|  | //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements name lookup for C, C++, Objective-C, and | 
|  | //  Objective-C++. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclLookups.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/HeaderSearch.h" | 
|  | #include "clang/Lex/ModuleLoader.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Sema/DeclSpec.h" | 
|  | #include "clang/Sema/Lookup.h" | 
|  | #include "clang/Sema/Overload.h" | 
|  | #include "clang/Sema/RISCVIntrinsicManager.h" | 
|  | #include "clang/Sema/Scope.h" | 
|  | #include "clang/Sema/ScopeInfo.h" | 
|  | #include "clang/Sema/Sema.h" | 
|  | #include "clang/Sema/SemaInternal.h" | 
|  | #include "clang/Sema/SemaRISCV.h" | 
|  | #include "clang/Sema/TemplateDeduction.h" | 
|  | #include "clang/Sema/TypoCorrection.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/STLForwardCompat.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/TinyPtrVector.h" | 
|  | #include "llvm/ADT/edit_distance.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include <algorithm> | 
|  | #include <iterator> | 
|  | #include <list> | 
|  | #include <optional> | 
|  | #include <set> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "OpenCLBuiltins.inc" | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace sema; | 
|  |  | 
|  | namespace { | 
|  | class UnqualUsingEntry { | 
|  | const DeclContext *Nominated; | 
|  | const DeclContext *CommonAncestor; | 
|  |  | 
|  | public: | 
|  | UnqualUsingEntry(const DeclContext *Nominated, | 
|  | const DeclContext *CommonAncestor) | 
|  | : Nominated(Nominated), CommonAncestor(CommonAncestor) { | 
|  | } | 
|  |  | 
|  | const DeclContext *getCommonAncestor() const { | 
|  | return CommonAncestor; | 
|  | } | 
|  |  | 
|  | const DeclContext *getNominatedNamespace() const { | 
|  | return Nominated; | 
|  | } | 
|  |  | 
|  | // Sort by the pointer value of the common ancestor. | 
|  | struct Comparator { | 
|  | bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { | 
|  | return L.getCommonAncestor() < R.getCommonAncestor(); | 
|  | } | 
|  |  | 
|  | bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { | 
|  | return E.getCommonAncestor() < DC; | 
|  | } | 
|  |  | 
|  | bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { | 
|  | return DC < E.getCommonAncestor(); | 
|  | } | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /// A collection of using directives, as used by C++ unqualified | 
|  | /// lookup. | 
|  | class UnqualUsingDirectiveSet { | 
|  | Sema &SemaRef; | 
|  |  | 
|  | typedef SmallVector<UnqualUsingEntry, 8> ListTy; | 
|  |  | 
|  | ListTy list; | 
|  | llvm::SmallPtrSet<DeclContext*, 8> visited; | 
|  |  | 
|  | public: | 
|  | UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} | 
|  |  | 
|  | void visitScopeChain(Scope *S, Scope *InnermostFileScope) { | 
|  | // C++ [namespace.udir]p1: | 
|  | //   During unqualified name lookup, the names appear as if they | 
|  | //   were declared in the nearest enclosing namespace which contains | 
|  | //   both the using-directive and the nominated namespace. | 
|  | DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); | 
|  | assert(InnermostFileDC && InnermostFileDC->isFileContext()); | 
|  |  | 
|  | for (; S; S = S->getParent()) { | 
|  | // C++ [namespace.udir]p1: | 
|  | //   A using-directive shall not appear in class scope, but may | 
|  | //   appear in namespace scope or in block scope. | 
|  | DeclContext *Ctx = S->getEntity(); | 
|  | if (Ctx && Ctx->isFileContext()) { | 
|  | visit(Ctx, Ctx); | 
|  | } else if (!Ctx || Ctx->isFunctionOrMethod()) { | 
|  | for (auto *I : S->using_directives()) | 
|  | if (SemaRef.isVisible(I)) | 
|  | visit(I, InnermostFileDC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visits a context and collect all of its using directives | 
|  | // recursively.  Treats all using directives as if they were | 
|  | // declared in the context. | 
|  | // | 
|  | // A given context is only every visited once, so it is important | 
|  | // that contexts be visited from the inside out in order to get | 
|  | // the effective DCs right. | 
|  | void visit(DeclContext *DC, DeclContext *EffectiveDC) { | 
|  | if (!visited.insert(DC).second) | 
|  | return; | 
|  |  | 
|  | addUsingDirectives(DC, EffectiveDC); | 
|  | } | 
|  |  | 
|  | // Visits a using directive and collects all of its using | 
|  | // directives recursively.  Treats all using directives as if they | 
|  | // were declared in the effective DC. | 
|  | void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | 
|  | DeclContext *NS = UD->getNominatedNamespace(); | 
|  | if (!visited.insert(NS).second) | 
|  | return; | 
|  |  | 
|  | addUsingDirective(UD, EffectiveDC); | 
|  | addUsingDirectives(NS, EffectiveDC); | 
|  | } | 
|  |  | 
|  | // Adds all the using directives in a context (and those nominated | 
|  | // by its using directives, transitively) as if they appeared in | 
|  | // the given effective context. | 
|  | void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { | 
|  | SmallVector<DeclContext*, 4> queue; | 
|  | while (true) { | 
|  | for (auto *UD : DC->using_directives()) { | 
|  | DeclContext *NS = UD->getNominatedNamespace(); | 
|  | if (SemaRef.isVisible(UD) && visited.insert(NS).second) { | 
|  | addUsingDirective(UD, EffectiveDC); | 
|  | queue.push_back(NS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (queue.empty()) | 
|  | return; | 
|  |  | 
|  | DC = queue.pop_back_val(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add a using directive as if it had been declared in the given | 
|  | // context.  This helps implement C++ [namespace.udir]p3: | 
|  | //   The using-directive is transitive: if a scope contains a | 
|  | //   using-directive that nominates a second namespace that itself | 
|  | //   contains using-directives, the effect is as if the | 
|  | //   using-directives from the second namespace also appeared in | 
|  | //   the first. | 
|  | void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { | 
|  | // Find the common ancestor between the effective context and | 
|  | // the nominated namespace. | 
|  | DeclContext *Common = UD->getNominatedNamespace(); | 
|  | while (!Common->Encloses(EffectiveDC)) | 
|  | Common = Common->getParent(); | 
|  | Common = Common->getPrimaryContext(); | 
|  |  | 
|  | list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); | 
|  | } | 
|  |  | 
|  | void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } | 
|  |  | 
|  | typedef ListTy::const_iterator const_iterator; | 
|  |  | 
|  | const_iterator begin() const { return list.begin(); } | 
|  | const_iterator end() const { return list.end(); } | 
|  |  | 
|  | llvm::iterator_range<const_iterator> | 
|  | getNamespacesFor(const DeclContext *DC) const { | 
|  | return llvm::make_range(std::equal_range(begin(), end(), | 
|  | DC->getPrimaryContext(), | 
|  | UnqualUsingEntry::Comparator())); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Retrieve the set of identifier namespaces that correspond to a | 
|  | // specific kind of name lookup. | 
|  | static inline unsigned getIDNS(Sema::LookupNameKind NameKind, | 
|  | bool CPlusPlus, | 
|  | bool Redeclaration) { | 
|  | unsigned IDNS = 0; | 
|  | switch (NameKind) { | 
|  | case Sema::LookupObjCImplicitSelfParam: | 
|  | case Sema::LookupOrdinaryName: | 
|  | case Sema::LookupRedeclarationWithLinkage: | 
|  | case Sema::LookupLocalFriendName: | 
|  | case Sema::LookupDestructorName: | 
|  | IDNS = Decl::IDNS_Ordinary; | 
|  | if (CPlusPlus) { | 
|  | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; | 
|  | if (Redeclaration) | 
|  | IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; | 
|  | } | 
|  | if (Redeclaration) | 
|  | IDNS |= Decl::IDNS_LocalExtern; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupOperatorName: | 
|  | // Operator lookup is its own crazy thing;  it is not the same | 
|  | // as (e.g.) looking up an operator name for redeclaration. | 
|  | assert(!Redeclaration && "cannot do redeclaration operator lookup"); | 
|  | IDNS = Decl::IDNS_NonMemberOperator; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupTagName: | 
|  | if (CPlusPlus) { | 
|  | IDNS = Decl::IDNS_Type; | 
|  |  | 
|  | // When looking for a redeclaration of a tag name, we add: | 
|  | // 1) TagFriend to find undeclared friend decls | 
|  | // 2) Namespace because they can't "overload" with tag decls. | 
|  | // 3) Tag because it includes class templates, which can't | 
|  | //    "overload" with tag decls. | 
|  | if (Redeclaration) | 
|  | IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; | 
|  | } else { | 
|  | IDNS = Decl::IDNS_Tag; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Sema::LookupLabel: | 
|  | IDNS = Decl::IDNS_Label; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupMemberName: | 
|  | IDNS = Decl::IDNS_Member; | 
|  | if (CPlusPlus) | 
|  | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupNestedNameSpecifierName: | 
|  | IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupNamespaceName: | 
|  | IDNS = Decl::IDNS_Namespace; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupUsingDeclName: | 
|  | assert(Redeclaration && "should only be used for redecl lookup"); | 
|  | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | | 
|  | Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | | 
|  | Decl::IDNS_LocalExtern; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupObjCProtocolName: | 
|  | IDNS = Decl::IDNS_ObjCProtocol; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupOMPReductionName: | 
|  | IDNS = Decl::IDNS_OMPReduction; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupOMPMapperName: | 
|  | IDNS = Decl::IDNS_OMPMapper; | 
|  | break; | 
|  |  | 
|  | case Sema::LookupAnyName: | 
|  | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 
|  | | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol | 
|  | | Decl::IDNS_Type; | 
|  | break; | 
|  | } | 
|  | return IDNS; | 
|  | } | 
|  |  | 
|  | void LookupResult::configure() { | 
|  | IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, | 
|  | isForRedeclaration()); | 
|  |  | 
|  | // If we're looking for one of the allocation or deallocation | 
|  | // operators, make sure that the implicitly-declared new and delete | 
|  | // operators can be found. | 
|  | switch (NameInfo.getName().getCXXOverloadedOperator()) { | 
|  | case OO_New: | 
|  | case OO_Delete: | 
|  | case OO_Array_New: | 
|  | case OO_Array_Delete: | 
|  | getSema().DeclareGlobalNewDelete(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Compiler builtins are always visible, regardless of where they end | 
|  | // up being declared. | 
|  | if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { | 
|  | if (unsigned BuiltinID = Id->getBuiltinID()) { | 
|  | if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | 
|  | AllowHidden = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LookupResult::checkDebugAssumptions() const { | 
|  | // This function is never called by NDEBUG builds. | 
|  | assert(ResultKind != LookupResultKind::NotFound || Decls.size() == 0); | 
|  | assert(ResultKind != LookupResultKind::Found || Decls.size() == 1); | 
|  | assert(ResultKind != LookupResultKind::FoundOverloaded || Decls.size() > 1 || | 
|  | (Decls.size() == 1 && | 
|  | isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); | 
|  | assert(ResultKind != LookupResultKind::FoundUnresolvedValue || | 
|  | checkUnresolved()); | 
|  | assert(ResultKind != LookupResultKind::Ambiguous || Decls.size() > 1 || | 
|  | (Decls.size() == 1 && | 
|  | (Ambiguity == LookupAmbiguityKind::AmbiguousBaseSubobjects || | 
|  | Ambiguity == LookupAmbiguityKind::AmbiguousBaseSubobjectTypes))); | 
|  | assert((Paths != nullptr) == | 
|  | (ResultKind == LookupResultKind::Ambiguous && | 
|  | (Ambiguity == LookupAmbiguityKind::AmbiguousBaseSubobjectTypes || | 
|  | Ambiguity == LookupAmbiguityKind::AmbiguousBaseSubobjects))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Necessary because CXXBasePaths is not complete in Sema.h | 
|  | void LookupResult::deletePaths(CXXBasePaths *Paths) { | 
|  | delete Paths; | 
|  | } | 
|  |  | 
|  | /// Get a representative context for a declaration such that two declarations | 
|  | /// will have the same context if they were found within the same scope. | 
|  | static const DeclContext *getContextForScopeMatching(const Decl *D) { | 
|  | // For function-local declarations, use that function as the context. This | 
|  | // doesn't account for scopes within the function; the caller must deal with | 
|  | // those. | 
|  | if (const DeclContext *DC = D->getLexicalDeclContext(); | 
|  | DC->isFunctionOrMethod()) | 
|  | return DC; | 
|  |  | 
|  | // Otherwise, look at the semantic context of the declaration. The | 
|  | // declaration must have been found there. | 
|  | return D->getDeclContext()->getRedeclContext(); | 
|  | } | 
|  |  | 
|  | /// Determine whether \p D is a better lookup result than \p Existing, | 
|  | /// given that they declare the same entity. | 
|  | static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, | 
|  | const NamedDecl *D, | 
|  | const NamedDecl *Existing) { | 
|  | // When looking up redeclarations of a using declaration, prefer a using | 
|  | // shadow declaration over any other declaration of the same entity. | 
|  | if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && | 
|  | !isa<UsingShadowDecl>(Existing)) | 
|  | return true; | 
|  |  | 
|  | const auto *DUnderlying = D->getUnderlyingDecl(); | 
|  | const auto *EUnderlying = Existing->getUnderlyingDecl(); | 
|  |  | 
|  | // If they have different underlying declarations, prefer a typedef over the | 
|  | // original type (this happens when two type declarations denote the same | 
|  | // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef | 
|  | // might carry additional semantic information, such as an alignment override. | 
|  | // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag | 
|  | // declaration over a typedef. Also prefer a tag over a typedef for | 
|  | // destructor name lookup because in some contexts we only accept a | 
|  | // class-name in a destructor declaration. | 
|  | if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { | 
|  | assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); | 
|  | bool HaveTag = isa<TagDecl>(EUnderlying); | 
|  | bool WantTag = | 
|  | Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; | 
|  | return HaveTag != WantTag; | 
|  | } | 
|  |  | 
|  | // Pick the function with more default arguments. | 
|  | // FIXME: In the presence of ambiguous default arguments, we should keep both, | 
|  | //        so we can diagnose the ambiguity if the default argument is needed. | 
|  | //        See C++ [over.match.best]p3. | 
|  | if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { | 
|  | const auto *EFD = cast<FunctionDecl>(EUnderlying); | 
|  | unsigned DMin = DFD->getMinRequiredArguments(); | 
|  | unsigned EMin = EFD->getMinRequiredArguments(); | 
|  | // If D has more default arguments, it is preferred. | 
|  | if (DMin != EMin) | 
|  | return DMin < EMin; | 
|  | // FIXME: When we track visibility for default function arguments, check | 
|  | // that we pick the declaration with more visible default arguments. | 
|  | } | 
|  |  | 
|  | // Pick the template with more default template arguments. | 
|  | if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { | 
|  | const auto *ETD = cast<TemplateDecl>(EUnderlying); | 
|  | unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); | 
|  | unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); | 
|  | // If D has more default arguments, it is preferred. Note that default | 
|  | // arguments (and their visibility) is monotonically increasing across the | 
|  | // redeclaration chain, so this is a quick proxy for "is more recent". | 
|  | if (DMin != EMin) | 
|  | return DMin < EMin; | 
|  | // If D has more *visible* default arguments, it is preferred. Note, an | 
|  | // earlier default argument being visible does not imply that a later | 
|  | // default argument is visible, so we can't just check the first one. | 
|  | for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); | 
|  | I != N; ++I) { | 
|  | if (!S.hasVisibleDefaultArgument( | 
|  | ETD->getTemplateParameters()->getParam(I)) && | 
|  | S.hasVisibleDefaultArgument( | 
|  | DTD->getTemplateParameters()->getParam(I))) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // VarDecl can have incomplete array types, prefer the one with more complete | 
|  | // array type. | 
|  | if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) { | 
|  | const auto *EVD = cast<VarDecl>(EUnderlying); | 
|  | if (EVD->getType()->isIncompleteType() && | 
|  | !DVD->getType()->isIncompleteType()) { | 
|  | // Prefer the decl with a more complete type if visible. | 
|  | return S.isVisible(DVD); | 
|  | } | 
|  | return false; // Avoid picking up a newer decl, just because it was newer. | 
|  | } | 
|  |  | 
|  | // For most kinds of declaration, it doesn't really matter which one we pick. | 
|  | if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { | 
|  | // If the existing declaration is hidden, prefer the new one. Otherwise, | 
|  | // keep what we've got. | 
|  | return !S.isVisible(Existing); | 
|  | } | 
|  |  | 
|  | // Pick the newer declaration; it might have a more precise type. | 
|  | for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; | 
|  | Prev = Prev->getPreviousDecl()) | 
|  | if (Prev == EUnderlying) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether \p D can hide a tag declaration. | 
|  | static bool canHideTag(const NamedDecl *D) { | 
|  | // C++ [basic.scope.declarative]p4: | 
|  | //   Given a set of declarations in a single declarative region [...] | 
|  | //   exactly one declaration shall declare a class name or enumeration name | 
|  | //   that is not a typedef name and the other declarations shall all refer to | 
|  | //   the same variable, non-static data member, or enumerator, or all refer | 
|  | //   to functions and function templates; in this case the class name or | 
|  | //   enumeration name is hidden. | 
|  | // C++ [basic.scope.hiding]p2: | 
|  | //   A class name or enumeration name can be hidden by the name of a | 
|  | //   variable, data member, function, or enumerator declared in the same | 
|  | //   scope. | 
|  | // An UnresolvedUsingValueDecl always instantiates to one of these. | 
|  | D = D->getUnderlyingDecl(); | 
|  | return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || | 
|  | isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || | 
|  | isa<UnresolvedUsingValueDecl>(D); | 
|  | } | 
|  |  | 
|  | /// Resolves the result kind of this lookup. | 
|  | void LookupResult::resolveKind() { | 
|  | unsigned N = Decls.size(); | 
|  |  | 
|  | // Fast case: no possible ambiguity. | 
|  | if (N == 0) { | 
|  | assert(ResultKind == LookupResultKind::NotFound || | 
|  | ResultKind == LookupResultKind::NotFoundInCurrentInstantiation); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there's a single decl, we need to examine it to decide what | 
|  | // kind of lookup this is. | 
|  | if (N == 1) { | 
|  | const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); | 
|  | if (isa<FunctionTemplateDecl>(D)) | 
|  | ResultKind = LookupResultKind::FoundOverloaded; | 
|  | else if (isa<UnresolvedUsingValueDecl>(D)) | 
|  | ResultKind = LookupResultKind::FoundUnresolvedValue; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't do any extra resolution if we've already resolved as ambiguous. | 
|  | if (ResultKind == LookupResultKind::Ambiguous) | 
|  | return; | 
|  |  | 
|  | llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; | 
|  | llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; | 
|  |  | 
|  | bool Ambiguous = false; | 
|  | bool ReferenceToPlaceHolderVariable = false; | 
|  | bool HasTag = false, HasFunction = false; | 
|  | bool HasFunctionTemplate = false, HasUnresolved = false; | 
|  | const NamedDecl *HasNonFunction = nullptr; | 
|  |  | 
|  | llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; | 
|  | llvm::BitVector RemovedDecls(N); | 
|  |  | 
|  | for (unsigned I = 0; I < N; I++) { | 
|  | const NamedDecl *D = Decls[I]->getUnderlyingDecl(); | 
|  | D = cast<NamedDecl>(D->getCanonicalDecl()); | 
|  |  | 
|  | // Ignore an invalid declaration unless it's the only one left. | 
|  | // Also ignore HLSLBufferDecl which not have name conflict with other Decls. | 
|  | if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && | 
|  | N - RemovedDecls.count() > 1) { | 
|  | RemovedDecls.set(I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C++ [basic.scope.hiding]p2: | 
|  | //   A class name or enumeration name can be hidden by the name of | 
|  | //   an object, function, or enumerator declared in the same | 
|  | //   scope. If a class or enumeration name and an object, function, | 
|  | //   or enumerator are declared in the same scope (in any order) | 
|  | //   with the same name, the class or enumeration name is hidden | 
|  | //   wherever the object, function, or enumerator name is visible. | 
|  | if (HideTags && isa<TagDecl>(D)) { | 
|  | bool Hidden = false; | 
|  | for (auto *OtherDecl : Decls) { | 
|  | if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() && | 
|  | getContextForScopeMatching(OtherDecl)->Equals( | 
|  | getContextForScopeMatching(Decls[I]))) { | 
|  | RemovedDecls.set(I); | 
|  | Hidden = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (Hidden) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | std::optional<unsigned> ExistingI; | 
|  |  | 
|  | // Redeclarations of types via typedef can occur both within a scope | 
|  | // and, through using declarations and directives, across scopes. There is | 
|  | // no ambiguity if they all refer to the same type, so unique based on the | 
|  | // canonical type. | 
|  | if (const auto *TD = dyn_cast<TypeDecl>(D)) { | 
|  | auto UniqueResult = UniqueTypes.insert( | 
|  | std::make_pair(getSema().Context.getCanonicalTypeDeclType(TD), I)); | 
|  | if (!UniqueResult.second) { | 
|  | // The type is not unique. | 
|  | ExistingI = UniqueResult.first->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For non-type declarations, check for a prior lookup result naming this | 
|  | // canonical declaration. | 
|  | if (!ExistingI) { | 
|  | auto UniqueResult = Unique.insert(std::make_pair(D, I)); | 
|  | if (!UniqueResult.second) { | 
|  | // We've seen this entity before. | 
|  | ExistingI = UniqueResult.first->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ExistingI) { | 
|  | // This is not a unique lookup result. Pick one of the results and | 
|  | // discard the other. | 
|  | if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], | 
|  | Decls[*ExistingI])) | 
|  | Decls[*ExistingI] = Decls[I]; | 
|  | RemovedDecls.set(I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, do some decl type analysis and then continue. | 
|  |  | 
|  | if (isa<UnresolvedUsingValueDecl>(D)) { | 
|  | HasUnresolved = true; | 
|  | } else if (isa<TagDecl>(D)) { | 
|  | if (HasTag) | 
|  | Ambiguous = true; | 
|  | HasTag = true; | 
|  | } else if (isa<FunctionTemplateDecl>(D)) { | 
|  | HasFunction = true; | 
|  | HasFunctionTemplate = true; | 
|  | } else if (isa<FunctionDecl>(D)) { | 
|  | HasFunction = true; | 
|  | } else { | 
|  | if (HasNonFunction) { | 
|  | // If we're about to create an ambiguity between two declarations that | 
|  | // are equivalent, but one is an internal linkage declaration from one | 
|  | // module and the other is an internal linkage declaration from another | 
|  | // module, just skip it. | 
|  | if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, | 
|  | D)) { | 
|  | EquivalentNonFunctions.push_back(D); | 
|  | RemovedDecls.set(I); | 
|  | continue; | 
|  | } | 
|  | if (D->isPlaceholderVar(getSema().getLangOpts()) && | 
|  | getContextForScopeMatching(D) == | 
|  | getContextForScopeMatching(Decls[I])) { | 
|  | ReferenceToPlaceHolderVariable = true; | 
|  | } | 
|  | Ambiguous = true; | 
|  | } | 
|  | HasNonFunction = D; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: This diagnostic should really be delayed until we're done with | 
|  | // the lookup result, in case the ambiguity is resolved by the caller. | 
|  | if (!EquivalentNonFunctions.empty() && !Ambiguous) | 
|  | getSema().diagnoseEquivalentInternalLinkageDeclarations( | 
|  | getNameLoc(), HasNonFunction, EquivalentNonFunctions); | 
