|  | //===- CIRGenModule.cpp - Per-Module state for CIR generation -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This is the internal per-translation-unit state used for CIR translation. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CIRGenModule.h" | 
|  | #include "CIRGenCXXABI.h" | 
|  | #include "CIRGenConstantEmitter.h" | 
|  | #include "CIRGenFunction.h" | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/DeclBase.h" | 
|  | #include "clang/AST/DeclOpenACC.h" | 
|  | #include "clang/AST/GlobalDecl.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/CIR/Dialect/IR/CIRDialect.h" | 
|  | #include "clang/CIR/Interfaces/CIROpInterfaces.h" | 
|  | #include "clang/CIR/MissingFeatures.h" | 
|  |  | 
|  | #include "CIRGenFunctionInfo.h" | 
|  | #include "mlir/IR/BuiltinOps.h" | 
|  | #include "mlir/IR/Location.h" | 
|  | #include "mlir/IR/MLIRContext.h" | 
|  | #include "mlir/IR/Verifier.h" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace clang::CIRGen; | 
|  |  | 
|  | static CIRGenCXXABI *createCXXABI(CIRGenModule &cgm) { | 
|  | switch (cgm.getASTContext().getCXXABIKind()) { | 
|  | case TargetCXXABI::GenericItanium: | 
|  | case TargetCXXABI::GenericAArch64: | 
|  | case TargetCXXABI::AppleARM64: | 
|  | return CreateCIRGenItaniumCXXABI(cgm); | 
|  |  | 
|  | case TargetCXXABI::Fuchsia: | 
|  | case TargetCXXABI::GenericARM: | 
|  | case TargetCXXABI::iOS: | 
|  | case TargetCXXABI::WatchOS: | 
|  | case TargetCXXABI::GenericMIPS: | 
|  | case TargetCXXABI::WebAssembly: | 
|  | case TargetCXXABI::XL: | 
|  | case TargetCXXABI::Microsoft: | 
|  | cgm.errorNYI("C++ ABI kind not yet implemented"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("invalid C++ ABI kind"); | 
|  | } | 
|  |  | 
|  | CIRGenModule::CIRGenModule(mlir::MLIRContext &mlirContext, | 
|  | clang::ASTContext &astContext, | 
|  | const clang::CodeGenOptions &cgo, | 
|  | DiagnosticsEngine &diags) | 
|  | : builder(mlirContext, *this), astContext(astContext), | 
|  | langOpts(astContext.getLangOpts()), codeGenOpts(cgo), | 
|  | theModule{mlir::ModuleOp::create(mlir::UnknownLoc::get(&mlirContext))}, | 
|  | diags(diags), target(astContext.getTargetInfo()), | 
|  | abi(createCXXABI(*this)), genTypes(*this), vtables(*this) { | 
|  |  | 
|  | // Initialize cached types | 
|  | VoidTy = cir::VoidType::get(&getMLIRContext()); | 
|  | VoidPtrTy = cir::PointerType::get(VoidTy); | 
|  | SInt8Ty = cir::IntType::get(&getMLIRContext(), 8, /*isSigned=*/true); | 
|  | SInt16Ty = cir::IntType::get(&getMLIRContext(), 16, /*isSigned=*/true); | 
|  | SInt32Ty = cir::IntType::get(&getMLIRContext(), 32, /*isSigned=*/true); | 
|  | SInt64Ty = cir::IntType::get(&getMLIRContext(), 64, /*isSigned=*/true); | 
|  | SInt128Ty = cir::IntType::get(&getMLIRContext(), 128, /*isSigned=*/true); | 
|  | UInt8Ty = cir::IntType::get(&getMLIRContext(), 8, /*isSigned=*/false); | 
|  | UInt8PtrTy = cir::PointerType::get(UInt8Ty); | 
|  | UInt16Ty = cir::IntType::get(&getMLIRContext(), 16, /*isSigned=*/false); | 
|  | UInt32Ty = cir::IntType::get(&getMLIRContext(), 32, /*isSigned=*/false); | 
|  | UInt64Ty = cir::IntType::get(&getMLIRContext(), 64, /*isSigned=*/false); | 
|  | UInt128Ty = cir::IntType::get(&getMLIRContext(), 128, /*isSigned=*/false); | 
|  | FP16Ty = cir::FP16Type::get(&getMLIRContext()); | 
|  | BFloat16Ty = cir::BF16Type::get(&getMLIRContext()); | 
|  | FloatTy = cir::SingleType::get(&getMLIRContext()); | 
|  | DoubleTy = cir::DoubleType::get(&getMLIRContext()); | 
|  | FP80Ty = cir::FP80Type::get(&getMLIRContext()); | 
|  | FP128Ty = cir::FP128Type::get(&getMLIRContext()); | 
|  |  | 
|  | PointerAlignInBytes = | 
|  | astContext | 
|  | .toCharUnitsFromBits( | 
|  | astContext.getTargetInfo().getPointerAlign(LangAS::Default)) | 
|  | .getQuantity(); | 
|  |  | 
|  | // TODO(CIR): Should be updated once TypeSizeInfoAttr is upstreamed | 
|  | const unsigned sizeTypeSize = | 
|  | astContext.getTypeSize(astContext.getSignedSizeType()); | 
|  | SizeAlignInBytes = astContext.toCharUnitsFromBits(sizeTypeSize).getQuantity(); | 
|  | // In CIRGenTypeCache, UIntPtrTy and SizeType are fields of the same union | 
|  | UIntPtrTy = | 
|  | cir::IntType::get(&getMLIRContext(), sizeTypeSize, /*isSigned=*/false); | 
|  | PtrDiffTy = | 
|  | cir::IntType::get(&getMLIRContext(), sizeTypeSize, /*isSigned=*/true); | 
|  |  | 
|  | std::optional<cir::SourceLanguage> sourceLanguage = getCIRSourceLanguage(); | 
|  | if (sourceLanguage) | 
|  | theModule->setAttr( | 
|  | cir::CIRDialect::getSourceLanguageAttrName(), | 
|  | cir::SourceLanguageAttr::get(&mlirContext, *sourceLanguage)); | 
|  | theModule->setAttr(cir::CIRDialect::getTripleAttrName(), | 
|  | builder.getStringAttr(getTriple().str())); | 
|  |  | 
|  | if (cgo.OptimizationLevel > 0 || cgo.OptimizeSize > 0) | 
|  | theModule->setAttr(cir::CIRDialect::getOptInfoAttrName(), | 
|  | cir::OptInfoAttr::get(&mlirContext, | 
|  | cgo.OptimizationLevel, | 
|  | cgo.OptimizeSize)); | 
|  | } | 
|  |  | 
|  | CIRGenModule::~CIRGenModule() = default; | 
|  |  | 
|  | /// FIXME: this could likely be a common helper and not necessarily related | 
|  | /// with codegen. | 
|  | /// Return the best known alignment for an unknown pointer to a | 
|  | /// particular class. | 
|  | CharUnits CIRGenModule::getClassPointerAlignment(const CXXRecordDecl *rd) { | 
|  | if (!rd->hasDefinition()) | 
|  | return CharUnits::One(); // Hopefully won't be used anywhere. | 
|  |  | 
|  | auto &layout = astContext.getASTRecordLayout(rd); | 
|  |  | 
|  | // If the class is final, then we know that the pointer points to an | 
|  | // object of that type and can use the full alignment. | 
|  | if (rd->isEffectivelyFinal()) | 
|  | return layout.getAlignment(); | 
|  |  | 
|  | // Otherwise, we have to assume it could be a subclass. | 
|  | return layout.getNonVirtualAlignment(); | 
|  | } | 
|  |  | 
|  | CharUnits CIRGenModule::getNaturalTypeAlignment(QualType t, | 
|  | LValueBaseInfo *baseInfo) { | 
|  | assert(!cir::MissingFeatures::opTBAA()); | 
|  |  | 
|  | // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown, but | 
|  | // that doesn't return the information we need to compute baseInfo. | 
|  |  | 
|  | // Honor alignment typedef attributes even on incomplete types. | 
|  | // We also honor them straight for C++ class types, even as pointees; | 
|  | // there's an expressivity gap here. | 
|  | if (const auto *tt = t->getAs<TypedefType>()) { | 
|  | if (unsigned align = tt->getDecl()->getMaxAlignment()) { | 
|  | if (baseInfo) | 
|  | *baseInfo = LValueBaseInfo(AlignmentSource::AttributedType); | 
|  | return astContext.toCharUnitsFromBits(align); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Analyze the base element type, so we don't get confused by incomplete | 
|  | // array types. | 
|  | t = astContext.getBaseElementType(t); | 
|  |  | 
|  | if (t->isIncompleteType()) { | 
|  | // We could try to replicate the logic from | 
|  | // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the | 
|  | // type is incomplete, so it's impossible to test. We could try to reuse | 
|  | // getTypeAlignIfKnown, but that doesn't return the information we need | 
|  | // to set baseInfo.  So just ignore the possibility that the alignment is | 
|  | // greater than one. | 
|  | if (baseInfo) | 
|  | *baseInfo = LValueBaseInfo(AlignmentSource::Type); | 
|  | return CharUnits::One(); | 
|  | } | 
|  |  | 
|  | if (baseInfo) | 
|  | *baseInfo = LValueBaseInfo(AlignmentSource::Type); | 
|  |  | 
|  | CharUnits alignment; | 
|  | if (t.getQualifiers().hasUnaligned()) { | 
|  | alignment = CharUnits::One(); | 
|  | } else { | 
|  | assert(!cir::MissingFeatures::alignCXXRecordDecl()); | 
|  | alignment = astContext.getTypeAlignInChars(t); | 
|  | } | 
|  |  | 
|  | // Cap to the global maximum type alignment unless the alignment | 
|  | // was somehow explicit on the type. | 
|  | if (unsigned maxAlign = astContext.getLangOpts().MaxTypeAlign) { | 
|  | if (alignment.getQuantity() > maxAlign && | 
|  | !astContext.isAlignmentRequired(t)) | 
|  | alignment = CharUnits::fromQuantity(maxAlign); | 
|  | } | 
|  | return alignment; | 
|  | } | 
|  |  | 
|  | const TargetCIRGenInfo &CIRGenModule::getTargetCIRGenInfo() { | 
|  | if (theTargetCIRGenInfo) | 
|  | return *theTargetCIRGenInfo; | 
|  |  | 
|  | const llvm::Triple &triple = getTarget().getTriple(); | 
|  | switch (triple.getArch()) { | 
|  | default: | 
|  | assert(!cir::MissingFeatures::targetCIRGenInfoArch()); | 
|  |  | 
|  | // Currently we just fall through to x86_64. | 
|  | [[fallthrough]]; | 
|  |  | 
|  | case llvm::Triple::x86_64: { | 
|  | switch (triple.getOS()) { | 
|  | default: | 
|  | assert(!cir::MissingFeatures::targetCIRGenInfoOS()); | 
|  |  | 
|  | // Currently we just fall through to x86_64. | 
|  | [[fallthrough]]; | 
|  |  | 
|  | case llvm::Triple::Linux: | 
|  | theTargetCIRGenInfo = createX8664TargetCIRGenInfo(genTypes); | 
|  | return *theTargetCIRGenInfo; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mlir::Location CIRGenModule::getLoc(SourceLocation cLoc) { | 
|  | assert(cLoc.isValid() && "expected valid source location"); | 
|  | const SourceManager &sm = astContext.getSourceManager(); | 
|  | PresumedLoc pLoc = sm.getPresumedLoc(cLoc); | 
|  | StringRef filename = pLoc.getFilename(); | 
|  | return mlir::FileLineColLoc::get(builder.getStringAttr(filename), | 
|  | pLoc.getLine(), pLoc.getColumn()); | 
|  | } | 
|  |  | 
|  | mlir::Location CIRGenModule::getLoc(SourceRange cRange) { | 
|  | assert(cRange.isValid() && "expected a valid source range"); | 
|  | mlir::Location begin = getLoc(cRange.getBegin()); | 
|  | mlir::Location end = getLoc(cRange.getEnd()); | 
|  | mlir::Attribute metadata; | 
|  | return mlir::FusedLoc::get({begin, end}, metadata, builder.getContext()); | 
|  | } | 
|  |  | 
|  | mlir::Operation * | 
|  | CIRGenModule::getAddrOfGlobal(GlobalDecl gd, ForDefinition_t isForDefinition) { | 
|  | const Decl *d = gd.getDecl(); | 
|  |  | 
|  | if (isa<CXXConstructorDecl>(d) || isa<CXXDestructorDecl>(d)) | 
|  | return getAddrOfCXXStructor(gd, /*FnInfo=*/nullptr, /*FnType=*/nullptr, | 
|  | /*DontDefer=*/false, isForDefinition); | 
|  |  | 
|  | if (isa<CXXMethodDecl>(d)) { | 
|  | const CIRGenFunctionInfo &fi = | 
|  | getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(d)); | 
|  | cir::FuncType ty = getTypes().getFunctionType(fi); | 
|  | return getAddrOfFunction(gd, ty, /*ForVTable=*/false, /*DontDefer=*/false, | 
|  | isForDefinition); | 
|  | } | 
|  |  | 
|  | if (isa<FunctionDecl>(d)) { | 
|  | const CIRGenFunctionInfo &fi = getTypes().arrangeGlobalDeclaration(gd); | 
|  | cir::FuncType ty = getTypes().getFunctionType(fi); | 
|  | return getAddrOfFunction(gd, ty, /*ForVTable=*/false, /*DontDefer=*/false, | 
|  | isForDefinition); | 
|  | } | 
|  |  | 
|  | return getAddrOfGlobalVar(cast<VarDecl>(d), /*ty=*/nullptr, isForDefinition) | 
|  | .getDefiningOp(); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitGlobalDecl(const clang::GlobalDecl &d) { | 
|  | // We call getAddrOfGlobal with isForDefinition set to ForDefinition in | 
|  | // order to get a Value with exactly the type we need, not something that | 
|  | // might have been created for another decl with the same mangled name but | 
|  | // different type. | 
|  | mlir::Operation *op = getAddrOfGlobal(d, ForDefinition); | 
|  |  | 
|  | // In case of different address spaces, we may still get a cast, even with | 
|  | // IsForDefinition equal to ForDefinition. Query mangled names table to get | 
|  | // GlobalValue. | 
|  | if (!op) | 
|  | op = getGlobalValue(getMangledName(d)); | 
|  |  | 
|  | assert(op && "expected a valid global op"); | 
|  |  | 
