blob: a26e380232a9130d49fd2643a8cbcf1c2ef6ec73 [file] [log] [blame]
//===- PolynomialApproximation.cpp - Approximate math operations ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements expansion of math operations to fast approximations
// that do not rely on any of the library functions.
//
//===----------------------------------------------------------------------===//
#include <climits>
#include <cmath>
#include <cstddef>
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Math/Transforms/Approximation.h"
#include "mlir/Dialect/Math/Transforms/Passes.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/Dialect/X86Vector/X86VectorDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace mlir;
using namespace mlir::math;
using namespace mlir::vector;
// Helper to encapsulate a vector's shape (including scalable dims).
struct VectorShape {
ArrayRef<int64_t> sizes;
ArrayRef<bool> scalableFlags;
};
// Returns vector shape if the type is a vector, otherwise return nullopt.
static std::optional<VectorShape> vectorShape(Type type) {
if (auto vectorType = dyn_cast<VectorType>(type)) {
return VectorShape{vectorType.getShape(), vectorType.getScalableDims()};
}
return std::nullopt;
}
static std::optional<VectorShape> vectorShape(Value value) {
return vectorShape(value.getType());
}
//----------------------------------------------------------------------------//
// Broadcast scalar types and values into vector types and values.
//----------------------------------------------------------------------------//
// Broadcasts scalar type into vector type (iff shape is non-scalar).
static Type broadcast(Type type, std::optional<VectorShape> shape) {
assert(!isa<VectorType>(type) && "must be scalar type");
return shape ? VectorType::get(shape->sizes, type, shape->scalableFlags)
: type;
}
// Broadcasts scalar value into vector (iff shape is non-scalar).
static Value broadcast(ImplicitLocOpBuilder &builder, Value value,
std::optional<VectorShape> shape) {
assert(!isa<VectorType>(value.getType()) && "must be scalar value");
auto type = broadcast(value.getType(), shape);
return shape ? builder.create<BroadcastOp>(type, value) : value;
}
//----------------------------------------------------------------------------//
// Helper function to handle n-D vectors with 1-D operations.
//----------------------------------------------------------------------------//
// Expands and unrolls n-D vector operands into multiple fixed size 1-D vectors
// and calls the compute function with 1-D vector operands. Stitches back all
// results into the original n-D vector result.
//
// Examples: vectorWidth = 8
// - vector<4x8xf32> unrolled 4 times
// - vector<16xf32> expanded to vector<2x8xf32> and unrolled 2 times
// - vector<4x16xf32> expanded to vector<4x2x8xf32> and unrolled 4*2 times
//
// Some math approximations rely on ISA-specific operations that only accept
// fixed size 1-D vectors (e.g. AVX expects vectors of width 8).
//
// It is the caller's responsibility to verify that the inner dimension is
// divisible by the vectorWidth, and that all operands have the same vector
// shape.
static Value
handleMultidimensionalVectors(ImplicitLocOpBuilder &builder,
ValueRange operands, int64_t vectorWidth,
llvm::function_ref<Value(ValueRange)> compute) {
assert(!operands.empty() && "operands must be not empty");
assert(vectorWidth > 0 && "vector width must be larger than 0");
VectorType inputType = cast<VectorType>(operands[0].getType());
ArrayRef<int64_t> inputShape = inputType.getShape();
// If input shape matches target vector width, we can just call the
// user-provided compute function with the operands.
if (inputShape == llvm::ArrayRef(vectorWidth))
return compute(operands);
// Check if the inner dimension has to be expanded, or we can directly iterate
// over the outer dimensions of the vector.
int64_t innerDim = inputShape.back();
int64_t expansionDim = innerDim / vectorWidth;
assert((innerDim % vectorWidth == 0) && "invalid inner dimension size");
// Maybe expand operands to the higher rank vector shape that we'll use to
// iterate over and extract one dimensional vectors.
SmallVector<int64_t> expandedShape(inputShape);
SmallVector<Value> expandedOperands(operands);
if (expansionDim > 1) {
// Expand shape from [..., innerDim] to [..., expansionDim, vectorWidth].
expandedShape.insert(expandedShape.end() - 1, expansionDim);
expandedShape.back() = vectorWidth;
for (unsigned i = 0; i < operands.size(); ++i) {
auto operand = operands[i];
auto eltType = cast<VectorType>(operand.getType()).getElementType();
auto expandedType = VectorType::get(expandedShape, eltType);
expandedOperands[i] =
builder.create<vector::ShapeCastOp>(expandedType, operand);
}
}
// Iterate over all outer dimensions of the compute shape vector type.
auto iterationDims = ArrayRef<int64_t>(expandedShape).drop_back();
int64_t maxIndex = computeMaxLinearIndex(iterationDims);
auto strides = computeStrides(iterationDims);
// Compute results for each one dimensional vector.
SmallVector<Value> results(maxIndex);
for (int64_t i = 0; i < maxIndex; ++i) {
auto offsets = delinearize(i, strides);
SmallVector<Value> extracted(expandedOperands.size());
for (const auto &tuple : llvm::enumerate(expandedOperands))
extracted[tuple.index()] =
builder.create<vector::ExtractOp>(tuple.value(), offsets);
results[i] = compute(extracted);
}
// Stitch results together into one large vector.
Type resultEltType = cast<VectorType>(results[0].getType()).getElementType();
Type resultExpandedType = VectorType::get(expandedShape, resultEltType);
Value result = builder.create<arith::ConstantOp>(
resultExpandedType, builder.getZeroAttr(resultExpandedType));
for (int64_t i = 0; i < maxIndex; ++i)
result = builder.create<vector::InsertOp>(results[i], result,
delinearize(i, strides));
// Reshape back to the original vector shape.
return builder.create<vector::ShapeCastOp>(
VectorType::get(inputShape, resultEltType), result);
}
//----------------------------------------------------------------------------//
// Helper functions to create constants.
//----------------------------------------------------------------------------//
static Value boolCst(ImplicitLocOpBuilder &builder, bool value) {
return builder.create<arith::ConstantOp>(builder.getBoolAttr(value));
}
static Value floatCst(ImplicitLocOpBuilder &builder, float value,
Type elementType) {
assert((elementType.isF16() || elementType.isF32()) &&
"x must be f16 or f32 type.");
return builder.create<arith::ConstantOp>(
builder.getFloatAttr(elementType, value));
}
static Value f32Cst(ImplicitLocOpBuilder &builder, double value) {
return builder.create<arith::ConstantOp>(builder.getF32FloatAttr(value));
}
static Value i32Cst(ImplicitLocOpBuilder &builder, int32_t value) {
return builder.create<arith::ConstantOp>(builder.getI32IntegerAttr(value));
}
static Value f32FromBits(ImplicitLocOpBuilder &builder, uint32_t bits) {
Value i32Value = i32Cst(builder, static_cast<int32_t>(bits));
return builder.create<arith::BitcastOp>(builder.getF32Type(), i32Value);
}
//----------------------------------------------------------------------------//
// Helper functions to build math functions approximations.
//----------------------------------------------------------------------------//
// Return the minimum of the two values or NaN if value is NaN
static Value min(ImplicitLocOpBuilder &builder, Value value, Value bound) {
return builder.create<arith::SelectOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT, value, bound),
value, bound);
}
// Return the maximum of the two values or NaN if value is NaN
static Value max(ImplicitLocOpBuilder &builder, Value value, Value bound) {
return builder.create<arith::SelectOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::UGT, value, bound),
value, bound);
}
// Return the clamped value or NaN if value is NaN
static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
Value upperBound) {
return max(builder, min(builder, value, upperBound), lowerBound);
}
// Decomposes given floating point value `arg` into a normalized fraction and
// an integral power of two (see std::frexp). Returned values have float type.
static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
bool isPositive = false) {
assert(getElementTypeOrSelf(arg).isF32() && "arg must be f32 type");
std::optional<VectorShape> shape = vectorShape(arg);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto i32 = builder.getIntegerType(32);
auto i32Vec = broadcast(i32, shape);
auto f32Vec = broadcast(builder.getF32Type(), shape);
Value cst126f = f32Cst(builder, 126.0f);
Value cstHalf = f32Cst(builder, 0.5f);
Value cstInvMantMask = f32FromBits(builder, ~0x7f800000u);
// Bitcast to i32 for bitwise operations.
Value i32Half = builder.create<arith::BitcastOp>(i32, cstHalf);
Value i32InvMantMask = builder.create<arith::BitcastOp>(i32, cstInvMantMask);
Value i32Arg = builder.create<arith::BitcastOp>(i32Vec, arg);
// Compute normalized fraction.
Value tmp0 = builder.create<arith::AndIOp>(i32Arg, bcast(i32InvMantMask));
Value tmp1 = builder.create<arith::OrIOp>(tmp0, bcast(i32Half));
Value normalizedFraction = builder.create<arith::BitcastOp>(f32Vec, tmp1);
// Compute exponent.