|  |  | 
|  | // Remove decls by replacing them with decls from the end (which | 
|  | // means that we need to iterate from the end) and then truncating | 
|  | // to the new size. | 
|  | for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I)) | 
|  | Decls[I] = Decls[--N]; | 
|  | Decls.truncate(N); | 
|  |  | 
|  | if ((HasNonFunction && (HasFunction || HasUnresolved)) || | 
|  | (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) | 
|  | Ambiguous = true; | 
|  |  | 
|  | if (Ambiguous && ReferenceToPlaceHolderVariable) | 
|  | setAmbiguous(LookupAmbiguityKind::AmbiguousReferenceToPlaceholderVariable); | 
|  | else if (Ambiguous) | 
|  | setAmbiguous(LookupAmbiguityKind::AmbiguousReference); | 
|  | else if (HasUnresolved) | 
|  | ResultKind = LookupResultKind::FoundUnresolvedValue; | 
|  | else if (N > 1 || HasFunctionTemplate) | 
|  | ResultKind = LookupResultKind::FoundOverloaded; | 
|  | else | 
|  | ResultKind = LookupResultKind::Found; | 
|  | } | 
|  |  | 
|  | void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { | 
|  | CXXBasePaths::const_paths_iterator I, E; | 
|  | for (I = P.begin(), E = P.end(); I != E; ++I) | 
|  | for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; | 
|  | ++DI) | 
|  | addDecl(*DI); | 
|  | } | 
|  |  | 
|  | void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { | 
|  | Paths = new CXXBasePaths; | 
|  | Paths->swap(P); | 
|  | addDeclsFromBasePaths(*Paths); | 
|  | resolveKind(); | 
|  | setAmbiguous(LookupAmbiguityKind::AmbiguousBaseSubobjects); | 
|  | } | 
|  |  | 
|  | void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { | 
|  | Paths = new CXXBasePaths; | 
|  | Paths->swap(P); | 
|  | addDeclsFromBasePaths(*Paths); | 
|  | resolveKind(); | 
|  | setAmbiguous(LookupAmbiguityKind::AmbiguousBaseSubobjectTypes); | 
|  | } | 
|  |  | 
|  | void LookupResult::print(raw_ostream &Out) { | 
|  | Out << Decls.size() << " result(s)"; | 
|  | if (isAmbiguous()) Out << ", ambiguous"; | 
|  | if (Paths) Out << ", base paths present"; | 
|  |  | 
|  | for (iterator I = begin(), E = end(); I != E; ++I) { | 
|  | Out << "\n"; | 
|  | (*I)->print(Out, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void LookupResult::dump() { | 
|  | llvm::errs() << "lookup results for " << getLookupName().getAsString() | 
|  | << ":\n"; | 
|  | for (NamedDecl *D : *this) | 
|  | D->dump(); | 
|  | } | 
|  |  | 
|  | /// Diagnose a missing builtin type. | 
|  | static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, | 
|  | llvm::StringRef Name) { | 
|  | S.Diag(SourceLocation(), diag::err_opencl_type_not_found) | 
|  | << TypeClass << Name; | 
|  | return S.Context.VoidTy; | 
|  | } | 
|  |  | 
|  | /// Lookup an OpenCL enum type. | 
|  | static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { | 
|  | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), | 
|  | Sema::LookupTagName); | 
|  | S.LookupName(Result, S.TUScope); | 
|  | if (Result.empty()) | 
|  | return diagOpenCLBuiltinTypeError(S, "enum", Name); | 
|  | EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); | 
|  | if (!Decl) | 
|  | return diagOpenCLBuiltinTypeError(S, "enum", Name); | 
|  | return S.Context.getCanonicalTagType(Decl); | 
|  | } | 
|  |  | 
|  | /// Lookup an OpenCL typedef type. | 
|  | static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { | 
|  | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), | 
|  | Sema::LookupOrdinaryName); | 
|  | S.LookupName(Result, S.TUScope); | 
|  | if (Result.empty()) | 
|  | return diagOpenCLBuiltinTypeError(S, "typedef", Name); | 
|  | TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); | 
|  | if (!Decl) | 
|  | return diagOpenCLBuiltinTypeError(S, "typedef", Name); | 
|  | return S.Context.getTypedefType(ElaboratedTypeKeyword::None, | 
|  | /*Qualifier=*/std::nullopt, Decl); | 
|  | } | 
|  |  | 
|  | /// Get the QualType instances of the return type and arguments for an OpenCL | 
|  | /// builtin function signature. | 
|  | /// \param S (in) The Sema instance. | 
|  | /// \param OpenCLBuiltin (in) The signature currently handled. | 
|  | /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic | 
|  | ///        type used as return type or as argument. | 
|  | ///        Only meaningful for generic types, otherwise equals 1. | 
|  | /// \param RetTypes (out) List of the possible return types. | 
|  | /// \param ArgTypes (out) List of the possible argument types.  For each | 
|  | ///        argument, ArgTypes contains QualTypes for the Cartesian product | 
|  | ///        of (vector sizes) x (types) . | 
|  | static void GetQualTypesForOpenCLBuiltin( | 
|  | Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, | 
|  | SmallVector<QualType, 1> &RetTypes, | 
|  | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { | 
|  | // Get the QualType instances of the return types. | 
|  | unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; | 
|  | OCL2Qual(S, TypeTable[Sig], RetTypes); | 
|  | GenTypeMaxCnt = RetTypes.size(); | 
|  |  | 
|  | // Get the QualType instances of the arguments. | 
|  | // First type is the return type, skip it. | 
|  | for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { | 
|  | SmallVector<QualType, 1> Ty; | 
|  | OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], | 
|  | Ty); | 
|  | GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; | 
|  | ArgTypes.push_back(std::move(Ty)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Create a list of the candidate function overloads for an OpenCL builtin | 
|  | /// function. | 
|  | /// \param Context (in) The ASTContext instance. | 
|  | /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic | 
|  | ///        type used as return type or as argument. | 
|  | ///        Only meaningful for generic types, otherwise equals 1. | 
|  | /// \param FunctionList (out) List of FunctionTypes. | 
|  | /// \param RetTypes (in) List of the possible return types. | 
|  | /// \param ArgTypes (in) List of the possible types for the arguments. | 
|  | static void GetOpenCLBuiltinFctOverloads( | 
|  | ASTContext &Context, unsigned GenTypeMaxCnt, | 
|  | std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, | 
|  | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { | 
|  | FunctionProtoType::ExtProtoInfo PI( | 
|  | Context.getTargetInfo().getDefaultCallingConv()); | 
|  | PI.Variadic = false; | 
|  |  | 
|  | // Do not attempt to create any FunctionTypes if there are no return types, | 
|  | // which happens when a type belongs to a disabled extension. | 
|  | if (RetTypes.size() == 0) | 
|  | return; | 
|  |  | 
|  | // Create FunctionTypes for each (gen)type. | 
|  | for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { | 
|  | SmallVector<QualType, 5> ArgList; | 
|  |  | 
|  | for (unsigned A = 0; A < ArgTypes.size(); A++) { | 
|  | // Bail out if there is an argument that has no available types. | 
|  | if (ArgTypes[A].size() == 0) | 
|  | return; | 
|  |  | 
|  | // Builtins such as "max" have an "sgentype" argument that represents | 
|  | // the corresponding scalar type of a gentype.  The number of gentypes | 
|  | // must be a multiple of the number of sgentypes. | 
|  | assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && | 
|  | "argument type count not compatible with gentype type count"); | 
|  | unsigned Idx = IGenType % ArgTypes[A].size(); | 
|  | ArgList.push_back(ArgTypes[A][Idx]); | 
|  | } | 
|  |  | 
|  | FunctionList.push_back(Context.getFunctionType( | 
|  | RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// When trying to resolve a function name, if isOpenCLBuiltin() returns a | 
|  | /// non-null <Index, Len> pair, then the name is referencing an OpenCL | 
|  | /// builtin function.  Add all candidate signatures to the LookUpResult. | 
|  | /// | 
|  | /// \param S (in) The Sema instance. | 
|  | /// \param LR (inout) The LookupResult instance. | 
|  | /// \param II (in) The identifier being resolved. | 
|  | /// \param FctIndex (in) Starting index in the BuiltinTable. | 
|  | /// \param Len (in) The signature list has Len elements. | 
|  | static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, | 
|  | IdentifierInfo *II, | 
|  | const unsigned FctIndex, | 
|  | const unsigned Len) { | 
|  | // The builtin function declaration uses generic types (gentype). | 
|  | bool HasGenType = false; | 
|  |  | 
|  | // Maximum number of types contained in a generic type used as return type or | 
|  | // as argument.  Only meaningful for generic types, otherwise equals 1. | 
|  | unsigned GenTypeMaxCnt; | 
|  |  | 
|  | ASTContext &Context = S.Context; | 
|  |  | 
|  | for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { | 
|  | const OpenCLBuiltinStruct &OpenCLBuiltin = | 
|  | BuiltinTable[FctIndex + SignatureIndex]; | 
|  |  | 
|  | // Ignore this builtin function if it is not available in the currently | 
|  | // selected language version. | 
|  | if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), | 
|  | OpenCLBuiltin.Versions)) | 
|  | continue; | 
|  |  | 
|  | // Ignore this builtin function if it carries an extension macro that is | 
|  | // not defined. This indicates that the extension is not supported by the | 
|  | // target, so the builtin function should not be available. | 
|  | StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; | 
|  | if (!Extensions.empty()) { | 
|  | SmallVector<StringRef, 2> ExtVec; | 
|  | Extensions.split(ExtVec, " "); | 
|  | bool AllExtensionsDefined = true; | 
|  | for (StringRef Ext : ExtVec) { | 
|  | if (!S.getPreprocessor().isMacroDefined(Ext)) { | 
|  | AllExtensionsDefined = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!AllExtensionsDefined) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SmallVector<QualType, 1> RetTypes; | 
|  | SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; | 
|  |  | 
|  | // Obtain QualType lists for the function signature. | 
|  | GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, | 
|  | ArgTypes); | 
|  | if (GenTypeMaxCnt > 1) { | 
|  | HasGenType = true; | 
|  | } | 
|  |  | 
|  | // Create function overload for each type combination. | 
|  | std::vector<QualType> FunctionList; | 
|  | GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, | 
|  | ArgTypes); | 
|  |  | 
|  | SourceLocation Loc = LR.getNameLoc(); | 
|  | DeclContext *Parent = Context.getTranslationUnitDecl(); | 
|  | FunctionDecl *NewOpenCLBuiltin; | 
|  |  | 
|  | for (const auto &FTy : FunctionList) { | 
|  | NewOpenCLBuiltin = FunctionDecl::Create( | 
|  | Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, | 
|  | S.getCurFPFeatures().isFPConstrained(), false, | 
|  | FTy->isFunctionProtoType()); | 
|  | NewOpenCLBuiltin->setImplicit(); | 
|  |  | 
|  | // Create Decl objects for each parameter, adding them to the | 
|  | // FunctionDecl. | 
|  | const auto *FP = cast<FunctionProtoType>(FTy); | 
|  | SmallVector<ParmVarDecl *, 4> ParmList; | 
|  | for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { | 
|  | ParmVarDecl *Parm = ParmVarDecl::Create( | 
|  | Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), | 
|  | nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); | 
|  | Parm->setScopeInfo(0, IParm); | 
|  | ParmList.push_back(Parm); | 
|  | } | 
|  | NewOpenCLBuiltin->setParams(ParmList); | 
|  |  | 
|  | // Add function attributes. | 
|  | if (OpenCLBuiltin.IsPure) | 
|  | NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); | 
|  | if (OpenCLBuiltin.IsConst) | 
|  | NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); | 
|  | if (OpenCLBuiltin.IsConv) | 
|  | NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); | 
|  |  | 
|  | if (!S.getLangOpts().OpenCLCPlusPlus) | 
|  | NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); | 
|  |  | 
|  | LR.addDecl(NewOpenCLBuiltin); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we added overloads, need to resolve the lookup result. | 
|  | if (Len > 1 || HasGenType) | 
|  | LR.resolveKind(); | 
|  | } | 
|  |  | 
|  | bool Sema::LookupBuiltin(LookupResult &R) { | 
|  | Sema::LookupNameKind NameKind = R.getLookupKind(); | 
|  |  | 
|  | // If we didn't find a use of this identifier, and if the identifier | 
|  | // corresponds to a compiler builtin, create the decl object for the builtin | 
|  | // now, injecting it into translation unit scope, and return it. | 
|  | if (NameKind == Sema::LookupOrdinaryName || | 
|  | NameKind == Sema::LookupRedeclarationWithLinkage) { | 
|  | IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); | 
|  | if (II) { | 
|  | if (NameKind == Sema::LookupOrdinaryName) { | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | #define BuiltinTemplate(BIName) | 
|  | #define CPlusPlusBuiltinTemplate(BIName)                                       \ | 
|  | if (II == getASTContext().get##BIName##Name()) {                             \ | 
|  | R.addDecl(getASTContext().get##BIName##Decl());                            \ | 
|  | return true;                                                               \ | 
|  | } | 
|  | #include "clang/Basic/BuiltinTemplates.inc" | 
|  | } | 
|  | if (getLangOpts().HLSL) { | 
|  | #define BuiltinTemplate(BIName) | 
|  | #define HLSLBuiltinTemplate(BIName)                                            \ | 
|  | if (II == getASTContext().get##BIName##Name()) {                             \ | 
|  | R.addDecl(getASTContext().get##BIName##Decl());                            \ | 
|  | return true;                                                               \ | 
|  | } | 
|  | #include "clang/Basic/BuiltinTemplates.inc" | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if this is an OpenCL Builtin, and if so, insert its overloads. | 
|  | if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { | 
|  | auto Index = isOpenCLBuiltin(II->getName()); | 
|  | if (Index.first) { | 
|  | InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, | 
|  | Index.second); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins || | 
|  | RISCV().DeclareAndesVectorBuiltins) { | 
|  | if (!RISCV().IntrinsicManager) | 
|  | RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(*this); | 
|  |  | 
|  | RISCV().IntrinsicManager->InitIntrinsicList(); | 
|  |  | 
|  | if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this is a builtin on this (or all) targets, create the decl. | 
|  | if (unsigned BuiltinID = II->getBuiltinID()) { | 
|  | // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined | 
|  | // library functions like 'malloc'. Instead, we'll just error. | 
|  | if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && | 
|  | Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | 
|  | return false; | 
|  |  | 
|  | if (NamedDecl *D = | 
|  | LazilyCreateBuiltin(II, BuiltinID, TUScope, | 
|  | R.isForRedeclaration(), R.getNameLoc())) { | 
|  | R.addDecl(D); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Looks up the declaration of "struct objc_super" and | 
|  | /// saves it for later use in building builtin declaration of | 
|  | /// objc_msgSendSuper and objc_msgSendSuper_stret. | 
|  | static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { | 
|  | ASTContext &Context = Sema.Context; | 
|  | LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), | 
|  | Sema::LookupTagName); | 
|  | Sema.LookupName(Result, S); | 
|  | if (Result.getResultKind() == LookupResultKind::Found) | 
|  | if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) | 
|  | Context.setObjCSuperType(Context.getCanonicalTagType(TD)); | 
|  | } | 
|  |  | 
|  | void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { | 
|  | if (ID == Builtin::BIobjc_msgSendSuper) | 
|  | LookupPredefedObjCSuperType(*this, S); | 
|  | } | 
|  |  | 
|  | /// Determine whether we can declare a special member function within | 
|  | /// the class at this point. | 
|  | static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { | 
|  | // We need to have a definition for the class. | 
|  | if (!Class->getDefinition() || Class->isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | // We can't be in the middle of defining the class. | 
|  | return !Class->isBeingDefined(); | 
|  | } | 
|  |  | 
|  | void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { | 
|  | if (!CanDeclareSpecialMemberFunction(Class)) | 
|  | return; | 
|  |  | 
|  | // If the default constructor has not yet been declared, do so now. | 
|  | if (Class->needsImplicitDefaultConstructor()) | 
|  | DeclareImplicitDefaultConstructor(Class); | 
|  |  | 
|  | // If the copy constructor has not yet been declared, do so now. | 
|  | if (Class->needsImplicitCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(Class); | 
|  |  | 
|  | // If the copy assignment operator has not yet been declared, do so now. | 
|  | if (Class->needsImplicitCopyAssignment()) | 
|  | DeclareImplicitCopyAssignment(Class); | 
|  |  | 
|  | if (getLangOpts().CPlusPlus11) { | 
|  | // If the move constructor has not yet been declared, do so now. | 
|  | if (Class->needsImplicitMoveConstructor()) | 
|  | DeclareImplicitMoveConstructor(Class); | 
|  |  | 
|  | // If the move assignment operator has not yet been declared, do so now. | 
|  | if (Class->needsImplicitMoveAssignment()) | 
|  | DeclareImplicitMoveAssignment(Class); | 
|  | } | 
|  |  | 
|  | // If the destructor has not yet been declared, do so now. | 
|  | if (Class->needsImplicitDestructor()) | 
|  | DeclareImplicitDestructor(Class); | 
|  | } | 
|  |  | 
|  | /// Determine whether this is the name of an implicitly-declared | 
|  | /// special member function. | 
|  | static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { | 
|  | switch (Name.getNameKind()) { | 
|  | case DeclarationName::CXXConstructorName: | 
|  | case DeclarationName::CXXDestructorName: | 
|  | return true; | 
|  |  | 
|  | case DeclarationName::CXXOperatorName: | 
|  | return Name.getCXXOverloadedOperator() == OO_Equal; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If there are any implicit member functions with the given name | 
|  | /// that need to be declared in the given declaration context, do so. | 
|  | static void DeclareImplicitMemberFunctionsWithName(Sema &S, | 
|  | DeclarationName Name, | 
|  | SourceLocation Loc, | 
|  | const DeclContext *DC) { | 
|  | if (!DC) | 
|  | return; | 
|  |  | 
|  | switch (Name.getNameKind()) { | 
|  | case DeclarationName::CXXConstructorName: | 
|  | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | 
|  | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { | 
|  | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); | 
|  | if (Record->needsImplicitDefaultConstructor()) | 
|  | S.DeclareImplicitDefaultConstructor(Class); | 
|  | if (Record->needsImplicitCopyConstructor()) | 
|  | S.DeclareImplicitCopyConstructor(Class); | 
|  | if (S.getLangOpts().CPlusPlus11 && | 
|  | Record->needsImplicitMoveConstructor()) | 
|  | S.DeclareImplicitMoveConstructor(Class); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DeclarationName::CXXDestructorName: | 
|  | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) | 
|  | if (Record->getDefinition() && Record->needsImplicitDestructor() && | 
|  | CanDeclareSpecialMemberFunction(Record)) | 
|  | S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); | 
|  | break; | 
|  |  | 
|  | case DeclarationName::CXXOperatorName: | 
|  | if (Name.getCXXOverloadedOperator() != OO_Equal) | 
|  | break; | 
|  |  | 
|  | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { | 
|  | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { | 
|  | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); | 
|  | if (Record->needsImplicitCopyAssignment()) | 
|  | S.DeclareImplicitCopyAssignment(Class); | 
|  | if (S.getLangOpts().CPlusPlus11 && | 
|  | Record->needsImplicitMoveAssignment()) | 
|  | S.DeclareImplicitMoveAssignment(Class); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DeclarationName::CXXDeductionGuideName: | 
|  | S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adds all qualifying matches for a name within a decl context to the | 
|  | // given lookup result.  Returns true if any matches were found. | 
|  | static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { | 
|  | bool Found = false; | 
|  |  | 
|  | // Lazily declare C++ special member functions. | 
|  | if (S.getLangOpts().CPlusPlus) | 
|  | DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), | 
|  | DC); | 
|  |  | 
|  | // Perform lookup into this declaration context. | 
|  | DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); | 
|  | for (NamedDecl *D : DR) { | 
|  | if ((D = R.getAcceptableDecl(D))) { | 
|  | R.addDecl(D); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) | 
|  | return true; | 
|  |  | 
|  | if (R.getLookupName().getNameKind() | 
|  | != DeclarationName::CXXConversionFunctionName || | 
|  | R.getLookupName().getCXXNameType()->isDependentType() || | 
|  | !isa<CXXRecordDecl>(DC)) | 
|  | return Found; | 
|  |  | 
|  | // C++ [temp.mem]p6: | 
|  | //   A specialization of a conversion function template is not found by | 
|  | //   name lookup. Instead, any conversion function templates visible in the | 
|  | //   context of the use are considered. [...] | 
|  | const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | 
|  | if (!Record->isCompleteDefinition()) | 
|  | return Found; | 
|  |  | 
|  | // For conversion operators, 'operator auto' should only match | 
|  | // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered | 
|  | // as a candidate for template substitution. | 
|  | auto *ContainedDeducedType = | 
|  | R.getLookupName().getCXXNameType()->getContainedDeducedType(); | 
|  | if (R.getLookupName().getNameKind() == | 
|  | DeclarationName::CXXConversionFunctionName && | 
|  | ContainedDeducedType && ContainedDeducedType->isUndeducedType()) | 
|  | return Found; | 
|  |  | 
|  | for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), | 
|  | UEnd = Record->conversion_end(); U != UEnd; ++U) { | 
|  | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); | 
|  | if (!ConvTemplate) | 
|  | continue; | 
|  |  | 
|  | // When we're performing lookup for the purposes of redeclaration, just | 
|  | // add the conversion function template. When we deduce template | 
|  | // arguments for specializations, we'll end up unifying the return | 
|  | // type of the new declaration with the type of the function template. | 
|  | if (R.isForRedeclaration()) { | 
|  | R.addDecl(ConvTemplate); | 
|  | Found = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // C++ [temp.mem]p6: | 
|  | //   [...] For each such operator, if argument deduction succeeds | 
|  | //   (14.9.2.3), the resulting specialization is used as if found by | 
|  | //   name lookup. | 
|  | // | 
|  | // When referencing a conversion function for any purpose other than | 
|  | // a redeclaration (such that we'll be building an expression with the | 
|  | // result), perform template argument deduction and place the | 
|  | // specialization into the result set. We do this to avoid forcing all | 
|  | // callers to perform special deduction for conversion functions. | 
|  | TemplateDeductionInfo Info(R.getNameLoc()); | 
|  | FunctionDecl *Specialization = nullptr; | 
|  |  | 
|  | const FunctionProtoType *ConvProto | 
|  | = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); | 
|  | assert(ConvProto && "Nonsensical conversion function template type"); | 
|  |  | 
|  | // Compute the type of the function that we would expect the conversion | 
|  | // function to have, if it were to match the name given. | 
|  | // FIXME: Calling convention! | 
|  | FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); | 
|  | EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); | 
|  | EPI.ExceptionSpec = EST_None; | 
|  | QualType ExpectedType = R.getSema().Context.getFunctionType( | 
|  | R.getLookupName().getCXXNameType(), {}, EPI); | 
|  |  | 
|  | // Perform template argument deduction against the type that we would | 
|  | // expect the function to have. | 
|  | if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, | 
|  | Specialization, Info) == | 
|  | TemplateDeductionResult::Success) { | 
|  | R.addDecl(Specialization); | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | // Performs C++ unqualified lookup into the given file context. | 
|  | static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, | 
|  | const DeclContext *NS, | 
|  | UnqualUsingDirectiveSet &UDirs) { | 
|  |  | 
|  | assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); | 
|  |  | 
|  | // Perform direct name lookup into the LookupCtx. | 
