| //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a TargetTransformInfo analysis pass specific to the |
| // SystemZ target machine. It uses the target's detailed information to provide |
| // more precise answers to certain TTI queries, while letting the target |
| // independent and default TTI implementations handle the rest. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SystemZTargetTransformInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/BasicTTIImpl.h" |
| #include "llvm/CodeGen/CostTable.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "systemztti" |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // SystemZ cost model. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, |
| TTI::TargetCostKind CostKind) { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| // There is no cost model for constants with a bit size of 0. Return TCC_Free |
| // here, so that constant hoisting will ignore this constant. |
| if (BitSize == 0) |
| return TTI::TCC_Free; |
| // No cost model for operations on integers larger than 64 bit implemented yet. |
| if (BitSize > 64) |
| return TTI::TCC_Free; |
| |
| if (Imm == 0) |
| return TTI::TCC_Free; |
| |
| if (Imm.getBitWidth() <= 64) { |
| // Constants loaded via lgfi. |
| if (isInt<32>(Imm.getSExtValue())) |
| return TTI::TCC_Basic; |
| // Constants loaded via llilf. |
| if (isUInt<32>(Imm.getZExtValue())) |
| return TTI::TCC_Basic; |
| // Constants loaded via llihf: |
| if ((Imm.getZExtValue() & 0xffffffff) == 0) |
| return TTI::TCC_Basic; |
| |
| return 2 * TTI::TCC_Basic; |
| } |
| |
| return 4 * TTI::TCC_Basic; |
| } |
| |
| InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, |
| const APInt &Imm, Type *Ty, |
| TTI::TargetCostKind CostKind, |
| Instruction *Inst) { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| // There is no cost model for constants with a bit size of 0. Return TCC_Free |
| // here, so that constant hoisting will ignore this constant. |
| if (BitSize == 0) |
| return TTI::TCC_Free; |
| // No cost model for operations on integers larger than 64 bit implemented yet. |
| if (BitSize > 64) |
| return TTI::TCC_Free; |
| |
| switch (Opcode) { |
| default: |
| return TTI::TCC_Free; |
| case Instruction::GetElementPtr: |
| // Always hoist the base address of a GetElementPtr. This prevents the |
| // creation of new constants for every base constant that gets constant |
| // folded with the offset. |
| if (Idx == 0) |
| return 2 * TTI::TCC_Basic; |
| return TTI::TCC_Free; |
| case Instruction::Store: |
| if (Idx == 0 && Imm.getBitWidth() <= 64) { |
| // Any 8-bit immediate store can by implemented via mvi. |
| if (BitSize == 8) |
| return TTI::TCC_Free; |
| // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. |
| if (isInt<16>(Imm.getSExtValue())) |
| return TTI::TCC_Free; |
| } |
| break; |
| case Instruction::ICmp: |
| if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| // Comparisons against signed 32-bit immediates implemented via cgfi. |
| if (isInt<32>(Imm.getSExtValue())) |
| return TTI::TCC_Free; |
| // Comparisons against unsigned 32-bit immediates implemented via clgfi. |
| if (isUInt<32>(Imm.getZExtValue())) |
| return TTI::TCC_Free; |
| } |
| break; |
| case Instruction::Add: |
| case Instruction::Sub: |
| if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. |
| if (isUInt<32>(Imm.getZExtValue())) |
| return TTI::TCC_Free; |
| // Or their negation, by swapping addition vs. subtraction. |
| if (isUInt<32>(-Imm.getSExtValue())) |
| return TTI::TCC_Free; |
| } |
| break; |
| case Instruction::Mul: |
| if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| // We use msgfi to multiply by 32-bit signed immediates. |
| if (isInt<32>(Imm.getSExtValue())) |
| return TTI::TCC_Free; |
| } |
| break; |
| case Instruction::Or: |
| case Instruction::Xor: |
| if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| // Masks supported by oilf/xilf. |
| if (isUInt<32>(Imm.getZExtValue())) |
| return TTI::TCC_Free; |
| // Masks supported by oihf/xihf. |
| if ((Imm.getZExtValue() & 0xffffffff) == 0) |
| return TTI::TCC_Free; |
| } |
| break; |
| case Instruction::And: |
| if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| // Any 32-bit AND operation can by implemented via nilf. |
| if (BitSize <= 32) |
| return TTI::TCC_Free; |
| // 64-bit masks supported by nilf. |
| if (isUInt<32>(~Imm.getZExtValue())) |
| return TTI::TCC_Free; |
| // 64-bit masks supported by nilh. |
| if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) |
| return TTI::TCC_Free; |
| // Some 64-bit AND operations can be implemented via risbg. |
| const SystemZInstrInfo *TII = ST->getInstrInfo(); |
| unsigned Start, End; |
| if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) |
| return TTI::TCC_Free; |
| } |
| break; |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| // Always return TCC_Free for the shift value of a shift instruction. |
| if (Idx == 1) |
| return TTI::TCC_Free; |
| break; |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::IntToPtr: |
| case Instruction::PtrToInt: |
| case Instruction::BitCast: |
| case Instruction::PHI: |
| case Instruction::Call: |
| case Instruction::Select: |
| case Instruction::Ret: |
| case Instruction::Load: |
| break; |
| } |
| |