|  | // Check to see if we've already emitted this. This is necessary for a | 
|  | // couple of reasons: first, decls can end up in deferred-decls queue | 
|  | // multiple times, and second, decls can end up with definitions in unusual | 
|  | // ways (e.g. by an extern inline function acquiring a strong function | 
|  | // redefinition). Just ignore those cases. | 
|  | // TODO: Not sure what to map this to for MLIR | 
|  | mlir::Operation *globalValueOp = op; | 
|  | if (auto gv = dyn_cast<cir::GetGlobalOp>(op)) | 
|  | globalValueOp = | 
|  | mlir::SymbolTable::lookupSymbolIn(getModule(), gv.getNameAttr()); | 
|  |  | 
|  | if (auto cirGlobalValue = | 
|  | dyn_cast<cir::CIRGlobalValueInterface>(globalValueOp)) | 
|  | if (!cirGlobalValue.isDeclaration()) | 
|  | return; | 
|  |  | 
|  | // If this is OpenMP, check if it is legal to emit this global normally. | 
|  | assert(!cir::MissingFeatures::openMP()); | 
|  |  | 
|  | // Otherwise, emit the definition and move on to the next one. | 
|  | emitGlobalDefinition(d, op); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitDeferred() { | 
|  | // Emit code for any potentially referenced deferred decls. Since a previously | 
|  | // unused static decl may become used during the generation of code for a | 
|  | // static function, iterate until no changes are made. | 
|  |  | 
|  | assert(!cir::MissingFeatures::openMP()); | 
|  | assert(!cir::MissingFeatures::deferredVtables()); | 
|  | assert(!cir::MissingFeatures::cudaSupport()); | 
|  |  | 
|  | // Stop if we're out of both deferred vtables and deferred declarations. | 
|  | if (deferredDeclsToEmit.empty()) | 
|  | return; | 
|  |  | 
|  | // Grab the list of decls to emit. If emitGlobalDefinition schedules more | 
|  | // work, it will not interfere with this. | 
|  | std::vector<GlobalDecl> curDeclsToEmit; | 
|  | curDeclsToEmit.swap(deferredDeclsToEmit); | 
|  |  | 
|  | for (const GlobalDecl &d : curDeclsToEmit) { | 
|  | emitGlobalDecl(d); | 
|  |  | 
|  | // If we found out that we need to emit more decls, do that recursively. | 
|  | // This has the advantage that the decls are emitted in a DFS and related | 
|  | // ones are close together, which is convenient for testing. | 
|  | if (!deferredDeclsToEmit.empty()) { | 
|  | emitDeferred(); | 
|  | assert(deferredDeclsToEmit.empty()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitGlobal(clang::GlobalDecl gd) { | 
|  | if (const auto *cd = dyn_cast<clang::OpenACCConstructDecl>(gd.getDecl())) { | 
|  | emitGlobalOpenACCDecl(cd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto *global = cast<ValueDecl>(gd.getDecl()); | 
|  |  | 
|  | if (const auto *fd = dyn_cast<FunctionDecl>(global)) { | 
|  | // Update deferred annotations with the latest declaration if the function | 
|  | // was already used or defined. | 
|  | if (fd->hasAttr<AnnotateAttr>()) | 
|  | errorNYI(fd->getSourceRange(), "deferredAnnotations"); | 
|  | if (!fd->doesThisDeclarationHaveABody()) { | 
|  | if (!fd->doesDeclarationForceExternallyVisibleDefinition()) | 
|  | return; | 
|  |  | 
|  | errorNYI(fd->getSourceRange(), | 
|  | "function declaration that forces code gen"); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | const auto *vd = cast<VarDecl>(global); | 
|  | assert(vd->isFileVarDecl() && "Cannot emit local var decl as global."); | 
|  | if (vd->isThisDeclarationADefinition() != VarDecl::Definition && | 
|  | !astContext.isMSStaticDataMemberInlineDefinition(vd)) { | 
|  | assert(!cir::MissingFeatures::openMP()); | 
|  | // If this declaration may have caused an inline variable definition to | 
|  | // change linkage, make sure that it's emitted. | 
|  | if (astContext.getInlineVariableDefinitionKind(vd) == | 
|  | ASTContext::InlineVariableDefinitionKind::Strong) | 
|  | getAddrOfGlobalVar(vd); | 
|  | // Otherwise, we can ignore this declaration. The variable will be emitted | 
|  | // on its first use. | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Defer code generation to first use when possible, e.g. if this is an inline | 
|  | // function. If the global must always be emitted, do it eagerly if possible | 
|  | // to benefit from cache locality. Deferring code generation is necessary to | 
|  | // avoid adding initializers to external declarations. | 
|  | if (mustBeEmitted(global) && mayBeEmittedEagerly(global)) { | 
|  | // Emit the definition if it can't be deferred. | 
|  | emitGlobalDefinition(gd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we're deferring emission of a C++ variable with an initializer, remember | 
|  | // the order in which it appeared on the file. | 
|  | assert(!cir::MissingFeatures::deferredCXXGlobalInit()); | 
|  |  | 
|  | llvm::StringRef mangledName = getMangledName(gd); | 
|  | if (getGlobalValue(mangledName) != nullptr) { | 
|  | // The value has already been used and should therefore be emitted. | 
|  | addDeferredDeclToEmit(gd); | 
|  | } else if (mustBeEmitted(global)) { | 
|  | // The value must be emitted, but cannot be emitted eagerly. | 
|  | assert(!mayBeEmittedEagerly(global)); | 
|  | addDeferredDeclToEmit(gd); | 
|  | } else { | 
|  | // Otherwise, remember that we saw a deferred decl with this name. The first | 
|  | // use of the mangled name will cause it to move into deferredDeclsToEmit. | 
|  | deferredDecls[mangledName] = gd; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitGlobalFunctionDefinition(clang::GlobalDecl gd, | 
|  | mlir::Operation *op) { | 
|  | auto const *funcDecl = cast<FunctionDecl>(gd.getDecl()); | 
|  | const CIRGenFunctionInfo &fi = getTypes().arrangeGlobalDeclaration(gd); | 
|  | cir::FuncType funcType = getTypes().getFunctionType(fi); | 
|  | cir::FuncOp funcOp = dyn_cast_if_present<cir::FuncOp>(op); | 
|  | if (!funcOp || funcOp.getFunctionType() != funcType) { | 
|  | funcOp = getAddrOfFunction(gd, funcType, /*ForVTable=*/false, | 
|  | /*DontDefer=*/true, ForDefinition); | 
|  | } | 
|  |  | 
|  | // Already emitted. | 
|  | if (!funcOp.isDeclaration()) | 
|  | return; | 
|  |  | 
|  | setFunctionLinkage(gd, funcOp); | 
|  | setGVProperties(funcOp, funcDecl); | 
|  | assert(!cir::MissingFeatures::opFuncMaybeHandleStaticInExternC()); | 
|  | maybeSetTrivialComdat(*funcDecl, funcOp); | 
|  | assert(!cir::MissingFeatures::setLLVMFunctionFEnvAttributes()); | 
|  |  | 
|  | CIRGenFunction cgf(*this, builder); | 
|  | curCGF = &cgf; | 
|  | { | 
|  | mlir::OpBuilder::InsertionGuard guard(builder); | 
|  | cgf.generateCode(gd, funcOp, funcType); | 
|  | } | 
|  | curCGF = nullptr; | 
|  |  | 
|  | setNonAliasAttributes(gd, funcOp); | 
|  | assert(!cir::MissingFeatures::opFuncAttributesForDefinition()); | 
|  |  | 
|  | if (funcDecl->getAttr<ConstructorAttr>()) | 
|  | errorNYI(funcDecl->getSourceRange(), "constructor attribute"); | 
|  | if (funcDecl->getAttr<DestructorAttr>()) | 
|  | errorNYI(funcDecl->getSourceRange(), "destructor attribute"); | 
|  |  | 
|  | if (funcDecl->getAttr<AnnotateAttr>()) | 
|  | errorNYI(funcDecl->getSourceRange(), "deferredAnnotations"); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::handleCXXStaticMemberVarInstantiation(VarDecl *vd) { | 
|  | VarDecl::DefinitionKind dk = vd->isThisDeclarationADefinition(); | 
|  | if (dk == VarDecl::Definition && vd->hasAttr<DLLImportAttr>()) | 
|  | return; | 
|  |  | 
|  | TemplateSpecializationKind tsk = vd->getTemplateSpecializationKind(); | 
|  | // If we have a definition, this might be a deferred decl. If the | 
|  | // instantiation is explicit, make sure we emit it at the end. | 
|  | if (vd->getDefinition() && tsk == TSK_ExplicitInstantiationDefinition) | 
|  | getAddrOfGlobalVar(vd); | 
|  |  | 
|  | emitTopLevelDecl(vd); | 
|  | } | 
|  |  | 
|  | mlir::Operation *CIRGenModule::getGlobalValue(StringRef name) { | 
|  | return mlir::SymbolTable::lookupSymbolIn(theModule, name); | 
|  | } | 
|  |  | 
|  | cir::GlobalOp CIRGenModule::createGlobalOp(CIRGenModule &cgm, | 
|  | mlir::Location loc, StringRef name, | 
|  | mlir::Type t, bool isConstant, | 
|  | mlir::Operation *insertPoint) { | 
|  | cir::GlobalOp g; | 
|  | CIRGenBuilderTy &builder = cgm.getBuilder(); | 
|  |  | 
|  | { | 
|  | mlir::OpBuilder::InsertionGuard guard(builder); | 
|  |  | 
|  | // If an insertion point is provided, we're replacing an existing global, | 
|  | // otherwise, create the new global immediately after the last gloabl we | 
|  | // emitted. | 
|  | if (insertPoint) { | 
|  | builder.setInsertionPoint(insertPoint); | 
|  | } else { | 
|  | // Group global operations together at the top of the module. | 
|  | if (cgm.lastGlobalOp) | 
|  | builder.setInsertionPointAfter(cgm.lastGlobalOp); | 
|  | else | 
|  | builder.setInsertionPointToStart(cgm.getModule().getBody()); | 
|  | } | 
|  |  | 
|  | g = builder.create<cir::GlobalOp>(loc, name, t, isConstant); | 
|  | if (!insertPoint) | 
|  | cgm.lastGlobalOp = g; | 
|  |  | 
|  | // Default to private until we can judge based on the initializer, | 
|  | // since MLIR doesn't allow public declarations. | 
|  | mlir::SymbolTable::setSymbolVisibility( | 
|  | g, mlir::SymbolTable::Visibility::Private); | 
|  | } | 
|  | return g; | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setCommonAttributes(GlobalDecl gd, mlir::Operation *gv) { | 
|  | const Decl *d = gd.getDecl(); | 
|  | if (isa_and_nonnull<NamedDecl>(d)) | 
|  | setGVProperties(gv, dyn_cast<NamedDecl>(d)); | 
|  | assert(!cir::MissingFeatures::defaultVisibility()); | 
|  | assert(!cir::MissingFeatures::opGlobalUsedOrCompilerUsed()); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setNonAliasAttributes(GlobalDecl gd, mlir::Operation *op) { | 
|  | setCommonAttributes(gd, op); | 
|  |  | 
|  | assert(!cir::MissingFeatures::opGlobalUsedOrCompilerUsed()); | 
|  | assert(!cir::MissingFeatures::opGlobalSection()); | 
|  | assert(!cir::MissingFeatures::opFuncCPUAndFeaturesAttributes()); | 
|  | assert(!cir::MissingFeatures::opFuncSection()); | 
|  |  | 
|  | assert(!cir::MissingFeatures::setTargetAttributes()); | 
|  | } | 
|  |  | 
|  | std::optional<cir::SourceLanguage> CIRGenModule::getCIRSourceLanguage() const { | 
|  | using ClangStd = clang::LangStandard; | 
|  | using CIRLang = cir::SourceLanguage; | 
|  | auto opts = getLangOpts(); | 
|  |  | 
|  | if (opts.CPlusPlus) | 
|  | return CIRLang::CXX; | 
|  | if (opts.C99 || opts.C11 || opts.C17 || opts.C23 || opts.C2y || | 
|  | opts.LangStd == ClangStd::lang_c89 || | 
|  | opts.LangStd == ClangStd::lang_gnu89) | 
|  | return CIRLang::C; | 
|  |  | 
|  | // TODO(cir): support remaining source languages. | 
|  | assert(!cir::MissingFeatures::sourceLanguageCases()); | 
|  | errorNYI("CIR does not yet support the given source language"); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | static void setLinkageForGV(cir::GlobalOp &gv, const NamedDecl *nd) { | 
|  | // Set linkage and visibility in case we never see a definition. | 
|  | LinkageInfo lv = nd->getLinkageAndVisibility(); | 
|  | // Don't set internal linkage on declarations. | 
|  | // "extern_weak" is overloaded in LLVM; we probably should have | 
|  | // separate linkage types for this. | 
|  | if (isExternallyVisible(lv.getLinkage()) && | 
|  | (nd->hasAttr<WeakAttr>() || nd->isWeakImported())) | 
|  | gv.setLinkage(cir::GlobalLinkageKind::ExternalWeakLinkage); | 
|  | } | 
|  |  | 
|  | /// If the specified mangled name is not in the module, | 
|  | /// create and return an mlir GlobalOp with the specified type (TODO(cir): | 
|  | /// address space). | 
|  | /// | 
|  | /// TODO(cir): | 
|  | /// 1. If there is something in the module with the specified name, return | 
|  | /// it potentially bitcasted to the right type. | 
|  | /// | 
|  | /// 2. If \p d is non-null, it specifies a decl that correspond to this.  This | 