Value arg0 = isPositive ? arg : builder.create<math::AbsFOp>(arg);
Value biasedExponentBits = builder.create<arith::ShRUIOp>(
builder.create<arith::BitcastOp>(i32Vec, arg0),
bcast(i32Cst(builder, 23)));
Value biasedExponent =
builder.create<arith::SIToFPOp>(f32Vec, biasedExponentBits);
Value exponent =
builder.create<arith::SubFOp>(biasedExponent, bcast(cst126f));
return {normalizedFraction, exponent};
}
// Computes exp2 for an i32 argument.
static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) {
assert(getElementTypeOrSelf(arg).isInteger(32) && "arg must be i32 type");
std::optional<VectorShape> shape = vectorShape(arg);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto f32Vec = broadcast(builder.getF32Type(), shape);
// The exponent of f32 located at 23-bit.
auto exponetBitLocation = bcast(i32Cst(builder, 23));
// Set the exponent bias to zero.
auto bias = bcast(i32Cst(builder, 127));
Value biasedArg = builder.create<arith::AddIOp>(arg, bias);
Value exp2ValueInt =
builder.create<arith::ShLIOp>(biasedArg, exponetBitLocation);
Value exp2ValueF32 = builder.create<arith::BitcastOp>(f32Vec, exp2ValueInt);
return exp2ValueF32;
}
namespace {
Value makePolynomialCalculation(ImplicitLocOpBuilder &builder,
llvm::ArrayRef<Value> coeffs, Value x) {
Type elementType = getElementTypeOrSelf(x);
assert((elementType.isF32() || elementType.isF16()) &&
"x must be f32 or f16 type");
std::optional<VectorShape> shape = vectorShape(x);
if (coeffs.empty())
return broadcast(builder, floatCst(builder, 0.0f, elementType), shape);
if (coeffs.size() == 1)
return coeffs[0];
Value res = builder.create<math::FmaOp>(x, coeffs[coeffs.size() - 1],
coeffs[coeffs.size() - 2]);
for (auto i = ptrdiff_t(coeffs.size()) - 3; i >= 0; --i) {
res = builder.create<math::FmaOp>(x, res, coeffs[i]);
}
return res;
}
} // namespace
//----------------------------------------------------------------------------//
// Helper function/pattern to insert casts for reusing F32 bit expansion.
//----------------------------------------------------------------------------//
template <typename T>
LogicalResult insertCasts(Operation *op, PatternRewriter &rewriter) {
// Conservatively only allow where the operand and result types are exactly 1.
Type origType = op->getResultTypes().front();
for (Type t : llvm::drop_begin(op->getResultTypes()))
if (origType != t)
return rewriter.notifyMatchFailure(op, "required all types to match");
for (Type t : op->getOperandTypes())
if (origType != t)
return rewriter.notifyMatchFailure(op, "required all types to match");
// Skip if already F32 or larger than 32 bits.
if (getElementTypeOrSelf(origType).isF32() ||
getElementTypeOrSelf(origType).getIntOrFloatBitWidth() > 32)
return failure();
// Create F32 equivalent type.
Type newType;
if (auto shaped = dyn_cast<ShapedType>(origType)) {
newType = shaped.clone(rewriter.getF32Type());
} else if (isa<FloatType>(origType)) {
newType = rewriter.getF32Type();
} else {
return rewriter.notifyMatchFailure(op,
"unable to find F32 equivalent type");
}
Location loc = op->getLoc();
SmallVector<Value> operands;
for (auto operand : op->getOperands())
operands.push_back(rewriter.create<arith::ExtFOp>(loc, newType, operand));
auto result =
rewriter.create<T>(loc, TypeRange{newType}, operands, op->getAttrs());
rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, origType, result);
return success();
}
namespace {
// Pattern to cast to F32 to reuse F32 expansion as fallback for single-result
// op.
// TODO: Consider revising to avoid adding multiple casts for a subgraph that is
// all in lower precision. Currently this is only fallback support and performs
// simplistic casting.
template <typename T>
struct ReuseF32Expansion : public OpRewritePattern<T> {
public:
using OpRewritePattern<T>::OpRewritePattern;
LogicalResult matchAndRewrite(T op, PatternRewriter &rewriter) const final {
static_assert(
T::template hasTrait<mlir::OpTrait::SameOperandsAndResultType>(),
"requires same operands and result types");
return insertCasts<T>(op, rewriter);
}
};
} // namespace
//----------------------------------------------------------------------------//
// AtanOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct AtanApproximation : public OpRewritePattern<math::AtanOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::AtanOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
AtanApproximation::matchAndRewrite(math::AtanOp op,
PatternRewriter &rewriter) const {
auto operand = op.getOperand();
if (!getElementTypeOrSelf(operand).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
std::optional<VectorShape> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
Value abs = builder.create<math::AbsFOp>(operand);
auto one = broadcast(builder, f32Cst(builder, 1.0), shape);
// When 0.66 < x <= 2.41 we do (x-1) / (x+1):
auto twoThirds = broadcast(builder, f32Cst(builder, 0.66), shape);
Value cmp2 =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, abs, twoThirds);
Value addone = builder.create<arith::AddFOp>(abs, one);
Value subone = builder.create<arith::SubFOp>(abs, one);
Value xnum = builder.create<arith::SelectOp>(cmp2, subone, abs);
Value xden = builder.create<arith::SelectOp>(cmp2, addone, one);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// Break into the <= 0.66 or > 2.41 we do x or 1/x:
auto tan3pio8 = bcast(f32Cst(builder, 2.41421356237309504880));
Value cmp1 =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, abs, tan3pio8);
xnum = builder.create<arith::SelectOp>(cmp1, one, xnum);
xden = builder.create<arith::SelectOp>(cmp1, abs, xden);
Value x = builder.create<arith::DivFOp>(xnum, xden);
Value xx = builder.create<arith::MulFOp>(x, x);
// Perform the Taylor series approximation for atan over the range
// [0.0, 0.66].
auto p0 = bcast(f32Cst(builder, -8.750608600031904122785e-01));
auto p1 = bcast(f32Cst(builder, -1.615753718733365076637e+01));
auto p2 = bcast(f32Cst(builder, -7.500855792314704667340e+01));
auto p3 = bcast(f32Cst(builder, -1.228866684490136173410e+02));
auto p4 = bcast(f32Cst(builder, -6.485021904942025371773e+01));
auto q0 = bcast(f32Cst(builder, +2.485846490142306297962e+01));
auto q1 = bcast(f32Cst(builder, +1.650270098316988542046e+02));
auto q2 = bcast(f32Cst(builder, +4.328810604912902668951e+02));
auto q3 = bcast(f32Cst(builder, +4.853903996359136964868e+02));
auto q4 = bcast(f32Cst(builder, +1.945506571482613964425e+02));
// Apply the polynomial approximation for the numerator:
Value n = p0;
n = builder.create<math::FmaOp>(xx, n, p1);
n = builder.create<math::FmaOp>(xx, n, p2);
n = builder.create<math::FmaOp>(xx, n, p3);
n = builder.create<math::FmaOp>(xx, n, p4);
n = builder.create<arith::MulFOp>(n, xx);
// Apply the polynomial approximation for the denominator:
Value d = q0;
d = builder.create<math::FmaOp>(xx, d, q1);
d = builder.create<math::FmaOp>(xx, d, q2);
d = builder.create<math::FmaOp>(xx, d, q3);
d = builder.create<math::FmaOp>(xx, d, q4);
// Compute approximation of theta:
Value ans0 = builder.create<arith::DivFOp>(n, d);
ans0 = builder.create<math::FmaOp>(ans0, x, x);
// Correct for the input mapping's angles:
Value mpi4 = bcast(f32Cst(builder, llvm::numbers::pi / 4));
Value ans2 = builder.create<arith::AddFOp>(mpi4, ans0);
Value ans = builder.create<arith::SelectOp>(cmp2, ans2, ans0);
Value mpi2 = bcast(f32Cst(builder, llvm::numbers::pi / 2));
Value ans1 = builder.create<arith::SubFOp>(mpi2, ans0);
ans = builder.create<arith::SelectOp>(cmp1, ans1, ans);
// Correct for signing of the input.
rewriter.replaceOpWithNewOp<math::CopySignOp>(op, ans, operand);
return success();
}
//----------------------------------------------------------------------------//
// AtanOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct Atan2Approximation : public OpRewritePattern<math::Atan2Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::Atan2Op op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
Atan2Approximation::matchAndRewrite(math::Atan2Op op,
PatternRewriter &rewriter) const {
auto y = op.getOperand(0);
auto x = op.getOperand(1);
if (!getElementTypeOrSelf(x).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
std::optional<VectorShape> shape = vectorShape(op.getResult());
// Compute atan in the valid range.
auto div = builder.create<arith::DivFOp>(y, x);
auto atan = builder.create<math::AtanOp>(div);
// Determine what the atan would be for a 180 degree rotation.
