blob: 069681304065430218298a62f672341752bf7285 [file] [log] [blame]
//===-- LoongArchAsmBackend.cpp - LoongArch Assembler Backend -*- C++ -*---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LoongArchAsmBackend class.
//
//===----------------------------------------------------------------------===//
#include "LoongArchAsmBackend.h"
#include "LoongArchFixupKinds.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#define DEBUG_TYPE "loongarch-asmbackend"
using namespace llvm;
LoongArchAsmBackend::LoongArchAsmBackend(const MCSubtargetInfo &STI,
uint8_t OSABI, bool Is64Bit,
const MCTargetOptions &Options)
: MCAsmBackend(llvm::endianness::little), STI(STI), OSABI(OSABI),
Is64Bit(Is64Bit), TargetOptions(Options) {}
std::optional<MCFixupKind>
LoongArchAsmBackend::getFixupKind(StringRef Name) const {
if (STI.getTargetTriple().isOSBinFormatELF()) {
auto Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(X, Y) .Case(#X, Y)
#include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
#undef ELF_RELOC
.Case("BFD_RELOC_NONE", ELF::R_LARCH_NONE)
.Case("BFD_RELOC_32", ELF::R_LARCH_32)
.Case("BFD_RELOC_64", ELF::R_LARCH_64)
.Default(-1u);
if (Type != -1u)
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
}
return std::nullopt;
}
MCFixupKindInfo LoongArchAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[] = {
// This table *must* be in the order that the fixup_* kinds are defined in
// LoongArchFixupKinds.h.
//
// {name, offset, bits, flags}
{"fixup_loongarch_b16", 10, 16, 0},
{"fixup_loongarch_b21", 0, 26, 0},
{"fixup_loongarch_b26", 0, 26, 0},
{"fixup_loongarch_abs_hi20", 5, 20, 0},
{"fixup_loongarch_abs_lo12", 10, 12, 0},
{"fixup_loongarch_abs64_lo20", 5, 20, 0},
{"fixup_loongarch_abs64_hi12", 10, 12, 0},
};
static_assert((std::size(Infos)) == LoongArch::NumTargetFixupKinds,
"Not all fixup kinds added to Infos array");
// Fixup kinds from .reloc directive are like R_LARCH_NONE. They
// do not require any extra processing.
if (mc::isRelocation(Kind))
return {};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) <
LoongArch::NumTargetFixupKinds &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
static void reportOutOfRangeError(MCContext &Ctx, SMLoc Loc, unsigned N) {
Ctx.reportError(Loc, "fixup value out of range [" + Twine(llvm::minIntN(N)) +
", " + Twine(llvm::maxIntN(N)) + "]");
}
static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
MCContext &Ctx) {
switch (Fixup.getKind()) {
default:
llvm_unreachable("Unknown fixup kind");
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
case FK_Data_leb128:
return Value;
case LoongArch::fixup_loongarch_b16: {
if (!isInt<18>(Value))
reportOutOfRangeError(Ctx, Fixup.getLoc(), 18);
if (Value % 4)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
return (Value >> 2) & 0xffff;
}
case LoongArch::fixup_loongarch_b21: {
if (!isInt<23>(Value))
reportOutOfRangeError(Ctx, Fixup.getLoc(), 23);
if (Value % 4)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x1f);
}
case LoongArch::fixup_loongarch_b26: {
if (!isInt<28>(Value))
reportOutOfRangeError(Ctx, Fixup.getLoc(), 28);
if (Value % 4)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x3ff);
}
case LoongArch::fixup_loongarch_abs_hi20:
return (Value >> 12) & 0xfffff;
case LoongArch::fixup_loongarch_abs_lo12:
return Value & 0xfff;
case LoongArch::fixup_loongarch_abs64_lo20:
return (Value >> 32) & 0xfffff;
case LoongArch::fixup_loongarch_abs64_hi12:
return (Value >> 52) & 0xfff;
}
}
static void fixupLeb128(MCContext &Ctx, const MCFixup &Fixup, uint8_t *Data,
uint64_t Value) {
unsigned I;
for (I = 0; Value; ++I, Value >>= 7)
Data[I] |= uint8_t(Value & 0x7f);
if (Value)
Ctx.reportError(Fixup.getLoc(), "Invalid uleb128 value!");
}
void LoongArchAsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target, uint8_t *Data,
uint64_t Value, bool IsResolved) {
IsResolved = addReloc(F, Fixup, Target, Value, IsResolved);
if (!Value)
return; // Doesn't change encoding.