|  | bool Found = LookupDirect(S, R, NS); | 
|  |  | 
|  | // Perform direct name lookup into the namespaces nominated by the | 
|  | // using directives whose common ancestor is this namespace. | 
|  | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) | 
|  | if (LookupDirect(S, R, UUE.getNominatedNamespace())) | 
|  | Found = true; | 
|  |  | 
|  | R.resolveKind(); | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | static bool isNamespaceOrTranslationUnitScope(Scope *S) { | 
|  | if (DeclContext *Ctx = S->getEntity()) | 
|  | return Ctx->isFileContext(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Find the outer declaration context from this scope. This indicates the | 
|  | /// context that we should search up to (exclusive) before considering the | 
|  | /// parent of the specified scope. | 
|  | static DeclContext *findOuterContext(Scope *S) { | 
|  | for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) | 
|  | if (DeclContext *DC = OuterS->getLookupEntity()) | 
|  | return DC; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// An RAII object to specify that we want to find block scope extern | 
|  | /// declarations. | 
|  | struct FindLocalExternScope { | 
|  | FindLocalExternScope(LookupResult &R) | 
|  | : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & | 
|  | Decl::IDNS_LocalExtern) { | 
|  | R.setFindLocalExtern(R.getIdentifierNamespace() & | 
|  | (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); | 
|  | } | 
|  | void restore() { | 
|  | R.setFindLocalExtern(OldFindLocalExtern); | 
|  | } | 
|  | ~FindLocalExternScope() { | 
|  | restore(); | 
|  | } | 
|  | LookupResult &R; | 
|  | bool OldFindLocalExtern; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool Sema::CppLookupName(LookupResult &R, Scope *S) { | 
|  | assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); | 
|  |  | 
|  | DeclarationName Name = R.getLookupName(); | 
|  | Sema::LookupNameKind NameKind = R.getLookupKind(); | 
|  |  | 
|  | // If this is the name of an implicitly-declared special member function, | 
|  | // go through the scope stack to implicitly declare | 
|  | if (isImplicitlyDeclaredMemberFunctionName(Name)) { | 
|  | for (Scope *PreS = S; PreS; PreS = PreS->getParent()) | 
|  | if (DeclContext *DC = PreS->getEntity()) | 
|  | DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); | 
|  | } | 
|  |  | 
|  | // C++23 [temp.dep.general]p2: | 
|  | //   The component name of an unqualified-id is dependent if | 
|  | //   - it is a conversion-function-id whose conversion-type-id | 
|  | //     is dependent, or | 
|  | //   - it is operator= and the current class is a templated entity, or | 
|  | //   - the unqualified-id is the postfix-expression in a dependent call. | 
|  | if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && | 
|  | Name.getCXXNameType()->isDependentType()) { | 
|  | R.setNotFoundInCurrentInstantiation(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Implicitly declare member functions with the name we're looking for, if in | 
|  | // fact we are in a scope where it matters. | 
|  |  | 
|  | Scope *Initial = S; | 
|  | IdentifierResolver::iterator | 
|  | I = IdResolver.begin(Name), | 
|  | IEnd = IdResolver.end(); | 
|  |  | 
|  | // First we lookup local scope. | 
|  | // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] | 
|  | // ...During unqualified name lookup (3.4.1), the names appear as if | 
|  | // they were declared in the nearest enclosing namespace which contains | 
|  | // both the using-directive and the nominated namespace. | 
|  | // [Note: in this context, "contains" means "contains directly or | 
|  | // indirectly". | 
|  | // | 
|  | // For example: | 
|  | // namespace A { int i; } | 
|  | // void foo() { | 
|  | //   int i; | 
|  | //   { | 
|  | //     using namespace A; | 
|  | //     ++i; // finds local 'i', A::i appears at global scope | 
|  | //   } | 
|  | // } | 
|  | // | 
|  | UnqualUsingDirectiveSet UDirs(*this); | 
|  | bool VisitedUsingDirectives = false; | 
|  | bool LeftStartingScope = false; | 
|  |  | 
|  | // When performing a scope lookup, we want to find local extern decls. | 
|  | FindLocalExternScope FindLocals(R); | 
|  |  | 
|  | for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { | 
|  | bool SearchNamespaceScope = true; | 
|  | // Check whether the IdResolver has anything in this scope. | 
|  | for (; I != IEnd && S->isDeclScope(*I); ++I) { | 
|  | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { | 
|  | if (NameKind == LookupRedeclarationWithLinkage && | 
|  | !(*I)->isTemplateParameter()) { | 
|  | // If it's a template parameter, we still find it, so we can diagnose | 
|  | // the invalid redeclaration. | 
|  |  | 
|  | // Determine whether this (or a previous) declaration is | 
|  | // out-of-scope. | 
|  | if (!LeftStartingScope && !Initial->isDeclScope(*I)) | 
|  | LeftStartingScope = true; | 
|  |  | 
|  | // If we found something outside of our starting scope that | 
|  | // does not have linkage, skip it. | 
|  | if (LeftStartingScope && !((*I)->hasLinkage())) { | 
|  | R.setShadowed(); | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | // We found something in this scope, we should not look at the | 
|  | // namespace scope | 
|  | SearchNamespaceScope = false; | 
|  | } | 
|  | R.addDecl(ND); | 
|  | } | 
|  | } | 
|  | if (!SearchNamespaceScope) { | 
|  | R.resolveKind(); | 
|  | if (S->isClassScope()) | 
|  | if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity())) | 
|  | R.setNamingClass(Record); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (NameKind == LookupLocalFriendName && !S->isClassScope()) { | 
|  | // C++11 [class.friend]p11: | 
|  | //   If a friend declaration appears in a local class and the name | 
|  | //   specified is an unqualified name, a prior declaration is | 
|  | //   looked up without considering scopes that are outside the | 
|  | //   innermost enclosing non-class scope. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (DeclContext *Ctx = S->getLookupEntity()) { | 
|  | DeclContext *OuterCtx = findOuterContext(S); | 
|  | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { | 
|  | // We do not directly look into transparent contexts, since | 
|  | // those entities will be found in the nearest enclosing | 
|  | // non-transparent context. | 
|  | if (Ctx->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | // We do not look directly into function or method contexts, | 
|  | // since all of the local variables and parameters of the | 
|  | // function/method are present within the Scope. | 
|  | if (Ctx->isFunctionOrMethod()) { | 
|  | // If we have an Objective-C instance method, look for ivars | 
|  | // in the corresponding interface. | 
|  | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { | 
|  | if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) | 
|  | if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { | 
|  | ObjCInterfaceDecl *ClassDeclared; | 
|  | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( | 
|  | Name.getAsIdentifierInfo(), | 
|  | ClassDeclared)) { | 
|  | if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { | 
|  | R.addDecl(ND); | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is a file context, we need to perform unqualified name | 
|  | // lookup considering using directives. | 
|  | if (Ctx->isFileContext()) { | 
|  | // If we haven't handled using directives yet, do so now. | 
|  | if (!VisitedUsingDirectives) { | 
|  | // Add using directives from this context up to the top level. | 
|  | for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { | 
|  | if (UCtx->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | UDirs.visit(UCtx, UCtx); | 
|  | } | 
|  |  | 
|  | // Find the innermost file scope, so we can add using directives | 
|  | // from local scopes. | 
|  | Scope *InnermostFileScope = S; | 
|  | while (InnermostFileScope && | 
|  | !isNamespaceOrTranslationUnitScope(InnermostFileScope)) | 
|  | InnermostFileScope = InnermostFileScope->getParent(); | 
|  | UDirs.visitScopeChain(Initial, InnermostFileScope); | 
|  |  | 
|  | UDirs.done(); | 
|  |  | 
|  | VisitedUsingDirectives = true; | 
|  | } | 
|  |  | 
|  | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Perform qualified name lookup into this context. | 
|  | // FIXME: In some cases, we know that every name that could be found by | 
|  | // this qualified name lookup will also be on the identifier chain. For | 
|  | // example, inside a class without any base classes, we never need to | 
|  | // perform qualified lookup because all of the members are on top of the | 
|  | // identifier chain. | 
|  | if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Stop if we ran out of scopes. | 
|  | // FIXME:  This really, really shouldn't be happening. | 
|  | if (!S) return false; | 
|  |  | 
|  | // If we are looking for members, no need to look into global/namespace scope. | 
|  | if (NameKind == LookupMemberName) | 
|  | return false; | 
|  |  | 
|  | // Collect UsingDirectiveDecls in all scopes, and recursively all | 
|  | // nominated namespaces by those using-directives. | 
|  | // | 
|  | // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we | 
|  | // don't build it for each lookup! | 
|  | if (!VisitedUsingDirectives) { | 
|  | UDirs.visitScopeChain(Initial, S); | 
|  | UDirs.done(); | 
|  | } | 
|  |  | 
|  | // If we're not performing redeclaration lookup, do not look for local | 
|  | // extern declarations outside of a function scope. | 
|  | if (!R.isForRedeclaration()) | 
|  | FindLocals.restore(); | 
|  |  | 
|  | // Lookup namespace scope, and global scope. | 
|  | // Unqualified name lookup in C++ requires looking into scopes | 
|  | // that aren't strictly lexical, and therefore we walk through the | 
|  | // context as well as walking through the scopes. | 
|  | for (; S; S = S->getParent()) { | 
|  | // Check whether the IdResolver has anything in this scope. | 
|  | bool Found = false; | 
|  | for (; I != IEnd && S->isDeclScope(*I); ++I) { | 
|  | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { | 
|  | // We found something.  Look for anything else in our scope | 
|  | // with this same name and in an acceptable identifier | 
|  | // namespace, so that we can construct an overload set if we | 
|  | // need to. | 
|  | Found = true; | 
|  | R.addDecl(ND); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Found && S->isTemplateParamScope()) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DeclContext *Ctx = S->getLookupEntity(); | 
|  | if (Ctx) { | 
|  | DeclContext *OuterCtx = findOuterContext(S); | 
|  | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { | 
|  | // We do not directly look into transparent contexts, since | 
|  | // those entities will be found in the nearest enclosing | 
|  | // non-transparent context. | 
|  | if (Ctx->isTransparentContext()) | 
|  | continue; | 
|  |  | 
|  | // If we have a context, and it's not a context stashed in the | 
|  | // template parameter scope for an out-of-line definition, also | 
|  | // look into that context. | 
|  | if (!(Found && S->isTemplateParamScope())) { | 
|  | assert(Ctx->isFileContext() && | 
|  | "We should have been looking only at file context here already."); | 
|  |  | 
|  | // Look into context considering using-directives. | 
|  | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) | 
|  | Found = true; | 
|  | } | 
|  |  | 
|  | if (Found) { | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (R.isForRedeclaration() && !Ctx->isTransparentContext()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return !R.empty(); | 
|  | } | 
|  |  | 
|  | void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { | 
|  | if (auto *M = getCurrentModule()) | 
|  | Context.mergeDefinitionIntoModule(ND, M); | 
|  | else | 
|  | // We're not building a module; just make the definition visible. | 
|  | ND->setVisibleDespiteOwningModule(); | 
|  |  | 
|  | // If ND is a template declaration, make the template parameters | 
|  | // visible too. They're not (necessarily) within a mergeable DeclContext. | 
|  | if (auto *TD = dyn_cast<TemplateDecl>(ND)) | 
|  | for (auto *Param : *TD->getTemplateParameters()) | 
|  | makeMergedDefinitionVisible(Param); | 
|  |  | 
|  | // If we import a named module which contains a header, and then we include a | 
|  | // header which contains a definition of enums, we will skip parsing the enums | 
|  | // in the current TU. But we need to ensure the visibility of the enum | 
|  | // contants, since they are able to be found with the parents of their | 
|  | // parents. | 
|  | if (auto *ED = dyn_cast<EnumDecl>(ND); | 
|  | ED && ED->isFromGlobalModule() && !ED->isScoped()) { | 
|  | for (auto *ECD : ED->enumerators()) { | 
|  | ECD->setVisibleDespiteOwningModule(); | 
|  | DeclContext *RedeclCtx = ED->getDeclContext()->getRedeclContext(); | 
|  | if (RedeclCtx->lookup(ECD->getDeclName()).empty()) | 
|  | RedeclCtx->makeDeclVisibleInContext(ECD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Find the module in which the given declaration was defined. | 
|  | static Module *getDefiningModule(Sema &S, Decl *Entity) { | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { | 
|  | // If this function was instantiated from a template, the defining module is | 
|  | // the module containing the pattern. | 
|  | if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) | 
|  | Entity = Pattern; | 
|  | } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { | 
|  | if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) | 
|  | Entity = Pattern; | 
|  | } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { | 
|  | if (auto *Pattern = ED->getTemplateInstantiationPattern()) | 
|  | Entity = Pattern; | 
|  | } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { | 
|  | if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) | 
|  | Entity = Pattern; | 
|  | } | 
|  |  | 
|  | // Walk up to the containing context. That might also have been instantiated | 
|  | // from a template. | 
|  | DeclContext *Context = Entity->getLexicalDeclContext(); | 
|  | if (Context->isFileContext()) | 
|  | return S.getOwningModule(Entity); | 
|  | return getDefiningModule(S, cast<Decl>(Context)); | 
|  | } | 
|  |  | 
|  | llvm::DenseSet<Module*> &Sema::getLookupModules() { | 
|  | unsigned N = CodeSynthesisContexts.size(); | 
|  | for (unsigned I = CodeSynthesisContextLookupModules.size(); | 
|  | I != N; ++I) { | 
|  | Module *M = CodeSynthesisContexts[I].Entity ? | 
|  | getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : | 
|  | nullptr; | 
|  | if (M && !LookupModulesCache.insert(M).second) | 
|  | M = nullptr; | 
|  | CodeSynthesisContextLookupModules.push_back(M); | 
|  | } | 
|  | return LookupModulesCache; | 
|  | } | 
|  |  | 
|  | bool Sema::isUsableModule(const Module *M) { | 
|  | assert(M && "We shouldn't check nullness for module here"); | 
|  | // Return quickly if we cached the result. | 
|  | if (UsableModuleUnitsCache.count(M)) | 
|  | return true; | 
|  |  | 
|  | // If M is the global module fragment of the current translation unit. So it | 
|  | // should be usable. | 
|  | // [module.global.frag]p1: | 
|  | //   The global module fragment can be used to provide declarations that are | 
|  | //   attached to the global module and usable within the module unit. | 
|  | if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) { | 
|  | UsableModuleUnitsCache.insert(M); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, the global module fragment from other translation unit is not | 
|  | // directly usable. | 
|  | if (M->isExplicitGlobalModule()) | 
|  | return false; | 
|  |  | 
|  | Module *Current = getCurrentModule(); | 
|  |  | 
|  | // If we're not parsing a module, we can't use all the declarations from | 
|  | // another module easily. | 
|  | if (!Current) | 
|  | return false; | 
|  |  | 
|  | // For implicit global module, the decls in the same modules with the parent | 
|  | // module should be visible to the decls in the implicit global module. | 
|  | if (Current->isImplicitGlobalModule()) | 
|  | Current = Current->getTopLevelModule(); | 
|  | if (M->isImplicitGlobalModule()) | 
|  | M = M->getTopLevelModule(); | 
|  |  | 
|  | // If M is the module we're parsing or M and the current module unit lives in | 
|  | // the same module, M should be usable. | 
|  | // | 
|  | // Note: It should be fine to search the vector `ModuleScopes` linearly since | 
|  | // it should be generally small enough. There should be rare module fragments | 
|  | // in a named module unit. | 
|  | if (llvm::count_if(ModuleScopes, | 
|  | [&M](const ModuleScope &MS) { return MS.Module == M; }) || | 
|  | getASTContext().isInSameModule(M, Current)) { | 
|  | UsableModuleUnitsCache.insert(M); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { | 
|  | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) | 
|  | if (isModuleVisible(Merged)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { | 
|  | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) | 
|  | if (isUsableModule(Merged)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename ParmDecl> | 
|  | static bool | 
|  | hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules, | 
|  | Sema::AcceptableKind Kind) { | 
|  | if (!D->hasDefaultArgument()) | 
|  | return false; | 
|  |  | 
|  | llvm::SmallPtrSet<const ParmDecl *, 4> Visited; | 
|  | while (D && Visited.insert(D).second) { | 
|  | auto &DefaultArg = D->getDefaultArgStorage(); | 
|  | if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) | 
|  | return true; | 
|  |  | 
|  | if (!DefaultArg.isInherited() && Modules) { | 
|  | auto *NonConstD = const_cast<ParmDecl*>(D); | 
|  | Modules->push_back(S.getOwningModule(NonConstD)); | 
|  | } | 
|  |  | 
|  | // If there was a previous default argument, maybe its parameter is | 
|  | // acceptable. | 
|  | D = DefaultArg.getInheritedFrom(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::hasAcceptableDefaultArgument( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, | 
|  | Sema::AcceptableKind Kind) { | 
|  | if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) | 
|  | return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); | 
|  |  | 
|  | if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) | 
|  | return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); | 
|  |  | 
|  | return ::hasAcceptableDefaultArgument( | 
|  | *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | return hasAcceptableDefaultArgument(D, Modules, | 
|  | Sema::AcceptableKind::Visible); | 
|  | } | 
|  |  | 
|  | bool Sema::hasReachableDefaultArgument( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | return hasAcceptableDefaultArgument(D, Modules, | 
|  | Sema::AcceptableKind::Reachable); | 
|  | } | 
|  |  | 
|  | template <typename Filter> | 
|  | static bool | 
|  | hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules, Filter F, | 
|  | Sema::AcceptableKind Kind) { | 
|  | bool HasFilteredRedecls = false; | 
|  |  | 
|  | for (auto *Redecl : D->redecls()) { | 
|  | auto *R = cast<NamedDecl>(Redecl); | 
|  | if (!F(R)) | 
|  | continue; | 
|  |  | 
|  | if (S.isAcceptable(R, Kind)) | 
|  | return true; | 
|  |  | 
|  | HasFilteredRedecls = true; | 
|  |  | 
|  | if (Modules) | 
|  | Modules->push_back(R->getOwningModule()); | 
|  | } | 
|  |  | 
|  | // Only return false if there is at least one redecl that is not filtered out. | 
|  | if (HasFilteredRedecls) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules, | 
|  | Sema::AcceptableKind Kind) { | 
|  | return hasAcceptableDeclarationImpl( | 
|  | S, D, Modules, | 
|  | [](const NamedDecl *D) { | 
|  | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) | 
|  | return RD->getTemplateSpecializationKind() == | 
|  | TSK_ExplicitSpecialization; | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->getTemplateSpecializationKind() == | 
|  | TSK_ExplicitSpecialization; | 
|  | if (auto *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->getTemplateSpecializationKind() == | 
|  | TSK_ExplicitSpecialization; | 
|  | llvm_unreachable("unknown explicit specialization kind"); | 
|  | }, | 
|  | Kind); | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleExplicitSpecialization( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | return ::hasAcceptableExplicitSpecialization(*this, D, Modules, | 
|  | Sema::AcceptableKind::Visible); | 
|  | } | 
|  |  | 
|  | bool Sema::hasReachableExplicitSpecialization( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | return ::hasAcceptableExplicitSpecialization(*this, D, Modules, | 
|  | Sema::AcceptableKind::Reachable); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules, | 
|  | Sema::AcceptableKind Kind) { | 
|  | assert(isa<CXXRecordDecl>(D->getDeclContext()) && | 
|  | "not a member specialization"); | 
|  | return hasAcceptableDeclarationImpl( | 
|  | S, D, Modules, | 
|  | [](const NamedDecl *D) { | 
|  | // If the specialization is declared at namespace scope, then it's a | 
|  | // member specialization declaration. If it's lexically inside the class | 
|  | // definition then it was instantiated. | 
|  | // | 
|  | // FIXME: This is a hack. There should be a better way to determine | 
|  | // this. | 
|  | // FIXME: What about MS-style explicit specializations declared within a | 
|  | //        class definition? | 
|  | return D->getLexicalDeclContext()->isFileContext(); | 
|  | }, | 
|  | Kind); | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleMemberSpecialization( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | return hasAcceptableMemberSpecialization(*this, D, Modules, | 
|  | Sema::AcceptableKind::Visible); | 
|  | } | 
|  |  | 
|  | bool Sema::hasReachableMemberSpecialization( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | return hasAcceptableMemberSpecialization(*this, D, Modules, | 
|  | Sema::AcceptableKind::Reachable); | 
|  | } | 
|  |  | 
|  | /// Determine whether a declaration is acceptable to name lookup. | 
|  | /// | 
|  | /// This routine determines whether the declaration D is acceptable in the | 
|  | /// current lookup context, taking into account the current template | 
|  | /// instantiation stack. During template instantiation, a declaration is | 
|  | /// acceptable if it is acceptable from a module containing any entity on the | 
|  | /// template instantiation path (by instantiating a template, you allow it to | 
|  | /// see the declarations that your module can see, including those later on in | 
|  | /// your module). | 
|  | bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, | 
|  | Sema::AcceptableKind Kind) { | 
|  | assert(!D->isUnconditionallyVisible() && | 
|  | "should not call this: not in slow case"); | 
|  |  | 
|  | Module *DeclModule = SemaRef.getOwningModule(D); | 
|  | assert(DeclModule && "hidden decl has no owning module"); | 
|  |  | 
|  | // If the owning module is visible, the decl is acceptable. | 
|  | if (SemaRef.isModuleVisible(DeclModule, | 
|  | D->isInvisibleOutsideTheOwningModule())) | 
|  | return true; | 
|  |  | 
|  | // Determine whether a decl context is a file context for the purpose of | 
|  | // visibility/reachability. This looks through some (export and linkage spec) | 
|  | // transparent contexts, but not others (enums). | 
|  | auto IsEffectivelyFileContext = [](const DeclContext *DC) { | 
|  | return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || | 
|  | isa<ExportDecl>(DC); | 
|  | }; | 
|  |  | 
|  | // If this declaration is not at namespace scope | 
|  | // then it is acceptable if its lexical parent has a acceptable definition. | 
|  | DeclContext *DC = D->getLexicalDeclContext(); | 
|  | if (DC && !IsEffectivelyFileContext(DC)) { | 
|  | // For a parameter, check whether our current template declaration's | 
|  | // lexical context is acceptable, not whether there's some other acceptable | 
|  | // definition of it, because parameters aren't "within" the definition. | 
|  | // | 
|  | // In C++ we need to check for a acceptable definition due to ODR merging, | 
|  | // and in C we must not because each declaration of a function gets its own | 
|  | // set of declarations for tags in prototype scope. | 
|  | bool AcceptableWithinParent; | 
|  | if (D->isTemplateParameter()) { | 
|  | bool SearchDefinitions = true; | 
|  | if (const auto *DCD = dyn_cast<Decl>(DC)) { | 
|  | if (const auto *TD = DCD->getDescribedTemplate()) { | 
|  | TemplateParameterList *TPL = TD->getTemplateParameters(); | 
|  | auto Index = getDepthAndIndex(D).second; | 