auto zero = broadcast(builder, f32Cst(builder, 0.0f), shape);
auto pi = broadcast(builder, f32Cst(builder, 3.14159265359f), shape);
auto addPi = builder.create<arith::AddFOp>(atan, pi);
auto subPi = builder.create<arith::SubFOp>(atan, pi);
auto atanGt =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, atan, zero);
auto flippedAtan = builder.create<arith::SelectOp>(atanGt, subPi, addPi);
// Determine whether to directly use atan or use the 180 degree flip
auto xGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, x, zero);
Value result = builder.create<arith::SelectOp>(xGt, atan, flippedAtan);
// Handle x = 0, y > 0
Value xZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, x, zero);
Value yGt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, y, zero);
Value isHalfPi = builder.create<arith::AndIOp>(xZero, yGt);
auto halfPi = broadcast(builder, f32Cst(builder, 1.57079632679f), shape);
result = builder.create<arith::SelectOp>(isHalfPi, halfPi, result);
// Handle x = 0, y < 0
Value yLt = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, y, zero);
Value isNegativeHalfPiPi = builder.create<arith::AndIOp>(xZero, yLt);
auto negativeHalfPiPi =
broadcast(builder, f32Cst(builder, -1.57079632679f), shape);
result = builder.create<arith::SelectOp>(isNegativeHalfPiPi, negativeHalfPiPi,
result);
// Handle x = 0, y = 0;
Value yZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, y, zero);
Value isNan = builder.create<arith::AndIOp>(xZero, yZero);
Value cstNan = broadcast(builder, f32FromBits(builder, 0x7fc00000), shape);
result = builder.create<arith::SelectOp>(isNan, cstNan, result);
rewriter.replaceOp(op, result);
return success();
}
//----------------------------------------------------------------------------//
// TanhOp approximation.
//----------------------------------------------------------------------------//
namespace {
struct TanhApproximation : public OpRewritePattern<math::TanhOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::TanhOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
TanhApproximation::matchAndRewrite(math::TanhOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
std::optional<VectorShape> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// Clamp operand into [plusClamp, minusClamp] range.
Value minusClamp = bcast(f32Cst(builder, -7.99881172180175781f));
Value plusClamp = bcast(f32Cst(builder, 7.99881172180175781f));
Value x = clamp(builder, op.getOperand(), minusClamp, plusClamp);
// Mask for tiny values that are approximated with `operand`.
Value tiny = bcast(f32Cst(builder, 0.0004f));
Value tinyMask = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OLT, builder.create<math::AbsFOp>(op.getOperand()),
tiny);
// The monomial coefficients of the numerator polynomial (odd).
Value alpha1 = bcast(f32Cst(builder, 4.89352455891786e-03f));
Value alpha3 = bcast(f32Cst(builder, 6.37261928875436e-04f));
Value alpha5 = bcast(f32Cst(builder, 1.48572235717979e-05f));
Value alpha7 = bcast(f32Cst(builder, 5.12229709037114e-08f));
Value alpha9 = bcast(f32Cst(builder, -8.60467152213735e-11f));
Value alpha11 = bcast(f32Cst(builder, 2.00018790482477e-13f));
Value alpha13 = bcast(f32Cst(builder, -2.76076847742355e-16f));
// The monomial coefficients of the denominator polynomial (even).
Value beta0 = bcast(f32Cst(builder, 4.89352518554385e-03f));
Value beta2 = bcast(f32Cst(builder, 2.26843463243900e-03f));
Value beta4 = bcast(f32Cst(builder, 1.18534705686654e-04f));
Value beta6 = bcast(f32Cst(builder, 1.19825839466702e-06f));
// Since the polynomials are odd/even, we need x^2.
Value x2 = builder.create<arith::MulFOp>(x, x);
// Evaluate the numerator polynomial p.
Value p = builder.create<math::FmaOp>(x2, alpha13, alpha11);
p = builder.create<math::FmaOp>(x2, p, alpha9);
p = builder.create<math::FmaOp>(x2, p, alpha7);
p = builder.create<math::FmaOp>(x2, p, alpha5);
p = builder.create<math::FmaOp>(x2, p, alpha3);
p = builder.create<math::FmaOp>(x2, p, alpha1);
p = builder.create<arith::MulFOp>(x, p);
// Evaluate the denominator polynomial q.
Value q = builder.create<math::FmaOp>(x2, beta6, beta4);
q = builder.create<math::FmaOp>(x2, q, beta2);
q = builder.create<math::FmaOp>(x2, q, beta0);
// Divide the numerator by the denominator.
Value res = builder.create<arith::SelectOp>(
tinyMask, x, builder.create<arith::DivFOp>(p, q));
rewriter.replaceOp(op, res);
return success();
}
#define LN2_VALUE \
0.693147180559945309417232121458176568075500134360255254120680009493393621L
#define LOG2E_VALUE \
1.442695040888963407359924681001892137426645954152985934135449406931109219L
//----------------------------------------------------------------------------//
// LogOp and Log2Op approximation.
//----------------------------------------------------------------------------//
namespace {
template <typename Op>
struct LogApproximationBase : public OpRewritePattern<Op> {
using OpRewritePattern<Op>::OpRewritePattern;
/// Base 2 if 'base2' is set; natural logarithm (base e) otherwise.
LogicalResult logMatchAndRewrite(Op op, PatternRewriter &rewriter,
bool base2) const;
};
} // namespace
// This approximation comes from Julien Pommier's SSE math library.
// Link: http://gruntthepeon.free.fr/ssemath
template <typename Op>
LogicalResult
LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter,
bool base2) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
std::optional<VectorShape> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
Value cstZero = bcast(f32Cst(builder, 0.0f));
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
// The smallest non denormalized float number.
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
Value cstMinusInf = bcast(f32FromBits(builder, 0xff800000u));
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
Value cstNan = bcast(f32FromBits(builder, 0x7fc00000));
// Polynomial coefficients.
Value cstCephesSQRTHF = bcast(f32Cst(builder, 0.707106781186547524f));
Value cstCephesLogP0 = bcast(f32Cst(builder, 7.0376836292E-2f));
Value cstCephesLogP1 = bcast(f32Cst(builder, -1.1514610310E-1f));
Value cstCephesLogP2 = bcast(f32Cst(builder, 1.1676998740E-1f));
Value cstCephesLogP3 = bcast(f32Cst(builder, -1.2420140846E-1f));
Value cstCephesLogP4 = bcast(f32Cst(builder, +1.4249322787E-1f));
Value cstCephesLogP5 = bcast(f32Cst(builder, -1.6668057665E-1f));
Value cstCephesLogP6 = bcast(f32Cst(builder, +2.0000714765E-1f));
Value cstCephesLogP7 = bcast(f32Cst(builder, -2.4999993993E-1f));
Value cstCephesLogP8 = bcast(f32Cst(builder, +3.3333331174E-1f));
Value x = op.getOperand();
// Truncate input values to the minimum positive normal.
x = max(builder, x, cstMinNormPos);
// Extract significant in the range [0.5,1) and exponent.
std::pair<Value, Value> pair = frexp(builder, x, /*isPositive=*/true);
x = pair.first;
Value e = pair.second;
// Shift the inputs from the range [0.5,1) to [sqrt(1/2), sqrt(2)) and shift
// by -1.0. The values are then centered around 0, which improves the
// stability of the polynomial evaluation:
//
// if( x < SQRTHF ) {
// e -= 1;
// x = x + x - 1.0;
// } else { x = x - 1.0; }
Value mask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x,
cstCephesSQRTHF);
Value tmp = builder.create<arith::SelectOp>(mask, x, cstZero);
x = builder.create<arith::SubFOp>(x, cstOne);
e = builder.create<arith::SubFOp>(
e, builder.create<arith::SelectOp>(mask, cstOne, cstZero));
x = builder.create<arith::AddFOp>(x, tmp);
Value x2 = builder.create<arith::MulFOp>(x, x);
Value x3 = builder.create<arith::MulFOp>(x2, x);
// Evaluate the polynomial approximant of degree 8 in three parts.
