceShape = sourceTensorType.getShape();
if (sourceShape.equals(desiredShape))
return value;
auto maybeRankReductionMask =
mlir::computeRankReductionMask(sourceShape, desiredShape);
if (!maybeRankReductionMask)
return failure();
return createCanonicalRankReducingExtractSliceOp(
b, loc, value,
RankedTensorType::Builder(sourceTensorType).setShape(desiredShape));
}
LogicalResult ExtractSliceOp::reifyResultShapes(
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
reifiedReturnShapes.resize(1);
reifiedReturnShapes[0].reserve(getType().getRank());
SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
llvm::SmallBitVector droppedDims = getDroppedDims();
for (const auto &size : enumerate(mixedSizes)) {
if (droppedDims.test(size.index()))
continue;
reifiedReturnShapes[0].push_back(size.value());
}
return success();
}
namespace {
/// Pattern to rewrite an extract_slice op with tensor::Cast arguments.
/// This essentially pushes memref_cast past its consuming slice when
/// `canFoldIntoConsumerOp` is true.
///
/// Example:
/// ```
/// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32>
/// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to
/// tensor<3x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to
/// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
/// ```
class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> {
public:
using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
// Any constant operand, just return to let the constant folder kick in.
if (llvm::any_of(sliceOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
auto castOp = sliceOp.getSource().getDefiningOp<CastOp>();
if (!castOp)
return failure();
if (!canFoldIntoConsumerOp(castOp))
return failure();
// Create folded extract.
Location loc = sliceOp.getLoc();
Value newResult = rewriter.create<ExtractSliceOp>(
loc, sliceOp.getType(), castOp.getSource(), sliceOp.getOffsets(),
sliceOp.getSizes(), sliceOp.getStrides(), sliceOp.getStaticOffsets(),
sliceOp.getStaticSizes(), sliceOp.getStaticStrides());
if (newResult.getType() != sliceOp.getType())
newResult = rewriter.create<CastOp>(loc, sliceOp.getType(), newResult);
rewriter.replaceOp(sliceOp, newResult);
return success();
}
};
/// Slice elements from `values` into `outValues`. `counts` represents the
/// numbers of elements to stride in the original values for each dimension.
/// The output values can be used to construct a DenseElementsAttr.
template <typename IterTy, typename ElemTy>
static void sliceElements(IterTy values, ArrayRef<int64_t> counts,
ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides,
llvm::SmallVectorImpl<ElemTy> *outValues) {
assert(offsets.size() == sizes.size());
assert(offsets.size() == strides.size());
if (offsets.empty())
return;
int64_t offset = offsets.front();
int64_t size = sizes.front();
int64_t stride = strides.front();
if (offsets.size() == 1) {
for (int64_t i = 0; i < size; ++i, offset += stride)
outValues->push_back(*(values + offset));
return;
}
for (int64_t i = 0; i < size; ++i, offset += stride) {
auto begin = values + offset * counts.front();
sliceElements<IterTy, ElemTy>(begin, counts.drop_front(),
offsets.drop_front(), sizes.drop_front(),
strides.drop_front(), outValues);
}
}
/// Fold arith.constant and tensor.extract_slice into arith.constant. The
/// folded operation might introduce more constant data; Users can control
/// their heuristics by the control function.
class ConstantOpExtractSliceFolder final
: public OpRewritePattern<ExtractSliceOp> {
public:
using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
ConstantOpExtractSliceFolder(MLIRContext *context,
ControlConstantExtractSliceFusionFn controlFn)
: OpRewritePattern<ExtractSliceOp>(context),
controlFn(std::move(controlFn)) {}
LogicalResult matchAndRewrite(ExtractSliceOp op,
PatternRewriter &rewriter) const override {
DenseElementsAttr attr;
if (!matchPattern(op.getSource(), m_Constant(&attr)))
return failure();
// A constant splat is handled by fold().
if (attr.isSplat())
return failure();
// Dynamic result shape is not supported.
auto sourceType = llvm::cast<ShapedType>(op.getSource().getType());
auto resultType = llvm::cast<ShapedType>(op.getResult().getType());
if (!sourceType.hasStaticShape() || !resultType.hasStaticShape())
return failure();
// Customized control over the folding.
if (!controlFn(op))
return failure();
int64_t count = sourceType.getNumElements();
if (count == 0)
return failure();
// Check if there are any dynamic parts, which are not supported.
auto offsets = op.getStaticOffsets();
if (llvm::is_contained(offsets, ShapedType::kDynamic))
return failure();
auto sizes = op.getStaticSizes();
if (llvm::is_contained(sizes, ShapedType::kDynamic))
return failure();
auto strides = op.getStaticStrides();
if (llvm::is_contained(strides, ShapedType::kDynamic))
return failure();
// Compute the stride for each dimension.
SmallVector<int64_t> counts;
ArrayRef<int64_t> shape = sourceType.getShape();
counts.reserve(shape.size());
for (int64_t v : shape) {
count = count / v;
counts.push_back(count);
}
// New attribute constructed by the sliced values.
DenseElementsAttr newAttr;
if (auto elems = llvm::dyn_cast<DenseIntElementsAttr>(attr)) {
SmallVector<APInt> outValues;
outValues.reserve(sourceType.getNumElements());
sliceElements<DenseElementsAttr::IntElementIterator, APInt>(
elems.begin(), counts, offsets, sizes, strides, &outValues);
newAttr = DenseElementsAttr::get(resultType, outValues);
} else if (auto elems = llvm::dyn_cast<DenseFPElementsAttr>(attr)) {
SmallVector<APFloat> outValues;
outValues.reserve(sourceType.getNumElements());
sliceElements<DenseElementsAttr::FloatElementIterator, APFloat>(
elems.begin(), counts, offsets, sizes, strides, &outValues);
newAttr = DenseElementsAttr::get(resultType, outValues);
}
if (newAttr) {
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, resultType, newAttr);
return success();
}
return failure();
}
private:
/// This additionally controls whether the fold happens or not. Users can
/// impose their heuristics in the function.