|  | SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; | 
|  | } | 
|  | } | 
|  | if (SearchDefinitions) | 
|  | AcceptableWithinParent = | 
|  | SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); | 
|  | else | 
|  | AcceptableWithinParent = | 
|  | isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); | 
|  | } else if (isa<ParmVarDecl>(D) || | 
|  | (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) | 
|  | AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); | 
|  | else if (D->isModulePrivate()) { | 
|  | // A module-private declaration is only acceptable if an enclosing lexical | 
|  | // parent was merged with another definition in the current module. | 
|  | AcceptableWithinParent = false; | 
|  | do { | 
|  | if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { | 
|  | AcceptableWithinParent = true; | 
|  | break; | 
|  | } | 
|  | DC = DC->getLexicalParent(); | 
|  | } while (!IsEffectivelyFileContext(DC)); | 
|  | } else { | 
|  | AcceptableWithinParent = | 
|  | SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); | 
|  | } | 
|  |  | 
|  | if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && | 
|  | Kind == Sema::AcceptableKind::Visible && | 
|  | // FIXME: Do something better in this case. | 
|  | !SemaRef.getLangOpts().ModulesLocalVisibility) { | 
|  | // Cache the fact that this declaration is implicitly visible because | 
|  | // its parent has a visible definition. | 
|  | D->setVisibleDespiteOwningModule(); | 
|  | } | 
|  | return AcceptableWithinParent; | 
|  | } | 
|  |  | 
|  | if (Kind == Sema::AcceptableKind::Visible) | 
|  | return false; | 
|  |  | 
|  | assert(Kind == Sema::AcceptableKind::Reachable && | 
|  | "Additional Sema::AcceptableKind?"); | 
|  | return isReachableSlow(SemaRef, D); | 
|  | } | 
|  |  | 
|  | bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { | 
|  | // The module might be ordinarily visible. For a module-private query, that | 
|  | // means it is part of the current module. | 
|  | if (ModulePrivate && isUsableModule(M)) | 
|  | return true; | 
|  |  | 
|  | // For a query which is not module-private, that means it is in our visible | 
|  | // module set. | 
|  | if (!ModulePrivate && VisibleModules.isVisible(M)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, it might be visible by virtue of the query being within a | 
|  | // template instantiation or similar that is permitted to look inside M. | 
|  |  | 
|  | // Find the extra places where we need to look. | 
|  | const auto &LookupModules = getLookupModules(); | 
|  | if (LookupModules.empty()) | 
|  | return false; | 
|  |  | 
|  | // If our lookup set contains the module, it's visible. | 
|  | if (LookupModules.count(M)) | 
|  | return true; | 
|  |  | 
|  | // The global module fragments are visible to its corresponding module unit. | 
|  | // So the global module fragment should be visible if the its corresponding | 
|  | // module unit is visible. | 
|  | if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule())) | 
|  | return true; | 
|  |  | 
|  | // For a module-private query, that's everywhere we get to look. | 
|  | if (ModulePrivate) | 
|  | return false; | 
|  |  | 
|  | // Check whether M is transitively exported to an import of the lookup set. | 
|  | return llvm::any_of(LookupModules, [&](const Module *LookupM) { | 
|  | return LookupM->isModuleVisible(M); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // FIXME: Return false directly if we don't have an interface dependency on the | 
|  | // translation unit containing D. | 
|  | bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { | 
|  | assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); | 
|  |  | 
|  | Module *DeclModule = SemaRef.getOwningModule(D); | 
|  | assert(DeclModule && "hidden decl has no owning module"); | 
|  |  | 
|  | // Entities in header like modules are reachable only if they're visible. | 
|  | if (DeclModule->isHeaderLikeModule()) | 
|  | return false; | 
|  |  | 
|  | if (!D->isInAnotherModuleUnit()) | 
|  | return true; | 
|  |  | 
|  | // [module.reach]/p3: | 
|  | // A declaration D is reachable from a point P if: | 
|  | // ... | 
|  | // - D is not discarded ([module.global.frag]), appears in a translation unit | 
|  | //   that is reachable from P, and does not appear within a private module | 
|  | //   fragment. | 
|  | // | 
|  | // A declaration that's discarded in the GMF should be module-private. | 
|  | if (D->isModulePrivate()) | 
|  | return false; | 
|  |  | 
|  | Module *DeclTopModule = DeclModule->getTopLevelModule(); | 
|  |  | 
|  | // [module.reach]/p1 | 
|  | //   A translation unit U is necessarily reachable from a point P if U is a | 
|  | //   module interface unit on which the translation unit containing P has an | 
|  | //   interface dependency, or the translation unit containing P imports U, in | 
|  | //   either case prior to P ([module.import]). | 
|  | // | 
|  | // [module.import]/p10 | 
|  | //   A translation unit has an interface dependency on a translation unit U if | 
|  | //   it contains a declaration (possibly a module-declaration) that imports U | 
|  | //   or if it has an interface dependency on a translation unit that has an | 
|  | //   interface dependency on U. | 
|  | // | 
|  | // So we could conclude the module unit U is necessarily reachable if: | 
|  | // (1) The module unit U is module interface unit. | 
|  | // (2) The current unit has an interface dependency on the module unit U. | 
|  | // | 
|  | // Here we only check for the first condition. Since we couldn't see | 
|  | // DeclModule if it isn't (transitively) imported. | 
|  | if (DeclTopModule->isModuleInterfaceUnit()) | 
|  | return true; | 
|  |  | 
|  | // [module.reach]/p1,2 | 
|  | //   A translation unit U is necessarily reachable from a point P if U is a | 
|  | //   module interface unit on which the translation unit containing P has an | 
|  | //   interface dependency, or the translation unit containing P imports U, in | 
|  | //   either case prior to P | 
|  | // | 
|  | //   Additional translation units on | 
|  | //   which the point within the program has an interface dependency may be | 
|  | //   considered reachable, but it is unspecified which are and under what | 
|  | //   circumstances. | 
|  | Module *CurrentM = SemaRef.getCurrentModule(); | 
|  |  | 
|  | // Directly imported module are necessarily reachable. | 
|  | // Since we can't export import a module implementation partition unit, we | 
|  | // don't need to count for Exports here. | 
|  | if (CurrentM && CurrentM->getTopLevelModule()->Imports.count(DeclTopModule)) | 
|  | return true; | 
|  |  | 
|  | // Then we treat all module implementation partition unit as unreachable. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { | 
|  | return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); | 
|  | } | 
|  |  | 
|  | bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { | 
|  | // FIXME: If there are both visible and hidden declarations, we need to take | 
|  | // into account whether redeclaration is possible. Example: | 
|  | // | 
|  | // Non-imported module: | 
|  | //   int f(T);        // #1 | 
|  | // Some TU: | 
|  | //   static int f(U); // #2, not a redeclaration of #1 | 
|  | //   int f(T);        // #3, finds both, should link with #1 if T != U, but | 
|  | //                    // with #2 if T == U; neither should be ambiguous. | 
|  | for (auto *D : R) { | 
|  | if (isVisible(D)) | 
|  | return true; | 
|  | assert(D->isExternallyDeclarable() && | 
|  | "should not have hidden, non-externally-declarable result here"); | 
|  | } | 
|  |  | 
|  | // This function is called once "New" is essentially complete, but before a | 
|  | // previous declaration is attached. We can't query the linkage of "New" in | 
|  | // general, because attaching the previous declaration can change the | 
|  | // linkage of New to match the previous declaration. | 
|  | // | 
|  | // However, because we've just determined that there is no *visible* prior | 
|  | // declaration, we can compute the linkage here. There are two possibilities: | 
|  | // | 
|  | //  * This is not a redeclaration; it's safe to compute the linkage now. | 
|  | // | 
|  | //  * This is a redeclaration of a prior declaration that is externally | 
|  | //    redeclarable. In that case, the linkage of the declaration is not | 
|  | //    changed by attaching the prior declaration, because both are externally | 
|  | //    declarable (and thus ExternalLinkage or VisibleNoLinkage). | 
|  | // | 
|  | // FIXME: This is subtle and fragile. | 
|  | return New->isExternallyDeclarable(); | 
|  | } | 
|  |  | 
|  | /// Retrieve the visible declaration corresponding to D, if any. | 
|  | /// | 
|  | /// This routine determines whether the declaration D is visible in the current | 
|  | /// module, with the current imports. If not, it checks whether any | 
|  | /// redeclaration of D is visible, and if so, returns that declaration. | 
|  | /// | 
|  | /// \returns D, or a visible previous declaration of D, whichever is more recent | 
|  | /// and visible. If no declaration of D is visible, returns null. | 
|  | static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, | 
|  | unsigned IDNS) { | 
|  | assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); | 
|  |  | 
|  | for (auto *RD : D->redecls()) { | 
|  | // Don't bother with extra checks if we already know this one isn't visible. | 
|  | if (RD == D) | 
|  | continue; | 
|  |  | 
|  | auto ND = cast<NamedDecl>(RD); | 
|  | // FIXME: This is wrong in the case where the previous declaration is not | 
|  | // visible in the same scope as D. This needs to be done much more | 
|  | // carefully. | 
|  | if (ND->isInIdentifierNamespace(IDNS) && | 
|  | LookupResult::isAvailableForLookup(SemaRef, ND)) | 
|  | return ND; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, | 
|  | llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | assert(!isVisible(D) && "not in slow case"); | 
|  | return hasAcceptableDeclarationImpl( | 
|  | *this, D, Modules, [](const NamedDecl *) { return true; }, | 
|  | Sema::AcceptableKind::Visible); | 
|  | } | 
|  |  | 
|  | bool Sema::hasReachableDeclarationSlow( | 
|  | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { | 
|  | assert(!isReachable(D) && "not in slow case"); | 
|  | return hasAcceptableDeclarationImpl( | 
|  | *this, D, Modules, [](const NamedDecl *) { return true; }, | 
|  | Sema::AcceptableKind::Reachable); | 
|  | } | 
|  |  | 
|  | NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { | 
|  | if (auto *ND = dyn_cast<NamespaceDecl>(D)) { | 
|  | // Namespaces are a bit of a special case: we expect there to be a lot of | 
|  | // redeclarations of some namespaces, all declarations of a namespace are | 
|  | // essentially interchangeable, all declarations are found by name lookup | 
|  | // if any is, and namespaces are never looked up during template | 
|  | // instantiation. So we benefit from caching the check in this case, and | 
|  | // it is correct to do so. | 
|  | auto *Key = ND->getCanonicalDecl(); | 
|  | if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) | 
|  | return Acceptable; | 
|  | auto *Acceptable = isVisible(getSema(), Key) | 
|  | ? Key | 
|  | : findAcceptableDecl(getSema(), Key, IDNS); | 
|  | if (Acceptable) | 
|  | getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); | 
|  | return Acceptable; | 
|  | } | 
|  |  | 
|  | return findAcceptableDecl(getSema(), D, IDNS); | 
|  | } | 
|  |  | 
|  | bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { | 
|  | // If this declaration is already visible, return it directly. | 
|  | if (D->isUnconditionallyVisible()) | 
|  | return true; | 
|  |  | 
|  | // During template instantiation, we can refer to hidden declarations, if | 
|  | // they were visible in any module along the path of instantiation. | 
|  | return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); | 
|  | } | 
|  |  | 
|  | bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { | 
|  | if (D->isUnconditionallyVisible()) | 
|  | return true; | 
|  |  | 
|  | return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); | 
|  | } | 
|  |  | 
|  | bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { | 
|  | // We should check the visibility at the callsite already. | 
|  | if (isVisible(SemaRef, ND)) | 
|  | return true; | 
|  |  | 
|  | // Deduction guide lives in namespace scope generally, but it is just a | 
|  | // hint to the compilers. What we actually lookup for is the generated member | 
|  | // of the corresponding template. So it is sufficient to check the | 
|  | // reachability of the template decl. | 
|  | if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) | 
|  | return SemaRef.hasReachableDefinition(DeductionGuide); | 
|  |  | 
|  | // FIXME: The lookup for allocation function is a standalone process. | 
|  | // (We can find the logics in Sema::FindAllocationFunctions) | 
|  | // | 
|  | // Such structure makes it a problem when we instantiate a template | 
|  | // declaration using placement allocation function if the placement | 
|  | // allocation function is invisible. | 
|  | // (See https://github.com/llvm/llvm-project/issues/59601) | 
|  | // | 
|  | // Here we workaround it by making the placement allocation functions | 
|  | // always acceptable. The downside is that we can't diagnose the direct | 
|  | // use of the invisible placement allocation functions. (Although such uses | 
|  | // should be rare). | 
|  | if (auto *FD = dyn_cast<FunctionDecl>(ND); | 
|  | FD && FD->isReservedGlobalPlacementOperator()) | 
|  | return true; | 
|  |  | 
|  | auto *DC = ND->getDeclContext(); | 
|  | // If ND is not visible and it is at namespace scope, it shouldn't be found | 
|  | // by name lookup. | 
|  | if (DC->isFileContext()) | 
|  | return false; | 
|  |  | 
|  | // [module.interface]p7 | 
|  | // Class and enumeration member names can be found by name lookup in any | 
|  | // context in which a definition of the type is reachable. | 
|  | // | 
|  | // NOTE: The above wording may be problematic. See | 
|  | // https://github.com/llvm/llvm-project/issues/131058 But it is much complext | 
|  | // to adjust it in Sema's lookup process. Now we hacked it in ASTWriter. See | 
|  | // the comments in ASTDeclContextNameLookupTrait::getLookupVisibility. | 
|  | if (auto *TD = dyn_cast<TagDecl>(DC)) | 
|  | return SemaRef.hasReachableDefinition(TD); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, | 
|  | bool ForceNoCPlusPlus) { | 
|  | DeclarationName Name = R.getLookupName(); | 
|  | if (!Name) return false; | 
|  |  | 
|  | LookupNameKind NameKind = R.getLookupKind(); | 
|  |  | 
|  | if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { | 
|  | // Unqualified name lookup in C/Objective-C is purely lexical, so | 
|  | // search in the declarations attached to the name. | 
|  | if (NameKind == Sema::LookupRedeclarationWithLinkage) { | 
|  | // Find the nearest non-transparent declaration scope. | 
|  | while (!(S->getFlags() & Scope::DeclScope) || | 
|  | (S->getEntity() && S->getEntity()->isTransparentContext())) | 
|  | S = S->getParent(); | 
|  | } | 
|  |  | 
|  | // When performing a scope lookup, we want to find local extern decls. | 
|  | FindLocalExternScope FindLocals(R); | 
|  |  | 
|  | // Scan up the scope chain looking for a decl that matches this | 
|  | // identifier that is in the appropriate namespace.  This search | 
|  | // should not take long, as shadowing of names is uncommon, and | 
|  | // deep shadowing is extremely uncommon. | 
|  | bool LeftStartingScope = false; | 
|  |  | 
|  | for (IdentifierResolver::iterator I = IdResolver.begin(Name), | 
|  | IEnd = IdResolver.end(); | 
|  | I != IEnd; ++I) | 
|  | if (NamedDecl *D = R.getAcceptableDecl(*I)) { | 
|  | if (NameKind == LookupRedeclarationWithLinkage) { | 
|  | // Determine whether this (or a previous) declaration is | 
|  | // out-of-scope. | 
|  | if (!LeftStartingScope && !S->isDeclScope(*I)) | 
|  | LeftStartingScope = true; | 
|  |  | 
|  | // If we found something outside of our starting scope that | 
|  | // does not have linkage, skip it. | 
|  | if (LeftStartingScope && !((*I)->hasLinkage())) { | 
|  | R.setShadowed(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | else if (NameKind == LookupObjCImplicitSelfParam && | 
|  | !isa<ImplicitParamDecl>(*I)) | 
|  | continue; | 
|  |  | 
|  | R.addDecl(D); | 
|  |  | 
|  | // Check whether there are any other declarations with the same name | 
|  | // and in the same scope. | 
|  | if (I != IEnd) { | 
|  | // Find the scope in which this declaration was declared (if it | 
|  | // actually exists in a Scope). | 
|  | while (S && !S->isDeclScope(D)) | 
|  | S = S->getParent(); | 
|  |  | 
|  | // If the scope containing the declaration is the translation unit, | 
|  | // then we'll need to perform our checks based on the matching | 
|  | // DeclContexts rather than matching scopes. | 
|  | if (S && isNamespaceOrTranslationUnitScope(S)) | 
|  | S = nullptr; | 
|  |  | 
|  | // Compute the DeclContext, if we need it. | 
|  | DeclContext *DC = nullptr; | 
|  | if (!S) | 
|  | DC = (*I)->getDeclContext()->getRedeclContext(); | 
|  |  | 
|  | IdentifierResolver::iterator LastI = I; | 
|  | for (++LastI; LastI != IEnd; ++LastI) { | 
|  | if (S) { | 
|  | // Match based on scope. | 
|  | if (!S->isDeclScope(*LastI)) | 
|  | break; | 
|  | } else { | 
|  | // Match based on DeclContext. | 
|  | DeclContext *LastDC | 
|  | = (*LastI)->getDeclContext()->getRedeclContext(); | 
|  | if (!LastDC->Equals(DC)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the declaration is in the right namespace and visible, add it. | 
|  | if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) | 
|  | R.addDecl(LastD); | 
|  | } | 
|  |  | 
|  | R.resolveKind(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | // Perform C++ unqualified name lookup. | 
|  | if (CppLookupName(R, S)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we didn't find a use of this identifier, and if the identifier | 
|  | // corresponds to a compiler builtin, create the decl object for the builtin | 
|  | // now, injecting it into translation unit scope, and return it. | 
|  | if (AllowBuiltinCreation && LookupBuiltin(R)) | 
|  | return true; | 
|  |  | 
|  | // If we didn't find a use of this identifier, the ExternalSource | 
|  | // may be able to handle the situation. | 
|  | // Note: some lookup failures are expected! | 
|  | // See e.g. R.isForRedeclaration(). | 
|  | return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); | 
|  | } | 
|  |  | 
|  | /// Perform qualified name lookup in the namespaces nominated by | 
|  | /// using directives by the given context. | 
|  | /// | 
|  | /// C++98 [namespace.qual]p2: | 
|  | ///   Given X::m (where X is a user-declared namespace), or given \::m | 
|  | ///   (where X is the global namespace), let S be the set of all | 
|  | ///   declarations of m in X and in the transitive closure of all | 
|  | ///   namespaces nominated by using-directives in X and its used | 
|  | ///   namespaces, except that using-directives are ignored in any | 
|  | ///   namespace, including X, directly containing one or more | 
|  | ///   declarations of m. No namespace is searched more than once in | 
|  | ///   the lookup of a name. If S is the empty set, the program is | 
|  | ///   ill-formed. Otherwise, if S has exactly one member, or if the | 
|  | ///   context of the reference is a using-declaration | 
|  | ///   (namespace.udecl), S is the required set of declarations of | 
|  | ///   m. Otherwise if the use of m is not one that allows a unique | 
|  | ///   declaration to be chosen from S, the program is ill-formed. | 
|  | /// | 
|  | /// C++98 [namespace.qual]p5: | 
|  | ///   During the lookup of a qualified namespace member name, if the | 
|  | ///   lookup finds more than one declaration of the member, and if one | 
|  | ///   declaration introduces a class name or enumeration name and the | 
|  | ///   other declarations either introduce the same object, the same | 
|  | ///   enumerator or a set of functions, the non-type name hides the | 
|  | ///   class or enumeration name if and only if the declarations are | 
|  | ///   from the same namespace; otherwise (the declarations are from | 
|  | ///   different namespaces), the program is ill-formed. | 
|  | static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, | 
|  | DeclContext *StartDC) { | 
|  | assert(StartDC->isFileContext() && "start context is not a file context"); | 
|  |  | 
|  | // We have not yet looked into these namespaces, much less added | 
|  | // their "using-children" to the queue. | 
|  | SmallVector<NamespaceDecl*, 8> Queue; | 
|  |  | 
|  | // We have at least added all these contexts to the queue. | 
|  | llvm::SmallPtrSet<DeclContext*, 8> Visited; | 
|  | Visited.insert(StartDC); | 
|  |  | 
|  | // We have already looked into the initial namespace; seed the queue | 
|  | // with its using-children. | 
|  | for (auto *I : StartDC->using_directives()) { | 
|  | NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl(); | 
|  | if (S.isVisible(I) && Visited.insert(ND).second) | 
|  | Queue.push_back(ND); | 
|  | } | 
|  |  | 
|  | // The easiest way to implement the restriction in [namespace.qual]p5 | 
|  | // is to check whether any of the individual results found a tag | 
|  | // and, if so, to declare an ambiguity if the final result is not | 
|  | // a tag. | 
|  | bool FoundTag = false; | 
|  | bool FoundNonTag = false; | 
|  |  | 
|  | LookupResult LocalR(LookupResult::Temporary, R); | 
|  |  | 
|  | bool Found = false; | 
|  | while (!Queue.empty()) { | 
|  | NamespaceDecl *ND = Queue.pop_back_val(); | 
|  |  | 
|  | // We go through some convolutions here to avoid copying results | 
|  | // between LookupResults. | 
|  | bool UseLocal = !R.empty(); | 
|  | LookupResult &DirectR = UseLocal ? LocalR : R; | 
|  | bool FoundDirect = LookupDirect(S, DirectR, ND); | 
|  |  | 
|  | if (FoundDirect) { | 
|  | // First do any local hiding. | 
|  | DirectR.resolveKind(); | 
|  |  | 
|  | // If the local result is a tag, remember that. | 
|  | if (DirectR.isSingleTagDecl()) | 
|  | FoundTag = true; | 
|  | else | 
|  | FoundNonTag = true; | 
|  |  | 
|  | // Append the local results to the total results if necessary. | 
|  | if (UseLocal) { | 
|  | R.addAllDecls(LocalR); | 
|  | LocalR.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we find names in this namespace, ignore its using directives. | 
|  | if (FoundDirect) { | 
|  | Found = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (auto *I : ND->using_directives()) { | 
|  | NamespaceDecl *Nom = I->getNominatedNamespace(); | 
|  | if (S.isVisible(I) && Visited.insert(Nom).second) | 
|  | Queue.push_back(Nom); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Found) { | 
|  | if (FoundTag && FoundNonTag) | 
|  | R.setAmbiguousQualifiedTagHiding(); | 
|  | else | 
|  | R.resolveKind(); | 
|  | } | 
|  |  | 
|  | return Found; | 
|  | } | 
|  |  | 
|  | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | 
|  | bool InUnqualifiedLookup) { | 
|  | assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); | 
|  |  | 
|  | if (!R.getLookupName()) | 
|  | return false; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Make sure that the declaration context is complete. | 
|  | if (const auto *TD = dyn_cast<TagDecl>(LookupCtx); | 
|  | TD && !TD->isDependentType() && TD->getDefinition() == nullptr) | 
|  | llvm_unreachable("Declaration context must already be complete!"); | 
|  | #endif | 
|  |  | 
|  | struct QualifiedLookupInScope { | 
|  | bool oldVal; | 
|  | DeclContext *Context; | 
|  | // Set flag in DeclContext informing debugger that we're looking for qualified name | 
|  | QualifiedLookupInScope(DeclContext *ctx) | 
|  | : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { | 
|  | ctx->setUseQualifiedLookup(); | 
|  | } | 
|  | ~QualifiedLookupInScope() { | 
|  | Context->setUseQualifiedLookup(oldVal); | 
|  | } | 
|  | } QL(LookupCtx); | 
|  |  | 
|  | CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); | 
|  | // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent | 
|  | // if it's a dependent conversion-function-id or operator= where the current | 
|  | // class is a templated entity. This should be handled in LookupName. | 
|  | if (!InUnqualifiedLookup && !R.isForRedeclaration()) { | 
|  | // C++23 [temp.dep.type]p5: | 
|  | //   A qualified name is dependent if | 