Value y0, y1, y2;
y0 = builder.create<math::FmaOp>(cstCephesLogP0, x, cstCephesLogP1);
y1 = builder.create<math::FmaOp>(cstCephesLogP3, x, cstCephesLogP4);
y2 = builder.create<math::FmaOp>(cstCephesLogP6, x, cstCephesLogP7);
y0 = builder.create<math::FmaOp>(y0, x, cstCephesLogP2);
y1 = builder.create<math::FmaOp>(y1, x, cstCephesLogP5);
y2 = builder.create<math::FmaOp>(y2, x, cstCephesLogP8);
y0 = builder.create<math::FmaOp>(y0, x3, y1);
y0 = builder.create<math::FmaOp>(y0, x3, y2);
y0 = builder.create<arith::MulFOp>(y0, x3);
y0 = builder.create<math::FmaOp>(cstNegHalf, x2, y0);
x = builder.create<arith::AddFOp>(x, y0);
if (base2) {
Value cstLog2e = bcast(f32Cst(builder, static_cast<float>(LOG2E_VALUE)));
x = builder.create<math::FmaOp>(x, cstLog2e, e);
} else {
Value cstLn2 = bcast(f32Cst(builder, static_cast<float>(LN2_VALUE)));
x = builder.create<math::FmaOp>(e, cstLn2, x);
}
Value invalidMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::ULT,
op.getOperand(), cstZero);
Value zeroMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstZero);
Value posInfMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstPosInf);
// Filter out invalid values:
// • x == 0 -> -INF
// • x < 0 -> NAN
// • x == +INF -> +INF
Value aproximation = builder.create<arith::SelectOp>(
zeroMask, cstMinusInf,
builder.create<arith::SelectOp>(
invalidMask, cstNan,
builder.create<arith::SelectOp>(posInfMask, cstPosInf, x)));
rewriter.replaceOp(op, aproximation);
return success();
}
namespace {
struct LogApproximation : public LogApproximationBase<math::LogOp> {
using LogApproximationBase::LogApproximationBase;
LogicalResult matchAndRewrite(math::LogOp op,
PatternRewriter &rewriter) const final {
return logMatchAndRewrite(op, rewriter, /*base2=*/false);
}
};
} // namespace
namespace {
struct Log2Approximation : public LogApproximationBase<math::Log2Op> {
using LogApproximationBase::LogApproximationBase;
LogicalResult matchAndRewrite(math::Log2Op op,
PatternRewriter &rewriter) const final {
return logMatchAndRewrite(op, rewriter, /*base2=*/true);
}
};
} // namespace
//----------------------------------------------------------------------------//
// Log1p approximation.
//----------------------------------------------------------------------------//
namespace {
struct Log1pApproximation : public OpRewritePattern<math::Log1pOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::Log1pOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
// Approximate log(1+x).
LogicalResult
Log1pApproximation::matchAndRewrite(math::Log1pOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
std::optional<VectorShape> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// Approximate log(1+x) using the following, due to W. Kahan:
// u = x + 1.0;
// if (u == 1.0 || u == inf) return x;
// return x * log(u) / (u - 1.0);
// ^^^^^^^^^^^^^^^^^^^^^^
// "logLarge" below.
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value x = op.getOperand();
Value u = builder.create<arith::AddFOp>(x, cstOne);
Value uSmall =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, cstOne);
Value logU = builder.create<math::LogOp>(u);
Value uInf =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, u, logU);
Value logLarge = builder.create<arith::MulFOp>(
x, builder.create<arith::DivFOp>(
logU, builder.create<arith::SubFOp>(u, cstOne)));
Value approximation = builder.create<arith::SelectOp>(
builder.create<arith::OrIOp>(uSmall, uInf), x, logLarge);
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Asin approximation.
//----------------------------------------------------------------------------//
// Approximates asin(x).
// This approximation is based on the following stackoverflow post:
// https://stackoverflow.com/a/42683455
namespace {
struct AsinPolynomialApproximation : public OpRewritePattern<math::AsinOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::AsinOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
AsinPolynomialApproximation::matchAndRewrite(math::AsinOp op,
PatternRewriter &rewriter) const {
Value operand = op.getOperand();
Type elementType = getElementTypeOrSelf(operand);
if (!(elementType.isF32() || elementType.isF16()))
return rewriter.notifyMatchFailure(op,
"only f32 and f16 type is supported.");
std::optional<VectorShape> shape = vectorShape(operand);
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto fma = [&](Value a, Value b, Value c) -> Value {
return builder.create<math::FmaOp>(a, b, c);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};
auto sub = [&](Value a, Value b) -> Value {
return builder.create<arith::SubFOp>(a, b);
};
auto abs = [&](Value a) -> Value { return builder.create<math::AbsFOp>(a); };
auto sqrt = [&](Value a) -> Value { return builder.create<math::SqrtOp>(a); };
auto scopy = [&](Value a, Value b) -> Value {
return builder.create<math::CopySignOp>(a, b);
};
auto sel = [&](Value a, Value b, Value c) -> Value {
return builder.create<arith::SelectOp>(a, b, c);
};
Value abso = abs(operand);
Value aa = mul(operand, operand);
Value opp = sqrt(sub(bcast(floatCst(builder, 1.0, elementType)), aa));
Value gt =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, aa,
bcast(floatCst(builder, 0.5, elementType)));
Value x = sel(gt, opp, abso);
// Asin(x) approximation for x = [-9/16, 9/16]:
Value s = mul(x, x);
Value q = mul(s, s);
Value r = bcast(floatCst(builder, 5.5579749017470502e-2, elementType));
Value t = bcast(floatCst(builder, -6.2027913464120114e-2, elementType));
r = fma(r, q, bcast(floatCst(builder, 5.4224464349245036e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, -1.1326992890324464e-2, elementType)));
r = fma(r, q, bcast(floatCst(builder, 1.5268872539397656e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, 1.0493798473372081e-2, elementType)));
r = fma(r, q, bcast(floatCst(builder, 1.4106045900607047e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, 1.7339776384962050e-2, elementType)));
r = fma(r, q, bcast(floatCst(builder, 2.2372961589651054e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, 3.0381912707941005e-2, elementType)));
r = fma(r, q, bcast(floatCst(builder, 4.4642857881094775e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, 7.4999999991367292e-2, elementType)));
r = fma(r, s, t);
r = fma(r, s, bcast(floatCst(builder, 1.6666666666670193e-1, elementType)));
t = mul(x, s);
r = fma(r, t, x);
Value rsub = sub(bcast(floatCst(builder, 1.57079632679, elementType)), r);
r = sel(gt, rsub, r);
r = scopy(r, operand);
rewriter.replaceOp(op, r);
return success();
}
//----------------------------------------------------------------------------//
// Acos approximation.
//----------------------------------------------------------------------------//
// Approximates acos(x).
// This approximation is based on the following stackoverflow post:
// https://stackoverflow.com/a/42683455
namespace {
struct AcosPolynomialApproximation : public OpRewritePattern<math::AcosOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::AcosOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
AcosPolynomialApproximation::matchAndRewrite(math::AcosOp op,
PatternRewriter &rewriter) const {
Value operand = op.getOperand();
Type elementType = getElementTypeOrSelf(operand);
if (!(elementType.isF32() || elementType.isF16()))
return rewriter.notifyMatchFailure(op,
"only f32 and f16 type is supported.");
std::optional<VectorShape> shape = vectorShape(operand);
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto fma = [&](Value a, Value b, Value c) -> Value {
return builder.create<math::FmaOp>(a, b, c);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};
Value negOperand = builder.create<arith::NegFOp>(operand);
Value zero = bcast(floatCst(builder, 0.0, elementType));
Value half = bcast(floatCst(builder, 0.5, elementType));
Value negOne = bcast(floatCst(builder, -1.0, elementType));
Value selR =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand, zero);
Value r = builder.create<arith::SelectOp>(selR, negOperand, operand);
Value chkConst = bcast(floatCst(builder, -0.5625, elementType));
Value firstPred =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, r, chkConst);
Value trueVal =
fma(bcast(floatCst(builder, 9.3282184640716537e-1, elementType)),
bcast(floatCst(builder, 1.6839188885261840e+0, elementType)),
builder.create<math::AsinOp>(r));
Value falseVal = builder.create<math::SqrtOp>(fma(half, r, half));
falseVal = builder.create<math::AsinOp>(falseVal);
falseVal = mul(bcast(floatCst(builder, 2.0, elementType)), falseVal);
r = builder.create<arith::SelectOp>(firstPred, trueVal, falseVal);
// Check whether the operand lies in between [-1.0, 0.0).
Value greaterThanNegOne =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGE, operand, negOne);
Value lessThanZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
Value betweenNegOneZero =
builder.create<arith::AndIOp>(greaterThanNegOne, lessThanZero);
trueVal = fma(bcast(floatCst(builder, 1.8656436928143307e+0, elementType)),
bcast(floatCst(builder, 1.6839188885261840e+0, elementType)),
builder.create<arith::NegFOp>(r));
Value finalVal =
builder.create<arith::SelectOp>(betweenNegOneZero, trueVal, r);
rewriter.replaceOp(op, finalVal);
return success();
}
//----------------------------------------------------------------------------//
// Erf approximation.
//----------------------------------------------------------------------------//
// Approximates erf(x) with
// a - P(x)/Q(x)
// where P and Q are polynomials of degree 4.
// Different coefficients are chosen based on the value of x.
// The approximation error is ~2.5e-07.
// Boost's minimax tool that utilizes the Remez method was used to find the
// coefficients.
