|  | //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a flow-sensitive, path-insensitive analysis of | 
|  | // determining reachable blocks within a CFG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Analysis/Analyses/ReachableCode.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/DynamicRecursiveASTVisitor.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "clang/AST/ParentMap.h" | 
|  | #include "clang/AST/StmtCXX.h" | 
|  | #include "clang/Analysis/AnalysisDeclContext.h" | 
|  | #include "clang/Analysis/CFG.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include <optional> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Core Reachability Analysis routines. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool isEnumConstant(const Expr *Ex) { | 
|  | const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); | 
|  | if (!DR) | 
|  | return false; | 
|  | return isa<EnumConstantDecl>(DR->getDecl()); | 
|  | } | 
|  |  | 
|  | static bool isTrivialExpression(const Expr *Ex) { | 
|  | Ex = Ex->IgnoreParenCasts(); | 
|  | return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || | 
|  | isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || | 
|  | isa<CharacterLiteral>(Ex) || | 
|  | isEnumConstant(Ex); | 
|  | } | 
|  |  | 
|  | static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { | 
|  | // Check if the block ends with a do...while() and see if 'S' is the | 
|  | // condition. | 
|  | if (const Stmt *Term = B->getTerminatorStmt()) { | 
|  | if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { | 
|  | const Expr *Cond = DS->getCond()->IgnoreParenCasts(); | 
|  | return Cond == S && isTrivialExpression(Cond); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isBuiltinUnreachable(const Stmt *S) { | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) | 
|  | if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) | 
|  | return FDecl->getIdentifier() && | 
|  | FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S, | 
|  | ASTContext &C) { | 
|  | if (B->empty())  { | 
|  | // Happens if S is B's terminator and B contains nothing else | 
|  | // (e.g. a CFGBlock containing only a goto). | 
|  | return false; | 
|  | } | 
|  | if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) { | 
|  | if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) { | 
|  | return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { | 
|  | // Look to see if the current control flow ends with a 'return', and see if | 
|  | // 'S' is a substatement. The 'return' may not be the last element in the | 
|  | // block, or may be in a subsequent block because of destructors. | 
|  | const CFGBlock *Current = B; | 
|  | while (true) { | 
|  | for (const CFGElement &CE : llvm::reverse(*Current)) { | 
|  | if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { | 
|  | if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { | 
|  | if (RS == S) | 
|  | return true; | 
|  | if (const Expr *RE = RS->getRetValue()) { | 
|  | RE = RE->IgnoreParenCasts(); | 
|  | if (RE == S) | 
|  | return true; | 
|  | ParentMap PM(const_cast<Expr *>(RE)); | 
|  | // If 'S' is in the ParentMap, it is a subexpression of | 
|  | // the return statement. | 
|  | return PM.getParent(S); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Note also that we are restricting the search for the return statement | 
|  | // to stop at control-flow; only part of a return statement may be dead, | 
|  | // without the whole return statement being dead. | 
|  | if (Current->getTerminator().isTemporaryDtorsBranch()) { | 
|  | // Temporary destructors have a predictable control flow, thus we want to | 
|  | // look into the next block for the return statement. | 
|  | // We look into the false branch, as we know the true branch only contains | 
|  | // the call to the destructor. | 
|  | assert(Current->succ_size() == 2); | 
