|  | //===-------------- lib/Support/BranchProbability.cpp -----------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements Branch Probability class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <cmath> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | constexpr uint32_t BranchProbability::D; | 
|  |  | 
|  | raw_ostream &BranchProbability::print(raw_ostream &OS) const { | 
|  | if (isUnknown()) | 
|  | return OS << "?%"; | 
|  |  | 
|  | // Get a percentage rounded to two decimal digits. This avoids | 
|  | // implementation-defined rounding inside printf. | 
|  | double Percent = rint(((double)N / D) * 100.0 * 100.0) / 100.0; | 
|  | return OS << format("0x%08" PRIx32 " / 0x%08" PRIx32 " = %.2f%%", N, D, | 
|  | Percent); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void BranchProbability::dump() const { print(dbgs()) << '\n'; } | 
|  | #endif | 
|  |  | 
|  | BranchProbability::BranchProbability(uint32_t Numerator, uint32_t Denominator) { | 
|  | assert(Denominator > 0 && "Denominator cannot be 0!"); | 
|  | assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); | 
|  | if (Denominator == D) | 
|  | N = Numerator; | 
|  | else { | 
|  | uint64_t Prob64 = | 
|  | (Numerator * static_cast<uint64_t>(D) + Denominator / 2) / Denominator; | 
|  | N = static_cast<uint32_t>(Prob64); | 
|  | } | 
|  | } | 
|  |  | 
|  | BranchProbability | 
|  | BranchProbability::getBranchProbability(uint64_t Numerator, | 
|  | uint64_t Denominator) { | 
|  | assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); | 
|  | // Scale down Denominator to fit in a 32-bit integer. | 
|  | int Scale = 0; | 
|  | while (Denominator > UINT32_MAX) { | 
|  | Denominator >>= 1; | 
|  | Scale++; | 
|  | } | 
|  | return BranchProbability(Numerator >> Scale, Denominator); | 
|  | } | 
|  |  | 
|  | // If ConstD is not zero, then replace D by ConstD so that division and modulo | 
|  | // operations by D can be optimized, in case this function is not inlined by the | 
|  | // compiler. | 
|  | template <uint32_t ConstD> | 
|  | static uint64_t scale(uint64_t Num, uint32_t N, uint32_t D) { | 
|  | if (ConstD > 0) | 
|  | D = ConstD; | 
|  |  | 
|  | assert(D && "divide by 0"); | 
|  |  | 
|  | // Fast path for multiplying by 1.0. | 
|  | if (!Num || D == N) | 
|  | return Num; | 
|  |  | 
|  | // Split Num into upper and lower parts to multiply, then recombine. | 
|  | uint64_t ProductHigh = (Num >> 32) * N; | 
|  | uint64_t ProductLow = (Num & UINT32_MAX) * N; | 
|  |  | 
|  | // Split into 32-bit digits. | 
|  | uint32_t Upper32 = ProductHigh >> 32; | 
|  | uint32_t Lower32 = ProductLow & UINT32_MAX; | 
|  | uint32_t Mid32Partial = ProductHigh & UINT32_MAX; | 
|  | uint32_t Mid32 = Mid32Partial + (ProductLow >> 32); | 
|  |  | 
|  | // Carry. | 
|  | Upper32 += Mid32 < Mid32Partial; | 
|  |  | 
|  | uint64_t Rem = (uint64_t(Upper32) << 32) | Mid32; | 
|  | uint64_t UpperQ = Rem / D; | 
|  |  | 
|  | // Check for overflow. | 
|  | if (UpperQ > UINT32_MAX) | 
|  | return UINT64_MAX; | 
|  |  | 
|  | Rem = ((Rem % D) << 32) | Lower32; | 
|  | uint64_t LowerQ = Rem / D; | 
|  | uint64_t Q = (UpperQ << 32) + LowerQ; | 
|  |  | 
|  | // Check for overflow. | 
|  | return Q < LowerQ ? UINT64_MAX : Q; | 
|  | } | 
|  |  | 
|  | uint64_t BranchProbability::scale(uint64_t Num) const { | 
|  | return ::scale<D>(Num, N, D); | 
|  | } | 
|  |  | 
|  | uint64_t BranchProbability::scaleByInverse(uint64_t Num) const { | 
|  | return ::scale<0>(Num, D, N); | 
|  | } |