blob: 9ee288a042b4f73e92f4d7ce79d34039ce119ed5 [file] [log] [blame]
//===- Serializer.h - MLIR SPIR-V Serializer ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the MLIR SPIR-V module to SPIR-V binary serializer.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
#define MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/IR/Builders.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/raw_ostream.h"
namespace mlir {
namespace spirv {
LogicalResult encodeInstructionInto(SmallVectorImpl<uint32_t> &binary,
spirv::Opcode op,
ArrayRef<uint32_t> operands);
/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words with the layout:
///
/// | <word-count>|<opcode> | <operand> | <operand> | ... |
/// | <------ word -------> | <-- word --> | <-- word --> | ... |
///
/// For the first word, the 16 high-order bits are the word count of the
/// instruction, the 16 low-order bits are the opcode enumerant. The
/// instructions then belong to different sections, which must be laid out in
/// the particular order as specified in "2.4 Logical Layout of a Module" of
/// the SPIR-V spec.
class Serializer {
public:
/// Creates a serializer for the given SPIR-V `module`.
explicit Serializer(spirv::ModuleOp module, bool emitDebugInfo = false);
/// Serializes the remembered SPIR-V module.
LogicalResult serialize();
/// Collects the final SPIR-V `binary`.
void collect(SmallVectorImpl<uint32_t> &binary);
#ifndef NDEBUG
/// (For debugging) prints each value and its corresponding result <id>.
void printValueIDMap(raw_ostream &os);
#endif
private:
// Note that there are two main categories of methods in this class:
// * process*() methods are meant to fully serialize a SPIR-V module entity
// (header, type, op, etc.). They update internal vectors containing
// different binary sections. They are not meant to be called except the
// top-level serialization loop.
// * prepare*() methods are meant to be helpers that prepare for serializing
// certain entity. They may or may not update internal vectors containing
// different binary sections. They are meant to be called among themselves
// or by other process*() methods for subtasks.
//===--------------------------------------------------------------------===//
// <id>
//===--------------------------------------------------------------------===//
// Note that it is illegal to use id <0> in SPIR-V binary module. Various
// methods in this class, if using SPIR-V word (uint32_t) as interface,
// check or return id <0> to indicate error in processing.
/// Consumes the next unused <id>. This method will never return 0.
uint32_t getNextID() { return nextID++; }
//===--------------------------------------------------------------------===//
// Module structure
//===--------------------------------------------------------------------===//
uint32_t getSpecConstID(StringRef constName) const {
return specConstIDMap.lookup(constName);
}
uint32_t getVariableID(StringRef varName) const {
return globalVarIDMap.lookup(varName);
}
uint32_t getFunctionID(StringRef fnName) const {
return funcIDMap.lookup(fnName);
}
/// Gets the <id> for the function with the given name. Assigns the next
/// available <id> if the function haven't been deserialized.
uint32_t getOrCreateFunctionID(StringRef fnName);
void processCapability();
void processDebugInfo();
void processExtension();
void processMemoryModel();
LogicalResult processConstantOp(spirv::ConstantOp op);
LogicalResult processSpecConstantOp(spirv::SpecConstantOp op);
LogicalResult
processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op);
LogicalResult
processSpecConstantOperationOp(spirv::SpecConstantOperationOp op);
/// SPIR-V dialect supports OpUndef using spv.UndefOp that produces a SSA
/// value to use with other operations. The SPIR-V spec recommends that
/// OpUndef be generated at module level. The serialization generates an
/// OpUndef for each type needed at module level.
LogicalResult processUndefOp(spirv::UndefOp op);
/// Emit OpName for the given `resultID`.
LogicalResult processName(uint32_t resultID, StringRef name);
/// Processes a SPIR-V function op.