ControlConstantExtractSliceFusionFn controlFn;
};
} // namespace
void mlir::tensor::populateFoldConstantExtractSlicePatterns(
RewritePatternSet &patterns,
const ControlConstantExtractSliceFusionFn &controlFn) {
patterns.add<ConstantOpExtractSliceFolder>(patterns.getContext(), controlFn);
}
/// Return the canonical type of the result of an extract_slice op.
struct SliceReturnTypeCanonicalizer {
RankedTensorType operator()(ExtractSliceOp op,
ArrayRef<OpFoldResult> mixedOffsets,
ArrayRef<OpFoldResult> mixedSizes,
ArrayRef<OpFoldResult> mixedStrides) {
return ExtractSliceOp::inferCanonicalRankReducedResultType(
op.getType().getRank(), op.getSourceType(), mixedOffsets, mixedSizes,
mixedStrides);
}
};
/// A canonicalizer wrapper to replace ExtractSliceOps.
struct SliceCanonicalizer {
void operator()(PatternRewriter &rewriter, ExtractSliceOp op,
ExtractSliceOp newOp) {
Value replacement = newOp.getResult();
if (replacement.getType() != op.getType())
replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
replacement);
rewriter.replaceOp(op, replacement);
}
};
void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<
OpWithOffsetSizesAndStridesConstantArgumentFolder<
ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>,
ExtractSliceOpCastFolder>(context);
}
//
static LogicalResult
foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
ShapedType shapedType) {
OpBuilder b(op.getContext());
for (OpFoldResult ofr : op.getMixedOffsets())
if (getConstantIntValue(ofr) != static_cast<int64_t>(0))
return failure();
// Rank-reducing noops only need to inspect the leading dimensions:
// llvm::zip is appropriate.
auto shape = shapedType.getShape();
for (auto it : llvm::zip(op.getMixedSizes(), shape))
if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it))
return failure();
for (OpFoldResult ofr : op.getMixedStrides())
if (getConstantIntValue(ofr) != static_cast<int64_t>(1))
return failure();
return success();
}
/// If we have an ExtractSliceOp consuming an InsertSliceOp with the same
/// slice, we can return the InsertSliceOp's source directly.
// TODO: This only checks the immediate producer; extend to go up the
// insert/extract chain if the slices are disjoint.
static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) {
auto insertOp = extractOp.getSource().getDefiningOp<InsertSliceOp>();
auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
if (insertOp && insertOp.getSource().getType() == extractOp.getType() &&
insertOp.isSameAs(extractOp, isSame))
return insertOp.getSource();
return {};
}
OpFoldResult ExtractSliceOp::fold(FoldAdaptor adaptor) {
if (OpFoldResult reshapedSource = reshapeConstantSource(
llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getSource()),
getResult().getType()))
return reshapedSource;
if (getSourceType() == getType() &&
succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
return this->getSource();
if (Value slice = foldExtractAfterInsertSlice(*this))
return slice;
return OpFoldResult();
}
Value mlir::tensor::createCanonicalRankReducingExtractSliceOp(
OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) {
auto rankedTensorType = llvm::cast<RankedTensorType>(tensor.getType());
unsigned rank = rankedTensorType.getRank();
SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
SmallVector<OpFoldResult> sizes = getMixedSizes(b, loc, tensor);
SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor,
offsets, sizes, strides);
}
//===----------------------------------------------------------------------===//
// InsertSliceOp
//===----------------------------------------------------------------------===//
void InsertSliceOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "inserted_slice");
}
// Build a InsertSliceOp with mixed static and dynamic entries.
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
Value dest, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
result.addAttributes(attrs);
build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets),
b.getDenseI64ArrayAttr(staticSizes),
b.getDenseI64ArrayAttr(staticStrides));
}
/// Build an InsertSliceOp with mixed static and dynamic entries packed into a
/// Range vector.
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
Value dest, ArrayRef<Range> ranges,
ArrayRef<NamedAttribute> attrs) {
auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges);
build(b, result, source, dest, offsets, sizes, strides, attrs);
}
// Build a InsertSliceOp with dynamic entries.
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
Value dest, ValueRange offsets, ValueRange sizes,
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, source, dest, offsetValues, sizeValues, strideValues);
}
/// Rank-reducing type verification for both InsertSliceOp and
/// ParallelInsertSliceOp.
static SliceVerificationResult verifyInsertSliceOp(
RankedTensorType srcType, RankedTensorType dstType,
ArrayRef<int64_t> staticOffsets, ArrayRef<int64_t> staticSizes,
ArrayRef<int64_t> staticStrides, RankedTensorType *expectedType = nullptr) {
// insert_slice is the inverse of extract_slice, use the same type
// inference.
RankedTensorType expected = ExtractSliceOp::inferResultType(
dstType, staticOffsets, staticSizes, staticStrides);
if (expectedType)
*expectedType = expected;
return isRankReducedType(expected, srcType);
}
/// Verifier for InsertSliceOp.
LogicalResult InsertSliceOp::verify() {
// Verify result type against inferred type.
RankedTensorType expectedType;
SliceVerificationResult result =
verifyInsertSliceOp(getSourceType(), getType(), getStaticOffsets(),
getStaticSizes(), getStaticStrides(), &expectedType);
if (result != SliceVerificationResult::Success)
return produceSliceErrorMsg(result, *this, expectedType);
// Verify that offsets, sizes, strides do not run out-of-bounds with respect
// to the source tensor.
return verifyInBoundsSlice(getOperation(), getDestType(), getStaticOffsets(),
getStaticSizes(), getStaticStrides());
}
/// If we have two consecutive InsertSliceOp writing to the same slice, we
/// can mutate the second InsertSliceOp's destination to the first one's.
///
/// Example:
///
/// ```mlir
/// %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1]
/// %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1]
/// ```
///
/// folds into:
///
/// ```mlir
/// %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1]
/// ```
///
/// This pattern works with both InsertSliceOp and ParallelInsertSliceOp.
static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) {
auto prevInsertOp = insertOp.getDest().getDefiningOp<InsertSliceOp>();
auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
if (!prevInsertOp ||
prevInsertOp.getSource().getType() != insertOp.getSource().getType() ||
!prevInsertOp.isSameAs(insertOp, isSame))
return failure();
insertOp.getDestMutable().assign(prevInsertOp.getDest());
return success();
}
/// Folds round-trip extract/insert slice op pairs.
/// Example:
/// ```mlir
/// %0 = tensor.extract_slice %val[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1]
/// %1 = tensor.insert_slice %0 into %val[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1]
/// ```
/// can be folded into %val.
static Value foldInsertAfterExtractSlice(InsertSliceOp insertOp) {
auto extractOp = insertOp.getSource().getDefiningOp<ExtractSliceOp>();
auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
if (!extractOp || extractOp.getSource() != insertOp.getDest() ||
!extractOp.isSameAs(insertOp, isSame))
return nullptr;
return extractOp.getSource();
}
OpFoldResult InsertSliceOp::fold(FoldAdaptor) {
if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
getSourceType() == getType() &&
succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
return this->getSource();
if (succeeded(foldInsertAfterInsertSlice(*this)))
return getResult();
if (auto result = foldInsertAfterExtractSlice(*this))
return result;
if (llvm::any_of(getMixedSizes(),
[](OpFoldResult ofr) { return isConstantIntValue(ofr, 0); }))
return getDest();
return OpFoldResult();
}
LogicalResult InsertSliceOp::reifyResultShapes(
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank()));
reifiedReturnShapes[0] = tensor::getMixedSizes(builder, getLoc(), getDest());
return success();
}
namespace {
/// Pattern to rewrite a insert_slice op with constant arguments.