|  | //   - it is a conversion-function-id whose conversion-type-id | 
|  | //     is dependent, or | 
|  | //   - [...] | 
|  | //   - its lookup context is the current instantiation and it | 
|  | //     is operator=, or | 
|  | //   - [...] | 
|  | if (DeclarationName Name = R.getLookupName(); | 
|  | Name.getNameKind() == DeclarationName::CXXConversionFunctionName && | 
|  | Name.getCXXNameType()->isDependentType()) { | 
|  | R.setNotFoundInCurrentInstantiation(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LookupDirect(*this, R, LookupCtx)) { | 
|  | R.resolveKind(); | 
|  | if (LookupRec) | 
|  | R.setNamingClass(LookupRec); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Don't descend into implied contexts for redeclarations. | 
|  | // C++98 [namespace.qual]p6: | 
|  | //   In a declaration for a namespace member in which the | 
|  | //   declarator-id is a qualified-id, given that the qualified-id | 
|  | //   for the namespace member has the form | 
|  | //     nested-name-specifier unqualified-id | 
|  | //   the unqualified-id shall name a member of the namespace | 
|  | //   designated by the nested-name-specifier. | 
|  | // See also [class.mfct]p5 and [class.static.data]p2. | 
|  | if (R.isForRedeclaration()) | 
|  | return false; | 
|  |  | 
|  | // If this is a namespace, look it up in the implied namespaces. | 
|  | if (LookupCtx->isFileContext()) | 
|  | return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); | 
|  |  | 
|  | // If this isn't a C++ class, we aren't allowed to look into base | 
|  | // classes, we're done. | 
|  | if (!LookupRec || !LookupRec->getDefinition()) | 
|  | return false; | 
|  |  | 
|  | // We're done for lookups that can never succeed for C++ classes. | 
|  | if (R.getLookupKind() == LookupOperatorName || | 
|  | R.getLookupKind() == LookupNamespaceName || | 
|  | R.getLookupKind() == LookupObjCProtocolName || | 
|  | R.getLookupKind() == LookupLabel) | 
|  | return false; | 
|  |  | 
|  | // If we're performing qualified name lookup into a dependent class, | 
|  | // then we are actually looking into a current instantiation. If we have any | 
|  | // dependent base classes, then we either have to delay lookup until | 
|  | // template instantiation time (at which point all bases will be available) | 
|  | // or we have to fail. | 
|  | if (!InUnqualifiedLookup && LookupRec->isDependentContext() && | 
|  | LookupRec->hasAnyDependentBases()) { | 
|  | R.setNotFoundInCurrentInstantiation(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Perform lookup into our base classes. | 
|  |  | 
|  | DeclarationName Name = R.getLookupName(); | 
|  | unsigned IDNS = R.getIdentifierNamespace(); | 
|  |  | 
|  | // Look for this member in our base classes. | 
|  | auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, | 
|  | CXXBasePath &Path) -> bool { | 
|  | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); | 
|  | // Drop leading non-matching lookup results from the declaration list so | 
|  | // we don't need to consider them again below. | 
|  | for (Path.Decls = BaseRecord->lookup(Name).begin(); | 
|  | Path.Decls != Path.Decls.end(); ++Path.Decls) { | 
|  | if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | CXXBasePaths Paths; | 
|  | Paths.setOrigin(LookupRec); | 
|  | if (!LookupRec->lookupInBases(BaseCallback, Paths)) | 
|  | return false; | 
|  |  | 
|  | R.setNamingClass(LookupRec); | 
|  |  | 
|  | // C++ [class.member.lookup]p2: | 
|  | //   [...] If the resulting set of declarations are not all from | 
|  | //   sub-objects of the same type, or the set has a nonstatic member | 
|  | //   and includes members from distinct sub-objects, there is an | 
|  | //   ambiguity and the program is ill-formed. Otherwise that set is | 
|  | //   the result of the lookup. | 
|  | QualType SubobjectType; | 
|  | int SubobjectNumber = 0; | 
|  | AccessSpecifier SubobjectAccess = AS_none; | 
|  |  | 
|  | // Check whether the given lookup result contains only static members. | 
|  | auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { | 
|  | for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) | 
|  | if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) | 
|  | return false; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | bool TemplateNameLookup = R.isTemplateNameLookup(); | 
|  |  | 
|  | // Determine whether two sets of members contain the same members, as | 
|  | // required by C++ [class.member.lookup]p6. | 
|  | auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, | 
|  | DeclContext::lookup_iterator B) { | 
|  | using Iterator = DeclContextLookupResult::iterator; | 
|  | using Result = const void *; | 
|  |  | 
|  | auto Next = [&](Iterator &It, Iterator End) -> Result { | 
|  | while (It != End) { | 
|  | NamedDecl *ND = *It++; | 
|  | if (!ND->isInIdentifierNamespace(IDNS)) | 
|  | continue; | 
|  |  | 
|  | // C++ [temp.local]p3: | 
|  | //   A lookup that finds an injected-class-name (10.2) can result in | 
|  | //   an ambiguity in certain cases (for example, if it is found in | 
|  | //   more than one base class). If all of the injected-class-names | 
|  | //   that are found refer to specializations of the same class | 
|  | //   template, and if the name is used as a template-name, the | 
|  | //   reference refers to the class template itself and not a | 
|  | //   specialization thereof, and is not ambiguous. | 
|  | if (TemplateNameLookup) | 
|  | if (auto *TD = getAsTemplateNameDecl(ND)) | 
|  | ND = TD; | 
|  |  | 
|  | // C++ [class.member.lookup]p3: | 
|  | //   type declarations (including injected-class-names) are replaced by | 
|  | //   the types they designate | 
|  | if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) | 
|  | return Context.getCanonicalTypeDeclType(TD).getAsOpaquePtr(); | 
|  |  | 
|  | return ND->getUnderlyingDecl()->getCanonicalDecl(); | 
|  | } | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | // We'll often find the declarations are in the same order. Handle this | 
|  | // case (and the special case of only one declaration) efficiently. | 
|  | Iterator AIt = A, BIt = B, AEnd, BEnd; | 
|  | while (true) { | 
|  | Result AResult = Next(AIt, AEnd); | 
|  | Result BResult = Next(BIt, BEnd); | 
|  | if (!AResult && !BResult) | 
|  | return true; | 
|  | if (!AResult || !BResult) | 
|  | return false; | 
|  | if (AResult != BResult) { | 
|  | // Found a mismatch; carefully check both lists, accounting for the | 
|  | // possibility of declarations appearing more than once. | 
|  | llvm::SmallDenseMap<Result, bool, 32> AResults; | 
|  | for (; AResult; AResult = Next(AIt, AEnd)) | 
|  | AResults.insert({AResult, /*FoundInB*/false}); | 
|  | unsigned Found = 0; | 
|  | for (; BResult; BResult = Next(BIt, BEnd)) { | 
|  | auto It = AResults.find(BResult); | 
|  | if (It == AResults.end()) | 
|  | return false; | 
|  | if (!It->second) { | 
|  | It->second = true; | 
|  | ++Found; | 
|  | } | 
|  | } | 
|  | return AResults.size() == Found; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); | 
|  | Path != PathEnd; ++Path) { | 
|  | const CXXBasePathElement &PathElement = Path->back(); | 
|  |  | 
|  | // Pick the best (i.e. most permissive i.e. numerically lowest) access | 
|  | // across all paths. | 
|  | SubobjectAccess = std::min(SubobjectAccess, Path->Access); | 
|  |  | 
|  | // Determine whether we're looking at a distinct sub-object or not. | 
|  | if (SubobjectType.isNull()) { | 
|  | // This is the first subobject we've looked at. Record its type. | 
|  | SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); | 
|  | SubobjectNumber = PathElement.SubobjectNumber; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SubobjectType != | 
|  | Context.getCanonicalType(PathElement.Base->getType())) { | 
|  | // We found members of the given name in two subobjects of | 
|  | // different types. If the declaration sets aren't the same, this | 
|  | // lookup is ambiguous. | 
|  | // | 
|  | // FIXME: The language rule says that this applies irrespective of | 
|  | // whether the sets contain only static members. | 
|  | if (HasOnlyStaticMembers(Path->Decls) && | 
|  | HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) | 
|  | continue; | 
|  |  | 
|  | R.setAmbiguousBaseSubobjectTypes(Paths); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: This language rule no longer exists. Checking for ambiguous base | 
|  | // subobjects should be done as part of formation of a class member access | 
|  | // expression (when converting the object parameter to the member's type). | 
|  | if (SubobjectNumber != PathElement.SubobjectNumber) { | 
|  | // We have a different subobject of the same type. | 
|  |  | 
|  | // C++ [class.member.lookup]p5: | 
|  | //   A static member, a nested type or an enumerator defined in | 
|  | //   a base class T can unambiguously be found even if an object | 
|  | //   has more than one base class subobject of type T. | 
|  | if (HasOnlyStaticMembers(Path->Decls)) | 
|  | continue; | 
|  |  | 
|  | // We have found a nonstatic member name in multiple, distinct | 
|  | // subobjects. Name lookup is ambiguous. | 
|  | R.setAmbiguousBaseSubobjects(Paths); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lookup in a base class succeeded; return these results. | 
|  |  | 
|  | for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); | 
|  | I != E; ++I) { | 
|  | AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, | 
|  | (*I)->getAccess()); | 
|  | if (NamedDecl *ND = R.getAcceptableDecl(*I)) | 
|  | R.addDecl(ND, AS); | 
|  | } | 
|  | R.resolveKind(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, | 
|  | CXXScopeSpec &SS) { | 
|  | NestedNameSpecifier Qualifier = SS.getScopeRep(); | 
|  | if (Qualifier.getKind() == NestedNameSpecifier::Kind::MicrosoftSuper) | 
|  | return LookupInSuper(R, Qualifier.getAsMicrosoftSuper()); | 
|  | return LookupQualifiedName(R, LookupCtx); | 
|  | } | 
|  |  | 
|  | bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, | 
|  | QualType ObjectType, bool AllowBuiltinCreation, | 
|  | bool EnteringContext) { | 
|  | // When the scope specifier is invalid, don't even look for anything. | 
|  | if (SS && SS->isInvalid()) | 
|  | return false; | 
|  |  | 
|  | // Determine where to perform name lookup | 
|  | DeclContext *DC = nullptr; | 
|  | bool IsDependent = false; | 
|  | if (!ObjectType.isNull()) { | 
|  | // This nested-name-specifier occurs in a member access expression, e.g., | 
|  | // x->B::f, and we are looking into the type of the object. | 
|  | assert((!SS || SS->isEmpty()) && | 
|  | "ObjectType and scope specifier cannot coexist"); | 
|  | DC = computeDeclContext(ObjectType); | 
|  | IsDependent = !DC && ObjectType->isDependentType(); | 
|  | assert(((!DC && ObjectType->isDependentType()) || | 
|  | !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || | 
|  | ObjectType->castAs<TagType>() | 
|  | ->getOriginalDecl() | 
|  | ->isEntityBeingDefined()) && | 
|  | "Caller should have completed object type"); | 
|  | } else if (SS && SS->isNotEmpty()) { | 
|  | // This nested-name-specifier occurs after another nested-name-specifier, | 
|  | // so long into the context associated with the prior nested-name-specifier. | 
|  | if ((DC = computeDeclContext(*SS, EnteringContext))) { | 
|  | // The declaration context must be complete. | 
|  | if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) | 
|  | return false; | 
|  | R.setContextRange(SS->getRange()); | 
|  | // FIXME: '__super' lookup semantics could be implemented by a | 
|  | // LookupResult::isSuperLookup flag which skips the initial search of | 
|  | // the lookup context in LookupQualified. | 
|  | if (NestedNameSpecifier Qualifier = SS->getScopeRep(); | 
|  | Qualifier.getKind() == NestedNameSpecifier::Kind::MicrosoftSuper) | 
|  | return LookupInSuper(R, Qualifier.getAsMicrosoftSuper()); | 
|  | } | 
|  | IsDependent = !DC && isDependentScopeSpecifier(*SS); | 
|  | } else { | 
|  | // Perform unqualified name lookup starting in the given scope. | 
|  | return LookupName(R, S, AllowBuiltinCreation); | 
|  | } | 
|  |  | 
|  | // If we were able to compute a declaration context, perform qualified name | 
|  | // lookup in that context. | 
|  | if (DC) | 
|  | return LookupQualifiedName(R, DC); | 
|  | else if (IsDependent) | 
|  | // We could not resolve the scope specified to a specific declaration | 
|  | // context, which means that SS refers to an unknown specialization. | 
|  | // Name lookup can't find anything in this case. | 
|  | R.setNotFoundInCurrentInstantiation(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { | 
|  | // The access-control rules we use here are essentially the rules for | 
|  | // doing a lookup in Class that just magically skipped the direct | 
|  | // members of Class itself.  That is, the naming class is Class, and the | 
|  | // access includes the access of the base. | 
|  | for (const auto &BaseSpec : Class->bases()) { | 
|  | auto *RD = BaseSpec.getType()->castAsCXXRecordDecl(); | 
|  | LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); | 
|  | Result.setBaseObjectType(Context.getCanonicalTagType(Class)); | 
|  | LookupQualifiedName(Result, RD); | 
|  |  | 
|  | // Copy the lookup results into the target, merging the base's access into | 
|  | // the path access. | 
|  | for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { | 
|  | R.addDecl(I.getDecl(), | 
|  | CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), | 
|  | I.getAccess())); | 
|  | } | 
|  |  | 
|  | Result.suppressDiagnostics(); | 
|  | } | 
|  |  | 
|  | R.resolveKind(); | 
|  | R.setNamingClass(Class); | 
|  |  | 
|  | return !R.empty(); | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { | 
|  | assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); | 
|  |  | 
|  | DeclarationName Name = Result.getLookupName(); | 
|  | SourceLocation NameLoc = Result.getNameLoc(); | 
|  | SourceRange LookupRange = Result.getContextRange(); | 
|  |  | 
|  | switch (Result.getAmbiguityKind()) { | 
|  | case LookupAmbiguityKind::AmbiguousBaseSubobjects: { | 
|  | CXXBasePaths *Paths = Result.getBasePaths(); | 
|  | QualType SubobjectType = Paths->front().back().Base->getType(); | 
|  | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) | 
|  | << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) | 
|  | << LookupRange; | 
|  |  | 
|  | DeclContext::lookup_iterator Found = Paths->front().Decls; | 
|  | while (isa<CXXMethodDecl>(*Found) && | 
|  | cast<CXXMethodDecl>(*Found)->isStatic()) | 
|  | ++Found; | 
|  |  | 
|  | Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LookupAmbiguityKind::AmbiguousBaseSubobjectTypes: { | 
|  | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) | 
|  | << Name << LookupRange; | 
|  |  | 
|  | CXXBasePaths *Paths = Result.getBasePaths(); | 
|  | std::set<const NamedDecl *> DeclsPrinted; | 
|  | for (CXXBasePaths::paths_iterator Path = Paths->begin(), | 
|  | PathEnd = Paths->end(); | 
|  | Path != PathEnd; ++Path) { | 
|  | const NamedDecl *D = *Path->Decls; | 
|  | if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) | 
|  | continue; | 
|  | if (DeclsPrinted.insert(D).second) { | 
|  | if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) | 
|  | Diag(D->getLocation(), diag::note_ambiguous_member_type_found) | 
|  | << TD->getUnderlyingType(); | 
|  | else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) | 
|  | Diag(D->getLocation(), diag::note_ambiguous_member_type_found) | 
|  | << Context.getTypeDeclType(TD); | 
|  | else | 
|  | Diag(D->getLocation(), diag::note_ambiguous_member_found); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LookupAmbiguityKind::AmbiguousTagHiding: { | 
|  | Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; | 
|  |  | 
|  | llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; | 
|  |  | 
|  | for (auto *D : Result) | 
|  | if (TagDecl *TD = dyn_cast<TagDecl>(D)) { | 
|  | TagDecls.insert(TD); | 
|  | Diag(TD->getLocation(), diag::note_hidden_tag); | 
|  | } | 
|  |  | 
|  | for (auto *D : Result) | 
|  | if (!isa<TagDecl>(D)) | 
|  | Diag(D->getLocation(), diag::note_hiding_object); | 
|  |  | 
|  | // For recovery purposes, go ahead and implement the hiding. | 
|  | LookupResult::Filter F = Result.makeFilter(); | 
|  | while (F.hasNext()) { | 
|  | if (TagDecls.count(F.next())) | 
|  | F.erase(); | 
|  | } | 
|  | F.done(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LookupAmbiguityKind::AmbiguousReferenceToPlaceholderVariable: { | 
|  | Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange; | 
|  | DeclContext *DC = nullptr; | 
|  | for (auto *D : Result) { | 
|  | Diag(D->getLocation(), diag::note_reference_placeholder) << D; | 
|  | if (DC != nullptr && DC != D->getDeclContext()) | 
|  | break; | 
|  | DC = D->getDeclContext(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LookupAmbiguityKind::AmbiguousReference: { | 
|  | Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; | 
|  |  | 
|  | for (auto *D : Result) | 
|  | Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | struct AssociatedLookup { | 
|  | AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, | 
|  | Sema::AssociatedNamespaceSet &Namespaces, | 
|  | Sema::AssociatedClassSet &Classes) | 
|  | : S(S), Namespaces(Namespaces), Classes(Classes), | 
|  | InstantiationLoc(InstantiationLoc) { | 
|  | } | 
|  |  | 
|  | bool addClassTransitive(CXXRecordDecl *RD) { | 
|  | Classes.insert(RD); | 
|  | return ClassesTransitive.insert(RD); | 
|  | } | 
|  |  | 
|  | Sema &S; | 
|  | Sema::AssociatedNamespaceSet &Namespaces; | 
|  | Sema::AssociatedClassSet &Classes; | 
|  | SourceLocation InstantiationLoc; | 
|  |  | 
|  | private: | 
|  | Sema::AssociatedClassSet ClassesTransitive; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); | 
|  |  | 
|  | // Given the declaration context \param Ctx of a class, class template or | 
|  | // enumeration, add the associated namespaces to \param Namespaces as described | 
|  | // in [basic.lookup.argdep]p2. | 
|  | static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, | 
|  | DeclContext *Ctx) { | 
|  | // The exact wording has been changed in C++14 as a result of | 
|  | // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally | 
|  | // to all language versions since it is possible to return a local type | 
|  | // from a lambda in C++11. | 
|  | // | 
|  | // C++14 [basic.lookup.argdep]p2: | 
|  | //   If T is a class type [...]. Its associated namespaces are the innermost | 
|  | //   enclosing namespaces of its associated classes. [...] | 
|  | // | 
|  | //   If T is an enumeration type, its associated namespace is the innermost | 
|  | //   enclosing namespace of its declaration. [...] | 
|  |  | 
|  | // We additionally skip inline namespaces. The innermost non-inline namespace | 
|  | // contains all names of all its nested inline namespaces anyway, so we can | 
|  | // replace the entire inline namespace tree with its root. | 
|  | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) | 
|  | Ctx = Ctx->getParent(); | 
|  |  | 
|  | // Actually it is fine to always do `Namespaces.insert(Ctx);` simply. But it | 
|  | // may cause more allocations in Namespaces and more unnecessary lookups. So | 
|  | // we'd like to insert the representative namespace only. | 
|  | DeclContext *PrimaryCtx = Ctx->getPrimaryContext(); | 
|  | Decl *PrimaryD = cast<Decl>(PrimaryCtx); | 
|  | Decl *D = cast<Decl>(Ctx); | 
|  | ASTContext &AST = D->getASTContext(); | 
|  |  | 
|  | // TODO: Technically it is better to insert one namespace per module. e.g., | 
|  | // | 
|  | // ``` | 
|  | // //--- first.cppm | 
|  | // export module first; | 
|  | // namespace ns { ... } // first namespace | 
|  | // | 
|  | // //--- m-partA.cppm | 
|  | // export module m:partA; | 
|  | // import first; | 
|  | // | 
|  | // namespace ns { ... } | 
|  | // namespace ns { ... } | 
|  | // | 
|  | // //--- m-partB.cppm | 
|  | // export module m:partB; | 
|  | // import first; | 
|  | // import :partA; | 
|  | // | 
|  | // namespace ns { ... } | 
|  | // namespace ns { ... } | 
|  | // | 
|  | // ... | 
|  | // | 
|  | // //--- m-partN.cppm | 
|  | // export module m:partN; | 
|  | // import first; | 
|  | // import :partA; | 
|  | // ... | 
|  | // import :part$(N-1); | 
|  | // | 
|  | // namespace ns { ... } | 
|  | // namespace ns { ... } | 
|  | // | 
|  | // consume(ns::any_decl); // the lookup | 
|  | // ``` | 
|  | // | 
|  | // We should only insert once for all namespaces in module m. | 
|  | if (D->isInNamedModule() && | 
|  | !AST.isInSameModule(D->getOwningModule(), PrimaryD->getOwningModule())) | 
|  | Namespaces.insert(Ctx); | 
|  | else | 
|  | Namespaces.insert(PrimaryCtx); | 
|  | } | 
|  |  | 
|  | // Add the associated classes and namespaces for argument-dependent | 
|  | // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, | 
|  | const TemplateArgument &Arg) { | 
|  | // C++ [basic.lookup.argdep]p2, last bullet: | 
|  | //   -- [...] ; | 
|  | switch (Arg.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Type: | 
|  | // [...] the namespaces and classes associated with the types of the | 
|  | // template arguments provided for template type parameters (excluding | 
|  | // template template parameters) | 
|  | addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | case TemplateArgument::TemplateExpansion: { | 
|  | // [...] the namespaces in which any template template arguments are | 
|  | // defined; and the classes in which any member templates used as | 
|  | // template template arguments are defined. | 
|  | TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); | 
|  | if (ClassTemplateDecl *ClassTemplate | 
|  | = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { | 
|  | DeclContext *Ctx = ClassTemplate->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.Classes.insert(EnclosingClass); | 
|  | // Add the associated namespace for this class. | 
|  | CollectEnclosingNamespace(Result.Namespaces, Ctx); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::Declaration: | 
|  | case TemplateArgument::Integral: | 
|  | case TemplateArgument::Expression: | 
|  | case TemplateArgument::NullPtr: | 
|  | case TemplateArgument::StructuralValue: | 
|  | // [Note: non-type template arguments do not contribute to the set of | 
|  | //  associated namespaces. ] | 
|  | break; | 
|  |  | 
|  | case TemplateArgument::Pack: | 
|  | for (const auto &P : Arg.pack_elements()) | 
|  | addAssociatedClassesAndNamespaces(Result, P); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the associated classes and namespaces for argument-dependent lookup | 
|  | // with an argument of class type (C++ [basic.lookup.argdep]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, | 
|  | CXXRecordDecl *Class) { | 
|  |  | 
|  | // Just silently ignore anything whose name is __va_list_tag. | 
|  | if (Class->getDeclName() == Result.S.VAListTagName) | 
|  | return; | 
|  |  | 
|  | // C++ [basic.lookup.argdep]p2: | 
|  | //   [...] | 
|  | //     -- If T is a class type (including unions), its associated | 
|  | //        classes are: the class itself; the class of which it is a | 
|  | //        member, if any; and its direct and indirect base classes. | 
|  | //        Its associated namespaces are the innermost enclosing | 
|  | //        namespaces of its associated classes. | 
|  |  | 
|  | // Add the class of which it is a member, if any. | 
|  | DeclContext *Ctx = Class->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.Classes.insert(EnclosingClass); | 
|  |  | 
|  | // Add the associated namespace for this class. | 
|  | CollectEnclosingNamespace(Result.Namespaces, Ctx); | 
|  |  | 
|  | // -- If T is a template-id, its associated namespaces and classes are | 
|  | //    the namespace in which the template is defined; for member | 
|  | //    templates, the member template's class; the namespaces and classes | 
|  | //    associated with the types of the template arguments provided for | 
|  | //    template type parameters (excluding template template parameters); the | 
|  | //    namespaces in which any template template arguments are defined; and | 
|  | //    the classes in which any member templates used as template template | 
|  | //    arguments are defined. [Note: non-type template arguments do not | 
|  | //    contribute to the set of associated namespaces. ] | 
|  | if (ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { | 
|  | DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.Classes.insert(EnclosingClass); | 
|  | // Add the associated namespace for this class. | 