LogicalResult
ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op,
PatternRewriter &rewriter) const {
Value operand = op.getOperand();
Type elementType = getElementTypeOrSelf(operand);
if (!(elementType.isF32() || elementType.isF16()))
return rewriter.notifyMatchFailure(op,
"only f32 and f16 type is supported.");
std::optional<VectorShape> shape = vectorShape(operand);
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
const int intervalsCount = 3;
const int polyDegree = 4;
Value zero = bcast(floatCst(builder, 0, elementType));
Value one = bcast(floatCst(builder, 1, elementType));
Value pp[intervalsCount][polyDegree + 1];
pp[0][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
pp[0][1] = bcast(floatCst(builder, +1.12837916222975858e+00f, elementType));
pp[0][2] = bcast(floatCst(builder, -5.23018562988006470e-01f, elementType));
pp[0][3] = bcast(floatCst(builder, +2.09741709609267072e-01f, elementType));
pp[0][4] = bcast(floatCst(builder, +2.58146801602987875e-02f, elementType));
pp[1][0] = bcast(floatCst(builder, +0.00000000000000000e+00f, elementType));
pp[1][1] = bcast(floatCst(builder, +1.12750687816789140e+00f, elementType));
pp[1][2] = bcast(floatCst(builder, -3.64721408487825775e-01f, elementType));
pp[1][3] = bcast(floatCst(builder, +1.18407396425136952e-01f, elementType));
pp[1][4] = bcast(floatCst(builder, +3.70645533056476558e-02f, elementType));
pp[2][0] = bcast(floatCst(builder, -3.30093071049483172e-03f, elementType));
pp[2][1] = bcast(floatCst(builder, +3.51961938357697011e-03f, elementType));
pp[2][2] = bcast(floatCst(builder, -1.41373622814988039e-03f, elementType));
pp[2][3] = bcast(floatCst(builder, +2.53447094961941348e-04f, elementType));
pp[2][4] = bcast(floatCst(builder, -1.71048029455037401e-05f, elementType));
Value qq[intervalsCount][polyDegree + 1];
qq[0][0] = bcast(floatCst(builder, +1.000000000000000000e+00f, elementType));
qq[0][1] = bcast(floatCst(builder, -4.635138185962547255e-01f, elementType));
qq[0][2] = bcast(floatCst(builder, +5.192301327279782447e-01f, elementType));
qq[0][3] = bcast(floatCst(builder, -1.318089722204810087e-01f, elementType));
qq[0][4] = bcast(floatCst(builder, +7.397964654672315005e-02f, elementType));
qq[1][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
qq[1][1] = bcast(floatCst(builder, -3.27607011824493086e-01f, elementType));
qq[1][2] = bcast(floatCst(builder, +4.48369090658821977e-01f, elementType));
qq[1][3] = bcast(floatCst(builder, -8.83462621207857930e-02f, elementType));
qq[1][4] = bcast(floatCst(builder, +5.72442770283176093e-02f, elementType));
qq[2][0] = bcast(floatCst(builder, +1.00000000000000000e+00f, elementType));
qq[2][1] = bcast(floatCst(builder, -2.06069165953913769e+00f, elementType));
qq[2][2] = bcast(floatCst(builder, +1.62705939945477759e+00f, elementType));
qq[2][3] = bcast(floatCst(builder, -5.83389859211130017e-01f, elementType));
qq[2][4] = bcast(floatCst(builder, +8.21908939856640930e-02f, elementType));
Value offsets[intervalsCount];
offsets[0] = bcast(floatCst(builder, 0.0f, elementType));
offsets[1] = bcast(floatCst(builder, 0.0f, elementType));
offsets[2] = bcast(floatCst(builder, 1.0f, elementType));
Value bounds[intervalsCount];
bounds[0] = bcast(floatCst(builder, 0.8f, elementType));
bounds[1] = bcast(floatCst(builder, 2.0f, elementType));
bounds[2] = bcast(floatCst(builder, 3.75f, elementType));
Value isNegativeArg =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
Value negArg = builder.create<arith::NegFOp>(operand);
Value x = builder.create<arith::SelectOp>(isNegativeArg, negArg, operand);
Value offset = offsets[0];
Value p[polyDegree + 1];
Value q[polyDegree + 1];
for (int i = 0; i <= polyDegree; ++i) {
p[i] = pp[0][i];
q[i] = qq[0][i];
}
// TODO: maybe use vector stacking to reduce the number of selects.
Value isLessThanBound[intervalsCount];
for (int j = 0; j < intervalsCount - 1; ++j) {
isLessThanBound[j] =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, bounds[j]);
for (int i = 0; i <= polyDegree; ++i) {
p[i] = builder.create<arith::SelectOp>(isLessThanBound[j], p[i],
pp[j + 1][i]);
q[i] = builder.create<arith::SelectOp>(isLessThanBound[j], q[i],
qq[j + 1][i]);
}
offset = builder.create<arith::SelectOp>(isLessThanBound[j], offset,
offsets[j + 1]);
}
isLessThanBound[intervalsCount - 1] = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::ULT, x, bounds[intervalsCount - 1]);
Value pPoly = makePolynomialCalculation(builder, p, x);
Value qPoly = makePolynomialCalculation(builder, q, x);
Value rationalPoly = builder.create<arith::DivFOp>(pPoly, qPoly);
Value formula = builder.create<arith::AddFOp>(offset, rationalPoly);
formula = builder.create<arith::SelectOp>(isLessThanBound[intervalsCount - 1],
formula, one);
// erf is odd function: erf(x) = -erf(-x).
Value negFormula = builder.create<arith::NegFOp>(formula);
Value res =
builder.create<arith::SelectOp>(isNegativeArg, negFormula, formula);
rewriter.replaceOp(op, res);
return success();
}
// Approximates erfc(x) with p((x - 2) / (x + 2)), where p is a 9 degree
// polynomial.This approximation is based on the following stackoverflow post:
// https://stackoverflow.com/questions/35966695/vectorizable-implementation-of-complementary-error-function-erfcf
// The stackoverflow post is in turn based on:
// M. M. Shepherd and J. G. Laframboise, "Chebyshev Approximation of
// (1+2x)exp(x^2)erfc x in 0 <= x < INF", Mathematics of Computation, Vol. 36,
// No. 153, January 1981, pp. 249-253.
//
// Maximum error: 2.65 ulps
LogicalResult
ErfcPolynomialApproximation::matchAndRewrite(math::ErfcOp op,
PatternRewriter &rewriter) const {
Value x = op.getOperand();
Type et = getElementTypeOrSelf(x);
if (!et.isF32())
return rewriter.notifyMatchFailure(op, "only f32 type is supported.");
std::optional<VectorShape> shape = vectorShape(x);
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
Value trueValue = bcast(boolCst(builder, true));
Value zero = bcast(floatCst(builder, 0.0f, et));
Value one = bcast(floatCst(builder, 1.0f, et));
Value onehalf = bcast(floatCst(builder, 0.5f, et));
Value neg4 = bcast(floatCst(builder, -4.0f, et));
Value neg2 = bcast(floatCst(builder, -2.0f, et));
Value pos2 = bcast(floatCst(builder, 2.0f, et));
Value posInf = bcast(floatCst(builder, INFINITY, et));
Value clampVal = bcast(floatCst(builder, 10.0546875f, et));
Value a = builder.create<math::AbsFOp>(x);
Value p = builder.create<arith::AddFOp>(a, pos2);
Value r = builder.create<arith::DivFOp>(one, p);
Value q = builder.create<math::FmaOp>(neg4, r, one);
Value t = builder.create<math::FmaOp>(builder.create<arith::AddFOp>(q, one),
neg2, a);
Value e = builder.create<math::FmaOp>(builder.create<arith::NegFOp>(a), q, t);
q = builder.create<math::FmaOp>(r, e, q);
p = bcast(floatCst(builder, -0x1.a4a000p-12f, et)); // -4.01139259e-4
Value c1 = bcast(floatCst(builder, -0x1.42a260p-10f, et)); // -1.23075210e-3
p = builder.create<math::FmaOp>(p, q, c1);
Value c2 = bcast(floatCst(builder, 0x1.585714p-10f, et)); // 1.31355342e-3
p = builder.create<math::FmaOp>(p, q, c2);
Value c3 = bcast(floatCst(builder, 0x1.1adcc4p-07f, et)); // 8.63227434e-3
p = builder.create<math::FmaOp>(p, q, c3);
Value c4 = bcast(floatCst(builder, -0x1.081b82p-07f, et)); // -8.05991981e-3
p = builder.create<math::FmaOp>(p, q, c4);
Value c5 = bcast(floatCst(builder, -0x1.bc0b6ap-05f, et)); // -5.42046614e-2
p = builder.create<math::FmaOp>(p, q, c5);
Value c6 = bcast(floatCst(builder, 0x1.4ffc46p-03f, et)); // 1.64055392e-1
p = builder.create<math::FmaOp>(p, q, c6);
Value c7 = bcast(floatCst(builder, -0x1.540840p-03f, et)); // -1.66031361e-1
p = builder.create<math::FmaOp>(p, q, c7);
Value c8 = bcast(floatCst(builder, -0x1.7bf616p-04f, et)); // -9.27639827e-2
p = builder.create<math::FmaOp>(p, q, c8);
Value c9 = bcast(floatCst(builder, 0x1.1ba03ap-02f, et)); // 2.76978403e-1
p = builder.create<math::FmaOp>(p, q, c9);
Value d = builder.create<math::FmaOp>(pos2, a, one);
r = builder.create<arith::DivFOp>(one, d);
q = builder.create<math::FmaOp>(p, r, r);
Value negfa = builder.create<arith::NegFOp>(a);
Value fmaqah = builder.create<math::FmaOp>(q, negfa, onehalf);
Value psubq = builder.create<arith::SubFOp>(p, q);
e = builder.create<math::FmaOp>(fmaqah, pos2, psubq);
r = builder.create<math::FmaOp>(e, r, q);
Value s = builder.create<arith::MulFOp>(a, a);
e = builder.create<math::ExpOp>(builder.create<arith::NegFOp>(s));
t = builder.create<math::FmaOp>(builder.create<arith::NegFOp>(a), a, s);
r = builder.create<math::FmaOp>(
r, e,
builder.create<arith::MulFOp>(builder.create<arith::MulFOp>(r, e), t));
Value isNotLessThanInf = builder.create<arith::XOrIOp>(
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, a, posInf),
trueValue);
r = builder.create<arith::SelectOp>(isNotLessThanInf,
builder.create<arith::AddFOp>(x, x), r);
Value isGreaterThanClamp =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, a, clampVal);
r = builder.create<arith::SelectOp>(isGreaterThanClamp, zero, r);
Value isNegative =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, x, zero);
r = builder.create<arith::SelectOp>(
isNegative, builder.create<arith::SubFOp>(pos2, r), r);
rewriter.replaceOp(op, r);
return success();
}
//----------------------------------------------------------------------------//
// Exp approximation.