///
/// This pattern works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
class InsertSliceOpConstantArgumentFolder final
: public OpRewritePattern<InsertOpTy> {
public:
using OpRewritePattern<InsertOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
PatternRewriter &rewriter) const override {
SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
// No constant operands were folded, just return;
if (failed(foldDynamicOffsetSizeList(mixedOffsets)) &&
failed(foldDynamicOffsetSizeList(mixedSizes)) &&
failed(foldDynamicStrideList(mixedStrides)))
return failure();
// Create the new op in canonical form.
auto sourceType = ExtractSliceOp::inferCanonicalRankReducedResultType(
insertSliceOp.getSourceType().getRank(), insertSliceOp.getDestType(),
mixedOffsets, mixedSizes, mixedStrides);
Value toInsert = insertSliceOp.getSource();
if (sourceType != insertSliceOp.getSourceType()) {
OpBuilder::InsertionGuard g(rewriter);
// The only difference between InsertSliceOp and ParallelInsertSliceOp
// is that the insertion point is just before the ParallelCombiningOp in
// the parallel case.
if (std::is_same<InsertOpTy, ParallelInsertSliceOp>::value)
rewriter.setInsertionPoint(insertSliceOp->getParentOp());
toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(),
sourceType, toInsert);
}
rewriter.replaceOpWithNewOp<InsertOpTy>(
insertSliceOp, toInsert, insertSliceOp.getDest(), mixedOffsets,
mixedSizes, mixedStrides);
return success();
}
};
/// Fold tensor_casts with insert_slice operations. If the source or
/// destination tensor is a tensor_cast that removes static type information,
/// the cast is folded into the insert_slice operation. E.g.:
///
/// ```mlir
/// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
/// %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ...
/// ```
///
/// folds into:
///
/// ```mlir
/// %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ...
/// ```
///
/// Note: When folding a cast on the destination tensor, the result of the
/// insert_slice operation is casted to ensure that the type of the result did
/// not change.
///
/// This pattern works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertOpTy> {
using OpRewritePattern<InsertOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
PatternRewriter &rewriter) const override {
if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
auto getSourceOfCastOp = [](Value v) -> std::optional<Value> {
auto castOp = v.getDefiningOp<tensor::CastOp>();
if (!castOp || !canFoldIntoConsumerOp(castOp))
return std::nullopt;
return castOp.getSource();
};
std::optional<Value> sourceCastSource =
getSourceOfCastOp(insertSliceOp.getSource());
std::optional<Value> destCastSource =
getSourceOfCastOp(insertSliceOp.getDest());
if (!sourceCastSource && !destCastSource)
return failure();
auto src =
(sourceCastSource ? *sourceCastSource : insertSliceOp.getSource());
auto dst = (destCastSource ? *destCastSource : insertSliceOp.getDest());
auto srcType = llvm::dyn_cast<RankedTensorType>(src.getType());
auto dstType = llvm::dyn_cast<RankedTensorType>(dst.getType());
if (!srcType || !dstType)
return failure();
// The tensor.cast source could have additional static information not seen
// in the insert slice op static sizes, so we ignore dynamic dims when
// computing the rank reduction mask.
SmallVector<int64_t> staticSizes(insertSliceOp.getStaticSizes());
auto rankReductionMask = computeRankReductionMask(
staticSizes, srcType.getShape(), /*matchDynamic=*/true);
if (!rankReductionMask.has_value())
return failure();
// Replace dimensions in the insert slice op with corresponding static dims
// from the cast source type. If the insert slice sizes have static dims
// that are not static in the tensor.cast source (i.e., when the cast op
// casts a dynamic dim to static), the dim should not be replaced, and the
// pattern will fail later in `verifyInsertSliceOp`.
SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
int64_t rankReducedIdx = 0;
for (auto [idx, size] : enumerate(staticSizes)) {
if (!rankReductionMask.value().contains(idx) &&
!srcType.isDynamicDim(rankReducedIdx)) {
mixedSizes[idx] = getAsIndexOpFoldResult(
rewriter.getContext(), srcType.getDimSize(rankReducedIdx));
size = srcType.getDimSize(rankReducedIdx++);
}
}
if (verifyInsertSliceOp(srcType, dstType, insertSliceOp.getStaticOffsets(),
staticSizes, insertSliceOp.getStaticStrides()) !=
SliceVerificationResult::Success)
return failure();
Operation *replacement = rewriter.create<InsertOpTy>(
insertSliceOp.getLoc(), src, dst, insertSliceOp.getMixedOffsets(),
mixedSizes, insertSliceOp.getMixedStrides());
// In the parallel case there is no result and so nothing to cast.
bool isParallelInsert =
std::is_same<InsertOpTy, ParallelInsertSliceOp>::value;
if (!isParallelInsert && dst.getType() != insertSliceOp.getDestType()) {
replacement = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(),
insertSliceOp.getDestType(),
replacement->getResult(0));
}
rewriter.replaceOp(insertSliceOp, replacement->getResults());
return success();
}
};
/// If additional static type information can be deduced from a insert_slice's
/// size operands, insert an explicit cast of the op's source operand. This
/// enables other canonicalization patterns that are matching for tensor_cast
/// ops such as `ForOpTensorCastFolder` in SCF.
///
/// Example:
///
/// ```mlir
/// %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1]
/// : tensor<?x?xf32> into ...
/// ```
///
/// folds into:
///
/// ```mlir
/// %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32>
/// %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1]
/// : tensor<64x64xf32> into ...
/// ```
///
/// This patterns works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct InsertSliceOpSourceCastInserter final
: public OpRewritePattern<InsertOpTy> {
using OpRewritePattern<InsertOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
PatternRewriter &rewriter) const override {
RankedTensorType srcType = insertSliceOp.getSourceType();
if (srcType.getRank() != insertSliceOp.getDestType().getRank())
return failure();
SmallVector<int64_t> newSrcShape(srcType.getShape());
for (int64_t i = 0; i < srcType.getRank(); ++i) {
if (std::optional<int64_t> constInt =
getConstantIntValue(insertSliceOp.getMixedSizes()[i])) {
// Bail on invalid IR.
if (*constInt < 0)
return failure();
newSrcShape[i] = *constInt;
}
}
if (!hasValidSizesOffsets(newSrcShape))
return failure();
RankedTensorType newSrcType = RankedTensorType::get(
newSrcShape, srcType.getElementType(), srcType.getEncoding());
if (srcType == newSrcType ||
!preservesStaticInformation(srcType, newSrcType) ||
!tensor::CastOp::areCastCompatible(srcType, newSrcType))
return failure();
// newSrcType is:
// 1) Different from srcType.
// 2) "More static" than srcType.
// 3) Cast-compatible with srcType.
// Insert the cast.