|  | Current = *(Current->succ_begin() + 1); | 
|  | } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) { | 
|  | // If there is only one successor, we're not dealing with outgoing control | 
|  | // flow. Thus, look into the next block. | 
|  | Current = *Current->succ_begin(); | 
|  | if (Current->pred_size() > 1) { | 
|  | // If there is more than one predecessor, we're dealing with incoming | 
|  | // control flow - if the return statement is in that block, it might | 
|  | // well be reachable via a different control flow, thus it's not dead. | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // We hit control flow or a dead end. Stop searching. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Broke out of infinite loop."); | 
|  | } | 
|  |  | 
|  | static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { | 
|  | assert(Loc.isMacroID()); | 
|  | SourceLocation Last; | 
|  | do { | 
|  | Last = Loc; | 
|  | Loc = SM.getImmediateMacroCallerLoc(Loc); | 
|  | } while (Loc.isMacroID()); | 
|  | return Last; | 
|  | } | 
|  |  | 
|  | /// Returns true if the statement is expanded from a configuration macro. | 
|  | static bool isExpandedFromConfigurationMacro(const Stmt *S, | 
|  | Preprocessor &PP, | 
|  | bool IgnoreYES_NO = false) { | 
|  | // FIXME: This is not very precise.  Here we just check to see if the | 
|  | // value comes from a macro, but we can do much better.  This is likely | 
|  | // to be over conservative.  This logic is factored into a separate function | 
|  | // so that we can refine it later. | 
|  | SourceLocation L = S->getBeginLoc(); | 
|  | if (L.isMacroID()) { | 
|  | SourceManager &SM = PP.getSourceManager(); | 
|  | if (IgnoreYES_NO) { | 
|  | // The Objective-C constant 'YES' and 'NO' | 
|  | // are defined as macros.  Do not treat them | 
|  | // as configuration values. | 
|  | SourceLocation TopL = getTopMostMacro(L, SM); | 
|  | StringRef MacroName = PP.getImmediateMacroName(TopL); | 
|  | if (MacroName == "YES" || MacroName == "NO") | 
|  | return false; | 
|  | } else if (!PP.getLangOpts().CPlusPlus) { | 
|  | // Do not treat C 'false' and 'true' macros as configuration values. | 
|  | SourceLocation TopL = getTopMostMacro(L, SM); | 
|  | StringRef MacroName = PP.getImmediateMacroName(TopL); | 
|  | if (MacroName == "false" || MacroName == "true") | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); | 
|  |  | 
|  | /// Returns true if the statement represents a configuration value. | 
|  | /// | 
|  | /// A configuration value is something usually determined at compile-time | 
|  | /// to conditionally always execute some branch.  Such guards are for | 
|  | /// "sometimes unreachable" code.  Such code is usually not interesting | 
|  | /// to report as unreachable, and may mask truly unreachable code within | 
|  | /// those blocks. | 
|  | static bool isConfigurationValue(const Stmt *S, | 
|  | Preprocessor &PP, | 
|  | SourceRange *SilenceableCondVal = nullptr, | 
|  | bool IncludeIntegers = true, | 
|  | bool WrappedInParens = false) { | 
|  | if (!S) | 
|  | return false; | 
|  |  | 
|  | if (const auto *Ex = dyn_cast<Expr>(S)) | 
|  | S = Ex->IgnoreImplicit(); | 
|  |  | 
|  | if (const auto *Ex = dyn_cast<Expr>(S)) | 
|  | S = Ex->IgnoreCasts(); | 
|  |  | 
|  | // Special case looking for the sigil '()' around an integer literal. | 
|  | if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) | 
|  | if (!PE->getBeginLoc().isMacroID()) | 
|  | return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, | 
|  | IncludeIntegers, true); | 
|  |  | 
|  | if (const Expr *Ex = dyn_cast<Expr>(S)) | 
|  | S = Ex->IgnoreCasts(); | 
|  |  | 
|  | bool IgnoreYES_NO = false; | 
|  |  | 
|  | switch (S->getStmtClass()) { | 
|  | case Stmt::CallExprClass: { | 
|  | const FunctionDecl *Callee = | 
|  | dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); | 
|  | return Callee ? Callee->isConstexpr() : false; | 
