| //===- bolt/unittest/Core/BinaryContext.cpp -------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "bolt/Core/BinaryContext.h" |
| #include "bolt/Utils/CommandLineOpts.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include "gtest/gtest.h" |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::ELF; |
| using namespace bolt; |
| |
| namespace { |
| struct BinaryContextTester : public testing::TestWithParam<Triple::ArchType> { |
| void SetUp() override { |
| initalizeLLVM(); |
| prepareElf(); |
| initializeBOLT(); |
| } |
| |
| protected: |
| void initalizeLLVM() { |
| #define BOLT_TARGET(target) \ |
| LLVMInitialize##target##TargetInfo(); \ |
| LLVMInitialize##target##TargetMC(); \ |
| LLVMInitialize##target##AsmParser(); \ |
| LLVMInitialize##target##Disassembler(); \ |
| LLVMInitialize##target##Target(); \ |
| LLVMInitialize##target##AsmPrinter(); |
| |
| #include "bolt/Core/TargetConfig.def" |
| } |
| |
| void prepareElf() { |
| memcpy(ElfBuf, "\177ELF", 4); |
| ELF64LE::Ehdr *EHdr = reinterpret_cast<typename ELF64LE::Ehdr *>(ElfBuf); |
| EHdr->e_ident[llvm::ELF::EI_CLASS] = llvm::ELF::ELFCLASS64; |
| EHdr->e_ident[llvm::ELF::EI_DATA] = llvm::ELF::ELFDATA2LSB; |
| EHdr->e_machine = GetParam() == Triple::aarch64 ? EM_AARCH64 : EM_X86_64; |
| MemoryBufferRef Source(StringRef(ElfBuf, sizeof(ElfBuf)), "ELF"); |
| ObjFile = cantFail(ObjectFile::createObjectFile(Source)); |
| } |
| |
| void initializeBOLT() { |
| Relocation::Arch = ObjFile->makeTriple().getArch(); |
| BC = cantFail(BinaryContext::createBinaryContext( |
| ObjFile->makeTriple(), std::make_shared<orc::SymbolStringPool>(), |
| ObjFile->getFileName(), nullptr, true, |
| DWARFContext::create(*ObjFile.get()), {llvm::outs(), llvm::errs()})); |
| ASSERT_FALSE(!BC); |
| } |
| |
| char ElfBuf[sizeof(typename ELF64LE::Ehdr)] = {}; |
| std::unique_ptr<ObjectFile> ObjFile; |
| std::unique_ptr<BinaryContext> BC; |
| }; |
| } // namespace |
| |
| #ifdef X86_AVAILABLE |
| |
| INSTANTIATE_TEST_SUITE_P(X86, BinaryContextTester, |
| ::testing::Values(Triple::x86_64)); |
| |
| #endif |
| |
| #ifdef AARCH64_AVAILABLE |
| |
| INSTANTIATE_TEST_SUITE_P(AArch64, BinaryContextTester, |
| ::testing::Values(Triple::aarch64)); |
| |
| TEST_P(BinaryContextTester, FlushPendingRelocCALL26) { |
| if (GetParam() != Triple::aarch64) |
| GTEST_SKIP(); |
| |
| // This test checks that encodeValueAArch64 used by flushPendingRelocations |
| // returns correctly encoded values for CALL26 relocation for both backward |
| // and forward branches. |
| // |
| // The offsets layout is: |
| // 4: func1 |
| // 8: bl func1 |
| // 12: bl func2 |
| // 16: func2 |
| |
| constexpr size_t DataSize = 20; |
| uint8_t *Data = new uint8_t[DataSize]; |
| BinarySection &BS = BC->registerOrUpdateSection( |
| ".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC, Data, |
| DataSize, 4); |
| MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1"); |
| ASSERT_TRUE(RelSymbol1); |
| BS.addPendingRelocation( |
| Relocation{8, RelSymbol1, ELF::R_AARCH64_CALL26, 0, 0}); |
| MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2"); |
| ASSERT_TRUE(RelSymbol2); |
| BS.addPendingRelocation( |
| Relocation{12, RelSymbol2, ELF::R_AARCH64_CALL26, 0, 0}); |
| |
| SmallVector<char> Vect(DataSize); |
| raw_svector_ostream OS(Vect); |
| |
| BS.flushPendingRelocations(OS, [&](const MCSymbol *S) { |
| return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0; |
| }); |
| |
| const uint8_t Func1Call[4] = {255, 255, 255, 151}; |