auto Kind = Fixup.getKind();
if (mc::isRelocation(Kind))
return;
MCFixupKindInfo Info = getFixupKindInfo(Kind);
MCContext &Ctx = getContext();
// Fixup leb128 separately.
if (Fixup.getKind() == FK_Data_leb128)
return fixupLeb128(Ctx, Fixup, Data, Value);
// Apply any target-specific value adjustments.
Value = adjustFixupValue(Fixup, Value, Ctx);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
assert(Fixup.getOffset() + NumBytes <= F.getSize() &&
"Invalid fixup offset!");
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
for (unsigned I = 0; I != NumBytes; ++I) {
Data[I] |= uint8_t((Value >> (I * 8)) & 0xff);
}
}
static inline std::pair<MCFixupKind, MCFixupKind>
getRelocPairForSize(unsigned Size) {
switch (Size) {
default:
llvm_unreachable("unsupported fixup size");
case 6:
return std::make_pair(ELF::R_LARCH_ADD6, ELF::R_LARCH_SUB6);
case 8:
return std::make_pair(ELF::R_LARCH_ADD8, ELF::R_LARCH_SUB8);
case 16:
return std::make_pair(ELF::R_LARCH_ADD16, ELF::R_LARCH_SUB16);
case 32:
return std::make_pair(ELF::R_LARCH_ADD32, ELF::R_LARCH_SUB32);
case 64:
return std::make_pair(ELF::R_LARCH_ADD64, ELF::R_LARCH_SUB64);
case 128:
return std::make_pair(ELF::R_LARCH_ADD_ULEB128, ELF::R_LARCH_SUB_ULEB128);
}
}
// Check if an R_LARCH_ALIGN relocation is needed for an alignment directive.
// If conditions are met, compute the padding size and create a fixup encoding
// the padding size in the addend. If MaxBytesToEmit is smaller than the padding
// size, the fixup encodes MaxBytesToEmit in the higher bits and references a
// per-section marker symbol.
bool LoongArchAsmBackend::relaxAlign(MCFragment &F, unsigned &Size) {
// Alignments before the first linker-relaxable instruction have fixed sizes
// and do not require relocations. Alignments after a linker-relaxable
// instruction require a relocation, even if the STI specifies norelax.
//
// firstLinkerRelaxable is the layout order within the subsection, which may
// be smaller than the section's order. Therefore, alignments in a
// lower-numbered subsection may be unnecessarily treated as linker-relaxable.
auto *Sec = F.getParent();
if (F.getLayoutOrder() <= Sec->firstLinkerRelaxable())
return false;
// Use default handling unless linker relaxation is enabled and the
// MaxBytesToEmit >= the nop size.
const unsigned MinNopLen = 4;
unsigned MaxBytesToEmit = F.getAlignMaxBytesToEmit();
if (MaxBytesToEmit < MinNopLen)
return false;
Size = F.getAlignment().value() - MinNopLen;
if (F.getAlignment() <= MinNopLen)
return false;
MCContext &Ctx = getContext();
const MCExpr *Expr = nullptr;
if (MaxBytesToEmit >= Size) {
Expr = MCConstantExpr::create(Size, getContext());
} else {
MCSection *Sec = F.getParent();
const MCSymbolRefExpr *SymRef = getSecToAlignSym()[Sec];
if (SymRef == nullptr) {
// Define a marker symbol at the section with an offset of 0.