|  | } | 
|  | case Stmt::DeclRefExprClass: | 
|  | return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); | 
|  | case Stmt::ObjCBoolLiteralExprClass: | 
|  | IgnoreYES_NO = true; | 
|  | [[fallthrough]]; | 
|  | case Stmt::CXXBoolLiteralExprClass: | 
|  | case Stmt::IntegerLiteralClass: { | 
|  | const Expr *E = cast<Expr>(S); | 
|  | if (IncludeIntegers) { | 
|  | if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) | 
|  | *SilenceableCondVal = E->getSourceRange(); | 
|  | return WrappedInParens || | 
|  | isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case Stmt::MemberExprClass: | 
|  | return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); | 
|  | case Stmt::UnaryExprOrTypeTraitExprClass: | 
|  | return true; | 
|  | case Stmt::BinaryOperatorClass: { | 
|  | const BinaryOperator *B = cast<BinaryOperator>(S); | 
|  | // Only include raw integers (not enums) as configuration | 
|  | // values if they are used in a logical or comparison operator | 
|  | // (not arithmetic). | 
|  | IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); | 
|  | return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, | 
|  | IncludeIntegers) || | 
|  | isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, | 
|  | IncludeIntegers); | 
|  | } | 
|  | case Stmt::UnaryOperatorClass: { | 
|  | const UnaryOperator *UO = cast<UnaryOperator>(S); | 
|  | if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus) | 
|  | return false; | 
|  | bool SilenceableCondValNotSet = | 
|  | SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); | 
|  | bool IsSubExprConfigValue = | 
|  | isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, | 
|  | IncludeIntegers, WrappedInParens); | 
|  | // Update the silenceable condition value source range only if the range | 
|  | // was set directly by the child expression. | 
|  | if (SilenceableCondValNotSet && | 
|  | SilenceableCondVal->getBegin().isValid() && | 
|  | *SilenceableCondVal == | 
|  | UO->getSubExpr()->IgnoreCasts()->getSourceRange()) | 
|  | *SilenceableCondVal = UO->getSourceRange(); | 
|  | return IsSubExprConfigValue; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { | 
|  | if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) | 
|  | return isConfigurationValue(ED->getInitExpr(), PP); | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | // As a heuristic, treat globals as configuration values.  Note | 
|  | // that we only will get here if Sema evaluated this | 
|  | // condition to a constant expression, which means the global | 
|  | // had to be declared in a way to be a truly constant value. | 
|  | // We could generalize this to local variables, but it isn't | 
|  | // clear if those truly represent configuration values that | 
|  | // gate unreachable code. | 
|  | if (!VD->hasLocalStorage()) | 
|  | return true; | 
|  |  | 
|  | // As a heuristic, locals that have been marked 'const' explicitly | 
|  | // can be treated as configuration values as well. | 
|  | return VD->getType().isLocalConstQualified(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if we should always explore all successors of a block. | 
|  | static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, | 
|  | Preprocessor &PP) { | 
|  | if (const Stmt *Term = B->getTerminatorStmt()) { | 
|  | if (isa<SwitchStmt>(Term)) | 
|  | return true; | 
|  | // Specially handle '||' and '&&'. | 
|  | if (isa<BinaryOperator>(Term)) { | 
|  | return isConfigurationValue(Term, PP); | 
|  | } | 
|  | // Do not treat constexpr if statement successors as unreachable in warnings | 
|  | // since the point of these statements is to determine branches at compile | 
|  | // time. | 
|  | if (const auto *IS = dyn_cast<IfStmt>(Term); | 
|  | IS != nullptr && IS->isConstexpr()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); | 
|  | return isConfigurationValue(Cond, PP); | 
|  | } | 
