| //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the SparseSet class derived from the version described in |
| // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters |
| // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. |
| // |
| // A sparse set holds a small number of objects identified by integer keys from |
| // a moderately sized universe. The sparse set uses more memory than other |
| // containers in order to provide faster operations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_SPARSESET_H |
| #define LLVM_ADT_SPARSESET_H |
| |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/AllocatorBase.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <limits> |
| #include <utility> |
| |
| namespace llvm { |
| |
| /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can |
| /// be uniquely converted to a small integer less than the set's universe. This |
| /// class allows the set to hold values that differ from the set's key type as |
| /// long as an index can still be derived from the value. SparseSet never |
| /// directly compares ValueT, only their indices, so it can map keys to |
| /// arbitrary values. SparseSetValTraits computes the index from the value |
| /// object. To compute the index from a key, SparseSet uses a separate |
| /// KeyFunctorT template argument. |
| /// |
| /// A simple type declaration, SparseSet<Type>, handles these cases: |
| /// - unsigned key, identity index, identity value |
| /// - unsigned key, identity index, fat value providing getSparseSetIndex() |
| /// |
| /// The type declaration SparseSet<Type, UnaryFunction> handles: |
| /// - unsigned key, remapped index, identity value (virtual registers) |
| /// - pointer key, pointer-derived index, identity value (node+ID) |
| /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() |
| /// |
| /// Only other, unexpected cases require specializing SparseSetValTraits. |
| /// |
| /// For best results, ValueT should not require a destructor. |
| /// |
| template<typename ValueT> |
| struct SparseSetValTraits { |
| static unsigned getValIndex(const ValueT &Val) { |
| return Val.getSparseSetIndex(); |
| } |
| }; |
| |
| /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The |
| /// generic implementation handles ValueT classes which either provide |
| /// getSparseSetIndex() or specialize SparseSetValTraits<>. |
| /// |
| template<typename KeyT, typename ValueT, typename KeyFunctorT> |
| struct SparseSetValFunctor { |
| unsigned operator()(const ValueT &Val) const { |
| return SparseSetValTraits<ValueT>::getValIndex(Val); |
| } |
| }; |
| |
| /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of |
| /// identity key/value sets. |
| template<typename KeyT, typename KeyFunctorT> |
| struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { |
| unsigned operator()(const KeyT &Key) const { |
| return KeyFunctorT()(Key); |
| } |
| }; |
| |
| /// SparseSet - Fast set implementation for objects that can be identified by |
| /// small unsigned keys. |
| /// |
| /// SparseSet allocates memory proportional to the size of the key universe, so |
| /// it is not recommended for building composite data structures. It is useful |
| /// for algorithms that require a single set with fast operations. |
| /// |
| /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast |
| /// clear() and iteration as fast as a vector. The find(), insert(), and |
| /// erase() operations are all constant time, and typically faster than a hash |
| /// table. The iteration order doesn't depend on numerical key values, it only |
| /// depends on the order of insert() and erase() operations. When no elements |
| /// have been erased, the iteration order is the insertion order. |
| /// |
| /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but |
| /// offers constant-time clear() and size() operations as well as fast |
| /// iteration independent on the size of the universe. |
| /// |
| /// SparseSet contains a dense vector holding all the objects and a sparse |
| /// array holding indexes into the dense vector. Most of the memory is used by |
| /// the sparse array which is the size of the key universe. The SparseT |
| /// template parameter provides a space/speed tradeoff for sets holding many |
| /// elements. |
| /// |
| /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse |
| /// array uses 4 x Universe bytes. |
| /// |
| /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache |
| /// lines, but the sparse array is 4x smaller. N is the number of elements in |
| /// the set. |
| /// |
| /// For sets that may grow to thousands of elements, SparseT should be set to |
| /// uint16_t or uint32_t. |
| /// |
| /// @tparam ValueT The type of objects in the set. |
| /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. |
| /// @tparam SparseT An unsigned integer type. See above. |
| /// |
| template<typename ValueT, |
| typename KeyFunctorT = identity<unsigned>, |
| typename SparseT = uint8_t> |
| class SparseSet { |
| static_assert(std::numeric_limits<SparseT>::is_integer && |
| !std::numeric_limits<SparseT>::is_signed, |
| "SparseT must be an unsigned integer type"); |
| |
| using KeyT = typename KeyFunctorT::argument_type; |
| using DenseT = SmallVector<ValueT, 8>; |
| using size_type = unsigned; |
| DenseT Dense; |
| SparseT *Sparse = nullptr; |
| unsigned Universe = 0; |
| KeyFunctorT KeyIndexOf; |
| SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; |
| |
| public: |
| using value_type = ValueT; |
| using reference = ValueT &; |
| using const_reference = const ValueT &; |
| using pointer = ValueT *; |
| using const_pointer = const ValueT *; |
| |
| SparseSet() = default; |
| SparseSet(const SparseSet &) = delete; |
| SparseSet &operator=(const SparseSet &) = delete; |
| ~SparseSet() { free(Sparse); } |
| |