LogicalResult processFuncOp(spirv::FuncOp op);
LogicalResult processVariableOp(spirv::VariableOp op);
/// Process a SPIR-V GlobalVariableOp
LogicalResult processGlobalVariableOp(spirv::GlobalVariableOp varOp);
/// Process attributes that translate to decorations on the result <id>
LogicalResult processDecoration(Location loc, uint32_t resultID,
NamedAttribute attr);
template <typename DType>
LogicalResult processTypeDecoration(Location loc, DType type,
uint32_t resultId) {
return emitError(loc, "unhandled decoration for type:") << type;
}
/// Process member decoration
LogicalResult processMemberDecoration(
uint32_t structID,
const spirv::StructType::MemberDecorationInfo &memberDecorationInfo);
//===--------------------------------------------------------------------===//
// Types
//===--------------------------------------------------------------------===//
uint32_t getTypeID(Type type) const { return typeIDMap.lookup(type); }
Type getVoidType() { return mlirBuilder.getNoneType(); }
bool isVoidType(Type type) const { return type.isa<NoneType>(); }
/// Returns true if the given type is a pointer type to a struct in some
/// interface storage class.
bool isInterfaceStructPtrType(Type type) const;
/// Main dispatch method for serializing a type. The result <id> of the
/// serialized type will be returned as `typeID`.
LogicalResult processType(Location loc, Type type, uint32_t &typeID);
LogicalResult processTypeImpl(Location loc, Type type, uint32_t &typeID,
SetVector<StringRef> &serializationCtx);
/// Method for preparing basic SPIR-V type serialization. Returns the type's
/// opcode and operands for the instruction via `typeEnum` and `operands`.
LogicalResult prepareBasicType(Location loc, Type type, uint32_t resultID,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands,
bool &deferSerialization,
SetVector<StringRef> &serializationCtx);
LogicalResult prepareFunctionType(Location loc, FunctionType type,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands);
//===--------------------------------------------------------------------===//
// Constant
//===--------------------------------------------------------------------===//
uint32_t getConstantID(Attribute value) const {
return constIDMap.lookup(value);
}
/// Main dispatch method for processing a constant with the given `constType`
/// and `valueAttr`. `constType` is needed here because we can interpret the
/// `valueAttr` as a different type than the type of `valueAttr` itself; for
/// example, ArrayAttr, whose type is NoneType, is used for spirv::ArrayType
/// constants.
uint32_t prepareConstant(Location loc, Type constType, Attribute valueAttr);
/// Prepares array attribute serialization. This method emits corresponding
/// OpConstant* and returns the result <id> associated with it. Returns 0 if
/// failed.
uint32_t prepareArrayConstant(Location loc, Type constType, ArrayAttr attr);
/// Prepares bool/int/float DenseElementsAttr serialization. This method
/// iterates the DenseElementsAttr to construct the constant array, and
/// returns the result <id> associated with it. Returns 0 if failed. Note
/// that the size of `index` must match the rank.
/// TODO: Consider to enhance splat elements cases. For splat cases,
/// we don't need to loop over all elements, especially when the splat value
/// is zero. We can use OpConstantNull when the value is zero.
uint32_t prepareDenseElementsConstant(Location loc, Type constType,
DenseElementsAttr valueAttr, int dim,
MutableArrayRef<uint64_t> index);
/// Prepares scalar attribute serialization. This method emits corresponding
/// OpConstant* and returns the result <id> associated with it. Returns 0 if
/// the attribute is not for a scalar bool/integer/float value. If `isSpec` is
/// true, then the constant will be serialized as a specialization constant.
uint32_t prepareConstantScalar(Location loc, Attribute valueAttr,
bool isSpec = false);
uint32_t prepareConstantBool(Location loc, BoolAttr boolAttr,
bool isSpec = false);
uint32_t prepareConstantInt(Location loc, IntegerAttr intAttr,
bool isSpec = false);
uint32_t prepareConstantFp(Location loc, FloatAttr floatAttr,
bool isSpec = false);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// Returns the result <id> for the given block.
uint32_t getBlockID(Block *block) const { return blockIDMap.lookup(block); }
/// Returns the result <id> for the given block. If no <id> has been assigned,
/// assigns the next available <id>
uint32_t getOrCreateBlockID(Block *block);
/// Processes the given `block` and emits SPIR-V instructions for all ops
/// inside. Does not emit OpLabel for this block if `omitLabel` is true.