//----------------------------------------------------------------------------//
namespace {
Value clampWithNormals(ImplicitLocOpBuilder &builder,
const std::optional<VectorShape> shape, Value value,
float lowerBound, float upperBound) {
assert(!std::isnan(lowerBound));
assert(!std::isnan(upperBound));
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto selectCmp = [&builder](auto pred, Value value, Value bound) {
return builder.create<arith::SelectOp>(
builder.create<arith::CmpFOp>(pred, value, bound), value, bound);
};
// Note: prefer UGE/ULE vs. UGT/ULT, since they generate vmaxps/vminps vs.
// vcmpleps+vmovaps on x86_64. The latter outcome is also obtained with
// arith::{Max,Min}FOp.
value = selectCmp(arith::CmpFPredicate::UGE, value,
bcast(f32Cst(builder, lowerBound)));
value = selectCmp(arith::CmpFPredicate::ULE, value,
bcast(f32Cst(builder, upperBound)));
return value;
}
struct ExpApproximation : public OpRewritePattern<math::ExpOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::ExpOp op,
PatternRewriter &rewriter) const final;
};
LogicalResult
ExpApproximation::matchAndRewrite(math::ExpOp op,
PatternRewriter &rewriter) const {
auto shape = vectorShape(op.getOperand().getType());
auto elementTy = getElementTypeOrSelf(op.getType());
if (!elementTy.isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto add = [&](Value a, Value b) -> Value {
return builder.create<arith::AddFOp>(a, b);
};
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
auto fmla = [&](Value a, Value b, Value c) {
return builder.create<math::FmaOp>(a, b, c);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};
// Polynomial approximation from Cephes.
//
// To compute e^x, we re-express it as
//
// e^x = e^(a + b)
// = e^(a + n log(2))
// = e^a * 2^n.
//
// We choose n = round(x / log(2)), restricting the value of `a` to
// (-log(2)/2, log(2)/2). We then use a polynomial to compute e^a. The
// relative error between our approximation and the true value of e^a is less
// than 2^-22.5 for all values of `a` within this range.
// Restrict input to a small range, including some values that evaluate to
// +/- inf. Note that for our lower bound, we choose log(2^-126) instead of
// log(F32_EPSILON). We do so because this routine always flushes denormal
// floating points to 0. Therefore, we only need to worry about exponentiating
// up to the smallest representable non-denormal floating point, which is
// 2^-126.
// Constants.
Value cstHalf = bcast(f32Cst(builder, 0.5f));
Value cstOne = bcast(f32Cst(builder, 1.0f));
// 1/log(2)
Value cstLog2ef = bcast(f32Cst(builder, 1.44269504088896341f));
Value cstExpC1 = bcast(f32Cst(builder, -0.693359375f));
Value cstExpC2 = bcast(f32Cst(builder, 2.12194440e-4f));
Value cstExpP0 = bcast(f32Cst(builder, 1.9875691500E-4f));
Value cstExpP1 = bcast(f32Cst(builder, 1.3981999507E-3f));
Value cstExpP2 = bcast(f32Cst(builder, 8.3334519073E-3f));
Value cstExpP3 = bcast(f32Cst(builder, 4.1665795894E-2f));
Value cstExpP4 = bcast(f32Cst(builder, 1.6666665459E-1f));
Value cstExpP5 = bcast(f32Cst(builder, 5.0000001201E-1f));
// Our computations below aren't particularly sensitive to the exact choices
// here, so we choose values a bit larger/smaller than
//
// log(F32_MAX) = 88.723...
// log(2^-126) = -87.337...
Value x = op.getOperand();
x = clampWithNormals(builder, shape, x, -87.8f, 88.8f);
Value n = floor(fmla(x, cstLog2ef, cstHalf));
// When we eventually do the multiplication in e^a * 2^n, we need to handle
// the case when n > 127, the max fp32 exponent (so 2^n == inf) but e^a < 1
// (so e^a * 2^n != inf). There's a similar problem for n < -126, the
// smallest fp32 exponent.
//
// A straightforward solution would be to detect n out of range and split it
// up, doing
//
// e^a * 2^n = e^a * 2^(n1 + n2)
// = (2^n1 * e^a) * 2^n2.
//
// But it turns out this approach is quite slow, probably because it
// manipulates subnormal values.
//
// The approach we use instead is to clamp n to [-127, 127]. Let n' be the
// value of n clamped to [-127, 127]. In the case where n' = 127, `a` can grow
// up to as large as 88.8 - 127 * log(2) which is about 0.7703. Even though
// this value of `a` is outside our previously specified range, e^a will still
// only have a relative error of approximately 2^-16 at worse. In practice
// this seems to work well enough; it passes our exhaustive tests, breaking
// only one result, and by one ulp (we return exp(88.7228394) = max-float but
// we should return inf).
//
// In the case where n' = -127, the original input value of x is so small that
// e^x, our final answer, is less than 2^-126. Since 2^-126 is the smallest
// normal floating point, and since we flush denormals, we simply return 0. We
// do this in a branchless way by observing that our code for constructing 2^n
// produces 0 if n = -127.
//
// The proof that n' = -127 implies e^x < 2^-126 is as follows:
//
// n' = -127 implies n <= -127
// implies round(x / log(2)) <= -127
// implies x/log(2) < -126.5
// implies x < -126.5 * log(2)
// implies e^x < e^(-126.5 * log(2))
// implies e^x < 2^-126.5 < 2^-126
//
// This proves that n' = -127 implies e^x < 2^-126.
n = clampWithNormals(builder, shape, n, -127.0f, 127.0f);
// Computes x = x - n' * log(2), the value for `a`
x = fmla(cstExpC1, n, x);
x = fmla(cstExpC2, n, x);
// Polynomial to compute z = e^a, accurate for a in (-0.5, 0.5).
Value z = fmla(x, cstExpP0, cstExpP1);
z = fmla(z, x, cstExpP2);
z = fmla(z, x, cstExpP3);
z = fmla(z, x, cstExpP4);
z = fmla(z, x, cstExpP5);
z = fmla(z, mul(x, x), x);
z = add(cstOne, z);
// Convert n' to an i32. This is safe because we clamped it above.
auto i32Vec = broadcast(builder.getI32Type(), shape);
Value nI32 = builder.create<arith::FPToSIOp>(i32Vec, n);
// Creates the value 2^n' if -126 <= n' <= 127 and 0 if n' = -127.
Value pow2 = exp2I32(builder, nI32);
// Return z * 2^n' if -126 <= n' <= 127 and 0 if n = -127.
Value ret = mul(z, pow2);
rewriter.replaceOp(op, ret);
return mlir::success();
}
} // namespace
//----------------------------------------------------------------------------//
// ExpM1 approximation.
//----------------------------------------------------------------------------//
namespace {
struct ExpM1Approximation : public OpRewritePattern<math::ExpM1Op> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::ExpM1Op op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
ExpM1Approximation::matchAndRewrite(math::ExpM1Op op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
std::optional<VectorShape> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
// expm1(x) = exp(x) - 1 = u - 1.