|  | CollectEnclosingNamespace(Result.Namespaces, Ctx); | 
|  |  | 
|  | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
|  | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) | 
|  | addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); | 
|  | } | 
|  |  | 
|  | // Add the class itself. If we've already transitively visited this class, | 
|  | // we don't need to visit base classes. | 
|  | if (!Result.addClassTransitive(Class)) | 
|  | return; | 
|  |  | 
|  | // Only recurse into base classes for complete types. | 
|  | if (!Result.S.isCompleteType(Result.InstantiationLoc, | 
|  | Result.S.Context.getCanonicalTagType(Class))) | 
|  | return; | 
|  |  | 
|  | // Add direct and indirect base classes along with their associated | 
|  | // namespaces. | 
|  | SmallVector<CXXRecordDecl *, 32> Bases; | 
|  | Bases.push_back(Class); | 
|  | while (!Bases.empty()) { | 
|  | // Pop this class off the stack. | 
|  | Class = Bases.pop_back_val(); | 
|  |  | 
|  | // Visit the base classes. | 
|  | for (const auto &Base : Class->bases()) { | 
|  | CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  | // In dependent contexts, we do ADL twice, and the first time around, | 
|  | // the base type might be a dependent TemplateSpecializationType, or a | 
|  | // TemplateTypeParmType. If that happens, simply ignore it. | 
|  | // FIXME: If we want to support export, we probably need to add the | 
|  | // namespace of the template in a TemplateSpecializationType, or even | 
|  | // the classes and namespaces of known non-dependent arguments. | 
|  | if (!BaseDecl) | 
|  | continue; | 
|  | if (Result.addClassTransitive(BaseDecl)) { | 
|  | // Find the associated namespace for this base class. | 
|  | DeclContext *BaseCtx = BaseDecl->getDeclContext(); | 
|  | CollectEnclosingNamespace(Result.Namespaces, BaseCtx); | 
|  |  | 
|  | // Make sure we visit the bases of this base class. | 
|  | if (!BaseDecl->bases().empty()) | 
|  | Bases.push_back(BaseDecl); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the associated classes and namespaces for | 
|  | // argument-dependent lookup with an argument of type T | 
|  | // (C++ [basic.lookup.koenig]p2). | 
|  | static void | 
|  | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { | 
|  | // C++ [basic.lookup.koenig]p2: | 
|  | // | 
|  | //   For each argument type T in the function call, there is a set | 
|  | //   of zero or more associated namespaces and a set of zero or more | 
|  | //   associated classes to be considered. The sets of namespaces and | 
|  | //   classes is determined entirely by the types of the function | 
|  | //   arguments (and the namespace of any template template | 
|  | //   argument). Typedef names and using-declarations used to specify | 
|  | //   the types do not contribute to this set. The sets of namespaces | 
|  | //   and classes are determined in the following way: | 
|  |  | 
|  | SmallVector<const Type *, 16> Queue; | 
|  | const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); | 
|  |  | 
|  | while (true) { | 
|  | switch (T->getTypeClass()) { | 
|  |  | 
|  | #define TYPE(Class, Base) | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | // T is canonical.  We can also ignore dependent types because | 
|  | // we don't need to do ADL at the definition point, but if we | 
|  | // wanted to implement template export (or if we find some other | 
|  | // use for associated classes and namespaces...) this would be | 
|  | // wrong. | 
|  | break; | 
|  |  | 
|  | //    -- If T is a pointer to U or an array of U, its associated | 
|  | //       namespaces and classes are those associated with U. | 
|  | case Type::Pointer: | 
|  | T = cast<PointerType>(T)->getPointeeType().getTypePtr(); | 
|  | continue; | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | T = cast<ArrayType>(T)->getElementType().getTypePtr(); | 
|  | continue; | 
|  |  | 
|  | //     -- If T is a fundamental type, its associated sets of | 
|  | //        namespaces and classes are both empty. | 
|  | case Type::Builtin: | 
|  | break; | 
|  |  | 
|  | //     -- If T is a class type (including unions), its associated | 
|  | //        classes are: the class itself; the class of which it is | 
|  | //        a member, if any; and its direct and indirect base classes. | 
|  | //        Its associated namespaces are the innermost enclosing | 
|  | //        namespaces of its associated classes. | 
|  | case Type::Record: { | 
|  | // FIXME: This should use the original decl. | 
|  | CXXRecordDecl *Class = | 
|  | cast<CXXRecordDecl>(cast<RecordType>(T)->getOriginalDecl()) | 
|  | ->getDefinitionOrSelf(); | 
|  | addAssociatedClassesAndNamespaces(Result, Class); | 
|  | break; | 
|  | } | 
|  |  | 
|  | //     -- If T is an enumeration type, its associated namespace | 
|  | //        is the innermost enclosing namespace of its declaration. | 
|  | //        If it is a class member, its associated class is the | 
|  | //        member’s class; else it has no associated class. | 
|  | case Type::Enum: { | 
|  | // FIXME: This should use the original decl. | 
|  | auto *Enum = T->castAsEnumDecl(); | 
|  |  | 
|  | DeclContext *Ctx = Enum->getDeclContext(); | 
|  | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.Classes.insert(EnclosingClass); | 
|  |  | 
|  | // Add the associated namespace for this enumeration. | 
|  | CollectEnclosingNamespace(Result.Namespaces, Ctx); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | //     -- If T is a function type, its associated namespaces and | 
|  | //        classes are those associated with the function parameter | 
|  | //        types and those associated with the return type. | 
|  | case Type::FunctionProto: { | 
|  | const FunctionProtoType *Proto = cast<FunctionProtoType>(T); | 
|  | for (const auto &Arg : Proto->param_types()) | 
|  | Queue.push_back(Arg.getTypePtr()); | 
|  | // fallthrough | 
|  | [[fallthrough]]; | 
|  | } | 
|  | case Type::FunctionNoProto: { | 
|  | const FunctionType *FnType = cast<FunctionType>(T); | 
|  | T = FnType->getReturnType().getTypePtr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | //     -- If T is a pointer to a member function of a class X, its | 
|  | //        associated namespaces and classes are those associated | 
|  | //        with the function parameter types and return type, | 
|  | //        together with those associated with X. | 
|  | // | 
|  | //     -- If T is a pointer to a data member of class X, its | 
|  | //        associated namespaces and classes are those associated | 
|  | //        with the member type together with those associated with | 
|  | //        X. | 
|  | case Type::MemberPointer: { | 
|  | const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); | 
|  | if (CXXRecordDecl *Class = MemberPtr->getMostRecentCXXRecordDecl()) | 
|  | addAssociatedClassesAndNamespaces(Result, Class); | 
|  | T = MemberPtr->getPointeeType().getTypePtr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // As an extension, treat this like a normal pointer. | 
|  | case Type::BlockPointer: | 
|  | T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); | 
|  | continue; | 
|  |  | 
|  | // References aren't covered by the standard, but that's such an | 
|  | // obvious defect that we cover them anyway. | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); | 
|  | continue; | 
|  |  | 
|  | // These are fundamental types. | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | case Type::ConstantMatrix: | 
|  | case Type::Complex: | 
|  | case Type::BitInt: | 
|  | break; | 
|  |  | 
|  | // Non-deduced auto types only get here for error cases. | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | break; | 
|  |  | 
|  | // If T is an Objective-C object or interface type, or a pointer to an | 
|  | // object or interface type, the associated namespace is the global | 
|  | // namespace. | 
|  | case Type::ObjCObject: | 
|  | case Type::ObjCInterface: | 
|  | case Type::ObjCObjectPointer: | 
|  | Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); | 
|  | break; | 
|  |  | 
|  | // Atomic types are just wrappers; use the associations of the | 
|  | // contained type. | 
|  | case Type::Atomic: | 
|  | T = cast<AtomicType>(T)->getValueType().getTypePtr(); | 
|  | continue; | 
|  | case Type::Pipe: | 
|  | T = cast<PipeType>(T)->getElementType().getTypePtr(); | 
|  | continue; | 
|  |  | 
|  | // Array parameter types are treated as fundamental types. | 
|  | case Type::ArrayParameter: | 
|  | break; | 
|  |  | 
|  | case Type::HLSLAttributedResource: | 
|  | T = cast<HLSLAttributedResourceType>(T)->getWrappedType().getTypePtr(); | 
|  | break; | 
|  |  | 
|  | // Inline SPIR-V types are treated as fundamental types. | 
|  | case Type::HLSLInlineSpirv: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Queue.empty()) | 
|  | break; | 
|  | T = Queue.pop_back_val(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::FindAssociatedClassesAndNamespaces( | 
|  | SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, | 
|  | AssociatedNamespaceSet &AssociatedNamespaces, | 
|  | AssociatedClassSet &AssociatedClasses) { | 
|  | AssociatedNamespaces.clear(); | 
|  | AssociatedClasses.clear(); | 
|  |  | 
|  | AssociatedLookup Result(*this, InstantiationLoc, | 
|  | AssociatedNamespaces, AssociatedClasses); | 
|  |  | 
|  | // C++ [basic.lookup.koenig]p2: | 
|  | //   For each argument type T in the function call, there is a set | 
|  | //   of zero or more associated namespaces and a set of zero or more | 
|  | //   associated classes to be considered. The sets of namespaces and | 
|  | //   classes is determined entirely by the types of the function | 
|  | //   arguments (and the namespace of any template template | 
|  | //   argument). | 
|  | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { | 
|  | Expr *Arg = Args[ArgIdx]; | 
|  |  | 
|  | if (Arg->getType() != Context.OverloadTy) { | 
|  | addAssociatedClassesAndNamespaces(Result, Arg->getType()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // [...] In addition, if the argument is the name or address of a | 
|  | // set of overloaded functions and/or function templates, its | 
|  | // associated classes and namespaces are the union of those | 
|  | // associated with each of the members of the set: the namespace | 
|  | // in which the function or function template is defined and the | 
|  | // classes and namespaces associated with its (non-dependent) | 
|  | // parameter types and return type. | 
|  | OverloadExpr *OE = OverloadExpr::find(Arg).Expression; | 
|  |  | 
|  | for (const NamedDecl *D : OE->decls()) { | 
|  | // Look through any using declarations to find the underlying function. | 
|  | const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); | 
|  |  | 
|  | // Add the classes and namespaces associated with the parameter | 
|  | // types and return type of this function. | 
|  | addAssociatedClassesAndNamespaces(Result, FDecl->getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, | 
|  | SourceLocation Loc, | 
|  | LookupNameKind NameKind, | 
|  | RedeclarationKind Redecl) { | 
|  | LookupResult R(*this, Name, Loc, NameKind, Redecl); | 
|  | LookupName(R, S); | 
|  | return R.getAsSingle<NamedDecl>(); | 
|  | } | 
|  |  | 
|  | void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, | 
|  | UnresolvedSetImpl &Functions) { | 
|  | // C++ [over.match.oper]p3: | 
|  | //     -- The set of non-member candidates is the result of the | 
|  | //        unqualified lookup of operator@ in the context of the | 
|  | //        expression according to the usual rules for name lookup in | 
|  | //        unqualified function calls (3.4.2) except that all member | 
|  | //        functions are ignored. | 
|  | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  | LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); | 
|  | LookupName(Operators, S); | 
|  |  | 
|  | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); | 
|  | Functions.append(Operators.begin(), Operators.end()); | 
|  | } | 
|  |  | 
|  | Sema::SpecialMemberOverloadResult | 
|  | Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM, | 
|  | bool ConstArg, bool VolatileArg, bool RValueThis, | 
|  | bool ConstThis, bool VolatileThis) { | 
|  | assert(CanDeclareSpecialMemberFunction(RD) && | 
|  | "doing special member lookup into record that isn't fully complete"); | 
|  | RD = RD->getDefinition(); | 
|  | if (RValueThis || ConstThis || VolatileThis) | 
|  | assert((SM == CXXSpecialMemberKind::CopyAssignment || | 
|  | SM == CXXSpecialMemberKind::MoveAssignment) && | 
|  | "constructors and destructors always have unqualified lvalue this"); | 
|  | if (ConstArg || VolatileArg) | 
|  | assert((SM != CXXSpecialMemberKind::DefaultConstructor && | 
|  | SM != CXXSpecialMemberKind::Destructor) && | 
|  | "parameter-less special members can't have qualified arguments"); | 
|  |  | 
|  | // FIXME: Get the caller to pass in a location for the lookup. | 
|  | SourceLocation LookupLoc = RD->getLocation(); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ID.AddPointer(RD); | 
|  | ID.AddInteger(llvm::to_underlying(SM)); | 
|  | ID.AddInteger(ConstArg); | 
|  | ID.AddInteger(VolatileArg); | 
|  | ID.AddInteger(RValueThis); | 
|  | ID.AddInteger(ConstThis); | 
|  | ID.AddInteger(VolatileThis); | 
|  |  | 
|  | void *InsertPoint; | 
|  | SpecialMemberOverloadResultEntry *Result = | 
|  | SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); | 
|  |  | 
|  | // This was already cached | 
|  | if (Result) | 
|  | return *Result; | 
|  |  | 
|  | Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); | 
|  | Result = new (Result) SpecialMemberOverloadResultEntry(ID); | 
|  | SpecialMemberCache.InsertNode(Result, InsertPoint); | 
|  |  | 
|  | if (SM == CXXSpecialMemberKind::Destructor) { | 
|  | if (RD->needsImplicitDestructor()) { | 
|  | runWithSufficientStackSpace(RD->getLocation(), [&] { | 
|  | DeclareImplicitDestructor(RD); | 
|  | }); | 
|  | } | 
|  | CXXDestructorDecl *DD = RD->getDestructor(); | 
|  | Result->setMethod(DD); | 
|  | Result->setKind(DD && !DD->isDeleted() | 
|  | ? SpecialMemberOverloadResult::Success | 
|  | : SpecialMemberOverloadResult::NoMemberOrDeleted); | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | // Prepare for overload resolution. Here we construct a synthetic argument | 
|  | // if necessary and make sure that implicit functions are declared. | 
|  | CanQualType CanTy = Context.getCanonicalTagType(RD); | 
|  | DeclarationName Name; | 
|  | Expr *Arg = nullptr; | 
|  | unsigned NumArgs; | 
|  |  | 
|  | QualType ArgType = CanTy; | 
|  | ExprValueKind VK = VK_LValue; | 
|  |  | 
|  | if (SM == CXXSpecialMemberKind::DefaultConstructor) { | 
|  | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); | 
|  | NumArgs = 0; | 
|  | if (RD->needsImplicitDefaultConstructor()) { | 
|  | runWithSufficientStackSpace(RD->getLocation(), [&] { | 
|  | DeclareImplicitDefaultConstructor(RD); | 
|  | }); | 
|  | } | 
|  | } else { | 
|  | if (SM == CXXSpecialMemberKind::CopyConstructor || | 
|  | SM == CXXSpecialMemberKind::MoveConstructor) { | 
|  | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); | 
|  | if (RD->needsImplicitCopyConstructor()) { | 
|  | runWithSufficientStackSpace(RD->getLocation(), [&] { | 
|  | DeclareImplicitCopyConstructor(RD); | 
|  | }); | 
|  | } | 
|  | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { | 
|  | runWithSufficientStackSpace(RD->getLocation(), [&] { | 
|  | DeclareImplicitMoveConstructor(RD); | 
|  | }); | 
|  | } | 
|  | } else { | 
|  | Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | if (RD->needsImplicitCopyAssignment()) { | 
|  | runWithSufficientStackSpace(RD->getLocation(), [&] { | 
|  | DeclareImplicitCopyAssignment(RD); | 
|  | }); | 
|  | } | 
|  | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { | 
|  | runWithSufficientStackSpace(RD->getLocation(), [&] { | 
|  | DeclareImplicitMoveAssignment(RD); | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstArg) | 
|  | ArgType.addConst(); | 
|  | if (VolatileArg) | 
|  | ArgType.addVolatile(); | 
|  |  | 
|  | // This isn't /really/ specified by the standard, but it's implied | 
|  | // we should be working from a PRValue in the case of move to ensure | 
|  | // that we prefer to bind to rvalue references, and an LValue in the | 
|  | // case of copy to ensure we don't bind to rvalue references. | 
|  | // Possibly an XValue is actually correct in the case of move, but | 
|  | // there is no semantic difference for class types in this restricted | 
|  | // case. | 
|  | if (SM == CXXSpecialMemberKind::CopyConstructor || | 
|  | SM == CXXSpecialMemberKind::CopyAssignment) | 
|  | VK = VK_LValue; | 
|  | else | 
|  | VK = VK_PRValue; | 
|  | } | 
|  |  | 
|  | OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); | 
|  |  | 
|  | if (SM != CXXSpecialMemberKind::DefaultConstructor) { | 
|  | NumArgs = 1; | 
|  | Arg = &FakeArg; | 
|  | } | 
|  |  | 
|  | // Create the object argument | 
|  | QualType ThisTy = CanTy; | 
|  | if (ConstThis) | 
|  | ThisTy.addConst(); | 
|  | if (VolatileThis) | 
|  | ThisTy.addVolatile(); | 
|  | Expr::Classification Classification = | 
|  | OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) | 
|  | .Classify(Context); | 
|  |  | 
|  | // Now we perform lookup on the name we computed earlier and do overload | 
|  | // resolution. Lookup is only performed directly into the class since there | 
|  | // will always be a (possibly implicit) declaration to shadow any others. | 
|  | OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); | 
|  | DeclContext::lookup_result R = RD->lookup(Name); | 
|  |  | 
|  | if (R.empty()) { | 
|  | // We might have no default constructor because we have a lambda's closure | 
|  | // type, rather than because there's some other declared constructor. | 
|  | // Every class has a copy/move constructor, copy/move assignment, and | 
|  | // destructor. | 
|  | assert(SM == CXXSpecialMemberKind::DefaultConstructor && | 
|  | "lookup for a constructor or assignment operator was empty"); | 
|  | Result->setMethod(nullptr); | 
|  | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | // Copy the candidates as our processing of them may load new declarations | 
|  | // from an external source and invalidate lookup_result. | 
|  | SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); | 
|  |  | 
|  | for (NamedDecl *CandDecl : Candidates) { | 
|  | if (CandDecl->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); | 
|  | auto CtorInfo = getConstructorInfo(Cand); | 
|  | if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { | 
|  | if (SM == CXXSpecialMemberKind::CopyAssignment || | 
|  | SM == CXXSpecialMemberKind::MoveAssignment) | 
|  | AddMethodCandidate(M, Cand, RD, ThisTy, Classification, | 
|  | llvm::ArrayRef(&Arg, NumArgs), OCS, true); | 
|  | else if (CtorInfo) | 
|  | AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, | 
|  | llvm::ArrayRef(&Arg, NumArgs), OCS, | 
|  | /*SuppressUserConversions*/ true); | 
|  | else | 
|  | AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, | 
|  | /*SuppressUserConversions*/ true); | 
|  | } else if (FunctionTemplateDecl *Tmpl = | 
|  | dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { | 
|  | if (SM == CXXSpecialMemberKind::CopyAssignment || | 
|  | SM == CXXSpecialMemberKind::MoveAssignment) | 
|  | AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, | 
|  | Classification, | 
|  | llvm::ArrayRef(&Arg, NumArgs), OCS, true); | 
|  | else if (CtorInfo) | 
|  | AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, | 
|  | CtorInfo.FoundDecl, nullptr, | 
|  | llvm::ArrayRef(&Arg, NumArgs), OCS, true); | 
|  | else | 
|  | AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, | 
|  | llvm::ArrayRef(&Arg, NumArgs), OCS, true); | 
|  | } else { | 
|  | assert(isa<UsingDecl>(Cand.getDecl()) && | 
|  | "illegal Kind of operator = Decl"); | 
|  | } | 
|  | } | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { | 
|  | case OR_Success: | 
|  | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); | 
|  | Result->setKind(SpecialMemberOverloadResult::Success); | 
|  | break; | 
|  |  | 
|  | case OR_Deleted: | 
|  | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); | 
|  | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | Result->setMethod(nullptr); | 
|  | Result->setKind(SpecialMemberOverloadResult::Ambiguous); | 
|  | break; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | Result->setMethod(nullptr); | 
|  | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { | 
|  | SpecialMemberOverloadResult Result = | 
|  | LookupSpecialMember(Class, CXXSpecialMemberKind::DefaultConstructor, | 
|  | false, false, false, false, false); | 
|  |  | 
|  | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, | 
|  | unsigned Quals) { | 
|  | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && | 
|  | "non-const, non-volatile qualifiers for copy ctor arg"); | 
|  | SpecialMemberOverloadResult Result = LookupSpecialMember( | 
|  | Class, CXXSpecialMemberKind::CopyConstructor, Quals & Qualifiers::Const, | 
|  | Quals & Qualifiers::Volatile, false, false, false); | 
|  |  | 
|  | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, | 
|  | unsigned Quals) { | 
|  | SpecialMemberOverloadResult Result = LookupSpecialMember( | 
|  | Class, CXXSpecialMemberKind::MoveConstructor, Quals & Qualifiers::Const, | 
|  | Quals & Qualifiers::Volatile, false, false, false); | 
|  |  | 
|  | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); | 
|  | } | 
|  |  | 
|  | DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { | 
|  | // If the implicit constructors have not yet been declared, do so now. | 
|  | if (CanDeclareSpecialMemberFunction(Class)) { | 
|  | runWithSufficientStackSpace(Class->getLocation(), [&] { | 
|  | if (Class->needsImplicitDefaultConstructor()) | 
|  | DeclareImplicitDefaultConstructor(Class); | 
|  | if (Class->needsImplicitCopyConstructor()) | 
|  | DeclareImplicitCopyConstructor(Class); | 
|  | if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) | 
|  | DeclareImplicitMoveConstructor(Class); | 
|  | }); | 
|  | } | 
|  |  | 
|  | CanQualType T = Context.getCanonicalTagType(Class); | 
|  | DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); | 
|  | return Class->lookup(Name); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, | 
|  | unsigned Quals, bool RValueThis, | 
|  | unsigned ThisQuals) { | 
|  | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && | 
|  | "non-const, non-volatile qualifiers for copy assignment arg"); | 
|  | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && | 
|  | "non-const, non-volatile qualifiers for copy assignment this"); | 
|  | SpecialMemberOverloadResult Result = LookupSpecialMember( | 
|  | Class, CXXSpecialMemberKind::CopyAssignment, Quals & Qualifiers::Const, | 
|  | Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, | 
|  | ThisQuals & Qualifiers::Volatile); | 
|  |  | 
|  | return Result.getMethod(); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, | 
|  | unsigned Quals, | 
|  | bool RValueThis, | 
|  | unsigned ThisQuals) { | 
|  | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && | 
|  | "non-const, non-volatile qualifiers for copy assignment this"); | 
|  | SpecialMemberOverloadResult Result = LookupSpecialMember( | 
|  | Class, CXXSpecialMemberKind::MoveAssignment, Quals & Qualifiers::Const, | 
|  | Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, | 
|  | ThisQuals & Qualifiers::Volatile); | 
|  |  | 
|  | return Result.getMethod(); | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { | 
|  | return cast_or_null<CXXDestructorDecl>( | 
|  | LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false, | 
|  | false, false, false) | 
|  | .getMethod()); | 
|  | } | 
|  |  | 
|  | Sema::LiteralOperatorLookupResult | 
|  | Sema::LookupLiteralOperator(Scope *S, LookupResult &R, | 
|  | ArrayRef<QualType> ArgTys, bool AllowRaw, | 
|  | bool AllowTemplate, bool AllowStringTemplatePack, | 
|  | bool DiagnoseMissing, StringLiteral *StringLit) { | 
|  | LookupName(R, S); | 
|  | assert(R.getResultKind() != LookupResultKind::Ambiguous && | 
|  | "literal operator lookup can't be ambiguous"); | 
|  |  | 
|  | // Filter the lookup results appropriately. | 
|  | LookupResult::Filter F = R.makeFilter(); | 
|  |  | 
|  | bool AllowCooked = true; | 
|  | bool FoundRaw = false; | 
|  | bool FoundTemplate = false; | 
|  | bool FoundStringTemplatePack = false; | 
|  | bool FoundCooked = false; | 