|  | /// is used to set the attributes on the global when it is first created. | 
|  | /// | 
|  | /// 3. If \p isForDefinition is true, it is guaranteed that an actual global | 
|  | /// with type \p ty will be returned, not conversion of a variable with the same | 
|  | /// mangled name but some other type. | 
|  | cir::GlobalOp | 
|  | CIRGenModule::getOrCreateCIRGlobal(StringRef mangledName, mlir::Type ty, | 
|  | LangAS langAS, const VarDecl *d, | 
|  | ForDefinition_t isForDefinition) { | 
|  | // Lookup the entry, lazily creating it if necessary. | 
|  | cir::GlobalOp entry; | 
|  | if (mlir::Operation *v = getGlobalValue(mangledName)) { | 
|  | if (!isa<cir::GlobalOp>(v)) | 
|  | errorNYI(d->getSourceRange(), "global with non-GlobalOp type"); | 
|  | entry = cast<cir::GlobalOp>(v); | 
|  | } | 
|  |  | 
|  | if (entry) { | 
|  | assert(!cir::MissingFeatures::addressSpace()); | 
|  | assert(!cir::MissingFeatures::opGlobalWeakRef()); | 
|  |  | 
|  | assert(!cir::MissingFeatures::setDLLStorageClass()); | 
|  | assert(!cir::MissingFeatures::openMP()); | 
|  |  | 
|  | if (entry.getSymType() == ty) | 
|  | return entry; | 
|  |  | 
|  | // If there are two attempts to define the same mangled name, issue an | 
|  | // error. | 
|  | // | 
|  | // TODO(cir): look at mlir::GlobalValue::isDeclaration for all aspects of | 
|  | // recognizing the global as a declaration, for now only check if | 
|  | // initializer is present. | 
|  | if (isForDefinition && !entry.isDeclaration()) { | 
|  | errorNYI(d->getSourceRange(), "global with conflicting type"); | 
|  | } | 
|  |  | 
|  | // Address space check removed because it is unnecessary because CIR records | 
|  | // address space info in types. | 
|  |  | 
|  | // (If global is requested for a definition, we always need to create a new | 
|  | // global, not just return a bitcast.) | 
|  | if (!isForDefinition) | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | mlir::Location loc = getLoc(d->getSourceRange()); | 
|  |  | 
|  | // mlir::SymbolTable::Visibility::Public is the default, no need to explicitly | 
|  | // mark it as such. | 
|  | cir::GlobalOp gv = | 
|  | CIRGenModule::createGlobalOp(*this, loc, mangledName, ty, false, | 
|  | /*insertPoint=*/entry.getOperation()); | 
|  |  | 
|  | // This is the first use or definition of a mangled name.  If there is a | 
|  | // deferred decl with this name, remember that we need to emit it at the end | 
|  | // of the file. | 
|  | auto ddi = deferredDecls.find(mangledName); | 
|  | if (ddi != deferredDecls.end()) { | 
|  | // Move the potentially referenced deferred decl to the DeferredDeclsToEmit | 
|  | // list, and remove it from DeferredDecls (since we don't need it anymore). | 
|  | addDeferredDeclToEmit(ddi->second); | 
|  | deferredDecls.erase(ddi); | 
|  | } | 
|  |  | 
|  | // Handle things which are present even on external declarations. | 
|  | if (d) { | 
|  | if (langOpts.OpenMP && !langOpts.OpenMPSimd) | 
|  | errorNYI(d->getSourceRange(), "OpenMP target global variable"); | 
|  |  | 
|  | gv.setAlignmentAttr(getSize(astContext.getDeclAlign(d))); | 
|  | assert(!cir::MissingFeatures::opGlobalConstant()); | 
|  |  | 
|  | setLinkageForGV(gv, d); | 
|  |  | 
|  | if (d->getTLSKind()) | 
|  | errorNYI(d->getSourceRange(), "thread local global variable"); | 
|  |  | 
|  | setGVProperties(gv, d); | 
|  |  | 
|  | // If required by the ABI, treat declarations of static data members with | 
|  | // inline initializers as definitions. | 
|  | if (astContext.isMSStaticDataMemberInlineDefinition(d)) | 
|  | errorNYI(d->getSourceRange(), "MS static data member inline definition"); | 
|  |  | 
|  | assert(!cir::MissingFeatures::opGlobalSection()); | 
|  | gv.setGlobalVisibilityAttr(getGlobalVisibilityAttrFromDecl(d)); | 
|  |  | 
|  | // Handle XCore specific ABI requirements. | 
|  | if (getTriple().getArch() == llvm::Triple::xcore) | 
|  | errorNYI(d->getSourceRange(), "XCore specific ABI requirements"); | 
|  |  | 
|  | // Check if we a have a const declaration with an initializer, we may be | 
|  | // able to emit it as available_externally to expose it's value to the | 
|  | // optimizer. | 
|  | if (getLangOpts().CPlusPlus && gv.isPublic() && | 
|  | d->getType().isConstQualified() && gv.isDeclaration() && | 
|  | !d->hasDefinition() && d->hasInit() && !d->hasAttr<DLLImportAttr>()) | 
|  | errorNYI(d->getSourceRange(), | 
|  | "external const declaration with initializer"); | 
|  | } | 
|  |  | 
|  | return gv; | 
|  | } | 
|  |  | 
|  | cir::GlobalOp | 
|  | CIRGenModule::getOrCreateCIRGlobal(const VarDecl *d, mlir::Type ty, | 
|  | ForDefinition_t isForDefinition) { | 
|  | assert(d->hasGlobalStorage() && "Not a global variable"); | 
|  | QualType astTy = d->getType(); | 
|  | if (!ty) | 
|  | ty = getTypes().convertTypeForMem(astTy); | 
|  |  | 
|  | StringRef mangledName = getMangledName(d); | 
|  | return getOrCreateCIRGlobal(mangledName, ty, astTy.getAddressSpace(), d, | 
|  | isForDefinition); | 
|  | } | 
|  |  | 
|  | /// Return the mlir::Value for the address of the given global variable. If | 
|  | /// \p ty is non-null and if the global doesn't exist, then it will be created | 
|  | /// with the specified type instead of whatever the normal requested type would | 
|  | /// be. If \p isForDefinition is true, it is guaranteed that an actual global | 
|  | /// with type \p ty will be returned, not conversion of a variable with the same | 
|  | /// mangled name but some other type. | 
|  | mlir::Value CIRGenModule::getAddrOfGlobalVar(const VarDecl *d, mlir::Type ty, | 
|  | ForDefinition_t isForDefinition) { | 
|  | assert(d->hasGlobalStorage() && "Not a global variable"); | 
|  | QualType astTy = d->getType(); | 
|  | if (!ty) | 
|  | ty = getTypes().convertTypeForMem(astTy); | 
|  |  | 
|  | assert(!cir::MissingFeatures::opGlobalThreadLocal()); | 
|  |  | 
|  | cir::GlobalOp g = getOrCreateCIRGlobal(d, ty, isForDefinition); | 
|  | mlir::Type ptrTy = builder.getPointerTo(g.getSymType()); | 
|  | return builder.create<cir::GetGlobalOp>(getLoc(d->getSourceRange()), ptrTy, | 
|  | g.getSymName()); | 
|  | } | 
|  |  | 
|  | cir::GlobalViewAttr CIRGenModule::getAddrOfGlobalVarAttr(const VarDecl *d) { | 
|  | assert(d->hasGlobalStorage() && "Not a global variable"); | 
|  | mlir::Type ty = getTypes().convertTypeForMem(d->getType()); | 
|  |  | 
|  | cir::GlobalOp globalOp = getOrCreateCIRGlobal(d, ty, NotForDefinition); | 
|  | assert(!cir::MissingFeatures::addressSpace()); | 
|  | cir::PointerType ptrTy = builder.getPointerTo(globalOp.getSymType()); | 
|  | return builder.getGlobalViewAttr(ptrTy, globalOp); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitGlobalVarDefinition(const clang::VarDecl *vd, | 
|  | bool isTentative) { | 
|  | if (getLangOpts().OpenCL || getLangOpts().OpenMPIsTargetDevice) { | 
|  | errorNYI(vd->getSourceRange(), "emit OpenCL/OpenMP global variable"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Whether the definition of the variable is available externally. | 
|  | // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable | 
|  | // since this is the job for its original source. | 
|  | bool isDefinitionAvailableExternally = | 
|  | astContext.GetGVALinkageForVariable(vd) == GVA_AvailableExternally; | 
|  | assert(!cir::MissingFeatures::needsGlobalCtorDtor()); | 
|  |  | 
|  | // It is useless to emit the definition for an available_externally variable | 
|  | // which can't be marked as const. | 
|  | if (isDefinitionAvailableExternally && | 
|  | (!vd->hasConstantInitialization() || | 
|  | // TODO: Update this when we have interface to check constexpr | 
|  | // destructor. | 
|  | vd->needsDestruction(astContext) || | 
|  | !vd->getType().isConstantStorage(astContext, true, true))) | 
|  | return; | 
|  |  | 
|  | mlir::Attribute init; | 
|  | const VarDecl *initDecl; | 
|  | const Expr *initExpr = vd->getAnyInitializer(initDecl); | 
|  |  | 
|  | std::optional<ConstantEmitter> emitter; | 
|  |  | 
|  | assert(!cir::MissingFeatures::cudaSupport()); | 
|  |  | 
|  | if (vd->hasAttr<LoaderUninitializedAttr>()) { | 
|  | errorNYI(vd->getSourceRange(), "loader uninitialized attribute"); | 
|  | return; | 
|  | } else if (!initExpr) { | 
|  | // This is a tentative definition; tentative definitions are | 
|  | // implicitly initialized with { 0 }. | 
|  | // | 
|  | // Note that tentative definitions are only emitted at the end of | 
|  | // a translation unit, so they should never have incomplete | 
|  | // type. In addition, EmitTentativeDefinition makes sure that we | 
|  | // never attempt to emit a tentative definition if a real one | 
|  | // exists. A use may still exists, however, so we still may need | 
|  | // to do a RAUW. | 
|  | assert(!vd->getType()->isIncompleteType() && "Unexpected incomplete type"); | 
|  | init = builder.getZeroInitAttr(convertType(vd->getType())); | 
|  | } else { | 
|  | emitter.emplace(*this); | 
|  | mlir::Attribute initializer = emitter->tryEmitForInitializer(*initDecl); | 
|  | if (!initializer) { | 
|  | QualType qt = initExpr->getType(); | 
|  | if (vd->getType()->isReferenceType()) | 
|  | qt = vd->getType(); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | if (initDecl->hasFlexibleArrayInit(astContext)) | 
|  | errorNYI(vd->getSourceRange(), "flexible array initializer"); | 
|  | init = builder.getZeroInitAttr(convertType(qt)); | 
|  | if (astContext.GetGVALinkageForVariable(vd) != GVA_AvailableExternally) | 
|  | errorNYI(vd->getSourceRange(), "global constructor"); | 
|  | } else { | 
|  | errorNYI(vd->getSourceRange(), "static initializer"); | 
|  | } | 
|  | } else { | 
|  | init = initializer; | 
|  | // We don't need an initializer, so remove the entry for the delayed | 
|  | // initializer position (just in case this entry was delayed) if we | 
|  | // also don't need to register a destructor. | 
|  | if (vd->needsDestruction(astContext) == QualType::DK_cxx_destructor) | 
|  | errorNYI(vd->getSourceRange(), "delayed destructor"); | 
|  | } | 
|  | } | 
|  |  | 
|  | mlir::Type initType; | 
|  | if (mlir::isa<mlir::SymbolRefAttr>(init)) { | 
|  | errorNYI(vd->getSourceRange(), "global initializer is a symbol reference"); | 
|  | return; | 
|  | } else { | 
|  | assert(mlir::isa<mlir::TypedAttr>(init) && "This should have a type"); | 
|  | auto typedInitAttr = mlir::cast<mlir::TypedAttr>(init); | 
|  | initType = typedInitAttr.getType(); | 
|  | } | 
|  | assert(!mlir::isa<mlir::NoneType>(initType) && "Should have a type by now"); | 
|  |  | 
|  | cir::GlobalOp gv = | 
|  | getOrCreateCIRGlobal(vd, initType, ForDefinition_t(!isTentative)); | 
|  | // TODO(cir): Strip off pointer casts from Entry if we get them? | 
|  |  | 
|  | if (!gv || gv.getSymType() != initType) { | 
|  | errorNYI(vd->getSourceRange(), "global initializer with type mismatch"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(!cir::MissingFeatures::maybeHandleStaticInExternC()); | 
|  |  | 
|  | if (vd->hasAttr<AnnotateAttr>()) { | 
|  | errorNYI(vd->getSourceRange(), "annotate global variable"); | 
|  | } | 
|  |  | 
|  | if (langOpts.CUDA) { | 
|  | errorNYI(vd->getSourceRange(), "CUDA global variable"); | 
|  | } | 
|  |  | 
|  | // Set initializer and finalize emission | 
|  | CIRGenModule::setInitializer(gv, init); | 
|  | if (emitter) | 
|  | emitter->finalize(gv); | 
|  |  | 
|  | // Set CIR's linkage type as appropriate. | 
|  | cir::GlobalLinkageKind linkage = | 
|  | getCIRLinkageVarDefinition(vd, /*IsConstant=*/false); | 
|  |  | 
|  | // Set CIR linkage and DLL storage class. | 
|  | gv.setLinkage(linkage); | 
|  | // FIXME(cir): setLinkage should likely set MLIR's visibility automatically. | 
|  | gv.setVisibility(getMLIRVisibilityFromCIRLinkage(linkage)); | 