/// `actionBeforeTerminator` is a callback that will be invoked before
/// handling the terminator op. It can be used to inject the Op*Merge
/// instruction if this is a SPIR-V selection/loop header block.
LogicalResult
processBlock(Block *block, bool omitLabel = false,
function_ref<void()> actionBeforeTerminator = nullptr);
/// Emits OpPhi instructions for the given block if it has block arguments.
LogicalResult emitPhiForBlockArguments(Block *block);
LogicalResult processSelectionOp(spirv::SelectionOp selectionOp);
LogicalResult processLoopOp(spirv::LoopOp loopOp);
LogicalResult processBranchConditionalOp(spirv::BranchConditionalOp);
LogicalResult processBranchOp(spirv::BranchOp branchOp);
//===--------------------------------------------------------------------===//
// Operations
//===--------------------------------------------------------------------===//
LogicalResult encodeExtensionInstruction(Operation *op,
StringRef extensionSetName,
uint32_t opcode,
ArrayRef<uint32_t> operands);
uint32_t getValueID(Value val) const { return valueIDMap.lookup(val); }
LogicalResult processAddressOfOp(spirv::AddressOfOp addressOfOp);
LogicalResult processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp);
/// Main dispatch method for serializing an operation.
LogicalResult processOperation(Operation *op);
/// Serializes an operation `op` as core instruction with `opcode` if
/// `extInstSet` is empty. Otherwise serializes it as an extended instruction
/// with `opcode` from `extInstSet`.
/// This method is a generic one for dispatching any SPIR-V ops that has no
/// variadic operands and attributes in TableGen definitions.
LogicalResult processOpWithoutGrammarAttr(Operation *op, StringRef extInstSet,
uint32_t opcode);
/// Dispatches to the serialization function for an operation in SPIR-V
/// dialect that is a mirror of an instruction in the SPIR-V spec. This is
/// auto-generated from ODS. Dispatch is handled for all operations in SPIR-V
/// dialect that have hasOpcode == 1.
LogicalResult dispatchToAutogenSerialization(Operation *op);
/// Serializes an operation in the SPIR-V dialect that is a mirror of an
/// instruction in the SPIR-V spec. This is auto generated if hasOpcode == 1
/// and autogenSerialization == 1 in ODS.
template <typename OpTy> LogicalResult processOp(OpTy op) {
return op.emitError("unsupported op serialization");
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// Emits an OpDecorate instruction to decorate the given `target` with the
/// given `decoration`.
LogicalResult emitDecoration(uint32_t target, spirv::Decoration decoration,
ArrayRef<uint32_t> params = {});
/// Emits an OpLine instruction with the given `loc` location information into
/// the given `binary` vector.
LogicalResult emitDebugLine(SmallVectorImpl<uint32_t> &binary, Location loc);
private:
/// The SPIR-V module to be serialized.
spirv::ModuleOp module;
/// An MLIR builder for getting MLIR constructs.
mlir::Builder mlirBuilder;
/// A flag which indicates if the debuginfo should be emitted.
bool emitDebugInfo = false;
/// A flag which indicates if the last processed instruction was a merge
/// instruction.
/// According to SPIR-V spec: "If a branch merge instruction is used, the last
/// OpLine in the block must be before its merge instruction".
bool lastProcessedWasMergeInst = false;
/// The <id> of the OpString instruction, which specifies a file name, for
/// use by other debug instructions.
uint32_t fileID = 0;
/// The next available result <id>.
uint32_t nextID = 1;
// The following are for different SPIR-V instruction sections. They follow
// the logical layout of a SPIR-V module.
SmallVector<uint32_t, 4> capabilities;
SmallVector<uint32_t, 0> extensions;
SmallVector<uint32_t, 0> extendedSets;
SmallVector<uint32_t, 3> memoryModel;
SmallVector<uint32_t, 0> entryPoints;
SmallVector<uint32_t, 4> executionModes;
SmallVector<uint32_t, 0> debug;
SmallVector<uint32_t, 0> names;
SmallVector<uint32_t, 0> decorations;
SmallVector<uint32_t, 0> typesGlobalValues;
SmallVector<uint32_t, 0> functions;
/// Recursive struct references are serialized as OpTypePointer instructions
/// to the recursive struct type. However, the OpTypePointer instruction
/// cannot be emitted before the recursive struct's OpTypeStruct.