|  |  | 
|  | while (F.hasNext()) { | 
|  | Decl *D = F.next(); | 
|  | if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) | 
|  | D = USD->getTargetDecl(); | 
|  |  | 
|  | // If the declaration we found is invalid, skip it. | 
|  | if (D->isInvalidDecl()) { | 
|  | F.erase(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bool IsRaw = false; | 
|  | bool IsTemplate = false; | 
|  | bool IsStringTemplatePack = false; | 
|  | bool IsCooked = false; | 
|  |  | 
|  | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->getNumParams() == 1 && | 
|  | FD->getParamDecl(0)->getType()->getAs<PointerType>()) | 
|  | IsRaw = true; | 
|  | else if (FD->getNumParams() == ArgTys.size()) { | 
|  | IsCooked = true; | 
|  | for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { | 
|  | QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); | 
|  | if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { | 
|  | IsCooked = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { | 
|  | TemplateParameterList *Params = FD->getTemplateParameters(); | 
|  | if (Params->size() == 1) { | 
|  | IsTemplate = true; | 
|  | if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { | 
|  | // Implied but not stated: user-defined integer and floating literals | 
|  | // only ever use numeric literal operator templates, not templates | 
|  | // taking a parameter of class type. | 
|  | F.erase(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // A string literal template is only considered if the string literal | 
|  | // is a well-formed template argument for the template parameter. | 
|  | if (StringLit) { | 
|  | SFINAETrap Trap(*this); | 
|  | CheckTemplateArgumentInfo CTAI; | 
|  | TemplateArgumentLoc Arg( | 
|  | TemplateArgument(StringLit, /*IsCanonical=*/false), StringLit); | 
|  | if (CheckTemplateArgument( | 
|  | Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), | 
|  | /*ArgumentPackIndex=*/0, CTAI, CTAK_Specified) || | 
|  | Trap.hasErrorOccurred()) | 
|  | IsTemplate = false; | 
|  | } | 
|  | } else { | 
|  | IsStringTemplatePack = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllowTemplate && StringLit && IsTemplate) { | 
|  | FoundTemplate = true; | 
|  | AllowRaw = false; | 
|  | AllowCooked = false; | 
|  | AllowStringTemplatePack = false; | 
|  | if (FoundRaw || FoundCooked || FoundStringTemplatePack) { | 
|  | F.restart(); | 
|  | FoundRaw = FoundCooked = FoundStringTemplatePack = false; | 
|  | } | 
|  | } else if (AllowCooked && IsCooked) { | 
|  | FoundCooked = true; | 
|  | AllowRaw = false; | 
|  | AllowTemplate = StringLit; | 
|  | AllowStringTemplatePack = false; | 
|  | if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { | 
|  | // Go through again and remove the raw and template decls we've | 
|  | // already found. | 
|  | F.restart(); | 
|  | FoundRaw = FoundTemplate = FoundStringTemplatePack = false; | 
|  | } | 
|  | } else if (AllowRaw && IsRaw) { | 
|  | FoundRaw = true; | 
|  | } else if (AllowTemplate && IsTemplate) { | 
|  | FoundTemplate = true; | 
|  | } else if (AllowStringTemplatePack && IsStringTemplatePack) { | 
|  | FoundStringTemplatePack = true; | 
|  | } else { | 
|  | F.erase(); | 
|  | } | 
|  | } | 
|  |  | 
|  | F.done(); | 
|  |  | 
|  | // Per C++20 [lex.ext]p5, we prefer the template form over the non-template | 
|  | // form for string literal operator templates. | 
|  | if (StringLit && FoundTemplate) | 
|  | return LOLR_Template; | 
|  |  | 
|  | // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching | 
|  | // parameter type, that is used in preference to a raw literal operator | 
|  | // or literal operator template. | 
|  | if (FoundCooked) | 
|  | return LOLR_Cooked; | 
|  |  | 
|  | // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal | 
|  | // operator template, but not both. | 
|  | if (FoundRaw && FoundTemplate) { | 
|  | Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); | 
|  | for (const NamedDecl *D : R) | 
|  | NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction()); | 
|  | return LOLR_Error; | 
|  | } | 
|  |  | 
|  | if (FoundRaw) | 
|  | return LOLR_Raw; | 
|  |  | 
|  | if (FoundTemplate) | 
|  | return LOLR_Template; | 
|  |  | 
|  | if (FoundStringTemplatePack) | 
|  | return LOLR_StringTemplatePack; | 
|  |  | 
|  | // Didn't find anything we could use. | 
|  | if (DiagnoseMissing) { | 
|  | Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) | 
|  | << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] | 
|  | << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw | 
|  | << (AllowTemplate || AllowStringTemplatePack); | 
|  | return LOLR_Error; | 
|  | } | 
|  |  | 
|  | return LOLR_ErrorNoDiagnostic; | 
|  | } | 
|  |  | 
|  | void ADLResult::insert(NamedDecl *New) { | 
|  | NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; | 
|  |  | 
|  | // If we haven't yet seen a decl for this key, or the last decl | 
|  | // was exactly this one, we're done. | 
|  | if (Old == nullptr || Old == New) { | 
|  | Old = New; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, decide which is a more recent redeclaration. | 
|  | FunctionDecl *OldFD = Old->getAsFunction(); | 
|  | FunctionDecl *NewFD = New->getAsFunction(); | 
|  |  | 
|  | FunctionDecl *Cursor = NewFD; | 
|  | while (true) { | 
|  | Cursor = Cursor->getPreviousDecl(); | 
|  |  | 
|  | // If we got to the end without finding OldFD, OldFD is the newer | 
|  | // declaration;  leave things as they are. | 
|  | if (!Cursor) return; | 
|  |  | 
|  | // If we do find OldFD, then NewFD is newer. | 
|  | if (Cursor == OldFD) break; | 
|  |  | 
|  | // Otherwise, keep looking. | 
|  | } | 
|  |  | 
|  | Old = New; | 
|  | } | 
|  |  | 
|  | void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, | 
|  | ArrayRef<Expr *> Args, ADLResult &Result) { | 
|  | // Find all of the associated namespaces and classes based on the | 
|  | // arguments we have. | 
|  | AssociatedNamespaceSet AssociatedNamespaces; | 
|  | AssociatedClassSet AssociatedClasses; | 
|  | FindAssociatedClassesAndNamespaces(Loc, Args, | 
|  | AssociatedNamespaces, | 
|  | AssociatedClasses); | 
|  |  | 
|  | // C++ [basic.lookup.argdep]p3: | 
|  | //   Let X be the lookup set produced by unqualified lookup (3.4.1) | 
|  | //   and let Y be the lookup set produced by argument dependent | 
|  | //   lookup (defined as follows). If X contains [...] then Y is | 
|  | //   empty. Otherwise Y is the set of declarations found in the | 
|  | //   namespaces associated with the argument types as described | 
|  | //   below. The set of declarations found by the lookup of the name | 
|  | //   is the union of X and Y. | 
|  | // | 
|  | // Here, we compute Y and add its members to the overloaded | 
|  | // candidate set. | 
|  | for (auto *NS : AssociatedNamespaces) { | 
|  | //   When considering an associated namespace, the lookup is the | 
|  | //   same as the lookup performed when the associated namespace is | 
|  | //   used as a qualifier (3.4.3.2) except that: | 
|  | // | 
|  | //     -- Any using-directives in the associated namespace are | 
|  | //        ignored. | 
|  | // | 
|  | //     -- Any namespace-scope friend functions declared in | 
|  | //        associated classes are visible within their respective | 
|  | //        namespaces even if they are not visible during an ordinary | 
|  | //        lookup (11.4). | 
|  | // | 
|  | // C++20 [basic.lookup.argdep] p4.3 | 
|  | //     -- are exported, are attached to a named module M, do not appear | 
|  | //        in the translation unit containing the point of the lookup, and | 
|  | //        have the same innermost enclosing non-inline namespace scope as | 
|  | //        a declaration of an associated entity attached to M. | 
|  | DeclContext::lookup_result R = NS->lookup(Name); | 
|  | for (auto *D : R) { | 
|  | auto *Underlying = D; | 
|  | if (auto *USD = dyn_cast<UsingShadowDecl>(D)) | 
|  | Underlying = USD->getTargetDecl(); | 
|  |  | 
|  | if (!isa<FunctionDecl>(Underlying) && | 
|  | !isa<FunctionTemplateDecl>(Underlying)) | 
|  | continue; | 
|  |  | 
|  | // The declaration is visible to argument-dependent lookup if either | 
|  | // it's ordinarily visible or declared as a friend in an associated | 
|  | // class. | 
|  | bool Visible = false; | 
|  | for (D = D->getMostRecentDecl(); D; | 
|  | D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { | 
|  | if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { | 
|  | if (isVisible(D)) { | 
|  | Visible = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!getLangOpts().CPlusPlusModules) | 
|  | continue; | 
|  |  | 
|  | if (D->isInExportDeclContext()) { | 
|  | Module *FM = D->getOwningModule(); | 
|  | // C++20 [basic.lookup.argdep] p4.3 .. are exported ... | 
|  | // exports are only valid in module purview and outside of any | 
|  | // PMF (although a PMF should not even be present in a module | 
|  | // with an import). | 
|  | assert(FM && | 
|  | (FM->isNamedModule() || FM->isImplicitGlobalModule()) && | 
|  | !FM->isPrivateModule() && "bad export context"); | 
|  | // .. are attached to a named module M, do not appear in the | 
|  | // translation unit containing the point of the lookup.. | 
|  | if (D->isInAnotherModuleUnit() && | 
|  | llvm::any_of(AssociatedClasses, [&](auto *E) { | 
|  | // ... and have the same innermost enclosing non-inline | 
|  | // namespace scope as a declaration of an associated entity | 
|  | // attached to M | 
|  | if (E->getOwningModule() != FM) | 
|  | return false; | 
|  | // TODO: maybe this could be cached when generating the | 
|  | // associated namespaces / entities. | 
|  | DeclContext *Ctx = E->getDeclContext(); | 
|  | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) | 
|  | Ctx = Ctx->getParent(); | 
|  | return Ctx == NS; | 
|  | })) { | 
|  | Visible = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (D->getFriendObjectKind()) { | 
|  | auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); | 
|  | // [basic.lookup.argdep]p4: | 
|  | //   Argument-dependent lookup finds all declarations of functions and | 
|  | //   function templates that | 
|  | //  - ... | 
|  | //  - are declared as a friend ([class.friend]) of any class with a | 
|  | //  reachable definition in the set of associated entities, | 
|  | // | 
|  | // FIXME: If there's a merged definition of D that is reachable, then | 
|  | // the friend declaration should be considered. | 
|  | if (AssociatedClasses.count(RD) && isReachable(D)) { | 
|  | Visible = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Preserve D as the FoundDecl. | 
|  | if (Visible) | 
|  | Result.insert(Underlying); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //---------------------------------------------------------------------------- | 
|  | // Search for all visible declarations. | 
|  | //---------------------------------------------------------------------------- | 
|  | VisibleDeclConsumer::~VisibleDeclConsumer() { } | 
|  |  | 
|  | bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ShadowContextRAII; | 
|  |  | 
|  | class VisibleDeclsRecord { | 
|  | public: | 
|  | /// An entry in the shadow map, which is optimized to store a | 
|  | /// single declaration (the common case) but can also store a list | 
|  | /// of declarations. | 
|  | typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; | 
|  |  | 
|  | private: | 
|  | /// A mapping from declaration names to the declarations that have | 
|  | /// this name within a particular scope. | 
|  | typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; | 
|  |  | 
|  | /// A list of shadow maps, which is used to model name hiding. | 
|  | std::list<ShadowMap> ShadowMaps; | 
|  |  | 
|  | /// The declaration contexts we have already visited. | 
|  | llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; | 
|  |  | 
|  | friend class ShadowContextRAII; | 
|  |  | 
|  | public: | 
|  | /// Determine whether we have already visited this context | 
|  | /// (and, if not, note that we are going to visit that context now). | 
|  | bool visitedContext(DeclContext *Ctx) { | 
|  | return !VisitedContexts.insert(Ctx).second; | 
|  | } | 
|  |  | 
|  | bool alreadyVisitedContext(DeclContext *Ctx) { | 
|  | return VisitedContexts.count(Ctx); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given declaration is hidden in the | 
|  | /// current scope. | 
|  | /// | 
|  | /// \returns the declaration that hides the given declaration, or | 
|  | /// NULL if no such declaration exists. | 
|  | NamedDecl *checkHidden(NamedDecl *ND); | 
|  |  | 
|  | /// Add a declaration to the current shadow map. | 
|  | void add(NamedDecl *ND) { | 
|  | ShadowMaps.back()[ND->getDeclName()].push_back(ND); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// RAII object that records when we've entered a shadow context. | 
|  | class ShadowContextRAII { | 
|  | VisibleDeclsRecord &Visible; | 
|  |  | 
|  | typedef VisibleDeclsRecord::ShadowMap ShadowMap; | 
|  |  | 
|  | public: | 
|  | ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { | 
|  | Visible.ShadowMaps.emplace_back(); | 
|  | } | 
|  |  | 
|  | ~ShadowContextRAII() { | 
|  | Visible.ShadowMaps.pop_back(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { | 
|  | unsigned IDNS = ND->getIdentifierNamespace(); | 
|  | std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); | 
|  | for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); | 
|  | SM != SMEnd; ++SM) { | 
|  | ShadowMap::iterator Pos = SM->find(ND->getDeclName()); | 
|  | if (Pos == SM->end()) | 
|  | continue; | 
|  |  | 
|  | for (auto *D : Pos->second) { | 
|  | // A tag declaration does not hide a non-tag declaration. | 
|  | if (D->hasTagIdentifierNamespace() && | 
|  | (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | | 
|  | Decl::IDNS_ObjCProtocol))) | 
|  | continue; | 
|  |  | 
|  | // Protocols are in distinct namespaces from everything else. | 
|  | if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) | 
|  | || (IDNS & Decl::IDNS_ObjCProtocol)) && | 
|  | D->getIdentifierNamespace() != IDNS) | 
|  | continue; | 
|  |  | 
|  | // Functions and function templates in the same scope overload | 
|  | // rather than hide.  FIXME: Look for hiding based on function | 
|  | // signatures! | 
|  | if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && | 
|  | ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && | 
|  | SM == ShadowMaps.rbegin()) | 
|  | continue; | 
|  |  | 
|  | // A shadow declaration that's created by a resolved using declaration | 
|  | // is not hidden by the same using declaration. | 
|  | if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && | 
|  | cast<UsingShadowDecl>(ND)->getIntroducer() == D) | 
|  | continue; | 
|  |  | 
|  | // We've found a declaration that hides this one. | 
|  | return D; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class LookupVisibleHelper { | 
|  | public: | 
|  | LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, | 
|  | bool LoadExternal) | 
|  | : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), | 
|  | LoadExternal(LoadExternal) {} | 
|  |  | 
|  | void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, | 
|  | bool IncludeGlobalScope) { | 
|  | // Determine the set of using directives available during | 
|  | // unqualified name lookup. | 
|  | Scope *Initial = S; | 
|  | UnqualUsingDirectiveSet UDirs(SemaRef); | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | // Find the first namespace or translation-unit scope. | 
|  | while (S && !isNamespaceOrTranslationUnitScope(S)) | 
|  | S = S->getParent(); | 
|  |  | 
|  | UDirs.visitScopeChain(Initial, S); | 
|  | } | 
|  | UDirs.done(); | 
|  |  | 
|  | // Look for visible declarations. | 
|  | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); | 
|  | Result.setAllowHidden(Consumer.includeHiddenDecls()); | 
|  | if (!IncludeGlobalScope) | 
|  | Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInScope(Initial, Result, UDirs); | 
|  | } | 
|  |  | 
|  | void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, | 
|  | Sema::LookupNameKind Kind, bool IncludeGlobalScope) { | 
|  | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); | 
|  | Result.setAllowHidden(Consumer.includeHiddenDecls()); | 
|  | if (!IncludeGlobalScope) | 
|  | Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); | 
|  |  | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, | 
|  | bool QualifiedNameLookup, bool InBaseClass) { | 
|  | if (!Ctx) | 
|  | return; | 
|  |  | 
|  | // Make sure we don't visit the same context twice. | 
|  | if (Visited.visitedContext(Ctx->getPrimaryContext())) | 
|  | return; | 
|  |  | 
|  | Consumer.EnteredContext(Ctx); | 
|  |  | 
|  | // Outside C++, lookup results for the TU live on identifiers. | 
|  | if (isa<TranslationUnitDecl>(Ctx) && | 
|  | !Result.getSema().getLangOpts().CPlusPlus) { | 
|  | auto &S = Result.getSema(); | 
|  | auto &Idents = S.Context.Idents; | 
|  |  | 
|  | // Ensure all external identifiers are in the identifier table. | 
|  | if (LoadExternal) | 
|  | if (IdentifierInfoLookup *External = | 
|  | Idents.getExternalIdentifierLookup()) { | 
|  | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); | 
|  | for (StringRef Name = Iter->Next(); !Name.empty(); | 
|  | Name = Iter->Next()) | 
|  | Idents.get(Name); | 
|  | } | 
|  |  | 
|  | // Walk all lookup results in the TU for each identifier. | 
|  | for (const auto &Ident : Idents) { | 
|  | for (auto I = S.IdResolver.begin(Ident.getValue()), | 
|  | E = S.IdResolver.end(); | 
|  | I != E; ++I) { | 
|  | if (S.IdResolver.isDeclInScope(*I, Ctx)) { | 
|  | if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { | 
|  | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); | 
|  | Visited.add(ND); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) | 
|  | Result.getSema().ForceDeclarationOfImplicitMembers(Class); | 
|  |  | 
|  | llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; | 
|  | // We sometimes skip loading namespace-level results (they tend to be huge). | 
|  | bool Load = LoadExternal || | 
|  | !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); | 
|  | // Enumerate all of the results in this context. | 
|  | for (DeclContextLookupResult R : | 
|  | Load ? Ctx->lookups() | 
|  | : Ctx->noload_lookups(/*PreserveInternalState=*/false)) | 
|  | for (auto *D : R) | 
|  | // Rather than visit immediately, we put ND into a vector and visit | 
|  | // all decls, in order, outside of this loop. The reason is that | 
|  | // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) | 
|  | // may invalidate the iterators used in the two | 
|  | // loops above. | 
|  | DeclsToVisit.push_back(D); | 
|  |  | 
|  | for (auto *D : DeclsToVisit) | 
|  | if (auto *ND = Result.getAcceptableDecl(D)) { | 
|  | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); | 
|  | Visited.add(ND); | 
|  | } | 
|  |  | 
|  | DeclsToVisit.clear(); | 
|  |  | 
|  | // Traverse using directives for qualified name lookup. | 
|  | if (QualifiedNameLookup) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | for (auto *I : Ctx->using_directives()) { | 
|  | if (!Result.getSema().isVisible(I)) | 
|  | continue; | 
|  | lookupInDeclContext(I->getNominatedNamespace(), Result, | 
|  | QualifiedNameLookup, InBaseClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse the contexts of inherited C++ classes. | 
|  | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { | 
|  | if (!Record->hasDefinition()) | 
|  | return; | 
|  |  | 
|  | for (const auto &B : Record->bases()) { | 
|  | QualType BaseType = B.getType(); | 
|  |  | 
|  | RecordDecl *RD; | 
|  | if (BaseType->isDependentType()) { | 
|  | if (!IncludeDependentBases) { | 
|  | // Don't look into dependent bases, because name lookup can't look | 
|  | // there anyway. | 
|  | continue; | 
|  | } | 
|  | const auto *TST = BaseType->getAs<TemplateSpecializationType>(); | 
|  | if (!TST) | 
|  | continue; | 
|  | TemplateName TN = TST->getTemplateName(); | 
|  | const auto *TD = | 
|  | dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); | 
|  | if (!TD) | 
|  | continue; | 
|  | RD = TD->getTemplatedDecl(); | 
|  | } else { | 
|  | RD = BaseType->getAsCXXRecordDecl(); | 
|  | if (!RD) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // FIXME: It would be nice to be able to determine whether referencing | 
|  | // a particular member would be ambiguous. For example, given | 
|  | // | 
|  | //   struct A { int member; }; | 
|  | //   struct B { int member; }; | 
|  | //   struct C : A, B { }; | 
|  | // | 
|  | //   void f(C *c) { c->### } | 
|  | // | 
|  | // accessing 'member' would result in an ambiguity. However, we | 
|  | // could be smart enough to qualify the member with the base | 
|  | // class, e.g., | 
|  | // | 
|  | //   c->B::member | 
|  | // | 
|  | // or | 
|  | // | 
|  | //   c->A::member | 
|  |  | 
|  | // Find results in this base class (and its bases). | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(RD, Result, QualifiedNameLookup, | 
|  | /*InBaseClass=*/true); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse the contexts of Objective-C classes. | 
|  | if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { | 
|  | // Traverse categories. | 
|  | for (auto *Cat : IFace->visible_categories()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(Cat, Result, QualifiedNameLookup, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  |  | 
|  | // Traverse protocols. | 
|  | for (auto *I : IFace->all_referenced_protocols()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(I, Result, QualifiedNameLookup, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  |  | 
|  | // Traverse the superclass. | 
|  | if (IFace->getSuperClass()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, | 
|  | /*InBaseClass=*/true); | 
|  | } | 
|  |  | 
|  | // If there is an implementation, traverse it. We do this to find | 
|  | // synthesized ivars. | 
|  | if (IFace->getImplementation()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(IFace->getImplementation(), Result, | 
|  | QualifiedNameLookup, InBaseClass); | 
|  | } | 
|  | } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { | 
|  | for (auto *I : Protocol->protocols()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(I, Result, QualifiedNameLookup, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  | } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { | 
|  | for (auto *I : Category->protocols()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(I, Result, QualifiedNameLookup, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  |  | 
|  | // If there is an implementation, traverse it. | 
|  | if (Category->getImplementation()) { | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInDeclContext(Category->getImplementation(), Result, | 
|  | QualifiedNameLookup, /*InBaseClass=*/true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void lookupInScope(Scope *S, LookupResult &Result, | 
|  | UnqualUsingDirectiveSet &UDirs) { | 
|  | // No clients run in this mode and it's not supported. Please add tests and | 
|  | // remove the assertion if you start relying on it. | 
|  | assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); | 
|  |  | 
|  | if (!S) | 
|  | return; | 
|  |  | 
|  | if (!S->getEntity() || | 
|  | (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || | 
|  | (S->getEntity())->isFunctionOrMethod()) { | 
|  | FindLocalExternScope FindLocals(Result); | 
|  | // Walk through the declarations in this Scope. The consumer might add new | 
|  | // decls to the scope as part of deserialization, so make a copy first. | 
|  | SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); | 
|  | for (Decl *D : ScopeDecls) { | 
|  | if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) | 
|  | if ((ND = Result.getAcceptableDecl(ND))) { | 
|  | Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); | 
|  | Visited.add(ND); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclContext *Entity = S->getLookupEntity(); | 
|  | if (Entity) { | 
|  | // Look into this scope's declaration context, along with any of its | 
|  | // parent lookup contexts (e.g., enclosing classes), up to the point | 
|  | // where we hit the context stored in the next outer scope. | 
|  | DeclContext *OuterCtx = findOuterContext(S); | 
|  |  | 
|  | for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); | 
|  | Ctx = Ctx->getLookupParent()) { | 
|  | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { | 
|  | if (Method->isInstanceMethod()) { | 