|  | assert(!cir::MissingFeatures::opGlobalDLLImportExport()); | 
|  | if (linkage == cir::GlobalLinkageKind::CommonLinkage) | 
|  | errorNYI(initExpr->getSourceRange(), "common linkage"); | 
|  |  | 
|  | setNonAliasAttributes(vd, gv); | 
|  |  | 
|  | assert(!cir::MissingFeatures::opGlobalThreadLocal()); | 
|  |  | 
|  | maybeSetTrivialComdat(*vd, gv); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitGlobalDefinition(clang::GlobalDecl gd, | 
|  | mlir::Operation *op) { | 
|  | const auto *decl = cast<ValueDecl>(gd.getDecl()); | 
|  | if (const auto *fd = dyn_cast<FunctionDecl>(decl)) { | 
|  | // TODO(CIR): Skip generation of CIR for functions with available_externally | 
|  | // linkage at -O0. | 
|  |  | 
|  | if (const auto *method = dyn_cast<CXXMethodDecl>(decl)) { | 
|  | // Make sure to emit the definition(s) before we emit the thunks. This is | 
|  | // necessary for the generation of certain thunks. | 
|  | if (isa<CXXConstructorDecl>(method) || isa<CXXDestructorDecl>(method)) | 
|  | abi->emitCXXStructor(gd); | 
|  | else if (fd->isMultiVersion()) | 
|  | errorNYI(method->getSourceRange(), "multiversion functions"); | 
|  | else | 
|  | emitGlobalFunctionDefinition(gd, op); | 
|  |  | 
|  | if (method->isVirtual()) | 
|  | getVTables().emitThunks(gd); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (fd->isMultiVersion()) | 
|  | errorNYI(fd->getSourceRange(), "multiversion functions"); | 
|  | emitGlobalFunctionDefinition(gd, op); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const auto *vd = dyn_cast<VarDecl>(decl)) | 
|  | return emitGlobalVarDefinition(vd, !vd->hasDefinition()); | 
|  |  | 
|  | llvm_unreachable("Invalid argument to CIRGenModule::emitGlobalDefinition"); | 
|  | } | 
|  |  | 
|  | mlir::Attribute | 
|  | CIRGenModule::getConstantArrayFromStringLiteral(const StringLiteral *e) { | 
|  | assert(!e->getType()->isPointerType() && "Strings are always arrays"); | 
|  |  | 
|  | // Don't emit it as the address of the string, emit the string data itself | 
|  | // as an inline array. | 
|  | if (e->getCharByteWidth() == 1) { | 
|  | SmallString<64> str(e->getString()); | 
|  |  | 
|  | // Resize the string to the right size, which is indicated by its type. | 
|  | const ConstantArrayType *cat = | 
|  | astContext.getAsConstantArrayType(e->getType()); | 
|  | uint64_t finalSize = cat->getZExtSize(); | 
|  | str.resize(finalSize); | 
|  |  | 
|  | mlir::Type eltTy = convertType(cat->getElementType()); | 
|  | return builder.getString(str, eltTy, finalSize); | 
|  | } | 
|  |  | 
|  | errorNYI(e->getSourceRange(), | 
|  | "getConstantArrayFromStringLiteral: wide characters"); | 
|  | return mlir::Attribute(); | 
|  | } | 
|  |  | 
|  | bool CIRGenModule::supportsCOMDAT() const { | 
|  | return getTriple().supportsCOMDAT(); | 
|  | } | 
|  |  | 
|  | static bool shouldBeInCOMDAT(CIRGenModule &cgm, const Decl &d) { | 
|  | if (!cgm.supportsCOMDAT()) | 
|  | return false; | 
|  |  | 
|  | if (d.hasAttr<SelectAnyAttr>()) | 
|  | return true; | 
|  |  | 
|  | GVALinkage linkage; | 
|  | if (auto *vd = dyn_cast<VarDecl>(&d)) | 
|  | linkage = cgm.getASTContext().GetGVALinkageForVariable(vd); | 
|  | else | 
|  | linkage = | 
|  | cgm.getASTContext().GetGVALinkageForFunction(cast<FunctionDecl>(&d)); | 
|  |  | 
|  | switch (linkage) { | 
|  | case clang::GVA_Internal: | 
|  | case clang::GVA_AvailableExternally: | 
|  | case clang::GVA_StrongExternal: | 
|  | return false; | 
|  | case clang::GVA_DiscardableODR: | 
|  | case clang::GVA_StrongODR: | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("No such linkage"); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::maybeSetTrivialComdat(const Decl &d, mlir::Operation *op) { | 
|  | if (!shouldBeInCOMDAT(*this, d)) | 
|  | return; | 
|  | if (auto globalOp = dyn_cast_or_null<cir::GlobalOp>(op)) { | 
|  | globalOp.setComdat(true); | 
|  | } else { | 
|  | auto funcOp = cast<cir::FuncOp>(op); | 
|  | funcOp.setComdat(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CIRGenModule::updateCompletedType(const TagDecl *td) { | 
|  | // Make sure that this type is translated. | 
|  | genTypes.updateCompletedType(td); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::addReplacement(StringRef name, mlir::Operation *op) { | 
|  | replacements[name] = op; | 
|  | } | 
|  |  | 
|  | void CIRGenModule::replacePointerTypeArgs(cir::FuncOp oldF, cir::FuncOp newF) { | 
|  | std::optional<mlir::SymbolTable::UseRange> optionalUseRange = | 
|  | oldF.getSymbolUses(theModule); | 
|  | if (!optionalUseRange) | 
|  | return; | 
|  |  | 
|  | for (const mlir::SymbolTable::SymbolUse &u : *optionalUseRange) { | 
|  | // CallTryOp only shows up after FlattenCFG. | 
|  | auto call = mlir::dyn_cast<cir::CallOp>(u.getUser()); | 
|  | if (!call) | 
|  | continue; | 
|  |  | 
|  | for (const auto [argOp, fnArgType] : | 
|  | llvm::zip(call.getArgs(), newF.getFunctionType().getInputs())) { | 
|  | if (argOp.getType() == fnArgType) | 
|  | continue; | 
|  |  | 
|  | // The purpose of this entire function is to insert bitcasts in the case | 
|  | // where these types don't match, but I haven't seen a case where that | 
|  | // happens. | 
|  | errorNYI(call.getLoc(), "replace call with mismatched types"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CIRGenModule::applyReplacements() { | 
|  | for (auto &i : replacements) { | 
|  | StringRef mangledName = i.first(); | 
|  | mlir::Operation *replacement = i.second; | 
|  | mlir::Operation *entry = getGlobalValue(mangledName); | 
|  | if (!entry) | 
|  | continue; | 
|  | assert(isa<cir::FuncOp>(entry) && "expected function"); | 
|  | auto oldF = cast<cir::FuncOp>(entry); | 
|  | auto newF = dyn_cast<cir::FuncOp>(replacement); | 
|  | if (!newF) { | 
|  | // In classic codegen, this can be a global alias, a bitcast, or a GEP. | 
|  | errorNYI(replacement->getLoc(), "replacement is not a function"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // LLVM has opaque pointer but CIR not. So we may have to handle these | 
|  | // different pointer types when performing replacement. | 
|  | replacePointerTypeArgs(oldF, newF); | 
|  |  | 
|  | // Replace old with new, but keep the old order. | 
|  | if (oldF.replaceAllSymbolUses(newF.getSymNameAttr(), theModule).failed()) | 
|  | llvm_unreachable("internal error, cannot RAUW symbol"); | 
|  | if (newF) { | 
|  | newF->moveBefore(oldF); | 
|  | oldF->erase(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | cir::GlobalOp CIRGenModule::createOrReplaceCXXRuntimeVariable( | 
|  | mlir::Location loc, StringRef name, mlir::Type ty, | 
|  | cir::GlobalLinkageKind linkage, clang::CharUnits alignment) { | 
|  | auto gv = mlir::dyn_cast_or_null<cir::GlobalOp>( | 
|  | mlir::SymbolTable::lookupSymbolIn(theModule, name)); | 
|  |  | 
|  | if (gv) { | 
|  | // There should be handling added here to check the type as assert that | 
|  | // gv was a declaration if the type doesn't match and handling below | 
|  | // to replace the variable if it was a declaration. | 
|  | errorNYI(loc, "createOrReplaceCXXRuntimeVariable: already exists"); | 
|  | return gv; | 
|  | } | 
|  |  | 
|  | // Create a new variable. | 
|  | gv = createGlobalOp(*this, loc, name, ty); | 
|  |  | 
|  | // Set up extra information and add to the module | 
|  | gv.setLinkageAttr( | 
|  | cir::GlobalLinkageKindAttr::get(&getMLIRContext(), linkage)); | 
|  | mlir::SymbolTable::setSymbolVisibility(gv, | 
|  | CIRGenModule::getMLIRVisibility(gv)); | 
|  |  | 
|  | if (supportsCOMDAT() && cir::isWeakForLinker(linkage) && | 
|  | !gv.hasAvailableExternallyLinkage()) { | 
|  | gv.setComdat(true); | 
|  | } | 
|  |  | 
|  | gv.setAlignmentAttr(getSize(alignment)); | 
|  | setDSOLocal(static_cast<mlir::Operation *>(gv)); | 
|  | return gv; | 
|  | } | 
|  |  | 
|  | // TODO(CIR): this could be a common method between LLVM codegen. | 
|  | static bool isVarDeclStrongDefinition(const ASTContext &astContext, | 
|  | CIRGenModule &cgm, const VarDecl *vd, | 
|  | bool noCommon) { | 
|  | // Don't give variables common linkage if -fno-common was specified unless it | 
|  | // was overridden by a NoCommon attribute. | 
|  | if ((noCommon || vd->hasAttr<NoCommonAttr>()) && !vd->hasAttr<CommonAttr>()) | 
|  | return true; | 
|  |  | 
|  | // C11 6.9.2/2: | 
|  | //   A declaration of an identifier for an object that has file scope without | 
|  | //   an initializer, and without a storage-class specifier or with the | 
|  | //   storage-class specifier static, constitutes a tentative definition. | 
|  | if (vd->getInit() || vd->hasExternalStorage()) | 
|  | return true; | 
|  |  | 
|  | // A variable cannot be both common and exist in a section. | 
|  | if (vd->hasAttr<SectionAttr>()) | 
|  | return true; | 
|  |  | 
|  | // A variable cannot be both common and exist in a section. | 
|  | // We don't try to determine which is the right section in the front-end. | 
|  | // If no specialized section name is applicable, it will resort to default. | 
|  | if (vd->hasAttr<PragmaClangBSSSectionAttr>() || | 
|  | vd->hasAttr<PragmaClangDataSectionAttr>() || | 
|  | vd->hasAttr<PragmaClangRelroSectionAttr>() || | 
|  | vd->hasAttr<PragmaClangRodataSectionAttr>()) | 
|  | return true; | 
|  |  | 
|  | // Thread local vars aren't considered common linkage. | 
|  | if (vd->getTLSKind()) | 
|  | return true; | 
|  |  | 
|  | // Tentative definitions marked with WeakImportAttr are true definitions. | 
|  | if (vd->hasAttr<WeakImportAttr>()) | 
|  | return true; | 
|  |  | 
|  | // A variable cannot be both common and exist in a comdat. | 
|  | if (shouldBeInCOMDAT(cgm, *vd)) | 
|  | return true; | 
|  |  | 
|  | // Declarations with a required alignment do not have common linkage in MSVC | 
|  | // mode. | 
|  | if (astContext.getTargetInfo().getCXXABI().isMicrosoft()) { | 
|  | if (vd->hasAttr<AlignedAttr>()) | 
|  | return true; | 
|  | QualType varType = vd->getType(); | 
|  | if (astContext.isAlignmentRequired(varType)) | 
|  | return true; | 
|  |  | 
|  | if (const auto *rd = varType->getAsRecordDecl()) { | 
|  | for (const FieldDecl *fd : rd->fields()) { | 
|  | if (fd->isBitField()) | 
|  | continue; | 
|  | if (fd->hasAttr<AlignedAttr>()) | 
|  | return true; | 
|  | if (astContext.isAlignmentRequired(fd->getType())) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Microsoft's link.exe doesn't support alignments greater than 32 bytes for | 
|  | // common symbols, so symbols with greater alignment requirements cannot be | 
|  | // common. | 
|  | // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two | 
|  | // alignments for common symbols via the aligncomm directive, so this | 
|  | // restriction only applies to MSVC environments. | 
|  | if (astContext.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && | 
|  | astContext.getTypeAlignIfKnown(vd->getType()) > | 
|  | astContext.toBits(CharUnits::fromQuantity(32))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | cir::GlobalLinkageKind CIRGenModule::getCIRLinkageForDeclarator( | 
|  | const DeclaratorDecl *dd, GVALinkage linkage, bool isConstantVariable) { | 
|  | if (linkage == GVA_Internal) | 
|  | return cir::GlobalLinkageKind::InternalLinkage; | 
|  |  | 
|  | if (dd->hasAttr<WeakAttr>()) { | 
|  | if (isConstantVariable) | 
|  | return cir::GlobalLinkageKind::WeakODRLinkage; | 
|  | return cir::GlobalLinkageKind::WeakAnyLinkage; | 
|  | } | 
|  |  | 
|  | if (const auto *fd = dd->getAsFunction()) | 
|  | if (fd->isMultiVersion() && linkage == GVA_AvailableExternally) | 
|  | return cir::GlobalLinkageKind::LinkOnceAnyLinkage; | 
|  |  | 
|  | // We are guaranteed to have a strong definition somewhere else, | 
|  | // so we can use available_externally linkage. | 