|  |  | 
|  | static unsigned scanFromBlock(const CFGBlock *Start, | 
|  | llvm::BitVector &Reachable, | 
|  | Preprocessor *PP, | 
|  | bool IncludeSometimesUnreachableEdges) { | 
|  | unsigned count = 0; | 
|  |  | 
|  | // Prep work queue | 
|  | SmallVector<const CFGBlock*, 32> WL; | 
|  |  | 
|  | // The entry block may have already been marked reachable | 
|  | // by the caller. | 
|  | if (!Reachable[Start->getBlockID()]) { | 
|  | ++count; | 
|  | Reachable[Start->getBlockID()] = true; | 
|  | } | 
|  |  | 
|  | WL.push_back(Start); | 
|  |  | 
|  | // Find the reachable blocks from 'Start'. | 
|  | while (!WL.empty()) { | 
|  | const CFGBlock *item = WL.pop_back_val(); | 
|  |  | 
|  | // There are cases where we want to treat all successors as reachable. | 
|  | // The idea is that some "sometimes unreachable" code is not interesting, | 
|  | // and that we should forge ahead and explore those branches anyway. | 
|  | // This allows us to potentially uncover some "always unreachable" code | 
|  | // within the "sometimes unreachable" code. | 
|  | // Look at the successors and mark then reachable. | 
|  | std::optional<bool> TreatAllSuccessorsAsReachable; | 
|  | if (!IncludeSometimesUnreachableEdges) | 
|  | TreatAllSuccessorsAsReachable = false; | 
|  |  | 
|  | for (CFGBlock::const_succ_iterator I = item->succ_begin(), | 
|  | E = item->succ_end(); I != E; ++I) { | 
|  | const CFGBlock *B = *I; | 
|  | if (!B) do { | 
|  | const CFGBlock *UB = I->getPossiblyUnreachableBlock(); | 
|  | if (!UB) | 
|  | break; | 
|  |  | 
|  | if (!TreatAllSuccessorsAsReachable) { | 
|  | assert(PP); | 
|  | TreatAllSuccessorsAsReachable = | 
|  | shouldTreatSuccessorsAsReachable(item, *PP); | 
|  | } | 
|  |  | 
|  | if (*TreatAllSuccessorsAsReachable) { | 
|  | B = UB; | 
|  | break; | 
|  | } | 
|  | } | 
|  | while (false); | 
|  |  | 
|  | if (B) { | 
|  | unsigned blockID = B->getBlockID(); | 
|  | if (!Reachable[blockID]) { | 
|  | Reachable.set(blockID); | 
|  | WL.push_back(B); | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, | 
|  | Preprocessor &PP, | 
|  | llvm::BitVector &Reachable) { | 
|  | return scanFromBlock(Start, Reachable, &PP, true); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Dead Code Scanner. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | class DeadCodeScan { | 
|  | llvm::BitVector Visited; | 
|  | llvm::BitVector &Reachable; | 
|  | SmallVector<const CFGBlock *, 10> WorkList; | 
|  | Preprocessor &PP; | 
|  | ASTContext &C; | 
|  |  | 
|  | typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> | 
|  | DeferredLocsTy; | 
|  |  | 
|  | DeferredLocsTy DeferredLocs; | 
|  |  | 
|  | public: | 
|  | DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C) | 
|  | : Visited(reachable.size()), | 
|  | Reachable(reachable), | 
|  | PP(PP), C(C) {} | 
|  |  | 
|  | void enqueue(const CFGBlock *block); | 
|  | unsigned scanBackwards(const CFGBlock *Start, | 
|  | clang::reachable_code::Callback &CB); | 
|  |  | 
|  | bool isDeadCodeRoot(const CFGBlock *Block); | 
|  |  | 
|  | const Stmt *findDeadCode(const CFGBlock *Block); | 
|  |  | 
|  | void reportDeadCode(const CFGBlock *B, | 
|  | const Stmt *S, | 
|  | clang::reachable_code::Callback &CB); | 
|  | }; | 
|  | } | 
|  |  | 
|  | void DeadCodeScan::enqueue(const CFGBlock *block) { | 
|  | unsigned blockID = block->getBlockID(); | 
|  | if (Reachable[blockID] || Visited[blockID]) | 
|  | return; | 
|  | Visited[blockID] = true; | 
|  | WorkList.push_back(block); | 
|  | } | 
|  |  | 
|  | bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { | 
|  | bool isDeadRoot = true; | 
|  |  | 
|  | for (CFGBlock::const_pred_iterator I = Block->pred_begin(), | 
|  | E = Block->pred_end(); I != E; ++I) { | 
|  | if (const CFGBlock *PredBlock = *I) { | 
|  | unsigned blockID = PredBlock->getBlockID(); | 
|  | if (Visited[blockID]) { | 
|  | isDeadRoot = false; | 