| return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); |
| } |
| |
| InstructionCost |
| SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, |
| const APInt &Imm, Type *Ty, |
| TTI::TargetCostKind CostKind) { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| // There is no cost model for constants with a bit size of 0. Return TCC_Free |
| // here, so that constant hoisting will ignore this constant. |
| if (BitSize == 0) |
| return TTI::TCC_Free; |
| // No cost model for operations on integers larger than 64 bit implemented yet. |
| if (BitSize > 64) |
| return TTI::TCC_Free; |
| |
| switch (IID) { |
| default: |
| return TTI::TCC_Free; |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| // These get expanded to include a normal addition/subtraction. |
| if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| if (isUInt<32>(Imm.getZExtValue())) |
| return TTI::TCC_Free; |
| if (isUInt<32>(-Imm.getSExtValue())) |
| return TTI::TCC_Free; |
| } |
| break; |
| case Intrinsic::smul_with_overflow: |
| case Intrinsic::umul_with_overflow: |
| // These get expanded to include a normal multiplication. |
| if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| if (isInt<32>(Imm.getSExtValue())) |
| return TTI::TCC_Free; |
| } |
| break; |
| case Intrinsic::experimental_stackmap: |
| if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) |
| return TTI::TCC_Free; |
| break; |
| case Intrinsic::experimental_patchpoint_void: |
| case Intrinsic::experimental_patchpoint_i64: |
| if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) |
| return TTI::TCC_Free; |
| break; |
| } |
| return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); |
| } |
| |
| TargetTransformInfo::PopcntSupportKind |
| SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { |
| assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); |
| if (ST->hasPopulationCount() && TyWidth <= 64) |
| return TTI::PSK_FastHardware; |
| return TTI::PSK_Software; |
| } |
| |
| void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::UnrollingPreferences &UP, |
| OptimizationRemarkEmitter *ORE) { |
| // Find out if L contains a call, what the machine instruction count |
| // estimate is, and how many stores there are. |
| bool HasCall = false; |
| InstructionCost NumStores = 0; |
| for (auto &BB : L->blocks()) |
| for (auto &I : *BB) { |
| if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { |
| if (const Function *F = cast<CallBase>(I).getCalledFunction()) { |
| if (isLoweredToCall(F)) |
| HasCall = true; |
| if (F->getIntrinsicID() == Intrinsic::memcpy || |
| F->getIntrinsicID() == Intrinsic::memset) |
| NumStores++; |
| } else { // indirect call. |
| HasCall = true; |
| } |
| } |
| if (isa<StoreInst>(&I)) { |
| Type *MemAccessTy = I.getOperand(0)->getType(); |
| NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0, |
| TTI::TCK_RecipThroughput); |
| } |
| } |
| |
| // The z13 processor will run out of store tags if too many stores |
| // are fed into it too quickly. Therefore make sure there are not |
| // too many stores in the resulting unrolled loop. |
| unsigned const NumStoresVal = *NumStores.getValue(); |
| unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX); |
| |
| if (HasCall) { |
| // Only allow full unrolling if loop has any calls. |
| UP.FullUnrollMaxCount = Max; |
| UP.MaxCount = 1; |
| return; |
| } |
| |
| UP.MaxCount = Max; |
| if (UP.MaxCount <= 1) |
| return; |
| |
| // Allow partial and runtime trip count unrolling. |
| UP.Partial = UP.Runtime = true; |
| |
| UP.PartialThreshold = 75; |
| UP.DefaultUnrollRuntimeCount = 4; |
| |
| // Allow expensive instructions in the pre-header of the loop. |
| UP.AllowExpensiveTripCount = true; |
| |
| UP.Force = true; |
| } |
| |
| void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::PeelingPreferences &PP) { |
| BaseT::getPeelingPreferences(L, SE, PP); |
| } |
| |
| bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, |
| TargetTransformInfo::LSRCost &C2) { |
| // SystemZ specific: check instruction count (first), and don't care about |
| // ImmCost, since offsets are checked explicitly. |
| return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, |
| C1.NumIVMuls, C1.NumBaseAdds, |
| C1.ScaleCost, C1.SetupCost) < |
| std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, |
| C2.NumIVMuls, C2.NumBaseAdds, |
| C2.ScaleCost, C2.SetupCost); |
| } |
| |
| unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { |
| bool Vector = (ClassID == 1); |
| if (!Vector) |
| // Discount the stack pointer. Also leave out %r0, since it can't |
| // be used in an address. |
| return 14; |
| if (ST->hasVector()) |
| return 32; |
| return 0; |
| } |
| |
| TypeSize |
| SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { |
| switch (K) { |
| case TargetTransformInfo::RGK_Scalar: |
| return TypeSize::getFixed(64); |
| case TargetTransformInfo::RGK_FixedWidthVector: |
| return TypeSize::getFixed(ST->hasVector() ? 128 : 0); |
| case TargetTransformInfo::RGK_ScalableVector: |
| return TypeSize::getScalable(0); |
| } |
| |
| llvm_unreachable("Unsupported register kind"); |
| } |
| |
| unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, |
| unsigned NumStridedMemAccesses, |
| unsigned NumPrefetches, |
| bool HasCall) const { |
| // Don't prefetch a loop with many far apart accesses. |