| const uint8_t Func2Call[4] = {1, 0, 0, 148}; |
| |
| EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) << "Wrong backward call value\n"; |
| EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) << "Wrong forward call value\n"; |
| } |
| |
| TEST_P(BinaryContextTester, FlushPendingRelocJUMP26) { |
| if (GetParam() != Triple::aarch64) |
| GTEST_SKIP(); |
| |
| // This test checks that encodeValueAArch64 used by flushPendingRelocations |
| // returns correctly encoded values for R_AARCH64_JUMP26 relocation for both |
| // backward and forward branches. |
| // |
| // The offsets layout is: |
| // 4: func1 |
| // 8: b func1 |
| // 12: b func2 |
| // 16: func2 |
| |
| const uint64_t Size = 20; |
| char *Data = new char[Size]; |
| BinarySection &BS = BC->registerOrUpdateSection( |
| ".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC, |
| (uint8_t *)Data, Size, 4); |
| MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1"); |
| ASSERT_TRUE(RelSymbol1); |
| BS.addPendingRelocation( |
| Relocation{8, RelSymbol1, ELF::R_AARCH64_JUMP26, 0, 0}); |
| MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2"); |
| ASSERT_TRUE(RelSymbol2); |
| BS.addPendingRelocation( |
| Relocation{12, RelSymbol2, ELF::R_AARCH64_JUMP26, 0, 0}); |
| |
| SmallVector<char> Vect(Size); |
| raw_svector_ostream OS(Vect); |
| |
| BS.flushPendingRelocations(OS, [&](const MCSymbol *S) { |
| return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0; |
| }); |
| |
| const uint8_t Func1Call[4] = {255, 255, 255, 23}; |
| const uint8_t Func2Call[4] = {1, 0, 0, 20}; |
| |
| EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) |
| << "Wrong backward branch value\n"; |
| EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) |
| << "Wrong forward branch value\n"; |
| } |
| |
| TEST_P(BinaryContextTester, |
| FlushOptionalOutOfRangePendingRelocCALL26_ForcePatchOff) { |
| if (GetParam() != Triple::aarch64) |
| GTEST_SKIP(); |
| |
| // Tests that flushPendingRelocations exits if any pending relocation is out |
| // of range and PatchEntries hasn't run. Pending relocations are added by |
| // scanExternalRefs, so this ensures that either all scanExternalRefs |
| // relocations were flushed or PatchEntries ran. |
| |
| BinarySection &BS = BC->registerOrUpdateSection( |
| ".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); |
| // Create symbol 'Func0x4' |
| MCSymbol *RelSymbol = BC->getOrCreateGlobalSymbol(4, "Func"); |
| ASSERT_TRUE(RelSymbol); |
| Relocation Reloc{8, RelSymbol, ELF::R_AARCH64_CALL26, 0, 0}; |
| Reloc.setOptional(); |
| BS.addPendingRelocation(Reloc); |
| |
| SmallVector<char> Vect; |
| raw_svector_ostream OS(Vect); |
| |
| // Resolve relocation symbol to a high value so encoding will be out of range. |
| EXPECT_EXIT(BS.flushPendingRelocations( |
| OS, [&](const MCSymbol *S) { return 0x800000F; }), |
| ::testing::ExitedWithCode(1), |
| "BOLT-ERROR: cannot encode relocation for symbol Func0x4 as it is" |
| " out-of-range. To proceed must use -force-patch"); |
| } |
| |
| TEST_P(BinaryContextTester, |
| FlushOptionalOutOfRangePendingRelocCALL26_ForcePatchOn) { |
| if (GetParam() != Triple::aarch64) |
| GTEST_SKIP(); |
| |
| // Tests that flushPendingRelocations can skip flushing any optional pending |
| // relocations that cannot be encoded, given that PatchEntries runs. |
| opts::ForcePatch = true; |
| |
| opts::Verbosity = 1; |
| testing::internal::CaptureStdout(); |
| |
| BinarySection &BS = BC->registerOrUpdateSection( |