|  | continue; | 
|  | } | 
|  | if (!Reachable[blockID]) { | 
|  | isDeadRoot = false; | 
|  | Visited[blockID] = true; | 
|  | WorkList.push_back(PredBlock); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return isDeadRoot; | 
|  | } | 
|  |  | 
|  | // Check if the given `DeadStmt` is a coroutine statement and is a substmt of | 
|  | // the coroutine statement. `Block` is the CFGBlock containing the `DeadStmt`. | 
|  | static bool isInCoroutineStmt(const Stmt *DeadStmt, const CFGBlock *Block) { | 
|  | // The coroutine statement, co_return, co_await, or co_yield. | 
|  | const Stmt *CoroStmt = nullptr; | 
|  | // Find the first coroutine statement after the DeadStmt in the block. | 
|  | bool AfterDeadStmt = false; | 
|  | for (const CFGElement &Elem : *Block) | 
|  | if (std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>()) { | 
|  | const Stmt *S = CS->getStmt(); | 
|  | if (S == DeadStmt) | 
|  | AfterDeadStmt = true; | 
|  | if (AfterDeadStmt && | 
|  | // For simplicity, we only check simple coroutine statements. | 
|  | (llvm::isa<CoreturnStmt>(S) || llvm::isa<CoroutineSuspendExpr>(S))) { | 
|  | CoroStmt = S; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!CoroStmt) | 
|  | return false; | 
|  | struct Checker : DynamicRecursiveASTVisitor { | 
|  | const Stmt *DeadStmt; | 
|  | bool CoroutineSubStmt = false; | 
|  | Checker(const Stmt *S) : DeadStmt(S) { | 
|  | // Statements captured in the CFG can be implicit. | 
|  | ShouldVisitImplicitCode = true; | 
|  | } | 
|  |  | 
|  | bool VisitStmt(Stmt *S) override { | 
|  | if (S == DeadStmt) | 
|  | CoroutineSubStmt = true; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | Checker checker(DeadStmt); | 
|  | checker.TraverseStmt(const_cast<Stmt *>(CoroStmt)); | 
|  | return checker.CoroutineSubStmt; | 
|  | } | 
|  |  | 
|  | static bool isValidDeadStmt(const Stmt *S, const clang::CFGBlock *Block) { | 
|  | if (S->getBeginLoc().isInvalid()) | 
|  | return false; | 
|  | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) | 
|  | return BO->getOpcode() != BO_Comma; | 
|  | // Coroutine statements are never considered dead statements, because removing | 
|  | // them may change the function semantic if it is the only coroutine statement | 
|  | // of the coroutine. | 
|  | return !isInCoroutineStmt(S, Block); | 
|  | } | 
|  |  | 
|  | const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { | 
|  | for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) | 
|  | if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) { | 
|  | const Stmt *S = CS->getStmt(); | 
|  | if (isValidDeadStmt(S, Block)) | 
|  | return S; | 
|  | } | 
|  |  | 
|  | CFGTerminator T = Block->getTerminator(); | 
|  | if (T.isStmtBranch()) { | 
|  | const Stmt *S = T.getStmt(); | 
|  | if (S && isValidDeadStmt(S, Block)) | 
|  | return S; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, | 
|  | const std::pair<const CFGBlock *, const Stmt *> *p2) { | 
|  | if (p1->second->getBeginLoc() < p2->second->getBeginLoc()) | 
|  | return -1; | 
|  | if (p2->second->getBeginLoc() < p1->second->getBeginLoc()) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, | 
|  | clang::reachable_code::Callback &CB) { | 
|  |  | 
|  | unsigned count = 0; | 
|  | enqueue(Start); | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | const CFGBlock *Block = WorkList.pop_back_val(); | 
|  |  | 
|  | // It is possible that this block has been marked reachable after | 
|  | // it was enqueued. | 
|  | if (Reachable[Block->getBlockID()]) | 
|  | continue; | 
|  |  | 
|  | // Look for any dead code within the block. | 
|  | const Stmt *S = findDeadCode(Block); | 
|  |  | 
|  | if (!S) { | 
|  | // No dead code.  Possibly an empty block.  Look at dead predecessors. | 
|  | for (CFGBlock::const_pred_iterator I = Block->pred_begin(), | 
|  | E = Block->pred_end(); I != E; ++I) { | 
|  | if (const CFGBlock *predBlock = *I) | 