| if (NumPrefetches > 16) |
| return UINT_MAX; |
| |
| // Emit prefetch instructions for smaller strides in cases where we think |
| // the hardware prefetcher might not be able to keep up. |
| if (NumStridedMemAccesses > 32 && !HasCall && |
| (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses) |
| return 1; |
| |
| return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; |
| } |
| |
| bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { |
| EVT VT = TLI->getValueType(DL, DataType); |
| return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); |
| } |
| |
| // Return the bit size for the scalar type or vector element |
| // type. getScalarSizeInBits() returns 0 for a pointer type. |
| static unsigned getScalarSizeInBits(Type *Ty) { |
| unsigned Size = |
| (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); |
| assert(Size > 0 && "Element must have non-zero size."); |
| return Size; |
| } |
| |
| // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector |
| // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of |
| // 3. |
| static unsigned getNumVectorRegs(Type *Ty) { |
| auto *VTy = cast<FixedVectorType>(Ty); |
| unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements(); |
| assert(WideBits > 0 && "Could not compute size of vector"); |
| return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); |
| } |
| |
| InstructionCost SystemZTTIImpl::getArithmeticInstrCost( |
| unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, |
| TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, |
| TTI::OperandValueProperties Opd1PropInfo, |
| TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, |
| const Instruction *CxtI) { |
| |
| // TODO: Handle more cost kinds. |
| if (CostKind != TTI::TCK_RecipThroughput) |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, |
| Op2Info, Opd1PropInfo, |
| Opd2PropInfo, Args, CxtI); |
| |
| // TODO: return a good value for BB-VECTORIZER that includes the |
| // immediate loads, which we do not want to count for the loop |
| // vectorizer, since they are hopefully hoisted out of the loop. This |
| // would require a new parameter 'InLoop', but not sure if constant |
| // args are common enough to motivate this. |
| |
| unsigned ScalarBits = Ty->getScalarSizeInBits(); |
| |
| // There are thre cases of division and remainder: Dividing with a register |
| // needs a divide instruction. A divisor which is a power of two constant |
| // can be implemented with a sequence of shifts. Any other constant needs a |
| // multiply and shifts. |
| const unsigned DivInstrCost = 20; |
| const unsigned DivMulSeqCost = 10; |
| const unsigned SDivPow2Cost = 4; |
| |
| bool SignedDivRem = |
| Opcode == Instruction::SDiv || Opcode == Instruction::SRem; |
| bool UnsignedDivRem = |
| Opcode == Instruction::UDiv || Opcode == Instruction::URem; |
| |
| // Check for a constant divisor. |
| bool DivRemConst = false; |
| bool DivRemConstPow2 = false; |
| if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { |
| if (const Constant *C = dyn_cast<Constant>(Args[1])) { |
| const ConstantInt *CVal = |
| (C->getType()->isVectorTy() |
| ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) |
| : dyn_cast<const ConstantInt>(C)); |
| if (CVal && (CVal->getValue().isPowerOf2() || |
| CVal->getValue().isNegatedPowerOf2())) |
| DivRemConstPow2 = true; |
| else |
| DivRemConst = true; |
| } |
| } |
| |
| if (!Ty->isVectorTy()) { |
| // These FP operations are supported with a dedicated instruction for |
| // float, double and fp128 (base implementation assumes float generally |
| // costs 2). |
| if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || |
| Opcode == Instruction::FMul || Opcode == Instruction::FDiv) |
| return 1; |
| |
| // There is no native support for FRem. |
| if (Opcode == Instruction::FRem) |
| return LIBCALL_COST; |
| |
| // Give discount for some combined logical operations if supported. |
| if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { |
| if (Opcode == Instruction::Xor) { |
| for (const Value *A : Args) { |
| if (const Instruction *I = dyn_cast<Instruction>(A)) |
| if (I->hasOneUse() && |
| (I->getOpcode() == Instruction::And || |
| I->getOpcode() == Instruction::Or || |
| I->getOpcode() == Instruction::Xor)) |
| return 0; |
| } |
| } |
| else if (Opcode == Instruction::Or || Opcode == Instruction::And) { |
| for (const Value *A : Args) { |
| if (const Instruction *I = dyn_cast<Instruction>(A)) |
| if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) |
| return 0; |
| } |
| } |
| } |
| |
| // Or requires one instruction, although it has custom handling for i64. |
| if (Opcode == Instruction::Or) |
| return 1; |
| |
| if (Opcode == Instruction::Xor && ScalarBits == 1) { |
| if (ST->hasLoadStoreOnCond2()) |
| return 5; // 2 * (li 0; loc 1); xor |
| return 7; // 2 * ipm sequences ; xor ; shift ; compare |
| } |
| |
| if (DivRemConstPow2) |
| return (SignedDivRem ? SDivPow2Cost : 1); |
| if (DivRemConst) |
| return DivMulSeqCost; |
| if (SignedDivRem || UnsignedDivRem) |
| return DivInstrCost; |
| } |
| else if (ST->hasVector()) { |
| auto *VTy = cast<FixedVectorType>(Ty); |
| unsigned VF = VTy->getNumElements(); |
| unsigned NumVectors = getNumVectorRegs(Ty); |
| |