|  | if (linkage == GVA_AvailableExternally) | 
|  | return cir::GlobalLinkageKind::AvailableExternallyLinkage; | 
|  |  | 
|  | // Note that Apple's kernel linker doesn't support symbol | 
|  | // coalescing, so we need to avoid linkonce and weak linkages there. | 
|  | // Normally, this means we just map to internal, but for explicit | 
|  | // instantiations we'll map to external. | 
|  |  | 
|  | // In C++, the compiler has to emit a definition in every translation unit | 
|  | // that references the function.  We should use linkonce_odr because | 
|  | // a) if all references in this translation unit are optimized away, we | 
|  | // don't need to codegen it.  b) if the function persists, it needs to be | 
|  | // merged with other definitions. c) C++ has the ODR, so we know the | 
|  | // definition is dependable. | 
|  | if (linkage == GVA_DiscardableODR) | 
|  | return !astContext.getLangOpts().AppleKext | 
|  | ? cir::GlobalLinkageKind::LinkOnceODRLinkage | 
|  | : cir::GlobalLinkageKind::InternalLinkage; | 
|  |  | 
|  | // An explicit instantiation of a template has weak linkage, since | 
|  | // explicit instantiations can occur in multiple translation units | 
|  | // and must all be equivalent. However, we are not allowed to | 
|  | // throw away these explicit instantiations. | 
|  | // | 
|  | // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, | 
|  | // so say that CUDA templates are either external (for kernels) or internal. | 
|  | // This lets llvm perform aggressive inter-procedural optimizations. For | 
|  | // -fgpu-rdc case, device function calls across multiple TU's are allowed, | 
|  | // therefore we need to follow the normal linkage paradigm. | 
|  | if (linkage == GVA_StrongODR) { | 
|  | if (getLangOpts().AppleKext) | 
|  | return cir::GlobalLinkageKind::ExternalLinkage; | 
|  | if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && | 
|  | !getLangOpts().GPURelocatableDeviceCode) | 
|  | return dd->hasAttr<CUDAGlobalAttr>() | 
|  | ? cir::GlobalLinkageKind::ExternalLinkage | 
|  | : cir::GlobalLinkageKind::InternalLinkage; | 
|  | return cir::GlobalLinkageKind::WeakODRLinkage; | 
|  | } | 
|  |  | 
|  | // C++ doesn't have tentative definitions and thus cannot have common | 
|  | // linkage. | 
|  | if (!getLangOpts().CPlusPlus && isa<VarDecl>(dd) && | 
|  | !isVarDeclStrongDefinition(astContext, *this, cast<VarDecl>(dd), | 
|  | getCodeGenOpts().NoCommon)) { | 
|  | errorNYI(dd->getBeginLoc(), "common linkage", dd->getDeclKindName()); | 
|  | return cir::GlobalLinkageKind::CommonLinkage; | 
|  | } | 
|  |  | 
|  | // selectany symbols are externally visible, so use weak instead of | 
|  | // linkonce.  MSVC optimizes away references to const selectany globals, so | 
|  | // all definitions should be the same and ODR linkage should be used. | 
|  | // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx | 
|  | if (dd->hasAttr<SelectAnyAttr>()) | 
|  | return cir::GlobalLinkageKind::WeakODRLinkage; | 
|  |  | 
|  | // Otherwise, we have strong external linkage. | 
|  | assert(linkage == GVA_StrongExternal); | 
|  | return cir::GlobalLinkageKind::ExternalLinkage; | 
|  | } | 
|  |  | 
|  | /// This function is called when we implement a function with no prototype, e.g. | 
|  | /// "int foo() {}". If there are existing call uses of the old function in the | 
|  | /// module, this adjusts them to call the new function directly. | 
|  | /// | 
|  | /// This is not just a cleanup: the always_inline pass requires direct calls to | 
|  | /// functions to be able to inline them.  If there is a bitcast in the way, it | 
|  | /// won't inline them. Instcombine normally deletes these calls, but it isn't | 
|  | /// run at -O0. | 
|  | void CIRGenModule::replaceUsesOfNonProtoTypeWithRealFunction( | 
|  | mlir::Operation *old, cir::FuncOp newFn) { | 
|  | // If we're redefining a global as a function, don't transform it. | 
|  | auto oldFn = mlir::dyn_cast<cir::FuncOp>(old); | 
|  | if (!oldFn) | 
|  | return; | 
|  |  | 
|  | // TODO(cir): this RAUW ignores the features below. | 
|  | assert(!cir::MissingFeatures::opFuncExceptions()); | 
|  | assert(!cir::MissingFeatures::opFuncParameterAttributes()); | 
|  | assert(!cir::MissingFeatures::opFuncOperandBundles()); | 
|  | if (oldFn->getAttrs().size() <= 1) | 
|  | errorNYI(old->getLoc(), | 
|  | "replaceUsesOfNonProtoTypeWithRealFunction: Attribute forwarding"); | 
|  |  | 
|  | // Mark new function as originated from a no-proto declaration. | 
|  | newFn.setNoProto(oldFn.getNoProto()); | 
|  |  | 
|  | // Iterate through all calls of the no-proto function. | 
|  | std::optional<mlir::SymbolTable::UseRange> symUses = | 
|  | oldFn.getSymbolUses(oldFn->getParentOp()); | 
|  | for (const mlir::SymbolTable::SymbolUse &use : symUses.value()) { | 
|  | mlir::OpBuilder::InsertionGuard guard(builder); | 
|  |  | 
|  | if (auto noProtoCallOp = mlir::dyn_cast<cir::CallOp>(use.getUser())) { | 
|  | builder.setInsertionPoint(noProtoCallOp); | 
|  |  | 
|  | // Patch call type with the real function type. | 
|  | cir::CallOp realCallOp = builder.createCallOp( | 
|  | noProtoCallOp.getLoc(), newFn, noProtoCallOp.getOperands()); | 
|  |  | 
|  | // Replace old no proto call with fixed call. | 
|  | noProtoCallOp.replaceAllUsesWith(realCallOp); | 
|  | noProtoCallOp.erase(); | 
|  | } else if (auto getGlobalOp = | 
|  | mlir::dyn_cast<cir::GetGlobalOp>(use.getUser())) { | 
|  | // Replace type | 
|  | getGlobalOp.getAddr().setType( | 
|  | cir::PointerType::get(newFn.getFunctionType())); | 
|  | } else { | 
|  | errorNYI(use.getUser()->getLoc(), | 
|  | "replaceUsesOfNonProtoTypeWithRealFunction: unexpected use"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | cir::GlobalLinkageKind | 
|  | CIRGenModule::getCIRLinkageVarDefinition(const VarDecl *vd, bool isConstant) { | 
|  | assert(!isConstant && "constant variables NYI"); | 
|  | GVALinkage linkage = astContext.GetGVALinkageForVariable(vd); | 
|  | return getCIRLinkageForDeclarator(vd, linkage, isConstant); | 
|  | } | 
|  |  | 
|  | cir::GlobalLinkageKind CIRGenModule::getFunctionLinkage(GlobalDecl gd) { | 
|  | const auto *d = cast<FunctionDecl>(gd.getDecl()); | 
|  |  | 
|  | GVALinkage linkage = astContext.GetGVALinkageForFunction(d); | 
|  |  | 
|  | if (const auto *dtor = dyn_cast<CXXDestructorDecl>(d)) | 
|  | return getCXXABI().getCXXDestructorLinkage(linkage, dtor, gd.getDtorType()); | 
|  |  | 
|  | return getCIRLinkageForDeclarator(d, linkage, /*isConstantVariable=*/false); | 
|  | } | 
|  |  | 
|  | static cir::GlobalOp | 
|  | generateStringLiteral(mlir::Location loc, mlir::TypedAttr c, | 
|  | cir::GlobalLinkageKind lt, CIRGenModule &cgm, | 
|  | StringRef globalName, CharUnits alignment) { | 
|  | assert(!cir::MissingFeatures::addressSpace()); | 
|  |  | 
|  | // Create a global variable for this string | 
|  | // FIXME(cir): check for insertion point in module level. | 
|  | cir::GlobalOp gv = CIRGenModule::createGlobalOp( | 
|  | cgm, loc, globalName, c.getType(), !cgm.getLangOpts().WritableStrings); | 
|  |  | 
|  | // Set up extra information and add to the module | 
|  | gv.setAlignmentAttr(cgm.getSize(alignment)); | 
|  | gv.setLinkageAttr( | 
|  | cir::GlobalLinkageKindAttr::get(cgm.getBuilder().getContext(), lt)); | 
|  | assert(!cir::MissingFeatures::opGlobalThreadLocal()); | 
|  | assert(!cir::MissingFeatures::opGlobalUnnamedAddr()); | 
|  | CIRGenModule::setInitializer(gv, c); | 
|  | if (gv.isWeakForLinker()) { | 
|  | assert(cgm.supportsCOMDAT() && "Only COFF uses weak string literals"); | 
|  | gv.setComdat(true); | 
|  | } | 
|  | cgm.setDSOLocal(static_cast<mlir::Operation *>(gv)); | 
|  | return gv; | 
|  | } | 
|  |  | 
|  | // LLVM IR automatically uniques names when new llvm::GlobalVariables are | 
|  | // created. This is handy, for example, when creating globals for string | 
|  | // literals. Since we don't do that when creating cir::GlobalOp's, we need | 
|  | // a mechanism to generate a unique name in advance. | 
|  | // | 
|  | // For now, this mechanism is only used in cases where we know that the | 
|  | // name is compiler-generated, so we don't use the MLIR symbol table for | 
|  | // the lookup. | 
|  | std::string CIRGenModule::getUniqueGlobalName(const std::string &baseName) { | 
|  | // If this is the first time we've generated a name for this basename, use | 
|  | // it as is and start a counter for this base name. | 
|  | auto it = cgGlobalNames.find(baseName); | 
|  | if (it == cgGlobalNames.end()) { | 
|  | cgGlobalNames[baseName] = 1; | 
|  | return baseName; | 
|  | } | 
|  |  | 
|  | std::string result = | 
|  | baseName + "." + std::to_string(cgGlobalNames[baseName]++); | 
|  | // There should not be any symbol with this name in the module. | 
|  | assert(!mlir::SymbolTable::lookupSymbolIn(theModule, result)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /// Return a pointer to a constant array for the given string literal. | 
|  | cir::GlobalOp CIRGenModule::getGlobalForStringLiteral(const StringLiteral *s, | 
|  | StringRef name) { | 
|  | CharUnits alignment = | 
|  | astContext.getAlignOfGlobalVarInChars(s->getType(), /*VD=*/nullptr); | 
|  |  | 
|  | mlir::Attribute c = getConstantArrayFromStringLiteral(s); | 
|  |  | 
|  | if (getLangOpts().WritableStrings) { | 
|  | errorNYI(s->getSourceRange(), | 
|  | "getGlobalForStringLiteral: Writable strings"); | 
|  | } | 
|  |  | 
|  | // Mangle the string literal if that's how the ABI merges duplicate strings. | 
|  | // Don't do it if they are writable, since we don't want writes in one TU to | 
|  | // affect strings in another. | 
|  | if (getCXXABI().getMangleContext().shouldMangleStringLiteral(s) && | 
|  | !getLangOpts().WritableStrings) { | 
|  | errorNYI(s->getSourceRange(), | 
|  | "getGlobalForStringLiteral: mangle string literals"); | 
|  | } | 
|  |  | 
|  | // Unlike LLVM IR, CIR doesn't automatically unique names for globals, so | 
|  | // we need to do that explicitly. | 
|  | std::string uniqueName = getUniqueGlobalName(name.str()); | 
|  | mlir::Location loc = getLoc(s->getSourceRange()); | 
|  | auto typedC = llvm::cast<mlir::TypedAttr>(c); | 
|  | cir::GlobalOp gv = | 
|  | generateStringLiteral(loc, typedC, cir::GlobalLinkageKind::PrivateLinkage, | 
|  | *this, uniqueName, alignment); | 
|  | setDSOLocal(static_cast<mlir::Operation *>(gv)); | 
|  |  | 
|  | assert(!cir::MissingFeatures::sanitizers()); | 
|  |  | 
|  | return gv; | 
|  | } | 
|  |  | 
|  | /// Return a pointer to a constant array for the given string literal. | 
|  | cir::GlobalViewAttr | 
|  | CIRGenModule::getAddrOfConstantStringFromLiteral(const StringLiteral *s, | 
|  | StringRef name) { | 
|  | cir::GlobalOp gv = getGlobalForStringLiteral(s, name); | 
|  | auto arrayTy = mlir::dyn_cast<cir::ArrayType>(gv.getSymType()); | 
|  | assert(arrayTy && "String literal must be array"); | 
|  | assert(!cir::MissingFeatures::addressSpace()); | 
|  | cir::PointerType ptrTy = getBuilder().getPointerTo(arrayTy.getElementType()); | 
|  |  | 
|  | return builder.getGlobalViewAttr(ptrTy, gv); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitExplicitCastExprType(const ExplicitCastExpr *e, | 
|  | CIRGenFunction *cgf) { | 
|  | if (cgf && e->getType()->isVariablyModifiedType()) | 
|  | cgf->emitVariablyModifiedType(e->getType()); | 
|  |  | 
|  | assert(!cir::MissingFeatures::generateDebugInfo() && | 
|  | "emitExplicitCastExprType"); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitDeclContext(const DeclContext *dc) { | 
|  | for (Decl *decl : dc->decls()) { | 
|  | // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope | 
|  | // are themselves considered "top-level", so EmitTopLevelDecl on an | 
|  | // ObjCImplDecl does not recursively visit them. We need to do that in | 