OpBuilder::InsertionGuard g(rewriter);
// The only difference between InsertSliceOp and ParallelInsertSliceOp is
// that the insertion point is just before the ParallelCombiningOp in the
// parallel case.
if (std::is_same<InsertOpTy, ParallelInsertSliceOp>::value)
rewriter.setInsertionPoint(insertSliceOp->getParentOp());
Value cast = rewriter.create<tensor::CastOp>(
insertSliceOp.getLoc(), newSrcType, insertSliceOp.getSource());
rewriter.replaceOpWithNewOp<InsertOpTy>(
insertSliceOp, cast, insertSliceOp.getDest(),
insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
insertSliceOp.getMixedStrides());
return success();
}
};
} // namespace
llvm::SmallBitVector InsertSliceOp::getDroppedDims() {
return ::getDroppedDims(getSourceType().getShape(), getMixedSizes());
}
void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<InsertSliceOpConstantArgumentFolder<InsertSliceOp>,
InsertSliceOpCastFolder<InsertSliceOp>,
InsertSliceOpSourceCastInserter<InsertSliceOp>>(context);
}
Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b,
Location loc,
Value tensor,
Value dest) {
auto rankedTensorType = llvm::cast<RankedTensorType>(dest.getType());
unsigned rank = rankedTensorType.getRank();
SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
SmallVector<OpFoldResult> sizes = getMixedSizes(b, loc, dest);
SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets,
sizes, strides);
}
//===----------------------------------------------------------------------===//
// PadOp
//===----------------------------------------------------------------------===//
void PadOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "padded");
}
// TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it
// supports optional types.
void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand,
Type typeToInfer, Type typeToInferFrom) {}
ParseResult
parseInferType(OpAsmParser &parser,
std::optional<OpAsmParser::UnresolvedOperand> optOperand,
Type &typeToInfer, Type typeToInferFrom) {
if (optOperand)
typeToInfer = typeToInferFrom;
return success();
}
LogicalResult PadOp::verify() {
auto sourceType = llvm::cast<RankedTensorType>(getSource().getType());
auto resultType = llvm::cast<RankedTensorType>(getResult().getType());
auto expectedType =
PadOp::inferResultType(sourceType, getStaticLow(), getStaticHigh());
if (!expectedType) {
return emitError("failed to infer expectedType from sourceType ")
<< sourceType << ", specified resultType is " << resultType;
}
if (resultType.getRank() != expectedType.getRank()) {
return emitError("specified type ")
<< resultType << " does not match the inferred type "
<< expectedType;
}
for (int i = 0, e = sourceType.getRank(); i < e; ++i) {
if (resultType.getDimSize(i) == expectedType.getDimSize(i))
continue;
if (expectedType.isDynamicDim(i))
continue;
return emitError("specified type ")
<< resultType << " does not match the inferred type "
<< expectedType;
}
return success();
}
LogicalResult PadOp::verifyRegions() {
auto &region = getRegion();
unsigned rank = llvm::cast<RankedTensorType>(getResult().getType()).getRank();
Block &block = region.front();
if (block.getNumArguments() != rank)
return emitError("expected the block to have ") << rank << " arguments";
// Note: the number and type of yield values are checked in the YieldOp.
for (const auto &en : llvm::enumerate(block.getArgumentTypes())) {
if (!en.value().isIndex())
return emitOpError("expected block argument ")
<< (en.index() + 1) << " to be an index";
}
// Ensure that the region yields an element of the right type.
auto yieldOp = llvm::cast<YieldOp>(block.getTerminator());
if (yieldOp.getValue().getType() !=
llvm::cast<ShapedType>(getType()).getElementType())
return emitOpError("expected yield type to match shape element type");
return success();
}
RankedTensorType PadOp::inferResultType(RankedTensorType sourceType,
ArrayRef<int64_t> staticLow,
ArrayRef<int64_t> staticHigh,
ArrayRef<int64_t> resultShape) {
unsigned rank = sourceType.getRank();
if (staticLow.size() != rank)
return RankedTensorType();
if (staticHigh.size() != rank)
return RankedTensorType();
if (!resultShape.empty() && resultShape.size() != rank)
return RankedTensorType();
SmallVector<int64_t, 4> inferredShape;
for (auto i : llvm::seq<unsigned>(0, rank)) {
if (sourceType.isDynamicDim(i) || staticLow[i] == ShapedType::kDynamic ||
staticHigh[i] == ShapedType::kDynamic) {
inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamic
: resultShape[i]);
} else {
int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i];
assert((resultShape.empty() || size == resultShape[i] ||
resultShape[i] == ShapedType::kDynamic) &&
"mismatch between inferred shape and result shape");
inferredShape.push_back(size);
}
}
return RankedTensorType::get(inferredShape, sourceType.getElementType());
}
void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
Value source, ArrayRef<int64_t> staticLow,
ArrayRef<int64_t> staticHigh, ValueRange low, ValueRange high,
bool nofold, ArrayRef<NamedAttribute> attrs) {
auto sourceType = llvm::cast<RankedTensorType>(source.getType());
if (!resultType)
resultType = inferResultType(sourceType, staticLow, staticHigh);
result.addAttributes(attrs);
build(b, result, resultType, source, low, high,
b.getDenseI64ArrayAttr(staticLow), b.getDenseI64ArrayAttr(staticHigh),
nofold ? b.getUnitAttr() : UnitAttr());
}
void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
Value source, ValueRange low, ValueRange high, bool nofold,
ArrayRef<NamedAttribute> attrs) {
auto sourceType = llvm::cast<RankedTensorType>(source.getType());
unsigned rank = sourceType.getRank();
SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamic);
build(b, result, resultType, source, staticVector, staticVector, low, high,
nofold, attrs);
}
void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
Value source, ArrayRef<OpFoldResult> low,
ArrayRef<OpFoldResult> high, bool nofold,
ArrayRef<NamedAttribute> attrs) {
auto sourceType = llvm::cast<RankedTensorType>(source.getType());
SmallVector<Value, 4> dynamicLow, dynamicHigh;
SmallVector<int64_t, 4> staticLow, staticHigh;
// staticLow and staticHigh have full information of the padding config.
// This will grow staticLow and staticHigh with 1 value. If the config is
// dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1
// value as well.
dispatchIndexOpFoldResults(low, dynamicLow, staticLow);
dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh);
if (!resultType) {
resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh);
}
assert(llvm::isa<RankedTensorType>(resultType));
result.addAttributes(attrs);
build(b, result, resultType, source, dynamicLow, dynamicHigh,
b.getDenseI64ArrayAttr(staticLow), b.getDenseI64ArrayAttr(staticHigh),
nofold ? b.getUnitAttr() : UnitAttr());
}
void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
Value source, ArrayRef<OpFoldResult> low,
ArrayRef<OpFoldResult> high, Value constantPadValue,
bool nofold, ArrayRef<NamedAttribute> attrs) {
build(b, result, resultType, source, low, high, nofold, attrs);
// Add a region and a block to yield the pad value.
Region *region = result.regions[0].get();
int sourceRank = llvm::cast<RankedTensorType>(source.getType()).getRank();
SmallVector<Type> blockArgTypes(sourceRank, b.getIndexType());
SmallVector<Location> blockArgLocs(sourceRank, result.location);
// `builder.createBlock` changes the insertion point within the block. Create
// a guard to reset the insertion point of the builder after it is destroyed.