| // These vector operations are custom handled, but are still supported |
| // with one instruction per vector, regardless of element size. |
| if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || |
| Opcode == Instruction::AShr) { |
| return NumVectors; |
| } |
| |
| if (DivRemConstPow2) |
| return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); |
| if (DivRemConst) { |
| SmallVector<Type *> Tys(Args.size(), Ty); |
| return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args, Tys); |
| } |
| if ((SignedDivRem || UnsignedDivRem) && VF > 4) |
| // Temporary hack: disable high vectorization factors with integer |
| // division/remainder, which will get scalarized and handled with |
| // GR128 registers. The mischeduler is not clever enough to avoid |
| // spilling yet. |
| return 1000; |
| |
| // These FP operations are supported with a single vector instruction for |
| // double (base implementation assumes float generally costs 2). For |
| // FP128, the scalar cost is 1, and there is no overhead since the values |
| // are already in scalar registers. |
| if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || |
| Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { |
| switch (ScalarBits) { |
| case 32: { |
| // The vector enhancements facility 1 provides v4f32 instructions. |
| if (ST->hasVectorEnhancements1()) |
| return NumVectors; |
| // Return the cost of multiple scalar invocation plus the cost of |
| // inserting and extracting the values. |
| InstructionCost ScalarCost = |
| getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); |
| SmallVector<Type *> Tys(Args.size(), Ty); |
| InstructionCost Cost = |
| (VF * ScalarCost) + getScalarizationOverhead(VTy, Args, Tys); |
| // FIXME: VF 2 for these FP operations are currently just as |
| // expensive as for VF 4. |
| if (VF == 2) |
| Cost *= 2; |
| return Cost; |
| } |
| case 64: |
| case 128: |
| return NumVectors; |
| default: |
| break; |
| } |
| } |
| |
| // There is no native support for FRem. |
| if (Opcode == Instruction::FRem) { |
| SmallVector<Type *> Tys(Args.size(), Ty); |
| InstructionCost Cost = |
| (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args, Tys); |
| // FIXME: VF 2 for float is currently just as expensive as for VF 4. |
| if (VF == 2 && ScalarBits == 32) |
| Cost *= 2; |
| return Cost; |
| } |
| } |
| |
| // Fallback to the default implementation. |
| return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, |
| Opd1PropInfo, Opd2PropInfo, Args, CxtI); |
| } |
| |
| InstructionCost SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, |
| VectorType *Tp, |
| ArrayRef<int> Mask, int Index, |
| VectorType *SubTp) { |
| Kind = improveShuffleKindFromMask(Kind, Mask); |
| if (ST->hasVector()) { |
| unsigned NumVectors = getNumVectorRegs(Tp); |
| |
| // TODO: Since fp32 is expanded, the shuffle cost should always be 0. |
| |
| // FP128 values are always in scalar registers, so there is no work |
| // involved with a shuffle, except for broadcast. In that case register |
| // moves are done with a single instruction per element. |
| if (Tp->getScalarType()->isFP128Ty()) |
| return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); |
| |
| switch (Kind) { |
| case TargetTransformInfo::SK_ExtractSubvector: |
| // ExtractSubvector Index indicates start offset. |
| |
| // Extracting a subvector from first index is a noop. |
| return (Index == 0 ? 0 : NumVectors); |
| |
| case TargetTransformInfo::SK_Broadcast: |
| // Loop vectorizer calls here to figure out the extra cost of |
| // broadcasting a loaded value to all elements of a vector. Since vlrep |
| // loads and replicates with a single instruction, adjust the returned |
| // value. |
| return NumVectors - 1; |
| |
| default: |
| |
| // SystemZ supports single instruction permutation / replication. |
| return NumVectors; |
| } |
| } |
| |
| return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); |
| } |
| |
| // Return the log2 difference of the element sizes of the two vector types. |
| static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { |
| unsigned Bits0 = Ty0->getScalarSizeInBits(); |
| unsigned Bits1 = Ty1->getScalarSizeInBits(); |
| |
| if (Bits1 > Bits0) |
| return (Log2_32(Bits1) - Log2_32(Bits0)); |
| |
| return (Log2_32(Bits0) - Log2_32(Bits1)); |
| } |
| |
| // Return the number of instructions needed to truncate SrcTy to DstTy. |
| unsigned SystemZTTIImpl:: |
| getVectorTruncCost(Type *SrcTy, Type *DstTy) { |
| assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); |
| assert(SrcTy->getPrimitiveSizeInBits().getFixedSize() > |
| DstTy->getPrimitiveSizeInBits().getFixedSize() && |
| "Packing must reduce size of vector type."); |
| assert(cast<FixedVectorType>(SrcTy)->getNumElements() == |
| cast<FixedVectorType>(DstTy)->getNumElements() && |
| "Packing should not change number of elements."); |
| |
| // TODO: Since fp32 is expanded, the extract cost should always be 0. |
| |
| unsigned NumParts = getNumVectorRegs(SrcTy); |
| if (NumParts <= 2) |
| // Up to 2 vector registers can be truncated efficiently with pack or |
| // permute. The latter requires an immediate mask to be loaded, which |
| // typically gets hoisted out of a loop. TODO: return a good value for |
| // BB-VECTORIZER that includes the immediate loads, which we do not want |