MCSymbol *Sym = Ctx.createNamedTempSymbol("la-relax-align");
Sym->setFragment(&*Sec->getBeginSymbol()->getFragment());
Asm->registerSymbol(*Sym);
SymRef = MCSymbolRefExpr::create(Sym, Ctx);
getSecToAlignSym()[Sec] = SymRef;
}
Expr = MCBinaryExpr::createAdd(
SymRef,
MCConstantExpr::create((MaxBytesToEmit << 8) | Log2(F.getAlignment()),
Ctx),
Ctx);
}
MCFixup Fixup =
MCFixup::create(0, Expr, FirstLiteralRelocationKind + ELF::R_LARCH_ALIGN);
F.setVarFixups({Fixup});
F.setLinkerRelaxable();
return true;
}
std::pair<bool, bool> LoongArchAsmBackend::relaxLEB128(MCFragment &F,
int64_t &Value) const {
const MCExpr &Expr = F.getLEBValue();
if (F.isLEBSigned() || !Expr.evaluateKnownAbsolute(Value, *Asm))
return std::make_pair(false, false);
F.setVarFixups({MCFixup::create(0, &Expr, FK_Data_leb128)});
return std::make_pair(true, true);
}
bool LoongArchAsmBackend::relaxDwarfLineAddr(MCFragment &F) const {
MCContext &C = getContext();
int64_t LineDelta = F.getDwarfLineDelta();
const MCExpr &AddrDelta = F.getDwarfAddrDelta();
int64_t Value;
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
return false;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute);
SmallVector<char> Data;
raw_svector_ostream OS(Data);
// INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
if (LineDelta != INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_advance_line);
encodeSLEB128(LineDelta, OS);
}
// According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
// takes a single unsigned half (unencoded) operand. The maximum encodable
// value is therefore 65535. Set a conservative upper bound for relaxation.
unsigned PCBytes;
if (Value > 60000) {
unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();
assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
PCBytes = PtrSize;
OS << uint8_t(dwarf::DW_LNS_extended_op) << uint8_t(PtrSize + 1)
<< uint8_t(dwarf::DW_LNE_set_address);
OS.write_zeros(PtrSize);
} else {
PCBytes = 2;
OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
}
auto Offset = OS.tell() - PCBytes;
if (LineDelta == INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_extended_op);
OS << uint8_t(1);
OS << uint8_t(dwarf::DW_LNE_end_sequence);
} else {
OS << uint8_t(dwarf::DW_LNS_copy);
}
F.setVarContents(Data);
F.setVarFixups({MCFixup::create(Offset, &AddrDelta,
MCFixup::getDataKindForSize(PCBytes))});
return true;
}
bool LoongArchAsmBackend::relaxDwarfCFA(MCFragment &F) const {
const MCExpr &AddrDelta = F.getDwarfAddrDelta();
SmallVector<MCFixup, 2> Fixups;
int64_t Value;
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
return false;
bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
(void)IsAbsolute;
assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
"expected 1-byte alignment");
if (Value == 0) {
F.clearVarContents();
F.clearVarFixups();
return true;
}
auto AddFixups = [&Fixups,
&AddrDelta](unsigned Offset,
std::pair<MCFixupKind, MCFixupKind> FK) {
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));
};
SmallVector<char, 8> Data;
raw_svector_ostream OS(Data);
if (isUIntN(6, Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc);
AddFixups(0, getRelocPairForSize(6));
} else if (isUInt<8>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc1);
support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
AddFixups(1, getRelocPairForSize(8));
} else if (isUInt<16>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc2);
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
AddFixups(1, getRelocPairForSize(16));
} else if (isUInt<32>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc4);
support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
AddFixups(1, getRelocPairForSize(32));
} else {
llvm_unreachable("unsupported CFA encoding");
}
F.setVarContents(Data);
F.setVarFixups(Fixups);
return true;
}
bool LoongArchAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const {
// We mostly follow binutils' convention here: align to 4-byte boundary with a
// 0-fill padding.
OS.write_zeros(Count % 4);
// The remainder is now padded with 4-byte nops.