|  | enqueue(predBlock); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Specially handle macro-expanded code. | 
|  | if (S->getBeginLoc().isMacroID()) { | 
|  | count += scanMaybeReachableFromBlock(Block, PP, Reachable); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isDeadCodeRoot(Block)) { | 
|  | reportDeadCode(Block, S, CB); | 
|  | count += scanMaybeReachableFromBlock(Block, PP, Reachable); | 
|  | } | 
|  | else { | 
|  | // Record this statement as the possibly best location in a | 
|  | // strongly-connected component of dead code for emitting a | 
|  | // warning. | 
|  | DeferredLocs.push_back(std::make_pair(Block, S)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we didn't find a dead root, then report the dead code with the | 
|  | // earliest location. | 
|  | if (!DeferredLocs.empty()) { | 
|  | llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); | 
|  | for (const auto &I : DeferredLocs) { | 
|  | const CFGBlock *Block = I.first; | 
|  | if (Reachable[Block->getBlockID()]) | 
|  | continue; | 
|  | reportDeadCode(Block, I.second, CB); | 
|  | count += scanMaybeReachableFromBlock(Block, PP, Reachable); | 
|  | } | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static SourceLocation GetUnreachableLoc(const Stmt *S, | 
|  | SourceRange &R1, | 
|  | SourceRange &R2) { | 
|  | R1 = R2 = SourceRange(); | 
|  |  | 
|  | if (const Expr *Ex = dyn_cast<Expr>(S)) | 
|  | S = Ex->IgnoreParenImpCasts(); | 
|  |  | 
|  | switch (S->getStmtClass()) { | 
|  | case Expr::BinaryOperatorClass: { | 
|  | const BinaryOperator *BO = cast<BinaryOperator>(S); | 
|  | return BO->getOperatorLoc(); | 
|  | } | 
|  | case Expr::UnaryOperatorClass: { | 
|  | const UnaryOperator *UO = cast<UnaryOperator>(S); | 
|  | R1 = UO->getSubExpr()->getSourceRange(); | 
|  | return UO->getOperatorLoc(); | 
|  | } | 
|  | case Expr::CompoundAssignOperatorClass: { | 
|  | const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); | 
|  | R1 = CAO->getLHS()->getSourceRange(); | 
|  | R2 = CAO->getRHS()->getSourceRange(); | 
|  | return CAO->getOperatorLoc(); | 
|  | } | 
|  | case Expr::BinaryConditionalOperatorClass: | 
|  | case Expr::ConditionalOperatorClass: { | 
|  | const AbstractConditionalOperator *CO = | 
|  | cast<AbstractConditionalOperator>(S); | 
|  | return CO->getQuestionLoc(); | 
|  | } | 
|  | case Expr::MemberExprClass: { | 
|  | const MemberExpr *ME = cast<MemberExpr>(S); | 
|  | R1 = ME->getSourceRange(); | 
|  | return ME->getMemberLoc(); | 
|  | } | 
|  | case Expr::ArraySubscriptExprClass: { | 
|  | const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); | 
|  | R1 = ASE->getLHS()->getSourceRange(); | 
|  | R2 = ASE->getRHS()->getSourceRange(); | 
|  | return ASE->getRBracketLoc(); | 
|  | } | 
|  | case Expr::CStyleCastExprClass: { | 
|  | const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); | 
|  | R1 = CSC->getSubExpr()->getSourceRange(); | 
|  | return CSC->getLParenLoc(); | 
|  | } | 
|  | case Expr::CXXFunctionalCastExprClass: { | 
|  | const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); | 
|  | R1 = CE->getSubExpr()->getSourceRange(); | 
|  | return CE->getBeginLoc(); | 
|  | } | 
|  | case Stmt::CXXTryStmtClass: { | 
|  | return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); | 
|  | } | 
|  | case Expr::ObjCBridgedCastExprClass: { | 
|  | const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); | 
|  | R1 = CSC->getSubExpr()->getSourceRange(); | 
|  | return CSC->getLParenLoc(); | 
|  | } | 
|  | default: ; | 
|  | } | 
|  | R1 = S->getSourceRange(); | 
|  | return S->getBeginLoc(); | 
|  | } | 
|  |  | 
|  | void DeadCodeScan::reportDeadCode(const CFGBlock *B, | 
|  | const Stmt *S, | 
|  | clang::reachable_code::Callback &CB) { | 
|  | // Classify the unreachable code found, or suppress it in some cases. | 
|  | reachable_code::UnreachableKind UK = reachable_code::UK_Other; | 