| // to count for the loop vectorizer. |
| return 1; |
| |
| unsigned Cost = 0; |
| unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); |
| unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements(); |
| for (unsigned P = 0; P < Log2Diff; ++P) { |
| if (NumParts > 1) |
| NumParts /= 2; |
| Cost += NumParts; |
| } |
| |
| // Currently, a general mix of permutes and pack instructions is output by |
| // isel, which follow the cost computation above except for this case which |
| // is one instruction less: |
| if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && |
| DstTy->getScalarSizeInBits() == 8) |
| Cost--; |
| |
| return Cost; |
| } |
| |
| // Return the cost of converting a vector bitmask produced by a compare |
| // (SrcTy), to the type of the select or extend instruction (DstTy). |
| unsigned SystemZTTIImpl:: |
| getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { |
| assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && |
| "Should only be called with vector types."); |
| |
| unsigned PackCost = 0; |
| unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); |
| unsigned DstScalarBits = DstTy->getScalarSizeInBits(); |
| unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); |
| if (SrcScalarBits > DstScalarBits) |
| // The bitmask will be truncated. |
| PackCost = getVectorTruncCost(SrcTy, DstTy); |
| else if (SrcScalarBits < DstScalarBits) { |
| unsigned DstNumParts = getNumVectorRegs(DstTy); |
| // Each vector select needs its part of the bitmask unpacked. |
| PackCost = Log2Diff * DstNumParts; |
| // Extra cost for moving part of mask before unpacking. |
| PackCost += DstNumParts - 1; |
| } |
| |
| return PackCost; |
| } |
| |
| // Return the type of the compared operands. This is needed to compute the |
| // cost for a Select / ZExt or SExt instruction. |
| static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { |
| Type *OpTy = nullptr; |
| if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) |
| OpTy = CI->getOperand(0)->getType(); |
| else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) |
| if (LogicI->getNumOperands() == 2) |
| if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) |
| if (isa<CmpInst>(LogicI->getOperand(1))) |
| OpTy = CI0->getOperand(0)->getType(); |
| |
| if (OpTy != nullptr) { |
| if (VF == 1) { |
| assert (!OpTy->isVectorTy() && "Expected scalar type"); |
| return OpTy; |
| } |
| // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may |
| // be either scalar or already vectorized with a same or lesser VF. |
| Type *ElTy = OpTy->getScalarType(); |
| return FixedVectorType::get(ElTy, VF); |
| } |
| |
| return nullptr; |
| } |
| |
| // Get the cost of converting a boolean vector to a vector with same width |
| // and element size as Dst, plus the cost of zero extending if needed. |
| unsigned SystemZTTIImpl:: |
| getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, |
| const Instruction *I) { |
| auto *DstVTy = cast<FixedVectorType>(Dst); |
| unsigned VF = DstVTy->getNumElements(); |
| unsigned Cost = 0; |
| // If we know what the widths of the compared operands, get any cost of |
| // converting it to match Dst. Otherwise assume same widths. |
| Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); |
| if (CmpOpTy != nullptr) |
| Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); |
| if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) |
| // One 'vn' per dst vector with an immediate mask. |
| Cost += getNumVectorRegs(Dst); |
| return Cost; |
| } |
| |
| InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, |
| Type *Src, |
| TTI::CastContextHint CCH, |
| TTI::TargetCostKind CostKind, |
| const Instruction *I) { |
| // FIXME: Can the logic below also be used for these cost kinds? |
| if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) { |
| auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| return BaseCost == 0 ? BaseCost : 1; |
| } |
| |
| unsigned DstScalarBits = Dst->getScalarSizeInBits(); |
| unsigned SrcScalarBits = Src->getScalarSizeInBits(); |
| |
| if (!Src->isVectorTy()) { |
| assert (!Dst->isVectorTy()); |
| |
| if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { |
| if (SrcScalarBits >= 32 || |
| (I != nullptr && isa<LoadInst>(I->getOperand(0)))) |
| return 1; |
| return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; |
| } |
| |
| if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && |
| Src->isIntegerTy(1)) { |
| if (ST->hasLoadStoreOnCond2()) |
| return 2; // li 0; loc 1 |
| |
| // This should be extension of a compare i1 result, which is done with |
| // ipm and a varying sequence of instructions. |
| unsigned Cost = 0; |
| if (Opcode == Instruction::SExt) |
| Cost = (DstScalarBits < 64 ? 3 : 4); |
| if (Opcode == Instruction::ZExt) |
| Cost = 3; |
| Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); |
| if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) |
| // If operands of an fp-type was compared, this costs +1. |
| Cost++; |
| return Cost; |
| } |
| } |
| else if (ST->hasVector()) { |
| // Vector to scalar cast. |
| auto *SrcVecTy = cast<FixedVectorType>(Src); |
| auto *DstVecTy = dyn_cast<FixedVectorType>(Dst); |
| if (!DstVecTy) { |
| // TODO: tune vector-to-scalar cast. |