|  | // case they're nested inside another construct (LinkageSpecDecl / | 
|  | // ExportDecl) that does stop them from being considered "top-level". | 
|  | if (auto *oid = dyn_cast<ObjCImplDecl>(decl)) | 
|  | errorNYI(oid->getSourceRange(), "emitDeclConext: ObjCImplDecl"); | 
|  |  | 
|  | emitTopLevelDecl(decl); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit code for a single top level declaration. | 
|  | void CIRGenModule::emitTopLevelDecl(Decl *decl) { | 
|  |  | 
|  | // Ignore dependent declarations. | 
|  | if (decl->isTemplated()) | 
|  | return; | 
|  |  | 
|  | switch (decl->getKind()) { | 
|  | default: | 
|  | errorNYI(decl->getBeginLoc(), "declaration of kind", | 
|  | decl->getDeclKindName()); | 
|  | break; | 
|  |  | 
|  | case Decl::CXXConversion: | 
|  | case Decl::CXXMethod: | 
|  | case Decl::Function: { | 
|  | auto *fd = cast<FunctionDecl>(decl); | 
|  | // Consteval functions shouldn't be emitted. | 
|  | if (!fd->isConsteval()) | 
|  | emitGlobal(fd); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Decl::Var: | 
|  | case Decl::Decomposition: | 
|  | case Decl::VarTemplateSpecialization: { | 
|  | auto *vd = cast<VarDecl>(decl); | 
|  | if (isa<DecompositionDecl>(decl)) { | 
|  | errorNYI(decl->getSourceRange(), "global variable decompositions"); | 
|  | break; | 
|  | } | 
|  | emitGlobal(vd); | 
|  | break; | 
|  | } | 
|  | case Decl::OpenACCRoutine: | 
|  | emitGlobalOpenACCDecl(cast<OpenACCRoutineDecl>(decl)); | 
|  | break; | 
|  | case Decl::OpenACCDeclare: | 
|  | emitGlobalOpenACCDecl(cast<OpenACCDeclareDecl>(decl)); | 
|  | break; | 
|  | case Decl::Enum: | 
|  | case Decl::Using:          // using X; [C++] | 
|  | case Decl::UsingDirective: // using namespace X; [C++] | 
|  | case Decl::UsingEnum:      // using enum X; [C++] | 
|  | case Decl::NamespaceAlias: | 
|  | case Decl::Typedef: | 
|  | case Decl::TypeAlias: // using foo = bar; [C++11] | 
|  | case Decl::Record: | 
|  | assert(!cir::MissingFeatures::generateDebugInfo()); | 
|  | break; | 
|  |  | 
|  | // No code generation needed. | 
|  | case Decl::ClassTemplate: | 
|  | case Decl::Concept: | 
|  | case Decl::CXXDeductionGuide: | 
|  | case Decl::Empty: | 
|  | case Decl::FunctionTemplate: | 
|  | case Decl::StaticAssert: | 
|  | case Decl::TypeAliasTemplate: | 
|  | case Decl::UsingShadow: | 
|  | case Decl::VarTemplate: | 
|  | case Decl::VarTemplatePartialSpecialization: | 
|  | break; | 
|  |  | 
|  | case Decl::CXXConstructor: | 
|  | getCXXABI().emitCXXConstructors(cast<CXXConstructorDecl>(decl)); | 
|  | break; | 
|  | case Decl::CXXDestructor: | 
|  | getCXXABI().emitCXXDestructors(cast<CXXDestructorDecl>(decl)); | 
|  | break; | 
|  |  | 
|  | // C++ Decls | 
|  | case Decl::LinkageSpec: | 
|  | case Decl::Namespace: | 
|  | emitDeclContext(Decl::castToDeclContext(decl)); | 
|  | break; | 
|  |  | 
|  | case Decl::ClassTemplateSpecialization: | 
|  | case Decl::CXXRecord: | 
|  | assert(!cir::MissingFeatures::generateDebugInfo()); | 
|  | assert(!cir::MissingFeatures::cxxRecordStaticMembers()); | 
|  | break; | 
|  |  | 
|  | case Decl::FileScopeAsm: | 
|  | // File-scope asm is ignored during device-side CUDA compilation. | 
|  | if (langOpts.CUDA && langOpts.CUDAIsDevice) | 
|  | break; | 
|  | // File-scope asm is ignored during device-side OpenMP compilation. | 
|  | if (langOpts.OpenMPIsTargetDevice) | 
|  | break; | 
|  | // File-scope asm is ignored during device-side SYCL compilation. | 
|  | if (langOpts.SYCLIsDevice) | 
|  | break; | 
|  | auto *file_asm = cast<FileScopeAsmDecl>(decl); | 
|  | std::string line = file_asm->getAsmString(); | 
|  | globalScopeAsm.push_back(builder.getStringAttr(line)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setInitializer(cir::GlobalOp &op, mlir::Attribute value) { | 
|  | // Recompute visibility when updating initializer. | 
|  | op.setInitialValueAttr(value); | 
|  | assert(!cir::MissingFeatures::opGlobalVisibility()); | 
|  | } | 
|  |  | 
|  | std::pair<cir::FuncType, cir::FuncOp> CIRGenModule::getAddrAndTypeOfCXXStructor( | 
|  | GlobalDecl gd, const CIRGenFunctionInfo *fnInfo, cir::FuncType fnType, | 
|  | bool dontDefer, ForDefinition_t isForDefinition) { | 
|  | auto *md = cast<CXXMethodDecl>(gd.getDecl()); | 
|  |  | 
|  | if (isa<CXXDestructorDecl>(md)) { | 
|  | // Always alias equivalent complete destructors to base destructors in the | 
|  | // MS ABI. | 
|  | if (getTarget().getCXXABI().isMicrosoft() && | 
|  | gd.getDtorType() == Dtor_Complete && | 
|  | md->getParent()->getNumVBases() == 0) | 
|  | errorNYI(md->getSourceRange(), | 
|  | "getAddrAndTypeOfCXXStructor: MS ABI complete destructor"); | 
|  | } | 
|  |  | 
|  | if (!fnType) { | 
|  | if (!fnInfo) | 
|  | fnInfo = &getTypes().arrangeCXXStructorDeclaration(gd); | 
|  | fnType = getTypes().getFunctionType(*fnInfo); | 
|  | } | 
|  |  | 
|  | auto fn = getOrCreateCIRFunction(getMangledName(gd), fnType, gd, | 
|  | /*ForVtable=*/false, dontDefer, | 
|  | /*IsThunk=*/false, isForDefinition); | 
|  |  | 
|  | return {fnType, fn}; | 
|  | } | 
|  |  | 
|  | cir::FuncOp CIRGenModule::getAddrOfFunction(clang::GlobalDecl gd, | 
|  | mlir::Type funcType, bool forVTable, | 
|  | bool dontDefer, | 
|  | ForDefinition_t isForDefinition) { | 
|  | assert(!cast<FunctionDecl>(gd.getDecl())->isConsteval() && | 
|  | "consteval function should never be emitted"); | 
|  |  | 
|  | if (!funcType) { | 
|  | const auto *fd = cast<FunctionDecl>(gd.getDecl()); | 
|  | funcType = convertType(fd->getType()); | 
|  | } | 
|  |  | 
|  | // Devirtualized destructor calls may come through here instead of via | 
|  | // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead | 
|  | // of the complete destructor when necessary. | 
|  | if (const auto *dd = dyn_cast<CXXDestructorDecl>(gd.getDecl())) { | 
|  | if (getTarget().getCXXABI().isMicrosoft() && | 
|  | gd.getDtorType() == Dtor_Complete && | 
|  | dd->getParent()->getNumVBases() == 0) | 
|  | errorNYI(dd->getSourceRange(), | 
|  | "getAddrOfFunction: MS ABI complete destructor"); | 
|  | } | 
|  |  | 
|  | StringRef mangledName = getMangledName(gd); | 
|  | cir::FuncOp func = | 
|  | getOrCreateCIRFunction(mangledName, funcType, gd, forVTable, dontDefer, | 
|  | /*isThunk=*/false, isForDefinition); | 
|  | return func; | 
|  | } | 
|  |  | 
|  | static std::string getMangledNameImpl(CIRGenModule &cgm, GlobalDecl gd, | 
|  | const NamedDecl *nd) { | 
|  | SmallString<256> buffer; | 
|  |  | 
|  | llvm::raw_svector_ostream out(buffer); | 
|  | MangleContext &mc = cgm.getCXXABI().getMangleContext(); | 
|  |  | 
|  | assert(!cir::MissingFeatures::moduleNameHash()); | 
|  |  | 
|  | if (mc.shouldMangleDeclName(nd)) { | 
|  | mc.mangleName(gd.getWithDecl(nd), out); | 
|  | } else { | 
|  | IdentifierInfo *ii = nd->getIdentifier(); | 
|  | assert(ii && "Attempt to mangle unnamed decl."); | 
|  |  | 
|  | const auto *fd = dyn_cast<FunctionDecl>(nd); | 
|  | if (fd && | 
|  | fd->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { | 
|  | cgm.errorNYI(nd->getSourceRange(), "getMangledName: X86RegCall"); | 
|  | } else if (fd && fd->hasAttr<CUDAGlobalAttr>() && | 
|  | gd.getKernelReferenceKind() == KernelReferenceKind::Stub) { | 
|  | cgm.errorNYI(nd->getSourceRange(), "getMangledName: CUDA device stub"); | 
|  | } | 
|  | out << ii->getName(); | 
|  | } | 
|  |  | 
|  | // Check if the module name hash should be appended for internal linkage | 
|  | // symbols. This should come before multi-version target suffixes are | 
|  | // appendded. This is to keep the name and module hash suffix of the internal | 
|  | // linkage function together. The unique suffix should only be added when name | 
|  | // mangling is done to make sure that the final name can be properly | 
|  | // demangled. For example, for C functions without prototypes, name mangling | 
|  | // is not done and the unique suffix should not be appended then. | 
|  | assert(!cir::MissingFeatures::moduleNameHash()); | 
|  |  | 
|  | if (const auto *fd = dyn_cast<FunctionDecl>(nd)) { | 
|  | if (fd->isMultiVersion()) { | 
|  | cgm.errorNYI(nd->getSourceRange(), | 
|  | "getMangledName: multi-version functions"); | 
|  | } | 
|  | } | 
|  | if (cgm.getLangOpts().GPURelocatableDeviceCode) { | 
|  | cgm.errorNYI(nd->getSourceRange(), | 
|  | "getMangledName: GPU relocatable device code"); | 
|  | } | 
|  |  | 
|  | return std::string(out.str()); | 
|  | } | 
|  |  | 
|  | StringRef CIRGenModule::getMangledName(GlobalDecl gd) { | 
|  | GlobalDecl canonicalGd = gd.getCanonicalDecl(); | 
|  |  | 
|  | // Some ABIs don't have constructor variants. Make sure that base and complete | 
|  | // constructors get mangled the same. | 
|  | if (const auto *cd = dyn_cast<CXXConstructorDecl>(canonicalGd.getDecl())) { | 
|  | if (!getTarget().getCXXABI().hasConstructorVariants()) { | 
|  | errorNYI(cd->getSourceRange(), | 
|  | "getMangledName: C++ constructor without variants"); | 
|  | return cast<NamedDecl>(gd.getDecl())->getIdentifier()->getName(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep the first result in the case of a mangling collision. | 
|  | const auto *nd = cast<NamedDecl>(gd.getDecl()); | 
|  | std::string mangledName = getMangledNameImpl(*this, gd, nd); | 
|  |  | 
|  | auto result = manglings.insert(std::make_pair(mangledName, gd)); | 
|  | return mangledDeclNames[canonicalGd] = result.first->first(); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitTentativeDefinition(const VarDecl *d) { | 
|  | assert(!d->getInit() && "Cannot emit definite definitions here!"); | 
|  |  | 
|  | StringRef mangledName = getMangledName(d); | 
|  | mlir::Operation *gv = getGlobalValue(mangledName); | 
|  |  | 
|  | // If we already have a definition, not declaration, with the same mangled | 
|  | // name, emitting of declaration is not required (and would actually overwrite | 
|  | // the emitted definition). | 
|  | if (gv && !mlir::cast<cir::GlobalOp>(gv).isDeclaration()) | 
|  | return; | 
|  |  | 
|  | // If we have not seen a reference to this variable yet, place it into the | 
|  | // deferred declarations table to be emitted if needed later. | 
|  | if (!mustBeEmitted(d) && !gv) { | 
|  | deferredDecls[mangledName] = d; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The tentative definition is the only definition. | 
|  | emitGlobalVarDefinition(d); | 
|  | } | 
|  |  | 
|  | bool CIRGenModule::mustBeEmitted(const ValueDecl *global) { | 
|  | // Never defer when EmitAllDecls is specified. | 
|  | if (langOpts.EmitAllDecls) | 
|  | return true; | 
|  |  | 
|  | const auto *vd = dyn_cast<VarDecl>(global); | 
|  | if (vd && | 
|  | ((codeGenOpts.KeepPersistentStorageVariables && | 
|  | (vd->getStorageDuration() == SD_Static || | 
|  | vd->getStorageDuration() == SD_Thread)) || | 
|  | (codeGenOpts.KeepStaticConsts && vd->getStorageDuration() == SD_Static && | 
|  | vd->getType().isConstQualified()))) | 
|  | return true; | 
|  |  | 
|  | return getASTContext().DeclMustBeEmitted(global); | 
|  | } | 
|  |  | 
|  | bool CIRGenModule::mayBeEmittedEagerly(const ValueDecl *global) { | 
|  | // In OpenMP 5.0 variables and function may be marked as | 
|  | // device_type(host/nohost) and we should not emit them eagerly unless we sure | 
|  | // that they must be emitted on the host/device. To be sure we need to have | 
|  | // seen a declare target with an explicit mentioning of the function, we know | 
|  | // we have if the level of the declare target attribute is -1. Note that we | 
|  | // check somewhere else if we should emit this at all. | 
|  | if (langOpts.OpenMP >= 50 && !langOpts.OpenMPSimd) { | 
|  | std::optional<OMPDeclareTargetDeclAttr *> activeAttr = | 