OpBuilder::InsertionGuard guard(b);
b.createBlock(region, region->end(), blockArgTypes, blockArgLocs);
b.create<tensor::YieldOp>(result.location, constantPadValue);
}
llvm::SmallBitVector PadOp::getPaddedDims() {
llvm::SmallBitVector paddedDims(getSourceType().getRank());
auto extractPaddedDims = [&](ArrayRef<OpFoldResult> paddingWidths) {
for (const auto &en : enumerate(paddingWidths))
if (getConstantIntValue(en.value()) != static_cast<int64_t>(0))
paddedDims.set(en.index());
};
extractPaddedDims(getMixedLowPad());
extractPaddedDims(getMixedHighPad());
return paddedDims;
}
namespace {
// Folds tensor.pad when padding is static zeros and the attribute
// doesn't request otherwise.
struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> {
using OpRewritePattern<PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadOp padTensorOp,
PatternRewriter &rewriter) const override {
if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad())
return failure();
if (padTensorOp.getNofold())
return failure();
rewriter.replaceOpWithNewOp<tensor::CastOp>(
padTensorOp, padTensorOp.getResult().getType(),
padTensorOp.getSource());
return success();
}
};
// Fold CastOp into PadOp when adding static information.
struct FoldSourceTensorCast : public OpRewritePattern<PadOp> {
using OpRewritePattern<PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadOp padTensorOp,
PatternRewriter &rewriter) const override {
auto castOp = padTensorOp.getSource().getDefiningOp<tensor::CastOp>();
if (!tensor::canFoldIntoConsumerOp(castOp))
return failure();
auto newResultType = PadOp::inferResultType(
llvm::cast<RankedTensorType>(castOp.getSource().getType()),
padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(),
padTensorOp.getResultType().getShape());
if (newResultType == padTensorOp.getResultType()) {
rewriter.modifyOpInPlace(padTensorOp, [&]() {
padTensorOp.getSourceMutable().assign(castOp.getSource());
});
} else {
auto newOp = rewriter.create<PadOp>(
padTensorOp->getLoc(), newResultType, padTensorOp.getSource(),
padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(),
padTensorOp.getLow(), padTensorOp.getHigh(), padTensorOp.getNofold(),
getPrunedAttributeList(padTensorOp, PadOp::getAttributeNames()));
IRMapping mapper;
padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
rewriter.replaceOpWithNewOp<tensor::CastOp>(
padTensorOp, padTensorOp.getResultType(), newOp);
}
return success();
}
};
// Fold CastOp using the result of PadOp back into the latter if it adds
// static information.
struct FoldTargetTensorCast : public OpRewritePattern<PadOp> {
using OpRewritePattern<PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadOp padTensorOp,
PatternRewriter &rewriter) const override {
if (!padTensorOp.getResult().hasOneUse())
return failure();
auto tensorCastOp =
dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin());
if (!tensorCastOp)
return failure();
if (!tensor::preservesStaticInformation(padTensorOp.getResult().getType(),
tensorCastOp.getDest().getType()))
return failure();
auto replacementOp = rewriter.create<PadOp>(
padTensorOp.getLoc(), tensorCastOp.getDest().getType(),
padTensorOp.getSource(), padTensorOp.getStaticLow(),
padTensorOp.getStaticHigh(), padTensorOp.getLow(),
padTensorOp.getHigh(), padTensorOp.getNofold(),
getPrunedAttributeList(padTensorOp, PadOp::getAttributeNames()));
replacementOp.getRegion().takeBody(padTensorOp.getRegion());
rewriter.replaceOp(padTensorOp, replacementOp.getResult());
rewriter.replaceOp(tensorCastOp, replacementOp.getResult());
return success();
}
};
/// Fold chains of tensor::ExtractSliceOp, tensor::PadOp pairs that pad
/// different dimensions. The pattern applies if the following preconditions
/// hold:
/// 1) the tensor::ExtractSliceOps are not rank-reducing,
/// 2) the tensor::ExtractSliceOps have only unit-strides,
/// 3) the tensor::PadOps perform only high-padding,
/// 4) the tensor::PadOps have the same constant padding value,
/// 5) the tensor::PadOps do not have common padding dimensions,
/// 6) one tensor::ExtractSliceOp, tensor::PadOp pair has zero-padding and
/// zero-offset for every dimension.
/// 7) the tensor::ExtractSliceOp sizes match the source tensor sizes for
/// the
/// padded source dimensions.
///
/// Example:
///
/// ```mlir
/// %0 = tensor.extract_slice %input[16, 0] [%sz0, 64] [1, 1]
/// : tensor<64x64xf32> to tensor<?x64xf32>
/// %1 = tensor.pad %0 low[0, 0] high[%pw0, 0] { ...
/// } : tensor<?x64xf32> to tensor<8x64xf32>
/// %2 = tensor.extract_slice %1[0, 4] [8, %sz1] [1, 1]
/// : tensor<8x64xf32> to tensor<8x?xf32>
/// %res = tensor.pad %2 nofold low[0, 0] high[0, %pw1] { ...
/// } : tensor<8x?xf32> to tensor<8x4xf32>
/// ```
///
/// folds into:
///
/// ```mlir
/// %0 = tensor.extract_slice %input[16, 4] [%sz0, %sz1] [1, 1]
/// : tensor<64x64xf32> to tensor<?x?xf32>
/// %res = tensor.pad %0 nofold low[0, 0] high[%pw0, %pw1] { ...
/// } : tensor<?x?xf32> to tensor<8x4xf32>
/// ```
struct FoldOrthogonalPaddings : public OpRewritePattern<PadOp> {
using OpRewritePattern<PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadOp padOp,
PatternRewriter &rewriter) const override {
auto innerSliceOp = padOp.getSource().getDefiningOp<ExtractSliceOp>();
if (!innerSliceOp)
return failure();
auto outerPadOp = innerSliceOp.getSource().getDefiningOp<PadOp>();
if (!outerPadOp || outerPadOp.getNofold())
return failure();
auto outerSliceOp = outerPadOp.getSource().getDefiningOp<ExtractSliceOp>();
if (!outerSliceOp)
return failure();
// 1) Fail if the chain is rank-reducing.
int64_t rank = padOp.getSourceType().getRank();
if (outerSliceOp.getSourceType().getRank() != rank) {
return rewriter.notifyMatchFailure(padOp,
"cannot fold rank-reducing chain");
}
// 2) Fail if the tensor::ExtractSliceOps have non-unit strides.
if (!innerSliceOp.hasUnitStride() || !outerSliceOp.hasUnitStride()) {
return rewriter.notifyMatchFailure(
padOp, "cannot fold non-unit stride ExtractSliceOps");
}
// 3) Fail if the tensor::PadOps have non-zero low padding.
if (!padOp.hasZeroLowPad() || !outerPadOp.hasZeroLowPad()) {
return rewriter.notifyMatchFailure(padOp,
"cannot fold PadOps with low padding");
}
// 4) Fail if the tensor::PadOps padding values do not match.