| /// setUniverse - Set the universe size which determines the largest key the |
| /// set can hold. The universe must be sized before any elements can be |
| /// added. |
| /// |
| /// @param U Universe size. All object keys must be less than U. |
| /// |
| void setUniverse(unsigned U) { |
| // It's not hard to resize the universe on a non-empty set, but it doesn't |
| // seem like a likely use case, so we can add that code when we need it. |
| assert(empty() && "Can only resize universe on an empty map"); |
| // Hysteresis prevents needless reallocations. |
| if (U >= Universe/4 && U <= Universe) |
| return; |
| free(Sparse); |
| // The Sparse array doesn't actually need to be initialized, so malloc |
| // would be enough here, but that will cause tools like valgrind to |
| // complain about branching on uninitialized data. |
| Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); |
| Universe = U; |
| } |
| |
| // Import trivial vector stuff from DenseT. |
| using iterator = typename DenseT::iterator; |
| using const_iterator = typename DenseT::const_iterator; |
| |
| const_iterator begin() const { return Dense.begin(); } |
| const_iterator end() const { return Dense.end(); } |
| iterator begin() { return Dense.begin(); } |
| iterator end() { return Dense.end(); } |
| |
| /// empty - Returns true if the set is empty. |
| /// |
| /// This is not the same as BitVector::empty(). |
| /// |
| bool empty() const { return Dense.empty(); } |
| |
| /// size - Returns the number of elements in the set. |
| /// |
| /// This is not the same as BitVector::size() which returns the size of the |
| /// universe. |
| /// |
| size_type size() const { return Dense.size(); } |
| |
| /// clear - Clears the set. This is a very fast constant time operation. |
| /// |
| void clear() { |
| // Sparse does not need to be cleared, see find(). |
| Dense.clear(); |
| } |
| |
| /// findIndex - Find an element by its index. |
| /// |
| /// @param Idx A valid index to find. |
| /// @returns An iterator to the element identified by key, or end(). |
| /// |
| iterator findIndex(unsigned Idx) { |
| assert(Idx < Universe && "Key out of range"); |
| const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; |
| for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { |
| const unsigned FoundIdx = ValIndexOf(Dense[i]); |
| assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); |
| if (Idx == FoundIdx) |
| return begin() + i; |
| // Stride is 0 when SparseT >= unsigned. We don't need to loop. |
| if (!Stride) |
| break; |
| } |
| return end(); |
| } |
| |
| /// find - Find an element by its key. |
| /// |
| /// @param Key A valid key to find. |
| /// @returns An iterator to the element identified by key, or end(). |
| /// |
| iterator find(const KeyT &Key) { |
| return findIndex(KeyIndexOf(Key)); |
| } |
| |
| const_iterator find(const KeyT &Key) const { |
| return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); |
| } |
| |
| /// Check if the set contains the given \c Key. |
| /// |
| /// @param Key A valid key to find. |
| bool contains(const KeyT &Key) const { return find(Key) == end() ? 0 : 1; } |
| |
| /// count - Returns 1 if this set contains an element identified by Key, |
| /// 0 otherwise. |
| /// |
| size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; } |
| |
| /// insert - Attempts to insert a new element. |
| /// |
| /// If Val is successfully inserted, return (I, true), where I is an iterator |
| /// pointing to the newly inserted element. |
| /// |
| /// If the set already contains an element with the same key as Val, return |
| /// (I, false), where I is an iterator pointing to the existing element. |
| /// |
| /// Insertion invalidates all iterators. |
| /// |
| std::pair<iterator, bool> insert(const ValueT &Val) { |
| unsigned Idx = ValIndexOf(Val); |
| iterator I = findIndex(Idx); |
| if (I != end()) |
| return std::make_pair(I, false); |
| Sparse[Idx] = size(); |
| Dense.push_back(Val); |
| return std::make_pair(end() - 1, true); |
| } |
| |
| /// array subscript - If an element already exists with this key, return it. |
| /// Otherwise, automatically construct a new value from Key, insert it, |
| /// and return the newly inserted element. |
| ValueT &operator[](const KeyT &Key) { |
| return *insert(ValueT(Key)).first; |
| } |
| |
| ValueT pop_back_val() { |
| // Sparse does not need to be cleared, see find(). |
| return Dense.pop_back_val(); |
| } |
| |
| /// erase - Erases an existing element identified by a valid iterator. |
| /// |
| /// This invalidates all iterators, but erase() returns an iterator pointing |
| /// to the next element. This makes it possible to erase selected elements |
| /// while iterating over the set: |
| /// |
| /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) |
| /// if (test(*I)) |
| /// I = Set.erase(I); |
| /// else |
| /// ++I; |
| /// |
| /// Note that end() changes when elements are erased, unlike std::list. |
| /// |
| iterator erase(iterator I) { |
| assert(unsigned(I - begin()) < size() && "Invalid iterator"); |
| if (I != end() - 1) { |
| *I = Dense.back(); |
| unsigned BackIdx = ValIndexOf(Dense.back()); |
| assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); |
| Sparse[BackIdx] = I - begin(); |
| } |
| // This depends on SmallVector::pop_back() not invalidating iterators. |
| // std::vector::pop_back() doesn't give that guarantee. |
| Dense.pop_back(); |
| return I; |
| } |
| |
| /// erase - Erases an element identified by Key, if it exists. |
| /// |
| /// @param Key The key identifying the element to erase. |
| /// @returns True when an element was erased, false if no element was found. |
| /// |
| bool erase(const KeyT &Key) { |
| iterator I = find(Key); |
| if (I == end()) |
| return false; |
| erase(I); |
| return true; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_SPARSESET_H |