|  |  | 
|  | if (isa<BreakStmt>(S)) { | 
|  | UK = reachable_code::UK_Break; | 
|  | } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) || | 
|  | isBuiltinAssumeFalse(B, S, C)) { | 
|  | return; | 
|  | } | 
|  | else if (isDeadReturn(B, S)) { | 
|  | UK = reachable_code::UK_Return; | 
|  | } | 
|  |  | 
|  | const auto *AS = dyn_cast<AttributedStmt>(S); | 
|  | bool HasFallThroughAttr = | 
|  | AS && hasSpecificAttr<FallThroughAttr>(AS->getAttrs()); | 
|  |  | 
|  | SourceRange SilenceableCondVal; | 
|  |  | 
|  | if (UK == reachable_code::UK_Other) { | 
|  | // Check if the dead code is part of the "loop target" of | 
|  | // a for/for-range loop.  This is the block that contains | 
|  | // the increment code. | 
|  | if (const Stmt *LoopTarget = B->getLoopTarget()) { | 
|  | SourceLocation Loc = LoopTarget->getBeginLoc(); | 
|  | SourceRange R1(Loc, Loc), R2; | 
|  |  | 
|  | if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { | 
|  | const Expr *Inc = FS->getInc(); | 
|  | Loc = Inc->getBeginLoc(); | 
|  | R2 = Inc->getSourceRange(); | 
|  | } | 
|  |  | 
|  | CB.HandleUnreachable(reachable_code::UK_Loop_Increment, Loc, | 
|  | SourceRange(), SourceRange(Loc, Loc), R2, | 
|  | HasFallThroughAttr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check if the dead block has a predecessor whose branch has | 
|  | // a configuration value that *could* be modified to | 
|  | // silence the warning. | 
|  | CFGBlock::const_pred_iterator PI = B->pred_begin(); | 
|  | if (PI != B->pred_end()) { | 
|  | if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { | 
|  | const Stmt *TermCond = | 
|  | PredBlock->getTerminatorCondition(/* strip parens */ false); | 
|  | isConfigurationValue(TermCond, PP, &SilenceableCondVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SourceRange R1, R2; | 
|  | SourceLocation Loc = GetUnreachableLoc(S, R1, R2); | 
|  | CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2, HasFallThroughAttr); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Reachability APIs. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace clang { namespace reachable_code { | 
|  |  | 
|  | void Callback::anchor() { } | 
|  |  | 
|  | unsigned ScanReachableFromBlock(const CFGBlock *Start, | 
|  | llvm::BitVector &Reachable) { | 
|  | return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); | 
|  | } | 
|  |  | 
|  | void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, | 
|  | Callback &CB) { | 
|  |  | 
|  | CFG *cfg = AC.getCFG(); | 
|  | if (!cfg) | 
|  | return; | 
|  |  | 
|  | // Scan for reachable blocks from the entrance of the CFG. | 
|  | // If there are no unreachable blocks, we're done. | 
|  | llvm::BitVector reachable(cfg->getNumBlockIDs()); | 
|  | unsigned numReachable = | 
|  | scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); | 
|  | if (numReachable == cfg->getNumBlockIDs()) | 
|  | return; | 
|  |  | 
|  | // If there aren't explicit EH edges, we should include the 'try' dispatch | 
|  | // blocks as roots. | 
|  | if (!AC.getCFGBuildOptions().AddEHEdges) { | 
|  | for (const CFGBlock *B : cfg->try_blocks()) | 
|  | numReachable += scanMaybeReachableFromBlock(B, PP, reachable); | 
|  | if (numReachable == cfg->getNumBlockIDs()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // There are some unreachable blocks.  We need to find the root blocks that | 
|  | // contain code that should be considered unreachable. | 
|  | for (const CFGBlock *block : *cfg) { | 
|  | // A block may have been marked reachable during this loop. | 
|  | if (reachable[block->getBlockID()]) | 
|  | continue; | 
|  |  | 
|  | DeadCodeScan DS(reachable, PP, AC.getASTContext()); | 
|  | numReachable += DS.scanBackwards(block, CB); | 
|  |  | 
|  | if (numReachable == cfg->getNumBlockIDs()) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | }} // end namespace clang::reachable_code |