Attribute innerAttr, outerAttr;
Value innerValue = padOp.getConstantPaddingValue();
Value outerValue = outerPadOp.getConstantPaddingValue();
if (!innerValue || !outerValue ||
!matchPattern(innerValue, m_Constant(&innerAttr)) ||
!matchPattern(outerValue, m_Constant(&outerAttr)) ||
innerAttr != outerAttr) {
return rewriter.notifyMatchFailure(
padOp, "cannot fold PadOps with different padding values");
}
// 5) Fail if a dimension is padded by both tensor::PadOps.
llvm::SmallBitVector innerDims = padOp.getPaddedDims();
llvm::SmallBitVector outerDims = outerPadOp.getPaddedDims();
if (innerDims.anyCommon(outerDims)) {
return rewriter.notifyMatchFailure(
padOp, "cannot fold PadOps with common padding dimensions");
}
// 6) Combine the offsets of the two tensor::ExtractSliceOps. Find the
// zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair
// for every dimension, and use the offset the other pair. Fail if no
// zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair
// exists.
SmallVector<OpFoldResult> newOffsets(rank, rewriter.getIndexAttr(0));
for (auto en : enumerate(newOffsets)) {
OpFoldResult innerOffset = innerSliceOp.getMixedOffsets()[en.index()];
OpFoldResult outerOffset = outerSliceOp.getMixedOffsets()[en.index()];
if (!innerDims.test(en.index()) &&
(getConstantIntValue(innerOffset) == static_cast<int64_t>(0))) {
en.value() = outerOffset;
continue;
}
if (!outerDims.test(en.index()) &&
(getConstantIntValue(outerOffset) == static_cast<int64_t>(0))) {
en.value() = innerOffset;
continue;
}
return rewriter.notifyMatchFailure(
padOp, "cannot find zero-offset and zero-padding pair");
}
// 7) Combine the sizes of the two tensor::ExtractSliceOps. Take the size
// of the outer tensor::ExtractSliceOp for the dimensions padded by the
// outer tensor::PadOp and fail if the size of the inner
// tensor::ExtractSliceOp does not match the size of the padded dimension.
// Otherwise, take the size of the inner tensor::ExtractSliceOp.
SmallVector<OpFoldResult> newSizes = innerSliceOp.getMixedSizes();
for (auto en : enumerate(newSizes)) {
if (!outerDims.test(en.index()))
continue;
OpFoldResult sliceSize = innerSliceOp.getMixedSizes()[en.index()];
int64_t sourceSize = innerSliceOp.getSourceType().getShape()[en.index()];
assert(!ShapedType::isDynamic(sourceSize) &&
"expected padded dimension to have a static size");
if (getConstantIntValue(sliceSize) != sourceSize) {
return rewriter.notifyMatchFailure(
padOp, "cannot fold since the inner ExtractSliceOp size does not "
"match the size of the outer padding");
}
en.value() = outerSliceOp.getMixedSizes()[en.index()];
}
// Combine the high paddings of the two tensor::PadOps.
SmallVector<OpFoldResult> newHighPad(rank, rewriter.getIndexAttr(0));
for (auto en : enumerate(newHighPad)) {
if (innerDims.test(en.index()))
newHighPad[en.index()] = padOp.getMixedHighPad()[en.index()];
if (outerDims.test(en.index()))
newHighPad[en.index()] = outerPadOp.getMixedHighPad()[en.index()];
}
// Create a new tensor::ExtractSliceOp, tensor::PadOp pair that performs
// the two paddings in one step.
auto newSliceOp = rewriter.create<ExtractSliceOp>(
padOp.getLoc(), outerSliceOp.getSource(), newOffsets, newSizes,
innerSliceOp.getMixedStrides());
auto newPadOp = rewriter.create<PadOp>(
padOp.getLoc(), padOp.getResultType(), newSliceOp.getResult(),
padOp.getMixedLowPad(), newHighPad, padOp.getNofold(),
getPrunedAttributeList(padOp, PadOp::getAttributeNames()));
rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(),
newPadOp.getRegion().begin());
rewriter.replaceOp(padOp, newPadOp.getResult());
return success();
}
};
struct FoldStaticPadding : public OpRewritePattern<PadOp> {
using OpRewritePattern<PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadOp padTensorOp,
PatternRewriter &rewriter) const override {
Value input = padTensorOp.getSource();
if (!llvm::isa<RankedTensorType>(input.getType()))
return failure();
auto inputDims = llvm::cast<RankedTensorType>(input.getType()).getShape();
auto inputRank = inputDims.size();
auto oldResultType =
dyn_cast<RankedTensorType>(padTensorOp.getResult().getType());
if (!oldResultType)
return failure();
auto outputDims = oldResultType.getShape();
// Extract the static info from the high and low operands.
SmallVector<int64_t> constOperandsLow;
SmallVector<Value> newLows;
for (auto operand : padTensorOp.getLow()) {
APSInt intOp;
if (!matchPattern(operand, m_ConstantInt(&intOp))) {
constOperandsLow.push_back(ShapedType::kDynamic);
newLows.push_back(operand);
continue;
}
constOperandsLow.push_back(intOp.getExtValue());
}
SmallVector<int64_t> constOperandsHigh;
SmallVector<Value> newHighs;
for (auto operand : padTensorOp.getHigh()) {
APSInt intOp;
if (!matchPattern(operand, m_ConstantInt(&intOp))) {
constOperandsHigh.push_back(ShapedType::kDynamic);
newHighs.push_back(operand);
continue;
}
constOperandsHigh.push_back(intOp.getExtValue());
}
SmallVector<int64_t> constLow(padTensorOp.getStaticLow());
SmallVector<int64_t> constHigh(padTensorOp.getStaticHigh());
// Verify the op is well-formed.
if (inputDims.size() != outputDims.size() ||
inputDims.size() != constLow.size() ||
inputDims.size() != constHigh.size())
return failure();
auto lowCount = 0;
auto highCount = 0;
for (size_t i = 0; i < inputRank; i++) {
if (constLow[i] == ShapedType::kDynamic)
constLow[i] = constOperandsLow[lowCount++];
if (constHigh[i] == ShapedType::kDynamic)
constHigh[i] = constOperandsHigh[highCount++];
}
auto staticLow = ArrayRef<int64_t>(constLow);
auto staticHigh = ArrayRef<int64_t>(constHigh);
// Calculate the output sizes with the static information.