// We have to handle it carefully when x is near 0, i.e. u ~= 1,
// and when the input is ~= -inf, i.e. u - 1 ~= -1.
Value cstOne = bcast(f32Cst(builder, 1.0f));
Value cstNegOne = bcast(f32Cst(builder, -1.0f));
Value x = op.getOperand();
Value u = builder.create<math::ExpOp>(x);
Value uEqOneOrNaN =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::UEQ, u, cstOne);
Value uMinusOne = builder.create<arith::SubFOp>(u, cstOne);
Value uMinusOneEqNegOne = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OEQ, uMinusOne, cstNegOne);
// logU = log(u) ~= x
Value logU = builder.create<math::LogOp>(u);
// Detect exp(x) = +inf; written this way to avoid having to form +inf.
Value isInf =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, logU, u);
// (u - 1) * (x / ~x)
Value expm1 = builder.create<arith::MulFOp>(
uMinusOne, builder.create<arith::DivFOp>(x, logU));
expm1 = builder.create<arith::SelectOp>(isInf, u, expm1);
Value approximation = builder.create<arith::SelectOp>(
uEqOneOrNaN, x,
builder.create<arith::SelectOp>(uMinusOneEqNegOne, cstNegOne, expm1));
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Sin and Cos approximation.
//----------------------------------------------------------------------------//
namespace {
template <bool isSine, typename OpTy>
struct SinAndCosApproximation : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const final;
};
} // namespace
#define TWO_OVER_PI \
0.6366197723675813430755350534900574481378385829618257949906693762L
#define PI_OVER_2 \
1.5707963267948966192313216916397514420985846996875529104874722961L
// Approximates sin(x) or cos(x) by finding the best approximation polynomial in
// the reduced range [0, pi/2] for both sin(x) and cos(x). Then given y in the
// reduced range sin(x) will be computed as sin(y), -sin(y), cos(y) or -cos(y).
template <bool isSine, typename OpTy>
LogicalResult SinAndCosApproximation<isSine, OpTy>::matchAndRewrite(
OpTy op, PatternRewriter &rewriter) const {
static_assert(
llvm::is_one_of<OpTy, math::SinOp, math::CosOp>::value,
"SinAndCosApproximation pattern expects math::SinOp or math::CosOp");
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
std::optional<VectorShape> shape = vectorShape(op.getOperand());
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};
auto sub = [&](Value a, Value b) -> Value {
return builder.create<arith::SubFOp>(a, b);
};
auto floor = [&](Value a) { return builder.create<math::FloorOp>(a); };
auto i32Vec = broadcast(builder.getI32Type(), shape);
auto fPToSingedInteger = [&](Value a) -> Value {
return builder.create<arith::FPToSIOp>(i32Vec, a);
};
auto modulo4 = [&](Value a) -> Value {
return builder.create<arith::AndIOp>(a, bcast(i32Cst(builder, 3)));
};
auto isEqualTo = [&](Value a, Value b) -> Value {
return builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, a, b);
};
auto isGreaterThan = [&](Value a, Value b) -> Value {
return builder.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, a, b);
};
auto select = [&](Value cond, Value t, Value f) -> Value {
return builder.create<arith::SelectOp>(cond, t, f);
};
auto fmla = [&](Value a, Value b, Value c) {
return builder.create<math::FmaOp>(a, b, c);
};
auto bitwiseOr = [&](Value a, Value b) {
return builder.create<arith::OrIOp>(a, b);
};
Value twoOverPi = bcast(f32Cst(builder, (float)TWO_OVER_PI));
Value piOverTwo = bcast(f32Cst(builder, (float)PI_OVER_2));
Value x = op.getOperand();
Value k = floor(mul(x, twoOverPi));
Value y = sub(x, mul(k, piOverTwo));
Value cstOne = bcast(f32Cst(builder, 1.0));
Value cstNegativeOne = bcast(f32Cst(builder, -1.0));
Value cstSC2 = bcast(f32Cst(builder, -0.16666667163372039794921875f));
Value cstSC4 = bcast(f32Cst(builder, 8.333347737789154052734375e-3f));
Value cstSC6 = bcast(f32Cst(builder, -1.9842604524455964565277099609375e-4f));
Value cstSC8 =
bcast(f32Cst(builder, 2.760012648650445044040679931640625e-6f));
Value cstSC10 =
bcast(f32Cst(builder, -2.50293279435709337121807038784027099609375e-8f));
Value cstCC2 = bcast(f32Cst(builder, -0.5f));
Value cstCC4 = bcast(f32Cst(builder, 4.166664183139801025390625e-2f));
Value cstCC6 = bcast(f32Cst(builder, -1.388833043165504932403564453125e-3f));
Value cstCC8 = bcast(f32Cst(builder, 2.47562347794882953166961669921875e-5f));
Value cstCC10 =
bcast(f32Cst(builder, -2.59630184018533327616751194000244140625e-7f));
Value kMod4 = modulo4(fPToSingedInteger(k));
Value kR0 = isEqualTo(kMod4, bcast(i32Cst(builder, 0)));
Value kR1 = isEqualTo(kMod4, bcast(i32Cst(builder, 1)));
Value kR2 = isEqualTo(kMod4, bcast(i32Cst(builder, 2)));
Value kR3 = isEqualTo(kMod4, bcast(i32Cst(builder, 3)));
Value sinuseCos = isSine ? bitwiseOr(kR1, kR3) : bitwiseOr(kR0, kR2);
Value negativeRange = isSine ? isGreaterThan(kMod4, bcast(i32Cst(builder, 1)))
: bitwiseOr(kR1, kR2);
Value y2 = mul(y, y);
Value base = select(sinuseCos, cstOne, y);
Value cstC2 = select(sinuseCos, cstCC2, cstSC2);
Value cstC4 = select(sinuseCos, cstCC4, cstSC4);
Value cstC6 = select(sinuseCos, cstCC6, cstSC6);
Value cstC8 = select(sinuseCos, cstCC8, cstSC8);
Value cstC10 = select(sinuseCos, cstCC10, cstSC10);
Value v1 = fmla(y2, cstC10, cstC8);
Value v2 = fmla(y2, v1, cstC6);
Value v3 = fmla(y2, v2, cstC4);
Value v4 = fmla(y2, v3, cstC2);
Value v5 = fmla(y2, v4, cstOne);
Value v6 = mul(base, v5);
Value approximation = select(negativeRange, mul(cstNegativeOne, v6), v6);
rewriter.replaceOp(op, approximation);
return success();
}
//----------------------------------------------------------------------------//
// Cbrt approximation.
//----------------------------------------------------------------------------//
namespace {
struct CbrtApproximation : public OpRewritePattern<math::CbrtOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::CbrtOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
// Estimation of cube-root using an algorithm defined in
// Hacker's Delight 2nd Edition.
LogicalResult
CbrtApproximation::matchAndRewrite(math::CbrtOp op,
PatternRewriter &rewriter) const {
auto operand = op.getOperand();
if (!getElementTypeOrSelf(operand).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
std::optional<VectorShape> shape = vectorShape(operand);
Type floatTy = getElementTypeOrSelf(operand.getType());
Type intTy = b.getIntegerType(floatTy.getIntOrFloatBitWidth());
// Convert to vector types if necessary.
floatTy = broadcast(floatTy, shape);
intTy = broadcast(intTy, shape);
auto bconst = [&](TypedAttr attr) -> Value {
Value value = b.create<arith::ConstantOp>(attr);
return broadcast(b, value, shape);
};
// Declare the initial values:
Value intTwo = bconst(b.getI32IntegerAttr(2));
Value intFour = bconst(b.getI32IntegerAttr(4));
Value intEight = bconst(b.getI32IntegerAttr(8));
Value intMagic = bconst(b.getI32IntegerAttr(0x2a5137a0));
Value fpThird = bconst(b.getF32FloatAttr(0.33333333f));
Value fpTwo = bconst(b.getF32FloatAttr(2.0f));
Value fpZero = bconst(b.getF32FloatAttr(0.0f));
// Compute an approximation of one third:
// union {int ix; float x;};
// x = x0;
// ix = ix/4 + ix/16;
Value absValue = b.create<math::AbsFOp>(operand);
Value intValue = b.create<arith::BitcastOp>(intTy, absValue);
Value divideBy4 = b.create<arith::ShRSIOp>(intValue, intTwo);
Value divideBy16 = b.create<arith::ShRSIOp>(intValue, intFour);
intValue = b.create<arith::AddIOp>(divideBy4, divideBy16);
// ix = ix + ix/16;
divideBy16 = b.create<arith::ShRSIOp>(intValue, intFour);
intValue = b.create<arith::AddIOp>(intValue, divideBy16);
// ix = ix + ix/256;
Value divideBy256 = b.create<arith::ShRSIOp>(intValue, intEight);
intValue = b.create<arith::AddIOp>(intValue, divideBy256);
// ix = 0x2a5137a0 + ix;
intValue = b.create<arith::AddIOp>(intValue, intMagic);
// Perform one newtons step:
// x = 0.33333333f*(2.0f*x + x0/(x*x));
Value floatValue = b.create<arith::BitcastOp>(floatTy, intValue);
Value squared = b.create<arith::MulFOp>(floatValue, floatValue);
Value mulTwo = b.create<arith::MulFOp>(floatValue, fpTwo);
Value divSquared = b.create<arith::DivFOp>(absValue, squared);
floatValue = b.create<arith::AddFOp>(mulTwo, divSquared);
floatValue = b.create<arith::MulFOp>(floatValue, fpThird);
// x = 0.33333333f*(2.0f*x + x0/(x*x));
squared = b.create<arith::MulFOp>(floatValue, floatValue);
mulTwo = b.create<arith::MulFOp>(floatValue, fpTwo);
divSquared = b.create<arith::DivFOp>(absValue, squared);
floatValue = b.create<arith::AddFOp>(mulTwo, divSquared);
floatValue = b.create<arith::MulFOp>(floatValue, fpThird);
// Check for zero and restore sign.