| ".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); |
| MCSymbol *RelSymbol = BC->getOrCreateGlobalSymbol(4, "Func"); |
| ASSERT_TRUE(RelSymbol); |
| Relocation Reloc{8, RelSymbol, ELF::R_AARCH64_CALL26, 0, 0}; |
| Reloc.setOptional(); |
| BS.addPendingRelocation(Reloc); |
| |
| SmallVector<char> Vect; |
| raw_svector_ostream OS(Vect); |
| |
| // Resolve relocation symbol to a high value so encoding will be out of range. |
| BS.flushPendingRelocations(OS, [&](const MCSymbol *S) { return 0x800000F; }); |
| outs().flush(); |
| std::string CapturedStdOut = testing::internal::GetCapturedStdout(); |
| EXPECT_EQ(CapturedStdOut, |
| "BOLT-INFO: skipped 1 out-of-range optional relocations\n"); |
| } |
| |
| #endif |
| |
| TEST_P(BinaryContextTester, BaseAddress) { |
| // Check that base address calculation is correct for a binary with the |
| // following segment layout: |
| BC->SegmentMapInfo[0] = |
| SegmentInfo{0, 0x10e8c2b4, 0, 0x10e8c2b4, 0x1000, true}; |
| BC->SegmentMapInfo[0x10e8d2b4] = |
| SegmentInfo{0x10e8d2b4, 0x3952faec, 0x10e8c2b4, 0x3952faec, 0x1000, true}; |
| BC->SegmentMapInfo[0x4a3bddc0] = |
| SegmentInfo{0x4a3bddc0, 0x148e828, 0x4a3bbdc0, 0x148e828, 0x1000, true}; |
| BC->SegmentMapInfo[0x4b84d5e8] = |
| SegmentInfo{0x4b84d5e8, 0x294f830, 0x4b84a5e8, 0x3d3820, 0x1000, true}; |
| |
| std::optional<uint64_t> BaseAddress = |
| BC->getBaseAddressForMapping(0x7f13f5556000, 0x10e8c000); |
| ASSERT_TRUE(BaseAddress.has_value()); |
| ASSERT_EQ(*BaseAddress, 0x7f13e46c9000ULL); |
| |
| BaseAddress = BC->getBaseAddressForMapping(0x7f13f5556000, 0x137a000); |
| ASSERT_FALSE(BaseAddress.has_value()); |
| } |
| |
| TEST_P(BinaryContextTester, BaseAddress2) { |
| // Check that base address calculation is correct for a binary if the |
| // alignment in ELF file are different from pagesize. |
| // The segment layout is as follows: |
| BC->SegmentMapInfo[0] = SegmentInfo{0, 0x2177c, 0, 0x2177c, 0x10000, true}; |
| BC->SegmentMapInfo[0x31860] = |
| SegmentInfo{0x31860, 0x370, 0x21860, 0x370, 0x10000, true}; |
| BC->SegmentMapInfo[0x41c20] = |
| SegmentInfo{0x41c20, 0x1f8, 0x21c20, 0x1f8, 0x10000, true}; |
| BC->SegmentMapInfo[0x54e18] = |
| SegmentInfo{0x54e18, 0x51, 0x24e18, 0x51, 0x10000, true}; |
| |
| std::optional<uint64_t> BaseAddress = |
| BC->getBaseAddressForMapping(0xaaaaea444000, 0x21000); |
| ASSERT_TRUE(BaseAddress.has_value()); |
| ASSERT_EQ(*BaseAddress, 0xaaaaea413000ULL); |
| |
| BaseAddress = BC->getBaseAddressForMapping(0xaaaaea444000, 0x11000); |
| ASSERT_FALSE(BaseAddress.has_value()); |
| } |
| |
| TEST_P(BinaryContextTester, BaseAddressSegmentsSmallerThanAlignment) { |
| // Check that the correct segment is used to compute the base address |
| // when multiple segments are close together in the ELF file (closer |
| // than the required alignment in the process space). |
| // See https://github.com/llvm/llvm-project/issues/109384 |
| BC->SegmentMapInfo[0] = SegmentInfo{0, 0x1d1c, 0, 0x1d1c, 0x10000, false}; |
| BC->SegmentMapInfo[0x11d40] = |
| SegmentInfo{0x11d40, 0x11e0, 0x1d40, 0x11e0, 0x10000, true}; |
| BC->SegmentMapInfo[0x22f20] = |
| SegmentInfo{0x22f20, 0x10e0, 0x2f20, 0x1f0, 0x10000, false}; |
| BC->SegmentMapInfo[0x33110] = |
| SegmentInfo{0x33110, 0x89, 0x3110, 0x88, 0x10000, false}; |
| |
| std::optional<uint64_t> BaseAddress = |
| BC->getBaseAddressForMapping(0xaaaaaaab1000, 0x1000); |
| ASSERT_TRUE(BaseAddress.has_value()); |
| ASSERT_EQ(*BaseAddress, 0xaaaaaaaa0000ULL); |
| } |