|  | OMPDeclareTargetDeclAttr::getActiveAttr(global); | 
|  | if (!activeAttr || (*activeAttr)->getLevel() != (unsigned)-1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto *fd = dyn_cast<FunctionDecl>(global); | 
|  | if (fd) { | 
|  | // Implicit template instantiations may change linkage if they are later | 
|  | // explicitly instantiated, so they should not be emitted eagerly. | 
|  | if (fd->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return false; | 
|  | // Defer until all versions have been semantically checked. | 
|  | if (fd->hasAttr<TargetVersionAttr>() && !fd->isMultiVersion()) | 
|  | return false; | 
|  | if (langOpts.SYCLIsDevice) { | 
|  | errorNYI(fd->getSourceRange(), "mayBeEmittedEagerly: SYCL"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | const auto *vd = dyn_cast<VarDecl>(global); | 
|  | if (vd) | 
|  | if (astContext.getInlineVariableDefinitionKind(vd) == | 
|  | ASTContext::InlineVariableDefinitionKind::WeakUnknown) | 
|  | // A definition of an inline constexpr static data member may change | 
|  | // linkage later if it's redeclared outside the class. | 
|  | return false; | 
|  |  | 
|  | // If OpenMP is enabled and threadprivates must be generated like TLS, delay | 
|  | // codegen for global variables, because they may be marked as threadprivate. | 
|  | if (langOpts.OpenMP && langOpts.OpenMPUseTLS && | 
|  | astContext.getTargetInfo().isTLSSupported() && isa<VarDecl>(global) && | 
|  | !global->getType().isConstantStorage(astContext, false, false) && | 
|  | !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(global)) | 
|  | return false; | 
|  |  | 
|  | assert((fd || vd) && | 
|  | "Only FunctionDecl and VarDecl should hit this path so far."); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool shouldAssumeDSOLocal(const CIRGenModule &cgm, | 
|  | cir::CIRGlobalValueInterface gv) { | 
|  | if (gv.hasLocalLinkage()) | 
|  | return true; | 
|  |  | 
|  | if (!gv.hasDefaultVisibility() && !gv.hasExternalWeakLinkage()) | 
|  | return true; | 
|  |  | 
|  | // DLLImport explicitly marks the GV as external. | 
|  | // so it shouldn't be dso_local | 
|  | // But we don't have the info set now | 
|  | assert(!cir::MissingFeatures::opGlobalDLLImportExport()); | 
|  |  | 
|  | const llvm::Triple &tt = cgm.getTriple(); | 
|  | const CodeGenOptions &cgOpts = cgm.getCodeGenOpts(); | 
|  | if (tt.isOSCygMing()) { | 
|  | // In MinGW and Cygwin, variables without DLLImport can still be | 
|  | // automatically imported from a DLL by the linker; don't mark variables | 
|  | // that potentially could come from another DLL as DSO local. | 
|  |  | 
|  | // With EmulatedTLS, TLS variables can be autoimported from other DLLs | 
|  | // (and this actually happens in the public interface of libstdc++), so | 
|  | // such variables can't be marked as DSO local. (Native TLS variables | 
|  | // can't be dllimported at all, though.) | 
|  | cgm.errorNYI("shouldAssumeDSOLocal: MinGW"); | 
|  | } | 
|  |  | 
|  | // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols | 
|  | // remain unresolved in the link, they can be resolved to zero, which is | 
|  | // outside the current DSO. | 
|  | if (tt.isOSBinFormatCOFF() && gv.hasExternalWeakLinkage()) | 
|  | return false; | 
|  |  | 
|  | // Every other GV is local on COFF. | 
|  | // Make an exception for windows OS in the triple: Some firmware builds use | 
|  | // *-win32-macho triples. This (accidentally?) produced windows relocations | 
|  | // without GOT tables in older clang versions; Keep this behaviour. | 
|  | // FIXME: even thread local variables? | 
|  | if (tt.isOSBinFormatCOFF() || (tt.isOSWindows() && tt.isOSBinFormatMachO())) | 
|  | return true; | 
|  |  | 
|  | // Only handle COFF and ELF for now. | 
|  | if (!tt.isOSBinFormatELF()) | 
|  | return false; | 
|  |  | 
|  | llvm::Reloc::Model rm = cgOpts.RelocationModel; | 
|  | const LangOptions &lOpts = cgm.getLangOpts(); | 
|  | if (rm != llvm::Reloc::Static && !lOpts.PIE) { | 
|  | // On ELF, if -fno-semantic-interposition is specified and the target | 
|  | // supports local aliases, there will be neither CC1 | 
|  | // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set | 
|  | // dso_local on the function if using a local alias is preferable (can avoid | 
|  | // PLT indirection). | 
|  | if (!(isa<cir::FuncOp>(gv) && gv.canBenefitFromLocalAlias())) | 
|  | return false; | 
|  | return !(lOpts.SemanticInterposition || lOpts.HalfNoSemanticInterposition); | 
|  | } | 
|  |  | 
|  | // A definition cannot be preempted from an executable. | 
|  | if (!gv.isDeclarationForLinker()) | 
|  | return true; | 
|  |  | 
|  | // Most PIC code sequences that assume that a symbol is local cannot produce a | 
|  | // 0 if it turns out the symbol is undefined. While this is ABI and relocation | 
|  | // depended, it seems worth it to handle it here. | 
|  | if (rm == llvm::Reloc::PIC_ && gv.hasExternalWeakLinkage()) | 
|  | return false; | 
|  |  | 
|  | // PowerPC64 prefers TOC indirection to avoid copy relocations. | 
|  | if (tt.isPPC64()) | 
|  | return false; | 
|  |  | 
|  | if (cgOpts.DirectAccessExternalData) { | 
|  | // If -fdirect-access-external-data (default for -fno-pic), set dso_local | 
|  | // for non-thread-local variables. If the symbol is not defined in the | 
|  | // executable, a copy relocation will be needed at link time. dso_local is | 
|  | // excluded for thread-local variables because they generally don't support | 
|  | // copy relocations. | 
|  | if (auto globalOp = dyn_cast<cir::GlobalOp>(gv.getOperation())) { | 
|  | // Assume variables are not thread-local until that support is added. | 
|  | assert(!cir::MissingFeatures::opGlobalThreadLocal()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // -fno-pic sets dso_local on a function declaration to allow direct | 
|  | // accesses when taking its address (similar to a data symbol). If the | 
|  | // function is not defined in the executable, a canonical PLT entry will be | 
|  | // needed at link time. -fno-direct-access-external-data can avoid the | 
|  | // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as | 
|  | // it could just cause trouble without providing perceptible benefits. | 
|  | if (isa<cir::FuncOp>(gv) && !cgOpts.NoPLT && rm == llvm::Reloc::Static) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we can use copy relocations we can assume it is local. | 
|  |  | 
|  | // Otherwise don't assume it is local. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setGlobalVisibility(mlir::Operation *gv, | 
|  | const NamedDecl *d) const { | 
|  | assert(!cir::MissingFeatures::opGlobalVisibility()); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setDSOLocal(cir::CIRGlobalValueInterface gv) const { | 
|  | gv.setDSOLocal(shouldAssumeDSOLocal(*this, gv)); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setDSOLocal(mlir::Operation *op) const { | 
|  | if (auto globalValue = dyn_cast<cir::CIRGlobalValueInterface>(op)) | 
|  | setDSOLocal(globalValue); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setGVProperties(mlir::Operation *op, | 
|  | const NamedDecl *d) const { | 
|  | assert(!cir::MissingFeatures::opGlobalDLLImportExport()); | 
|  | setGVPropertiesAux(op, d); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setGVPropertiesAux(mlir::Operation *op, | 
|  | const NamedDecl *d) const { | 
|  | setGlobalVisibility(op, d); | 
|  | setDSOLocal(op); | 
|  | assert(!cir::MissingFeatures::opGlobalPartition()); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::setFunctionAttributes(GlobalDecl globalDecl, | 
|  | cir::FuncOp func, | 
|  | bool isIncompleteFunction, | 
|  | bool isThunk) { | 
|  | // NOTE(cir): Original CodeGen checks if this is an intrinsic. In CIR we | 
|  | // represent them in dedicated ops. The correct attributes are ensured during | 
|  | // translation to LLVM. Thus, we don't need to check for them here. | 
|  |  | 
|  | assert(!cir::MissingFeatures::setFunctionAttributes()); | 
|  | assert(!cir::MissingFeatures::setTargetAttributes()); | 
|  |  | 
|  | // TODO(cir): This needs a lot of work to better match CodeGen. That | 
|  | // ultimately ends up in setGlobalVisibility, which already has the linkage of | 
|  | // the LLVM GV (corresponding to our FuncOp) computed, so it doesn't have to | 
|  | // recompute it here. This is a minimal fix for now. | 
|  | if (!isLocalLinkage(getFunctionLinkage(globalDecl))) { | 
|  | const Decl *decl = globalDecl.getDecl(); | 
|  | func.setGlobalVisibilityAttr(getGlobalVisibilityAttrFromDecl(decl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | cir::FuncOp CIRGenModule::getOrCreateCIRFunction( | 
|  | StringRef mangledName, mlir::Type funcType, GlobalDecl gd, bool forVTable, | 
|  | bool dontDefer, bool isThunk, ForDefinition_t isForDefinition, | 
|  | mlir::ArrayAttr extraAttrs) { | 
|  | const Decl *d = gd.getDecl(); | 
|  |  | 
|  | if (isThunk) | 
|  | errorNYI(d->getSourceRange(), "getOrCreateCIRFunction: thunk"); | 
|  |  | 
|  | // In what follows, we continue past 'errorNYI' as if nothing happened because | 
|  | // the rest of the implementation is better than doing nothing. | 
|  |  | 
|  | if (const auto *fd = cast_or_null<FunctionDecl>(d)) { | 
|  | // For the device mark the function as one that should be emitted. | 
|  | if (getLangOpts().OpenMPIsTargetDevice && fd->isDefined() && !dontDefer && | 
|  | !isForDefinition) | 
|  | errorNYI(fd->getSourceRange(), | 
|  | "getOrCreateCIRFunction: OpenMP target function"); | 
|  |  | 
|  | // Any attempts to use a MultiVersion function should result in retrieving | 
|  | // the iFunc instead. Name mangling will handle the rest of the changes. | 
|  | if (fd->isMultiVersion()) | 
|  | errorNYI(fd->getSourceRange(), "getOrCreateCIRFunction: multi-version"); | 
|  | } | 
|  |  | 
|  | // Lookup the entry, lazily creating it if necessary. | 
|  | mlir::Operation *entry = getGlobalValue(mangledName); | 
|  | if (entry) { | 
|  | assert(mlir::isa<cir::FuncOp>(entry)); | 
|  |  | 
|  | assert(!cir::MissingFeatures::weakRefReference()); | 
|  |  | 
|  | // Handle dropped DLL attributes. | 
|  | if (d && !d->hasAttr<DLLImportAttr>() && !d->hasAttr<DLLExportAttr>()) { | 
|  | assert(!cir::MissingFeatures::setDLLStorageClass()); | 
|  | setDSOLocal(entry); | 
|  | } | 
|  |  | 
|  | // If there are two attempts to define the same mangled name, issue an | 
|  | // error. | 
|  | auto fn = cast<cir::FuncOp>(entry); | 
|  | if (isForDefinition && fn && !fn.isDeclaration()) { | 
|  | errorNYI(d->getSourceRange(), "Duplicate function definition"); | 
|  | } | 
|  | if (fn && fn.getFunctionType() == funcType) { | 
|  | return fn; | 
|  | } | 
|  |  | 
|  | if (!isForDefinition) { | 
|  | return fn; | 
|  | } | 
|  |  | 
|  | // TODO(cir): classic codegen checks here if this is a llvm::GlobalAlias. | 
|  | // How will we support this? | 
|  | } | 
|  |  | 
|  | auto *funcDecl = llvm::cast_or_null<FunctionDecl>(gd.getDecl()); | 
|  | bool invalidLoc = !funcDecl || | 
|  | funcDecl->getSourceRange().getBegin().isInvalid() || | 
|  | funcDecl->getSourceRange().getEnd().isInvalid(); | 
|  | cir::FuncOp funcOp = createCIRFunction( | 
|  | invalidLoc ? theModule->getLoc() : getLoc(funcDecl->getSourceRange()), | 
|  | mangledName, mlir::cast<cir::FuncType>(funcType), funcDecl); | 
|  |  | 
|  | // If we already created a function with the same mangled name (but different | 
|  | // type) before, take its name and add it to the list of functions to be | 
|  | // replaced with F at the end of CodeGen. | 
|  | // | 
|  | // This happens if there is a prototype for a function (e.g. "int f()") and | 
|  | // then a definition of a different type (e.g. "int f(int x)"). | 
|  | if (entry) { | 
|  |  | 