// nop: andi r0, r0, 0
for (; Count >= 4; Count -= 4)
OS.write("\0\0\x40\x03", 4);
return true;
}
bool LoongArchAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA,
const MCFragment &F) {
// If the section does not contain linker-relaxable fragments, PC-relative
// fixups can be resolved.
if (!F.getParent()->isLinkerRelaxable())
return true;
// Otherwise, check if the offset between the symbol and fragment is fully
// resolved, unaffected by linker-relaxable fragments (e.g. instructions or
// offset-affected FT_Align fragments). Complements the generic
// isSymbolRefDifferenceFullyResolvedImpl.
if (!PCRelTemp)
PCRelTemp = getContext().createTempSymbol();
PCRelTemp->setFragment(const_cast<MCFragment *>(&F));
MCValue Res;
MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA),
MCValue::get(nullptr, PCRelTemp), Res);
return !Res.getSubSym();
}
bool LoongArchAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target, uint64_t &FixedValue,
bool IsResolved) {
auto Fallback = [&]() {
MCAsmBackend::maybeAddReloc(F, Fixup, Target, FixedValue, IsResolved);
return true;
};
uint64_t FixedValueA, FixedValueB;
if (Target.getSubSym()) {
assert(Target.getSpecifier() == 0 &&
"relocatable SymA-SymB cannot have relocation specifier");
std::pair<MCFixupKind, MCFixupKind> FK;
const MCSymbol &SA = *Target.getAddSym();
const MCSymbol &SB = *Target.getSubSym();
bool force = !SA.isInSection() || !SB.isInSection();
if (!force) {
const MCSection &SecA = SA.getSection();
const MCSection &SecB = SB.getSection();
const MCSection &SecCur = *F.getParent();
// To handle the case of A - B which B is same section with the current,
// generate PCRel relocations is better than ADD/SUB relocation pair.
// We can resolve it as A - PC + PC - B. The A - PC will be resolved
// as a PCRel relocation, while PC - B will serve as the addend.
// If the linker relaxation is disabled, it can be done directly since
// PC - B is constant. Otherwise, we should evaluate whether PC - B
// is constant. If it can be resolved as PCRel, use Fallback which
// generates R_LARCH_{32,64}_PCREL relocation later.
if (&SecA != &SecB && &SecB == &SecCur &&
isPCRelFixupResolved(Target.getSubSym(), F))
return Fallback();
// In SecA == SecB case. If the section is not linker-relaxable, the
// FixedValue has already been calculated out in evaluateFixup,
// return true and avoid record relocations.
if (&SecA == &SecB && !SecA.isLinkerRelaxable())
return true;
}
switch (Fixup.getKind()) {
case llvm::FK_Data_1:
FK = getRelocPairForSize(8);
break;
case llvm::FK_Data_2:
FK = getRelocPairForSize(16);
break;
case llvm::FK_Data_4:
FK = getRelocPairForSize(32);
break;
case llvm::FK_Data_8:
FK = getRelocPairForSize(64);
break;
case llvm::FK_Data_leb128:
FK = getRelocPairForSize(128);
break;
default:
llvm_unreachable("unsupported fixup size");
}
MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant());
MCValue B = MCValue::get(Target.getSubSym());
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, std::get<0>(FK));
auto FB = MCFixup::create(Fixup.getOffset(), nullptr, std::get<1>(FK));
Asm->getWriter().recordRelocation(F, FA, A, FixedValueA);
Asm->getWriter().recordRelocation(F, FB, B, FixedValueB);
FixedValue = FixedValueA - FixedValueB;
return false;
}
// If linker relaxation is enabled and supported by the current relocation,
// generate a relocation and then append a RELAX.
if (Fixup.isLinkerRelaxable())
IsResolved = false;
if (IsResolved && Fixup.isPCRel())
IsResolved = isPCRelFixupResolved(Target.getAddSym(), F);
if (!IsResolved)
Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue);
if (Fixup.isLinkerRelaxable()) {
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_LARCH_RELAX);
Asm->getWriter().recordRelocation(F, FA, MCValue::get(nullptr),
FixedValueA);
}
return true;
}
std::unique_ptr<MCObjectTargetWriter>
LoongArchAsmBackend::createObjectTargetWriter() const {
return createLoongArchELFObjectWriter(OSABI, Is64Bit);
}
MCAsmBackend *llvm::createLoongArchAsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TT = STI.getTargetTriple();
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new LoongArchAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
}