| return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| } |
| unsigned VF = SrcVecTy->getNumElements(); |
| unsigned NumDstVectors = getNumVectorRegs(Dst); |
| unsigned NumSrcVectors = getNumVectorRegs(Src); |
| |
| if (Opcode == Instruction::Trunc) { |
| if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) |
| return 0; // Check for NOOP conversions. |
| return getVectorTruncCost(Src, Dst); |
| } |
| |
| if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { |
| if (SrcScalarBits >= 8) { |
| // ZExt/SExt will be handled with one unpack per doubling of width. |
| unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); |
| |
| // For types that spans multiple vector registers, some additional |
| // instructions are used to setup the unpacking. |
| unsigned NumSrcVectorOps = |
| (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) |
| : (NumDstVectors / 2)); |
| |
| return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; |
| } |
| else if (SrcScalarBits == 1) |
| return getBoolVecToIntConversionCost(Opcode, Dst, I); |
| } |
| |
| if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || |
| Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { |
| // TODO: Fix base implementation which could simplify things a bit here |
| // (seems to miss on differentiating on scalar/vector types). |
| |
| // Only 64 bit vector conversions are natively supported before z15. |
| if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { |
| if (SrcScalarBits == DstScalarBits) |
| return NumDstVectors; |
| |
| if (SrcScalarBits == 1) |
| return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; |
| } |
| |
| // Return the cost of multiple scalar invocation plus the cost of |
| // inserting and extracting the values. Base implementation does not |
| // realize float->int gets scalarized. |
| InstructionCost ScalarCost = getCastInstrCost( |
| Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind); |
| InstructionCost TotCost = VF * ScalarCost; |
| bool NeedsInserts = true, NeedsExtracts = true; |
| // FP128 registers do not get inserted or extracted. |
| if (DstScalarBits == 128 && |
| (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) |
| NeedsInserts = false; |
| if (SrcScalarBits == 128 && |
| (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) |
| NeedsExtracts = false; |
| |
| TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts); |
| TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false); |
| |
| // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. |
| if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) |
| TotCost *= 2; |
| |
| return TotCost; |
| } |
| |
| if (Opcode == Instruction::FPTrunc) { |
| if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. |
| return VF /*ldxbr/lexbr*/ + |
| getScalarizationOverhead(DstVecTy, true, false); |
| else // double -> float |
| return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); |
| } |
| |
| if (Opcode == Instruction::FPExt) { |
| if (SrcScalarBits == 32 && DstScalarBits == 64) { |
| // float -> double is very rare and currently unoptimized. Instead of |
| // using vldeb, which can do two at a time, all conversions are |
| // scalarized. |
| return VF * 2; |
| } |
| // -> fp128. VF * lxdb/lxeb + extraction of elements. |
| return VF + getScalarizationOverhead(SrcVecTy, false, true); |
| } |
| } |
| |
| return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); |
| } |
| |
| // Scalar i8 / i16 operations will typically be made after first extending |
| // the operands to i32. |
| static unsigned getOperandsExtensionCost(const Instruction *I) { |
| unsigned ExtCost = 0; |
| for (Value *Op : I->operands()) |
| // A load of i8 or i16 sign/zero extends to i32. |
| if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) |
| ExtCost++; |
| |
| return ExtCost; |
| } |
| |
| InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| Type *CondTy, |
| CmpInst::Predicate VecPred, |
| TTI::TargetCostKind CostKind, |
| const Instruction *I) { |
| if (CostKind != TTI::TCK_RecipThroughput) |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); |
| |
| if (!ValTy->isVectorTy()) { |
| switch (Opcode) { |
| case Instruction::ICmp: { |
| // A loaded value compared with 0 with multiple users becomes Load and |
| // Test. The load is then not foldable, so return 0 cost for the ICmp. |
| unsigned ScalarBits = ValTy->getScalarSizeInBits(); |
| if (I != nullptr && ScalarBits >= 32) |
| if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) |
| if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && |
| C->isZero()) |
| return 0; |
| |
| unsigned Cost = 1; |
| if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) |
| Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); |
| return Cost; |
| } |
| case Instruction::Select: |
| if (ValTy->isFloatingPointTy()) |
| return 4; // No load on condition for FP - costs a conditional jump. |
| return 1; // Load On Condition / Select Register. |
| } |
| } |
| else if (ST->hasVector()) { |
| unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements(); |
| |
| // Called with a compare instruction. |
| if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { |
| unsigned PredicateExtraCost = 0; |
| if (I != nullptr) { |
| // Some predicates cost one or two extra instructions. |