|  | // Fetch a generic symbol-defining operation and its uses. | 
|  | auto symbolOp = mlir::cast<mlir::SymbolOpInterface>(entry); | 
|  |  | 
|  | // This might be an implementation of a function without a prototype, in | 
|  | // which case, try to do special replacement of calls which match the new | 
|  | // prototype. The really key thing here is that we also potentially drop | 
|  | // arguments from the call site so as to make a direct call, which makes the | 
|  | // inliner happier and suppresses a number of optimizer warnings (!) about | 
|  | // dropping arguments. | 
|  | if (symbolOp.getSymbolUses(symbolOp->getParentOp())) | 
|  | replaceUsesOfNonProtoTypeWithRealFunction(entry, funcOp); | 
|  |  | 
|  | // Obliterate no-proto declaration. | 
|  | entry->erase(); | 
|  | } | 
|  |  | 
|  | if (d) | 
|  | setFunctionAttributes(gd, funcOp, /*isIncompleteFunction=*/false, isThunk); | 
|  |  | 
|  | // 'dontDefer' actually means don't move this to the deferredDeclsToEmit list. | 
|  | if (dontDefer) { | 
|  | // TODO(cir): This assertion will need an additional condition when we | 
|  | // support incomplete functions. | 
|  | assert(funcOp.getFunctionType() == funcType); | 
|  | return funcOp; | 
|  | } | 
|  |  | 
|  | // All MSVC dtors other than the base dtor are linkonce_odr and delegate to | 
|  | // each other bottoming out wiht the base dtor. Therefore we emit non-base | 
|  | // dtors on usage, even if there is no dtor definition in the TU. | 
|  | if (isa_and_nonnull<CXXDestructorDecl>(d) && | 
|  | getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(d), | 
|  | gd.getDtorType())) | 
|  | errorNYI(d->getSourceRange(), "getOrCreateCIRFunction: dtor"); | 
|  |  | 
|  | // This is the first use or definition of a mangled name. If there is a | 
|  | // deferred decl with this name, remember that we need to emit it at the end | 
|  | // of the file. | 
|  | auto ddi = deferredDecls.find(mangledName); | 
|  | if (ddi != deferredDecls.end()) { | 
|  | // Move the potentially referenced deferred decl to the | 
|  | // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we | 
|  | // don't need it anymore). | 
|  | addDeferredDeclToEmit(ddi->second); | 
|  | deferredDecls.erase(ddi); | 
|  |  | 
|  | // Otherwise, there are cases we have to worry about where we're using a | 
|  | // declaration for which we must emit a definition but where we might not | 
|  | // find a top-level definition. | 
|  | //   - member functions defined inline in their classes | 
|  | //   - friend functions defined inline in some class | 
|  | //   - special member functions with implicit definitions | 
|  | // If we ever change our AST traversal to walk into class methods, this | 
|  | // will be unnecessary. | 
|  | // | 
|  | // We also don't emit a definition for a function if it's going to be an | 
|  | // entry in a vtable, unless it's already marked as used. | 
|  | } else if (getLangOpts().CPlusPlus && d) { | 
|  | // Look for a declaration that's lexically in a record. | 
|  | for (const auto *fd = cast<FunctionDecl>(d)->getMostRecentDecl(); fd; | 
|  | fd = fd->getPreviousDecl()) { | 
|  | if (isa<CXXRecordDecl>(fd->getLexicalDeclContext())) { | 
|  | if (fd->doesThisDeclarationHaveABody()) { | 
|  | addDeferredDeclToEmit(gd.getWithDecl(fd)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return funcOp; | 
|  | } | 
|  |  | 
|  | cir::FuncOp | 
|  | CIRGenModule::createCIRFunction(mlir::Location loc, StringRef name, | 
|  | cir::FuncType funcType, | 
|  | const clang::FunctionDecl *funcDecl) { | 
|  | cir::FuncOp func; | 
|  | { | 
|  | mlir::OpBuilder::InsertionGuard guard(builder); | 
|  |  | 
|  | // Some global emissions are triggered while emitting a function, e.g. | 
|  | // void s() { x.method() } | 
|  | // | 
|  | // Be sure to insert a new function before a current one. | 
|  | CIRGenFunction *cgf = this->curCGF; | 
|  | if (cgf) | 
|  | builder.setInsertionPoint(cgf->curFn); | 
|  |  | 
|  | func = builder.create<cir::FuncOp>(loc, name, funcType); | 
|  |  | 
|  | assert(!cir::MissingFeatures::opFuncAstDeclAttr()); | 
|  |  | 
|  | if (funcDecl && !funcDecl->hasPrototype()) | 
|  | func.setNoProto(true); | 
|  |  | 
|  | assert(func.isDeclaration() && "expected empty body"); | 
|  |  | 
|  | // A declaration gets private visibility by default, but external linkage | 
|  | // as the default linkage. | 
|  | func.setLinkageAttr(cir::GlobalLinkageKindAttr::get( | 
|  | &getMLIRContext(), cir::GlobalLinkageKind::ExternalLinkage)); | 
|  | mlir::SymbolTable::setSymbolVisibility( | 
|  | func, mlir::SymbolTable::Visibility::Private); | 
|  |  | 
|  | assert(!cir::MissingFeatures::opFuncExtraAttrs()); | 
|  |  | 
|  | if (!cgf) | 
|  | theModule.push_back(func); | 
|  | } | 
|  | return func; | 
|  | } | 
|  |  | 
|  | mlir::SymbolTable::Visibility | 
|  | CIRGenModule::getMLIRVisibility(cir::GlobalOp op) { | 
|  | // MLIR doesn't accept public symbols declarations (only | 
|  | // definitions). | 
|  | if (op.isDeclaration()) | 
|  | return mlir::SymbolTable::Visibility::Private; | 
|  | return getMLIRVisibilityFromCIRLinkage(op.getLinkage()); | 
|  | } | 
|  |  | 
|  | mlir::SymbolTable::Visibility | 
|  | CIRGenModule::getMLIRVisibilityFromCIRLinkage(cir::GlobalLinkageKind glk) { | 
|  | switch (glk) { | 
|  | case cir::GlobalLinkageKind::InternalLinkage: | 
|  | case cir::GlobalLinkageKind::PrivateLinkage: | 
|  | return mlir::SymbolTable::Visibility::Private; | 
|  | case cir::GlobalLinkageKind::ExternalLinkage: | 
|  | case cir::GlobalLinkageKind::ExternalWeakLinkage: | 
|  | case cir::GlobalLinkageKind::LinkOnceODRLinkage: | 
|  | case cir::GlobalLinkageKind::AvailableExternallyLinkage: | 
|  | case cir::GlobalLinkageKind::CommonLinkage: | 
|  | case cir::GlobalLinkageKind::WeakAnyLinkage: | 
|  | case cir::GlobalLinkageKind::WeakODRLinkage: | 
|  | return mlir::SymbolTable::Visibility::Public; | 
|  | default: { | 
|  | llvm::errs() << "visibility not implemented for '" | 
|  | << stringifyGlobalLinkageKind(glk) << "'\n"; | 
|  | assert(0 && "not implemented"); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("linkage should be handled above!"); | 
|  | } | 
|  |  | 
|  | cir::VisibilityKind CIRGenModule::getGlobalVisibilityKindFromClangVisibility( | 
|  | clang::VisibilityAttr::VisibilityType visibility) { | 
|  | switch (visibility) { | 
|  | case clang::VisibilityAttr::VisibilityType::Default: | 
|  | return cir::VisibilityKind::Default; | 
|  | case clang::VisibilityAttr::VisibilityType::Hidden: | 
|  | return cir::VisibilityKind::Hidden; | 
|  | case clang::VisibilityAttr::VisibilityType::Protected: | 
|  | return cir::VisibilityKind::Protected; | 
|  | } | 
|  | llvm_unreachable("unexpected visibility value"); | 
|  | } | 
|  |  | 
|  | cir::VisibilityAttr | 
|  | CIRGenModule::getGlobalVisibilityAttrFromDecl(const Decl *decl) { | 
|  | const clang::VisibilityAttr *va = decl->getAttr<clang::VisibilityAttr>(); | 
|  | cir::VisibilityAttr cirVisibility = | 
|  | cir::VisibilityAttr::get(&getMLIRContext()); | 
|  | if (va) { | 
|  | cirVisibility = cir::VisibilityAttr::get( | 
|  | &getMLIRContext(), | 
|  | getGlobalVisibilityKindFromClangVisibility(va->getVisibility())); | 
|  | } | 
|  | return cirVisibility; | 
|  | } | 
|  |  | 
|  | void CIRGenModule::release() { | 
|  | emitDeferred(); | 
|  | applyReplacements(); | 
|  |  | 
|  | theModule->setAttr(cir::CIRDialect::getModuleLevelAsmAttrName(), | 
|  | builder.getArrayAttr(globalScopeAsm)); | 
|  |  | 
|  | // There's a lot of code that is not implemented yet. | 
|  | assert(!cir::MissingFeatures::cgmRelease()); | 
|  | } | 
|  |  | 
|  | void CIRGenModule::emitAliasForGlobal(StringRef mangledName, | 
|  | mlir::Operation *op, GlobalDecl aliasGD, | 
|  | cir::FuncOp aliasee, | 
|  | cir::GlobalLinkageKind linkage) { | 
|  |  | 
|  | auto *aliasFD = dyn_cast<FunctionDecl>(aliasGD.getDecl()); | 
|  | assert(aliasFD && "expected FunctionDecl"); | 
|  |  | 
|  | // The aliasee function type is different from the alias one, this difference | 
|  | // is specific to CIR because in LLVM the ptr types are already erased at this | 
|  | // point. | 
|  | const CIRGenFunctionInfo &fnInfo = | 
|  | getTypes().arrangeCXXStructorDeclaration(aliasGD); | 
|  | cir::FuncType fnType = getTypes().getFunctionType(fnInfo); | 
|  |  | 
|  | cir::FuncOp alias = | 
|  | createCIRFunction(getLoc(aliasGD.getDecl()->getSourceRange()), | 
|  | mangledName, fnType, aliasFD); | 
|  | alias.setAliasee(aliasee.getName()); | 
|  | alias.setLinkage(linkage); | 
|  | // Declarations cannot have public MLIR visibility, just mark them private | 
|  | // but this really should have no meaning since CIR should not be using | 
|  | // this information to derive linkage information. | 
|  | mlir::SymbolTable::setSymbolVisibility( | 
|  | alias, mlir::SymbolTable::Visibility::Private); | 
|  |  | 
|  | // Alias constructors and destructors are always unnamed_addr. | 
|  | assert(!cir::MissingFeatures::opGlobalUnnamedAddr()); | 
|  |  | 
|  | // Switch any previous uses to the alias. | 
|  | if (op) { | 
|  | errorNYI(aliasFD->getSourceRange(), "emitAliasForGlobal: previous uses"); | 
|  | } else { | 
|  | // Name already set by createCIRFunction | 
|  | } | 
|  |  | 
|  | // Finally, set up the alias with its proper name and attributes. | 
|  | setCommonAttributes(aliasGD, alias); | 
|  | } | 
|  |  | 
|  | mlir::Type CIRGenModule::convertType(QualType type) { | 
|  | return genTypes.convertType(type); | 
|  | } | 
|  |  | 
|  | bool CIRGenModule::verifyModule() const { | 
|  | // Verify the module after we have finished constructing it, this will | 
|  | // check the structural properties of the IR and invoke any specific | 
|  | // verifiers we have on the CIR operations. | 
|  | return mlir::verify(theModule).succeeded(); | 
|  | } | 
|  |  | 
|  | mlir::Attribute CIRGenModule::getAddrOfRTTIDescriptor(mlir::Location loc, | 
|  | QualType ty, bool forEh) { | 
|  | // Return a bogus pointer if RTTI is disabled, unless it's for EH. | 
|  | // FIXME: should we even be calling this method if RTTI is disabled | 
|  | // and it's not for EH? | 
|  | if (!shouldEmitRTTI(forEh)) | 
|  | return builder.getConstNullPtrAttr(builder.getUInt8PtrTy()); | 
|  |  | 
|  | errorNYI(loc, "getAddrOfRTTIDescriptor"); | 
|  | return mlir::Attribute(); | 
|  | } | 
|  |  | 
|  | // TODO(cir): this can be shared with LLVM codegen. | 
|  | CharUnits CIRGenModule::computeNonVirtualBaseClassOffset( | 
|  | const CXXRecordDecl *derivedClass, | 
|  | llvm::iterator_range<CastExpr::path_const_iterator> path) { | 
|  | CharUnits offset = CharUnits::Zero(); | 
|  |  | 
|  | const ASTContext &astContext = getASTContext(); | 
|  | const CXXRecordDecl *rd = derivedClass; | 
|  |  | 
|  | for (const CXXBaseSpecifier *base : path) { | 
|  | assert(!base->isVirtual() && "Should not see virtual bases here!"); | 
|  |  | 
|  | // Get the layout. | 
|  | const ASTRecordLayout &layout = astContext.getASTRecordLayout(rd); | 
|  |  | 
|  | const auto *baseDecl = base->getType()->castAsCXXRecordDecl(); | 
|  |  | 
|  | // Add the offset. | 
|  | offset += layout.getBaseClassOffset(baseDecl); | 
|  |  | 
|  | rd = baseDecl; | 
|  | } | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | DiagnosticBuilder CIRGenModule::errorNYI(SourceLocation loc, | 
|  | llvm::StringRef feature) { | 
|  | unsigned diagID = diags.getCustomDiagID( | 
|  | DiagnosticsEngine::Error, "ClangIR code gen Not Yet Implemented: %0"); | 
|  | return diags.Report(loc, diagID) << feature; | 
|  | } | 
|  |  | 
|  | DiagnosticBuilder CIRGenModule::errorNYI(SourceRange loc, | 
|  | llvm::StringRef feature) { | 
|  | return errorNYI(loc.getBegin(), feature) << loc; | 
|  | } |