Value isZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absValue, fpZero);
floatValue = b.create<arith::SelectOp>(isZero, fpZero, floatValue);
floatValue = b.create<math::CopySignOp>(floatValue, operand);
rewriter.replaceOp(op, floatValue);
return success();
}
//----------------------------------------------------------------------------//
// Rsqrt approximation.
//----------------------------------------------------------------------------//
namespace {
struct RsqrtApproximation : public OpRewritePattern<math::RsqrtOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(math::RsqrtOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
RsqrtApproximation::matchAndRewrite(math::RsqrtOp op,
PatternRewriter &rewriter) const {
if (!getElementTypeOrSelf(op.getOperand()).isF32())
return rewriter.notifyMatchFailure(op, "unsupported operand type");
std::optional<VectorShape> shape = vectorShape(op.getOperand());
// Only support already-vectorized rsqrt's.
if (!shape || shape->sizes.empty() || shape->sizes.back() % 8 != 0)
return rewriter.notifyMatchFailure(op, "unsupported operand type");
ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};
Value cstPosInf = bcast(f32FromBits(builder, 0x7f800000u));
Value cstOnePointFive = bcast(f32Cst(builder, 1.5f));
Value cstNegHalf = bcast(f32Cst(builder, -0.5f));
Value cstMinNormPos = bcast(f32FromBits(builder, 0x00800000u));
Value negHalf = builder.create<arith::MulFOp>(op.getOperand(), cstNegHalf);
// Select only the inverse sqrt of positive normals (denormals are
// flushed to zero).
Value ltMinMask = builder.create<arith::CmpFOp>(
arith::CmpFPredicate::OLT, op.getOperand(), cstMinNormPos);
Value infMask = builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ,
op.getOperand(), cstPosInf);
Value notNormalFiniteMask = builder.create<arith::OrIOp>(ltMinMask, infMask);
// Compute an approximate result.
Value yApprox = handleMultidimensionalVectors(
builder, op->getOperands(), 8, [&builder](ValueRange operands) -> Value {
return builder.create<x86vector::RsqrtOp>(operands);
});
// Do a single step of Newton-Raphson iteration to improve the approximation.
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
// It is essential to evaluate the inner term like this because forming
// y_n^2 may over- or underflow.
Value inner = builder.create<arith::MulFOp>(negHalf, yApprox);
Value fma = builder.create<math::FmaOp>(yApprox, inner, cstOnePointFive);
Value yNewton = builder.create<arith::MulFOp>(yApprox, fma);
// Select the result of the Newton-Raphson step for positive normal arguments.
// For other arguments, choose the output of the intrinsic. This will
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
// x is zero or a positive denormalized float (equivalent to flushing positive
// denormalized inputs to zero).
Value res =
builder.create<arith::SelectOp>(notNormalFiniteMask, yApprox, yNewton);
rewriter.replaceOp(op, res);
return success();
}
//----------------------------------------------------------------------------//
void mlir::populatePolynomialApproximateTanhPattern(
RewritePatternSet &patterns) {
patterns.add<TanhApproximation>(patterns.getContext());
}
void mlir::populatePolynomialApproximateErfPattern(
RewritePatternSet &patterns) {
patterns.add<ErfPolynomialApproximation>(patterns.getContext());
}
void mlir::populatePolynomialApproximateErfcPattern(
RewritePatternSet &patterns) {
patterns.add<ErfcPolynomialApproximation>(patterns.getContext());
}
template <typename OpType>
static void
populateMathF32ExpansionPattern(RewritePatternSet &patterns,
llvm::function_ref<bool(StringRef)> predicate,
PatternBenefit benefit) {
if (predicate(OpType::getOperationName())) {
patterns.add<ReuseF32Expansion<OpType>>(patterns.getContext(), benefit);
}
}
void mlir::populateMathF32ExpansionPatterns(
RewritePatternSet &patterns, llvm::function_ref<bool(StringRef)> predicate,
PatternBenefit benefit) {
populateMathF32ExpansionPattern<math::AcosOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::AcoshOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::AsinOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::AsinhOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::AtanOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::Atan2Op>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::AtanhOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::CbrtOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::CosOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::CoshOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::ErfOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::ErfcOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::ExpOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::Exp2Op>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::ExpM1Op>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::LogOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::Log10Op>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::Log1pOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::Log2Op>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::PowFOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::RsqrtOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::SinOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::SinhOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::SqrtOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::TanOp>(patterns, predicate, benefit);
populateMathF32ExpansionPattern<math::TanhOp>(patterns, predicate, benefit);
}
template <typename OpType, typename PatternType>
static void populateMathPolynomialApproximationPattern(
RewritePatternSet &patterns, llvm::function_ref<bool(StringRef)> predicate,
PatternBenefit benefit) {
if (predicate(OpType::getOperationName())) {
patterns.add<PatternType>(patterns.getContext(), benefit);
}
}
void mlir::populateMathPolynomialApproximationPatterns(
RewritePatternSet &patterns, llvm::function_ref<bool(StringRef)> predicate,
PatternBenefit benefit) {
populateMathPolynomialApproximationPattern<AcosOp,
AcosPolynomialApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<AsinOp,
AsinPolynomialApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<AtanOp, AtanApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<Atan2Op, Atan2Approximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<CbrtOp, CbrtApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<
CosOp, SinAndCosApproximation<false, math::CosOp>>(patterns, predicate,
benefit);
populateMathPolynomialApproximationPattern<ErfOp, ErfPolynomialApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<ErfcOp,
ErfcPolynomialApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<ExpOp, ExpApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<ExpM1Op, ExpM1Approximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<LogOp, LogApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<Log2Op, Log2Approximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<Log1pOp, Log1pApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<RsqrtOp, RsqrtApproximation>(
patterns, predicate, benefit);
populateMathPolynomialApproximationPattern<
SinOp, SinAndCosApproximation<true, math::SinOp>>(patterns, predicate,
benefit);
populateMathPolynomialApproximationPattern<TanhOp, TanhApproximation>(
patterns, predicate, benefit);
}
void mlir::populateMathPolynomialApproximationPatterns(
RewritePatternSet &patterns,
const MathPolynomialApproximationOptions &options) {
mlir::populateMathF32ExpansionPatterns(patterns, [](StringRef name) -> bool {
return llvm::is_contained(
{math::AtanOp::getOperationName(), math::Atan2Op::getOperationName(),
math::TanhOp::getOperationName(), math::LogOp::getOperationName(),
math::Log2Op::getOperationName(), math::Log1pOp::getOperationName(),
math::ErfOp::getOperationName(), math::ErfcOp::getOperationName(),
math::ExpOp::getOperationName(), math::ExpM1Op::getOperationName(),
math::CbrtOp::getOperationName(), math::SinOp::getOperationName(),
math::CosOp::getOperationName()},
name);
});
populateMathPolynomialApproximationPatterns(
patterns, [](StringRef name) -> bool {
return llvm::is_contained(
{math::AtanOp::getOperationName(),
math::Atan2Op::getOperationName(),
math::TanhOp::getOperationName(), math::LogOp::getOperationName(),
math::Log2Op::getOperationName(),
math::Log1pOp::getOperationName(), math::ErfOp::getOperationName(),
math::ErfcOp::getOperationName(), math::AsinOp::getOperationName(),
math::AcosOp::getOperationName(), math::ExpOp::getOperationName(),
math::ExpM1Op::getOperationName(),
math::CbrtOp::getOperationName(), math::SinOp::getOperationName(),
math::CosOp::getOperationName()},
name);
});
if (options.enableAvx2) {
auto predicateRsqrt = [](StringRef name) {
return name == math::RsqrtOp::getOperationName();
};
mlir::populateMathF32ExpansionPatterns(patterns, predicateRsqrt);
mlir::populateMathPolynomialApproximationPatterns(patterns, predicateRsqrt);
}
}