| switch (cast<CmpInst>(I)->getPredicate()) { |
| case CmpInst::Predicate::ICMP_NE: |
| case CmpInst::Predicate::ICMP_UGE: |
| case CmpInst::Predicate::ICMP_ULE: |
| case CmpInst::Predicate::ICMP_SGE: |
| case CmpInst::Predicate::ICMP_SLE: |
| PredicateExtraCost = 1; |
| break; |
| case CmpInst::Predicate::FCMP_ONE: |
| case CmpInst::Predicate::FCMP_ORD: |
| case CmpInst::Predicate::FCMP_UEQ: |
| case CmpInst::Predicate::FCMP_UNO: |
| PredicateExtraCost = 2; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of |
| // floats. FIXME: <2 x float> generates same code as <4 x float>. |
| unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); |
| unsigned NumVecs_cmp = getNumVectorRegs(ValTy); |
| |
| unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); |
| return Cost; |
| } |
| else { // Called with a select instruction. |
| assert (Opcode == Instruction::Select); |
| |
| // We can figure out the extra cost of packing / unpacking if the |
| // instruction was passed and the compare instruction is found. |
| unsigned PackCost = 0; |
| Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); |
| if (CmpOpTy != nullptr) |
| PackCost = |
| getVectorBitmaskConversionCost(CmpOpTy, ValTy); |
| |
| return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; |
| } |
| } |
| |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind); |
| } |
| |
| InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, |
| unsigned Index) { |
| // vlvgp will insert two grs into a vector register, so only count half the |
| // number of instructions. |
| if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) |
| return ((Index % 2 == 0) ? 1 : 0); |
| |
| if (Opcode == Instruction::ExtractElement) { |
| int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); |
| |
| // Give a slight penalty for moving out of vector pipeline to FXU unit. |
| if (Index == 0 && Val->isIntOrIntVectorTy()) |
| Cost += 1; |
| |
| return Cost; |
| } |
| |
| return BaseT::getVectorInstrCost(Opcode, Val, Index); |
| } |
| |
| // Check if a load may be folded as a memory operand in its user. |
| bool SystemZTTIImpl:: |
| isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { |
| if (!Ld->hasOneUse()) |
| return false; |
| FoldedValue = Ld; |
| const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); |
| unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); |
| unsigned TruncBits = 0; |
| unsigned SExtBits = 0; |
| unsigned ZExtBits = 0; |
| if (UserI->hasOneUse()) { |
| unsigned UserBits = UserI->getType()->getScalarSizeInBits(); |
| if (isa<TruncInst>(UserI)) |
| TruncBits = UserBits; |
| else if (isa<SExtInst>(UserI)) |
| SExtBits = UserBits; |
| else if (isa<ZExtInst>(UserI)) |
| ZExtBits = UserBits; |
| } |
| if (TruncBits || SExtBits || ZExtBits) { |
| FoldedValue = UserI; |
| UserI = cast<Instruction>(*UserI->user_begin()); |
| // Load (single use) -> trunc/extend (single use) -> UserI |
| } |
| if ((UserI->getOpcode() == Instruction::Sub || |
| UserI->getOpcode() == Instruction::SDiv || |
| UserI->getOpcode() == Instruction::UDiv) && |
| UserI->getOperand(1) != FoldedValue) |
| return false; // Not commutative, only RHS foldable. |
| // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an |
| // extension was made of the load. |
| unsigned LoadOrTruncBits = |
| ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); |
| switch (UserI->getOpcode()) { |
| case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 |
| case Instruction::Sub: |
| case Instruction::ICmp: |
| if (LoadedBits == 32 && ZExtBits == 64) |
| return true; |
| LLVM_FALLTHROUGH; |
| case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 |
| if (UserI->getOpcode() != Instruction::ICmp) { |
| if (LoadedBits == 16 && |
| (SExtBits == 32 || |
| (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) |
| return true; |
| if (LoadOrTruncBits == 16) |
| return true; |
| } |
| LLVM_FALLTHROUGH; |
| case Instruction::SDiv:// SE: 32->64 |
| if (LoadedBits == 32 && SExtBits == 64) |
| return true; |
| LLVM_FALLTHROUGH; |
| case Instruction::UDiv: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| // This also makes sense for float operations, but disabled for now due |
| // to regressions. |
| // case Instruction::FCmp: |
| // case Instruction::FAdd: |
| // case Instruction::FSub: |
| // case Instruction::FMul: |
| // case Instruction::FDiv: |
| |
| // All possible extensions of memory checked above. |
| |
| // Comparison between memory and immediate. |
| if (UserI->getOpcode() == Instruction::ICmp) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) |
| if (CI->getValue().isIntN(16)) |
| return true; |
| return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); |
| break; |
| } |
| return false; |
| } |
| |
| static bool isBswapIntrinsicCall(const Value *V) { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| if (auto *CI = dyn_cast<CallInst>(I)) |
| if (auto *F = CI->getCalledFunction()) |
| if (F->getIntrinsicID() == Intrinsic::bswap) |
| return true; |
| return false; |
| } |
| |
| InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, |
| MaybeAlign Alignment, |
| unsigned AddressSpace, |
| TTI::TargetCostKind CostKind, |
| const Instruction *I) { |
| assert(!Src->isVoidTy() && "Invalid type"); |
| |
| // TODO: Handle other cost kinds. |