SmallVector<int64_t> newOutDims;
for (size_t i = 0; i < inputRank; i++) {
if (outputDims[i] == ShapedType::kDynamic) {
newOutDims.push_back(
(staticLow[i] == ShapedType::kDynamic ||
staticHigh[i] == ShapedType::kDynamic ||
inputDims[i] == ShapedType::kDynamic
? ShapedType::kDynamic
: inputDims[i] + staticLow[i] + staticHigh[i]));
} else {
newOutDims.push_back(outputDims[i]);
}
}
if (SmallVector<int64_t>(outputDims) == newOutDims ||
llvm::all_of(newOutDims,
[&](int64_t x) { return x == ShapedType::kDynamic; }))
return failure();
// Rewrite the op using the new static type.
auto newResultType = RankedTensorType::get(
newOutDims, padTensorOp.getType().getElementType());
auto newOp = rewriter.create<PadOp>(
padTensorOp->getLoc(), newResultType, input, staticLow, staticHigh,
newLows, newHighs, padTensorOp.getNofold(),
getPrunedAttributeList(padTensorOp, PadOp::getAttributeNames()));
IRMapping mapper;
padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
rewriter.replaceOpWithNewOp<tensor::CastOp>(padTensorOp, oldResultType,
newOp);
return success();
}
};
/// Folds a chain of `tensor.pad` ops with the same constant padding value.
///
/// Example:
///
/// ```mlir
/// %1 = tensor.pad %0 low[0, 1] high[0, 2] {
/// tensor.yield %val
/// } : tensor<1x2xf32> to tensor<2x5xf32>
/// %res = tensor.pad %1 low[0, 2] high[3, 0] {
/// tensor.yield %val
/// } : tensor<1x5xf32> to tensor<5x7xf32>
/// ```
///
/// folds into:
///
/// ```mlir
/// %res = tensor.pad %0 low[0, 3] high[3, 2] {
/// tensor.yield %val
/// } : tensor<1x2xf32> to tensor<5x7xf32>
/// ```
struct FoldConsecutiveConstantPadding : public OpRewritePattern<tensor::PadOp> {
using OpRewritePattern<tensor::PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const override {
if (padOp.getNofold()) {
return rewriter.notifyMatchFailure(padOp, "skipping unfoldable pad");
}
auto producerPad = padOp.getSource().getDefiningOp<tensor::PadOp>();
if (!producerPad || producerPad.getNofold()) {
return rewriter.notifyMatchFailure(
padOp, "producer is not a foldable tensor.pad op");
}
// Fail if the tensor::PadOps padding values do not match.
Value consumerPadValue = padOp.getConstantPaddingValue();
Value producerPadValue = producerPad.getConstantPaddingValue();
if (!consumerPadValue || !producerPadValue ||
consumerPadValue != producerPadValue) {
return rewriter.notifyMatchFailure(
padOp,
"cannot fold PadOps with different or non-constant padding values");
}
Location loc = padOp.getLoc();
AffineExpr d0, d1;
bindDims(rewriter.getContext(), d0, d1);
// Combine the low/high paddings of the two tensor::PadOps.
auto addPaddings = [&](ArrayRef<OpFoldResult> consumerPaddings,
ArrayRef<OpFoldResult> producerPaddings) {
SmallVector<OpFoldResult> sumPaddings;
for (auto [consumerIndex, producerIndex] :
llvm::zip_equal(consumerPaddings, producerPaddings)) {
sumPaddings.push_back(affine::makeComposedFoldedAffineApply(
rewriter, loc, d0 + d1, {consumerIndex, producerIndex}));
}
return sumPaddings;
};
SmallVector<OpFoldResult> newHighPad =
addPaddings(padOp.getMixedHighPad(), producerPad.getMixedHighPad());
SmallVector<OpFoldResult> newLowPad =
addPaddings(padOp.getMixedLowPad(), producerPad.getMixedLowPad());
auto newPadOp = rewriter.create<tensor::PadOp>(
padOp.getLoc(), padOp.getResultType(), producerPad.getSource(),
newLowPad, newHighPad, padOp.getNofold(),
getPrunedAttributeList(padOp, tensor::PadOp::getAttributeNames()));
rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(),
newPadOp.getRegion().begin());
rewriter.replaceOp(padOp, newPadOp.getResult());
return success();
}
};
} // namespace
void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast,
FoldOrthogonalPaddings, FoldStaticPadding,
FoldConsecutiveConstantPadding>(context);
}
/// Return the padding value of the PadOp if it constant. In this context,
/// "constant" means an actual constant or "defined outside of the block".
///
/// Values are considered constant in three cases:
/// - A ConstantLike value.
/// - A basic block argument from a different block.
/// - A value defined outside of the block.
///
/// If the padding value is not constant, an empty Value is returned.
Value PadOp::getConstantPaddingValue() {
auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator());
if (!yieldOp)
return {};
Value padValue = yieldOp.getValue();
// Check if yield value is a constant.
if (matchPattern(padValue, m_Constant()))
return padValue;
// Check if yield value is defined inside the PadOp block.
if (padValue.getParentBlock() == &getRegion().front())
return {};
// Else: Yield value defined outside of the PadOp block.
return padValue;
}
OpFoldResult PadOp::fold(FoldAdaptor) {
if (getResultType().hasStaticShape() && getResultType() == getSourceType() &&
!getNofold())
return getSource();
return {};
}
//===----------------------------------------------------------------------===//
// ParallelInsertSliceOp
//===----------------------------------------------------------------------===//
OpResult ParallelInsertSliceOp::getTiedOpResult() {
ParallelCombiningOpInterface parallelCombiningParent =
getParallelCombiningParent();
for (const auto &it :
llvm::enumerate(parallelCombiningParent.getYieldingOps())) {
Operation &nextOp = it.value();
if (&nextOp == getOperation())
return parallelCombiningParent.getParentResult(it.index());
}
llvm_unreachable("ParallelInsertSliceOp no tied OpResult found");
}
// Build a ParallelInsertSliceOp with mixed static and dynamic entries.
void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result,
Value source, Value dest,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides);
result.addAttributes(attrs);
build(b, result, {}, source, dest, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets),
b.getDenseI64ArrayAttr(staticSizes),
b.getDenseI64ArrayAttr(staticStrides));
}
/// Build an ParallelInsertSliceOp with mixed static and dynamic entries
/// packed into a Range vector.
void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result,
Value source, Value dest,
ArrayRef<Range> ranges,
ArrayRef<NamedAttribute> attrs) {
auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges);
build(b, result, source, dest, offsets, sizes, strides, attrs);
}
// Build a ParallelInsertSliceOp with dynamic entries.
void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result,
Value source, Value dest, ValueRange offsets,
ValueRange sizes, ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, source, dest, offsetValues, sizeValues, strideValues);
}
LogicalResult ParallelInsertSliceOp::verify() {
if (!isa<ParallelCombiningOpInterface>(getOperation()->getParentOp()))
return this->emitError("expected ParallelCombiningOpInterface parent, got:")
<< *(getOperation()->getParentOp());
// Verify result type against inferred type.