/// RecursiveStructPointerInfo stores the data needed to emit such
/// OpTypePointer instructions after forward references to such types.
struct RecursiveStructPointerInfo {
uint32_t pointerTypeID;
spirv::StorageClass storageClass;
};
// Maps spirv::StructType to its recursive reference member info.
DenseMap<Type, SmallVector<RecursiveStructPointerInfo, 0>>
recursiveStructInfos;
/// `functionHeader` contains all the instructions that must be in the first
/// block in the function, and `functionBody` contains the rest. After
/// processing FuncOp, the encoded instructions of a function are appended to
/// `functions`. An example of instructions in `functionHeader` in order:
/// OpFunction ...
/// OpFunctionParameter ...
/// OpFunctionParameter ...
/// OpLabel ...
/// OpVariable ...
/// OpVariable ...
SmallVector<uint32_t, 0> functionHeader;
SmallVector<uint32_t, 0> functionBody;
/// Map from type used in SPIR-V module to their <id>s.
DenseMap<Type, uint32_t> typeIDMap;
/// Map from constant values to their <id>s.
DenseMap<Attribute, uint32_t> constIDMap;
/// Map from specialization constant names to their <id>s.
llvm::StringMap<uint32_t> specConstIDMap;
/// Map from GlobalVariableOps name to <id>s.
llvm::StringMap<uint32_t> globalVarIDMap;
/// Map from FuncOps name to <id>s.
llvm::StringMap<uint32_t> funcIDMap;
/// Map from blocks to their <id>s.
DenseMap<Block *, uint32_t> blockIDMap;
/// Map from the Type to the <id> that represents undef value of that type.
DenseMap<Type, uint32_t> undefValIDMap;
/// Map from results of normal operations to their <id>s.
DenseMap<Value, uint32_t> valueIDMap;
/// Map from extended instruction set name to <id>s.
llvm::StringMap<uint32_t> extendedInstSetIDMap;
/// Map from values used in OpPhi instructions to their offset in the
/// `functions` section.
///
/// When processing a block with arguments, we need to emit OpPhi
/// instructions to record the predecessor block <id>s and the values they
/// send to the block in question. But it's not guaranteed all values are
/// visited and thus assigned result <id>s. So we need this list to capture
/// the offsets into `functions` where a value is used so that we can fix it
/// up later after processing all the blocks in a function.
///
/// More concretely, say if we are visiting the following blocks:
///
/// ```mlir
/// ^phi(%arg0: i32):
/// ...
/// ^parent1:
/// ...
/// spv.Branch ^phi(%val0: i32)
/// ^parent2:
/// ...
/// spv.Branch ^phi(%val1: i32)
/// ```
///
/// When we are serializing the `^phi` block, we need to emit at the beginning
/// of the block OpPhi instructions which has the following parameters:
///
/// OpPhi id-for-i32 id-for-%arg0 id-for-%val0 id-for-^parent1
/// id-for-%val1 id-for-^parent2
///
/// But we don't know the <id> for %val0 and %val1 yet. One way is to visit
/// all the blocks twice and use the first visit to assign an <id> to each
/// value. But it's paying the overheads just for OpPhi emission. Instead,
/// we still visit the blocks once for emission. When we emit the OpPhi
/// instructions, we use 0 as a placeholder for the <id>s for %val0 and %val1.
/// At the same time, we record their offsets in the emitted binary (which is
/// placed inside `functions`) here. And then after emitting all blocks, we
/// replace the dummy <id> 0 with the real result <id> by overwriting
/// `functions[offset]`.
DenseMap<Value, SmallVector<size_t, 1>> deferredPhiValues;
};
} // namespace spirv
} // namespace mlir
#endif // MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H