| if (CostKind != TTI::TCK_RecipThroughput) |
| return 1; |
| |
| if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { |
| // Store the load or its truncated or extended value in FoldedValue. |
| const Instruction *FoldedValue = nullptr; |
| if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { |
| const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); |
| assert (UserI->getNumOperands() == 2 && "Expected a binop."); |
| |
| // UserI can't fold two loads, so in that case return 0 cost only |
| // half of the time. |
| for (unsigned i = 0; i < 2; ++i) { |
| if (UserI->getOperand(i) == FoldedValue) |
| continue; |
| |
| if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ |
| LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); |
| if (!OtherLoad && |
| (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || |
| isa<ZExtInst>(OtherOp))) |
| OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); |
| if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) |
| return i == 0; // Both operands foldable. |
| } |
| } |
| |
| return 0; // Only I is foldable in user. |
| } |
| } |
| |
| unsigned NumOps = |
| (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); |
| |
| // Store/Load reversed saves one instruction. |
| if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && |
| I != nullptr) { |
| if (Opcode == Instruction::Load && I->hasOneUse()) { |
| const Instruction *LdUser = cast<Instruction>(*I->user_begin()); |
| // In case of load -> bswap -> store, return normal cost for the load. |
| if (isBswapIntrinsicCall(LdUser) && |
| (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) |
| return 0; |
| } |
| else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| const Value *StoredVal = SI->getValueOperand(); |
| if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) |
| return 0; |
| } |
| } |
| |
| if (Src->getScalarSizeInBits() == 128) |
| // 128 bit scalars are held in a pair of two 64 bit registers. |
| NumOps *= 2; |
| |
| return NumOps; |
| } |
| |
| // The generic implementation of getInterleavedMemoryOpCost() is based on |
| // adding costs of the memory operations plus all the extracts and inserts |
| // needed for using / defining the vector operands. The SystemZ version does |
| // roughly the same but bases the computations on vector permutations |
| // instead. |
| InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost( |
| unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, |
| Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, |
| bool UseMaskForCond, bool UseMaskForGaps) { |
| if (UseMaskForCond || UseMaskForGaps) |
| return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| Alignment, AddressSpace, CostKind, |
| UseMaskForCond, UseMaskForGaps); |
| assert(isa<VectorType>(VecTy) && |
| "Expect a vector type for interleaved memory op"); |
| |
| unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); |
| assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); |
| unsigned VF = NumElts / Factor; |
| unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); |
| unsigned NumVectorMemOps = getNumVectorRegs(VecTy); |
| unsigned NumPermutes = 0; |
| |
| if (Opcode == Instruction::Load) { |
| // Loading interleave groups may have gaps, which may mean fewer |
| // loads. Find out how many vectors will be loaded in total, and in how |
| // many of them each value will be in. |
| BitVector UsedInsts(NumVectorMemOps, false); |
| std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); |
| for (unsigned Index : Indices) |
| for (unsigned Elt = 0; Elt < VF; ++Elt) { |
| unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; |
| UsedInsts.set(Vec); |
| ValueVecs[Index].set(Vec); |
| } |
| NumVectorMemOps = UsedInsts.count(); |
| |
| for (unsigned Index : Indices) { |
| // Estimate that each loaded source vector containing this Index |
| // requires one operation, except that vperm can handle two input |
| // registers first time for each dst vector. |
| unsigned NumSrcVecs = ValueVecs[Index].count(); |
| unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U); |
| assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); |
| NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); |
| } |
| } else { |
| // Estimate the permutes for each stored vector as the smaller of the |
| // number of elements and the number of source vectors. Subtract one per |
| // dst vector for vperm (S.A.). |
| unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); |
| unsigned NumDstVecs = NumVectorMemOps; |
| assert (NumSrcVecs > 1 && "Expected at least two source vectors."); |
| NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; |
| } |
| |
| // Cost of load/store operations and the permutations needed. |
| return NumVectorMemOps + NumPermutes; |
| } |
| |
| static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { |
| if (RetTy->isVectorTy() && ID == Intrinsic::bswap) |
| return getNumVectorRegs(RetTy); // VPERM |
| return -1; |
| } |
| |
| InstructionCost |
| SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, |
| TTI::TargetCostKind CostKind) { |
| InstructionCost Cost = |
| getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType()); |
| if (Cost != -1) |
| return Cost; |
| return BaseT::getIntrinsicInstrCost(ICA, CostKind); |
| } |