RankedTensorType expectedType;
SliceVerificationResult result =
verifyInsertSliceOp(getSourceType(), getDestType(), getStaticOffsets(),
getStaticSizes(), getStaticStrides(), &expectedType);
if (result != SliceVerificationResult::Success)
return produceSliceErrorMsg(result, *this, expectedType);
// Verify that offsets, sizes, strides do not run out-of-bounds with respect
// to the source tensor.
return verifyInBoundsSlice(getOperation(), getDestType(), getStaticOffsets(),
getStaticSizes(), getStaticStrides());
}
void ParallelInsertSliceOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<InsertSliceOpConstantArgumentFolder<ParallelInsertSliceOp>,
InsertSliceOpCastFolder<ParallelInsertSliceOp>,
InsertSliceOpSourceCastInserter<ParallelInsertSliceOp>>(context);
}
llvm::SmallBitVector ParallelInsertSliceOp::getDroppedDims() {
return ::getDroppedDims(getSourceType().getShape(), getMixedSizes());
}
//===----------------------------------------------------------------------===//
// ScatterOp
//===----------------------------------------------------------------------===//
void ScatterOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "scatter");
}
LogicalResult ScatterOp::verify() {
int64_t destRank = getDestType().getRank();
ArrayRef<int64_t> scatterDims = getScatterDims();
if (failed(verifyGatherOrScatterDims(getOperation(), scatterDims,
getIndicesType().getShape(), destRank,
"scatter", "dest")))
return failure();
if (!getUnique())
return emitOpError("requires 'unique' attribute to be set");
// TODO: we could also check statically that there are fewer leading index
// tensor dims than the dest dims. If this is not the case, the unique
// attribute cannot be true.
// Use the GatherOp::inferResultType on the `dest` type and verify the
// expected type matches the source type.
RankedTensorType expectedSourceType = GatherOp::inferResultType(
getDestType(), getIndicesType(), scatterDims, /*rankReduced=*/false);
RankedTensorType expectedRankReducedSourceType = GatherOp::inferResultType(
getDestType(), getIndicesType(), scatterDims, /*rankReduced=*/true);
if (getSourceType() != expectedSourceType &&
getSourceType() != expectedRankReducedSourceType) {
return emitOpError("source type "
"mismatch: "
"expected ")
<< expectedSourceType << " or its rank-reduced variant "
<< expectedRankReducedSourceType << " (got: " << getSourceType()
<< ")";
}
return success();
}
//===----------------------------------------------------------------------===//
// SplatOp
//===----------------------------------------------------------------------===//
void SplatOp::build(OpBuilder &builder, OperationState &result, Value element,
Type aggregateType, ValueRange dynamicSizes) {
build(builder, result, aggregateType, element, dynamicSizes);
}
void SplatOp::build(OpBuilder &builder, OperationState &result, Value element,
ArrayRef<int64_t> staticShape, ValueRange dynamicSizes) {
auto aggregateType = RankedTensorType::get(staticShape, element.getType());
build(builder, result, aggregateType, element, dynamicSizes);
}
void SplatOp::build(OpBuilder &builder, OperationState &result, Value element,
ArrayRef<OpFoldResult> sizes) {
SmallVector<int64_t> staticShape;
SmallVector<Value> dynamicSizes;
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticShape);
build(builder, result, element, staticShape, dynamicSizes);
}
void SplatOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "splat");
}
LogicalResult SplatOp::verify() {
if (getType().getNumDynamicDims() != getDynamicSizes().size())
return emitOpError("incorrect number of dynamic sizes, has ")
<< getDynamicSizes().size() << ", expected "
<< getType().getNumDynamicDims();
return success();
}
LogicalResult
SplatOp::reifyResultShapes(OpBuilder &builder,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank()));
unsigned ctr = 0;
for (int64_t i = 0; i < getType().getRank(); ++i) {
if (getType().isDynamicDim(i)) {
reifiedReturnShapes[0][i] = getDynamicSizes()[ctr++];
} else {
reifiedReturnShapes[0][i] = builder.getIndexAttr(getType().getDimSize(i));
}
}
return success();
}
OpFoldResult SplatOp::fold(FoldAdaptor adaptor) {
auto constOperand = adaptor.getInput();
if (!isa_and_nonnull<IntegerAttr, FloatAttr>(constOperand))
return {};
// Do not fold if the splat is not statically shaped
if (!getType().hasStaticShape())
return {};
// SplatElementsAttr::get treats single value for second arg as being a
// splat.
return SplatElementsAttr::get(getType(), {constOperand});
}
//===----------------------------------------------------------------------===//
// Common Canonicalizers and Folders.
//===----------------------------------------------------------------------===//
bool foldTensorCastPrecondition(DestinationStyleOpInterface op) {
// 1. InsertSliceOp has its own logic about folding tensor.cast ops.
// 2. Exclude DPS ops that are also LoopLike from this interface as they
// might need special handling of attached regions.
if (isa<InsertSliceOp>(op.getOperation()) ||
isa<LoopLikeOpInterface>(op.getOperation()))
return false;
return hasFoldableTensorCastOperand(op);
}
/// Folds a tensor.cast op into a consuming DestinationStyleOpInterface op if
/// the `tensor.cast` has source that is more static than the consuming op.
///
/// Example:
/// ```mlir
/// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
/// %2 = consumer %1 ... : tensor<?x?xf32> ...
/// ```
///
/// folds into:
///
/// ```mlir
/// %2 = consumer %0 ... : tensor<8x16xf32> ...
/// ```
/// TODO: Move the pattern to a proper place, so all other DestinationStyleOp
/// can add the pattern to their canonicalizers.
struct FoldTensorCastProducerOp
: public OpInterfaceRewritePattern<DestinationStyleOpInterface> {
using OpInterfaceRewritePattern<
DestinationStyleOpInterface>::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(DestinationStyleOpInterface op,
PatternRewriter &rewriter) const override {
// Reject PackOp/UnpackOp (i.e. RelayoutOps) - there are dedicated patterns
// for that instead.
if (!foldTensorCastPrecondition(op) ||
isa<linalg::RelayoutOpInterface>(*op))
return failure();
SmallVector<Type> newResultTypes(op->getResultTypes());
SmallVector<Value> newOperands =
getUpdatedOperandsAfterCastOpFolding(op, newResultTypes);
// Clone op
auto newOp = clone(rewriter, op, newResultTypes, newOperands);
SmallVector<Value, 4> replacements;
replacements.reserve(newOp->getNumResults());
for (auto [oldResult, newResult] :
llvm::zip(op->getResults(), newOp->getResults())) {
if (newResult.getType() != oldResult.getType()) {
replacements.push_back(rewriter.create<tensor::CastOp>(
op->getLoc(), oldResult.getType(), newResult));
} else {
replacements.push_back(newResult);
}
}
rewriter.replaceOp(op, replacements);
return success();
}
};
//===----------------------------------------------------------------------===//
// TensorDialect
//===----------------------------------------------------------------------===//
void TensorDialect::getCanonicalizationPatterns(
RewritePatternSet &results) const {
results.add<FoldTensorCastProducerOp>(getContext());
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"