|  | // For instance methods, look for ivars in the method's interface. | 
|  | LookupResult IvarResult(Result.getSema(), Result.getLookupName(), | 
|  | Result.getNameLoc(), | 
|  | Sema::LookupMemberName); | 
|  | if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { | 
|  | lookupInDeclContext(IFace, IvarResult, | 
|  | /*QualifiedNameLookup=*/false, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We've already performed all of the name lookup that we need | 
|  | // to for Objective-C methods; the next context will be the | 
|  | // outer scope. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Ctx->isFunctionOrMethod()) | 
|  | continue; | 
|  |  | 
|  | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  | } else if (!S->getParent()) { | 
|  | // Look into the translation unit scope. We walk through the translation | 
|  | // unit's declaration context, because the Scope itself won't have all of | 
|  | // the declarations if we loaded a precompiled header. | 
|  | // FIXME: We would like the translation unit's Scope object to point to | 
|  | // the translation unit, so we don't need this special "if" branch. | 
|  | // However, doing so would force the normal C++ name-lookup code to look | 
|  | // into the translation unit decl when the IdentifierInfo chains would | 
|  | // suffice. Once we fix that problem (which is part of a more general | 
|  | // "don't look in DeclContexts unless we have to" optimization), we can | 
|  | // eliminate this. | 
|  | Entity = Result.getSema().Context.getTranslationUnitDecl(); | 
|  | lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  |  | 
|  | if (Entity) { | 
|  | // Lookup visible declarations in any namespaces found by using | 
|  | // directives. | 
|  | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) | 
|  | lookupInDeclContext( | 
|  | const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, | 
|  | /*QualifiedNameLookup=*/false, | 
|  | /*InBaseClass=*/false); | 
|  | } | 
|  |  | 
|  | // Lookup names in the parent scope. | 
|  | ShadowContextRAII Shadow(Visited); | 
|  | lookupInScope(S->getParent(), Result, UDirs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | VisibleDeclsRecord Visited; | 
|  | VisibleDeclConsumer &Consumer; | 
|  | bool IncludeDependentBases; | 
|  | bool LoadExternal; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, | 
|  | VisibleDeclConsumer &Consumer, | 
|  | bool IncludeGlobalScope, bool LoadExternal) { | 
|  | LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, | 
|  | LoadExternal); | 
|  | H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); | 
|  | } | 
|  |  | 
|  | void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, | 
|  | VisibleDeclConsumer &Consumer, | 
|  | bool IncludeGlobalScope, | 
|  | bool IncludeDependentBases, bool LoadExternal) { | 
|  | LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); | 
|  | H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); | 
|  | } | 
|  |  | 
|  | LabelDecl *Sema::LookupExistingLabel(IdentifierInfo *II, SourceLocation Loc) { | 
|  | NamedDecl *Res = LookupSingleName(CurScope, II, Loc, LookupLabel, | 
|  | RedeclarationKind::NotForRedeclaration); | 
|  | // If we found a label, check to see if it is in the same context as us. | 
|  | // When in a Block, we don't want to reuse a label in an enclosing function. | 
|  | if (!Res || Res->getDeclContext() != CurContext) | 
|  | return nullptr; | 
|  | return cast<LabelDecl>(Res); | 
|  | } | 
|  |  | 
|  | LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, | 
|  | SourceLocation GnuLabelLoc) { | 
|  | if (GnuLabelLoc.isValid()) { | 
|  | // Local label definitions always shadow existing labels. | 
|  | auto *Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); | 
|  | Scope *S = CurScope; | 
|  | PushOnScopeChains(Res, S, true); | 
|  | return cast<LabelDecl>(Res); | 
|  | } | 
|  |  | 
|  | // Not a GNU local label. | 
|  | LabelDecl *Res = LookupExistingLabel(II, Loc); | 
|  | if (!Res) { | 
|  | // If not forward referenced or defined already, create the backing decl. | 
|  | Res = LabelDecl::Create(Context, CurContext, Loc, II); | 
|  | Scope *S = CurScope->getFnParent(); | 
|  | assert(S && "Not in a function?"); | 
|  | PushOnScopeChains(Res, S, true); | 
|  | } | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Typo correction | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool isCandidateViable(CorrectionCandidateCallback &CCC, | 
|  | TypoCorrection &Candidate) { | 
|  | Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); | 
|  | return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; | 
|  | } | 
|  |  | 
|  | static void LookupPotentialTypoResult(Sema &SemaRef, | 
|  | LookupResult &Res, | 
|  | IdentifierInfo *Name, | 
|  | Scope *S, CXXScopeSpec *SS, | 
|  | DeclContext *MemberContext, | 
|  | bool EnteringContext, | 
|  | bool isObjCIvarLookup, | 
|  | bool FindHidden); | 
|  |  | 
|  | /// Check whether the declarations found for a typo correction are | 
|  | /// visible. Set the correction's RequiresImport flag to true if none of the | 
|  | /// declarations are visible, false otherwise. | 
|  | static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { | 
|  | TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); | 
|  |  | 
|  | for (/**/; DI != DE; ++DI) | 
|  | if (!LookupResult::isVisible(SemaRef, *DI)) | 
|  | break; | 
|  | // No filtering needed if all decls are visible. | 
|  | if (DI == DE) { | 
|  | TC.setRequiresImport(false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); | 
|  | bool AnyVisibleDecls = !NewDecls.empty(); | 
|  |  | 
|  | for (/**/; DI != DE; ++DI) { | 
|  | if (LookupResult::isVisible(SemaRef, *DI)) { | 
|  | if (!AnyVisibleDecls) { | 
|  | // Found a visible decl, discard all hidden ones. | 
|  | AnyVisibleDecls = true; | 
|  | NewDecls.clear(); | 
|  | } | 
|  | NewDecls.push_back(*DI); | 
|  | } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) | 
|  | NewDecls.push_back(*DI); | 
|  | } | 
|  |  | 
|  | if (NewDecls.empty()) | 
|  | TC = TypoCorrection(); | 
|  | else { | 
|  | TC.setCorrectionDecls(NewDecls); | 
|  | TC.setRequiresImport(!AnyVisibleDecls); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill the supplied vector with the IdentifierInfo pointers for each piece of | 
|  | // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", | 
|  | // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). | 
|  | static void getNestedNameSpecifierIdentifiers( | 
|  | NestedNameSpecifier NNS, | 
|  | SmallVectorImpl<const IdentifierInfo *> &Identifiers) { | 
|  | switch (NNS.getKind()) { | 
|  | case NestedNameSpecifier::Kind::Null: | 
|  | Identifiers.clear(); | 
|  | return; | 
|  |  | 
|  | case NestedNameSpecifier::Kind::Namespace: { | 
|  | auto [Namespace, Prefix] = NNS.getAsNamespaceAndPrefix(); | 
|  | getNestedNameSpecifierIdentifiers(Prefix, Identifiers); | 
|  | if (const auto *NS = dyn_cast<NamespaceDecl>(Namespace); | 
|  | NS && NS->isAnonymousNamespace()) | 
|  | return; | 
|  | Identifiers.push_back(Namespace->getIdentifier()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case NestedNameSpecifier::Kind::Type: { | 
|  | for (const Type *T = NNS.getAsType(); /**/; /**/) { | 
|  | switch (T->getTypeClass()) { | 
|  | case Type::DependentName: { | 
|  | auto *DT = cast<DependentNameType>(T); | 
|  | getNestedNameSpecifierIdentifiers(DT->getQualifier(), Identifiers); | 
|  | Identifiers.push_back(DT->getIdentifier()); | 
|  | return; | 
|  | } | 
|  | case Type::TemplateSpecialization: { | 
|  | TemplateName Name = | 
|  | cast<TemplateSpecializationType>(T)->getTemplateName(); | 
|  | if (const DependentTemplateName *DTN = | 
|  | Name.getAsDependentTemplateName()) { | 
|  | getNestedNameSpecifierIdentifiers(DTN->getQualifier(), Identifiers); | 
|  | if (const auto *II = DTN->getName().getIdentifier()) | 
|  | Identifiers.push_back(II); | 
|  | return; | 
|  | } | 
|  | if (const QualifiedTemplateName *QTN = | 
|  | Name.getAsQualifiedTemplateName()) { | 
|  | getNestedNameSpecifierIdentifiers(QTN->getQualifier(), Identifiers); | 
|  | Name = QTN->getUnderlyingTemplate(); | 
|  | } | 
|  | if (const auto *TD = Name.getAsTemplateDecl(/*IgnoreDeduced=*/true)) | 
|  | Identifiers.push_back(TD->getIdentifier()); | 
|  | return; | 
|  | } | 
|  | case Type::SubstTemplateTypeParm: | 
|  | T = cast<SubstTemplateTypeParmType>(T) | 
|  | ->getReplacementType() | 
|  | .getTypePtr(); | 
|  | continue; | 
|  | case Type::TemplateTypeParm: | 
|  | Identifiers.push_back(cast<TemplateTypeParmType>(T)->getIdentifier()); | 
|  | return; | 
|  | case Type::Decltype: | 
|  | return; | 
|  | case Type::Enum: | 
|  | case Type::Record: | 
|  | case Type::InjectedClassName: { | 
|  | auto *TT = cast<TagType>(T); | 
|  | getNestedNameSpecifierIdentifiers(TT->getQualifier(), Identifiers); | 
|  | Identifiers.push_back(TT->getOriginalDecl()->getIdentifier()); | 
|  | return; | 
|  | } | 
|  | case Type::Typedef: { | 
|  | auto *TT = cast<TypedefType>(T); | 
|  | getNestedNameSpecifierIdentifiers(TT->getQualifier(), Identifiers); | 
|  | Identifiers.push_back(TT->getDecl()->getIdentifier()); | 
|  | return; | 
|  | } | 
|  | case Type::Using: { | 
|  | auto *TT = cast<UsingType>(T); | 
|  | getNestedNameSpecifierIdentifiers(TT->getQualifier(), Identifiers); | 
|  | Identifiers.push_back(TT->getDecl()->getIdentifier()); | 
|  | return; | 
|  | } | 
|  | case Type::UnresolvedUsing: { | 
|  | auto *TT = cast<UnresolvedUsingType>(T); | 
|  | getNestedNameSpecifierIdentifiers(TT->getQualifier(), Identifiers); | 
|  | Identifiers.push_back(TT->getDecl()->getIdentifier()); | 
|  | return; | 
|  | } | 
|  | default: | 
|  | Identifiers.push_back(QualType(T, 0).getBaseTypeIdentifier()); | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case NestedNameSpecifier::Kind::Global: | 
|  | case NestedNameSpecifier::Kind::MicrosoftSuper: | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, | 
|  | DeclContext *Ctx, bool InBaseClass) { | 
|  | // Don't consider hidden names for typo correction. | 
|  | if (Hiding) | 
|  | return; | 
|  |  | 
|  | // Only consider entities with identifiers for names, ignoring | 
|  | // special names (constructors, overloaded operators, selectors, | 
|  | // etc.). | 
|  | IdentifierInfo *Name = ND->getIdentifier(); | 
|  | if (!Name) | 
|  | return; | 
|  |  | 
|  | // Only consider visible declarations and declarations from modules with | 
|  | // names that exactly match. | 
|  | if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) | 
|  | return; | 
|  |  | 
|  | FoundName(Name->getName()); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::FoundName(StringRef Name) { | 
|  | // Compute the edit distance between the typo and the name of this | 
|  | // entity, and add the identifier to the list of results. | 
|  | addName(Name, nullptr); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { | 
|  | // Compute the edit distance between the typo and this keyword, | 
|  | // and add the keyword to the list of results. | 
|  | addName(Keyword, /*ND=*/nullptr, /*NNS=*/std::nullopt, /*isKeyword=*/true); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, | 
|  | NestedNameSpecifier NNS, bool isKeyword) { | 
|  | // Use a simple length-based heuristic to determine the minimum possible | 
|  | // edit distance. If the minimum isn't good enough, bail out early. | 
|  | StringRef TypoStr = Typo->getName(); | 
|  | unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); | 
|  | if (MinED && TypoStr.size() / MinED < 3) | 
|  | return; | 
|  |  | 
|  | // Compute an upper bound on the allowable edit distance, so that the | 
|  | // edit-distance algorithm can short-circuit. | 
|  | unsigned UpperBound = (TypoStr.size() + 2) / 3; | 
|  | unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); | 
|  | if (ED > UpperBound) return; | 
|  |  | 
|  | TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); | 
|  | if (isKeyword) TC.makeKeyword(); | 
|  | TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); | 
|  | addCorrection(TC); | 
|  | } | 
|  |  | 
|  | static const unsigned MaxTypoDistanceResultSets = 5; | 
|  |  | 
|  | void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { | 
|  | StringRef TypoStr = Typo->getName(); | 
|  | StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); | 
|  |  | 
|  | // For very short typos, ignore potential corrections that have a different | 
|  | // base identifier from the typo or which have a normalized edit distance | 
|  | // longer than the typo itself. | 
|  | if (TypoStr.size() < 3 && | 
|  | (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) | 
|  | return; | 
|  |  | 
|  | // If the correction is resolved but is not viable, ignore it. | 
|  | if (Correction.isResolved()) { | 
|  | checkCorrectionVisibility(SemaRef, Correction); | 
|  | if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | TypoResultList &CList = | 
|  | CorrectionResults[Correction.getEditDistance(false)][Name]; | 
|  |  | 
|  | if (!CList.empty() && !CList.back().isResolved()) | 
|  | CList.pop_back(); | 
|  | if (NamedDecl *NewND = Correction.getCorrectionDecl()) { | 
|  | auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { | 
|  | return TypoCorr.getCorrectionDecl() == NewND; | 
|  | }); | 
|  | if (RI != CList.end()) { | 
|  | // The Correction refers to a decl already in the list. No insertion is | 
|  | // necessary and all further cases will return. | 
|  |  | 
|  | auto IsDeprecated = [](Decl *D) { | 
|  | while (D) { | 
|  | if (D->isDeprecated()) | 
|  | return true; | 
|  | D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Prefer non deprecated Corrections over deprecated and only then | 
|  | // sort using an alphabetical order. | 
|  | std::pair<bool, std::string> NewKey = { | 
|  | IsDeprecated(Correction.getFoundDecl()), | 
|  | Correction.getAsString(SemaRef.getLangOpts())}; | 
|  |  | 
|  | std::pair<bool, std::string> PrevKey = { | 
|  | IsDeprecated(RI->getFoundDecl()), | 
|  | RI->getAsString(SemaRef.getLangOpts())}; | 
|  |  | 
|  | if (NewKey < PrevKey) | 
|  | *RI = Correction; | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (CList.empty() || Correction.isResolved()) | 
|  | CList.push_back(Correction); | 
|  |  | 
|  | while (CorrectionResults.size() > MaxTypoDistanceResultSets) | 
|  | CorrectionResults.erase(std::prev(CorrectionResults.end())); | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::addNamespaces( | 
|  | const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { | 
|  | SearchNamespaces = true; | 
|  |  | 
|  | for (auto KNPair : KnownNamespaces) | 
|  | Namespaces.addNameSpecifier(KNPair.first); | 
|  |  | 
|  | bool SSIsTemplate = false; | 
|  | if (NestedNameSpecifier NNS = (SS ? SS->getScopeRep() : std::nullopt)) { | 
|  | if (NNS.getKind() == NestedNameSpecifier::Kind::Type) | 
|  | SSIsTemplate = | 
|  | NNS.getAsType()->getTypeClass() == Type::TemplateSpecialization; | 
|  | } | 
|  | // Do not transform this into an iterator-based loop. The loop body can | 
|  | // trigger the creation of further types (through lazy deserialization) and | 
|  | // invalid iterators into this list. | 
|  | auto &Types = SemaRef.getASTContext().getTypes(); | 
|  | for (unsigned I = 0; I != Types.size(); ++I) { | 
|  | const auto *TI = Types[I]; | 
|  | if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { | 
|  | CD = CD->getCanonicalDecl(); | 
|  | if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && | 
|  | !CD->isUnion() && CD->getIdentifier() && | 
|  | (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && | 
|  | (CD->isBeingDefined() || CD->isCompleteDefinition())) | 
|  | Namespaces.addNameSpecifier(CD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { | 
|  | if (++CurrentTCIndex < ValidatedCorrections.size()) | 
|  | return ValidatedCorrections[CurrentTCIndex]; | 
|  |  | 
|  | CurrentTCIndex = ValidatedCorrections.size(); | 
|  | while (!CorrectionResults.empty()) { | 
|  | auto DI = CorrectionResults.begin(); | 
|  | if (DI->second.empty()) { | 
|  | CorrectionResults.erase(DI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto RI = DI->second.begin(); | 
|  | if (RI->second.empty()) { | 
|  | DI->second.erase(RI); | 
|  | performQualifiedLookups(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | TypoCorrection TC = RI->second.pop_back_val(); | 
|  | if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { | 
|  | ValidatedCorrections.push_back(TC); | 
|  | return ValidatedCorrections[CurrentTCIndex]; | 
|  | } | 
|  | } | 
|  | return ValidatedCorrections[0];  // The empty correction. | 
|  | } | 
|  |  | 
|  | bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { | 
|  | IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); | 
|  | DeclContext *TempMemberContext = MemberContext; | 
|  | CXXScopeSpec *TempSS = SS.get(); | 
|  | retry_lookup: | 
|  | LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, | 
|  | EnteringContext, | 
|  | CorrectionValidator->IsObjCIvarLookup, | 
|  | Name == Typo && !Candidate.WillReplaceSpecifier()); | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResultKind::NotFound: | 
|  | case LookupResultKind::NotFoundInCurrentInstantiation: | 
|  | case LookupResultKind::FoundUnresolvedValue: | 
|  | if (TempSS) { | 
|  | // Immediately retry the lookup without the given CXXScopeSpec | 
|  | TempSS = nullptr; | 
|  | Candidate.WillReplaceSpecifier(true); | 
|  | goto retry_lookup; | 
|  | } | 
|  | if (TempMemberContext) { | 
|  | if (SS && !TempSS) | 
|  | TempSS = SS.get(); | 
|  | TempMemberContext = nullptr; | 
|  | goto retry_lookup; | 
|  | } | 
|  | if (SearchNamespaces) | 
|  | QualifiedResults.push_back(Candidate); | 
|  | break; | 
|  |  | 
|  | case LookupResultKind::Ambiguous: | 
|  | // We don't deal with ambiguities. | 
|  | break; | 
|  |  | 
|  | case LookupResultKind::Found: | 
|  | case LookupResultKind::FoundOverloaded: | 
|  | // Store all of the Decls for overloaded symbols | 
|  | for (auto *TRD : Result) | 
|  | Candidate.addCorrectionDecl(TRD); | 
|  | checkCorrectionVisibility(SemaRef, Candidate); | 
|  | if (!isCandidateViable(*CorrectionValidator, Candidate)) { | 
|  | if (SearchNamespaces) | 
|  | QualifiedResults.push_back(Candidate); | 
|  | break; | 
|  | } | 
|  | Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::performQualifiedLookups() { | 
|  | unsigned TypoLen = Typo->getName().size(); | 
|  | for (const TypoCorrection &QR : QualifiedResults) { | 
|  | for (const auto &NSI : Namespaces) { | 
|  | DeclContext *Ctx = NSI.DeclCtx; | 
|  | CXXRecordDecl *NamingClass = NSI.NameSpecifier.getAsRecordDecl(); | 
|  |  | 
|  | // If the current NestedNameSpecifier refers to a class and the | 
|  | // current correction candidate is the name of that class, then skip | 
|  | // it as it is unlikely a qualified version of the class' constructor | 
|  | // is an appropriate correction. | 
|  | if (NamingClass && | 
|  | NamingClass->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) | 
|  | continue; | 
|  |  | 
|  | TypoCorrection TC(QR); | 
|  | TC.ClearCorrectionDecls(); | 
|  | TC.setCorrectionSpecifier(NSI.NameSpecifier); | 
|  | TC.setQualifierDistance(NSI.EditDistance); | 
|  | TC.setCallbackDistance(0); // Reset the callback distance | 
|  |  | 
|  | // If the current correction candidate and namespace combination are | 
|  | // too far away from the original typo based on the normalized edit | 
|  | // distance, then skip performing a qualified name lookup. | 
|  | unsigned TmpED = TC.getEditDistance(true); | 
|  | if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && | 
|  | TypoLen / TmpED < 3) | 
|  | continue; | 
|  |  | 
|  | Result.clear(); | 
|  | Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); | 
|  | if (!SemaRef.LookupQualifiedName(Result, Ctx)) | 
|  | continue; | 
|  |  | 
|  | // Any corrections added below will be validated in subsequent | 
|  | // iterations of the main while() loop over the Consumer's contents. | 
|  | switch (Result.getResultKind()) { | 
|  | case LookupResultKind::Found: | 
|  | case LookupResultKind::FoundOverloaded: { | 
|  | if (SS && SS->isValid()) { | 
|  | std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); | 
|  | std::string OldQualified; | 
|  | llvm::raw_string_ostream OldOStream(OldQualified); | 
|  | SS->getScopeRep().print(OldOStream, SemaRef.getPrintingPolicy()); | 
|  | OldOStream << Typo->getName(); | 
|  | // If correction candidate would be an identical written qualified | 
|  | // identifier, then the existing CXXScopeSpec probably included a | 
|  | // typedef that didn't get accounted for properly. | 
|  | if (OldOStream.str() == NewQualified) | 
|  | break; | 
|  | } | 
|  | for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); | 
|  | TRD != TRDEnd; ++TRD) { | 
|  | if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), | 
|  | NamingClass, | 
|  | TRD.getPair()) == Sema::AR_accessible) | 
|  | TC.addCorrectionDecl(*TRD); | 
|  | } | 
|  | if (TC.isResolved()) { | 
|  | TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); | 
|  | addCorrection(TC); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case LookupResultKind::NotFound: | 
|  | case LookupResultKind::NotFoundInCurrentInstantiation: | 
|  | case LookupResultKind::Ambiguous: | 
|  | case LookupResultKind::FoundUnresolvedValue: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | QualifiedResults.clear(); | 
|  | } | 
|  |  | 
|  | TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( | 
|  | ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) | 
|  | : Context(Context), CurContextChain(buildContextChain(CurContext)) { | 
|  | if (NestedNameSpecifier NNS = | 
|  | CurScopeSpec ? CurScopeSpec->getScopeRep() : std::nullopt) { | 
|  | llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); | 
|  | NNS.print(SpecifierOStream, Context.getPrintingPolicy()); | 
|  |  | 
|  | getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); | 
|  | } | 
|  | // Build the list of identifiers that would be used for an absolute | 
|  | // (from the global context) NestedNameSpecifier referring to the current | 
|  | // context. | 
|  | for (DeclContext *C : llvm::reverse(CurContextChain)) { | 
|  | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) | 
|  | CurContextIdentifiers.push_back(ND->getIdentifier()); | 
|  | } | 
|  |  | 
|  | // Add the global context as a NestedNameSpecifier | 
|  | SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), | 
|  | NestedNameSpecifier::getGlobal(), 1}; | 
|  | DistanceMap[1].push_back(SI); | 
|  | } | 
|  |  | 
|  | auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( | 
|  | DeclContext *Start) -> DeclContextList { | 
|  | assert(Start && "Building a context chain from a null context"); | 
|  | DeclContextList Chain; | 
|  | for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; | 
|  | DC = DC->getLookupParent()) { | 
|  | NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); | 
|  | if (!DC->isInlineNamespace() && !DC->isTransparentContext() && | 
|  | !(ND && ND->isAnonymousNamespace())) | 
|  | Chain.push_back(DC->getPrimaryContext()); | 
|  | } | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( | 
|  | DeclContextList &DeclChain, NestedNameSpecifier &NNS) { | 
|  | unsigned NumSpecifiers = 0; | 
|  | for (DeclContext *C : llvm::reverse(DeclChain)) { | 
|  | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { | 
|  | NNS = NestedNameSpecifier(Context, ND, NNS); | 
|  | ++NumSpecifiers; | 
|  | } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { | 
|  | QualType T = Context.getTagType(ElaboratedTypeKeyword::None, NNS, RD, | 
|  | /*OwnsTag=*/false); | 
|  | NNS = NestedNameSpecifier(T.getTypePtr()); | 
|  | ++NumSpecifiers; | 
|  | } | 
|  | } | 
|  | return NumSpecifiers; | 
|  | } | 
|  |  | 
|  | void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( | 
|  | DeclContext *Ctx) { | 
|  | NestedNameSpecifier NNS = std::nullopt; | 
|  | unsigned NumSpecifiers = 0; | 
|  | DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); | 
|  | DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); | 
|  |  | 
|  | // Eliminate common elements from the two DeclContext chains. | 
|  | for (DeclContext *C : llvm::reverse(CurContextChain)) { | 
|  | if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) | 
|  | break; | 
|  | NamespaceDeclChain.pop_back(); | 
|  | } | 
|  |  | 
|  | // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain | 
|  | NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); | 
|  |  | 
|  | // Add an explicit leading '::' specifier if needed. | 
|  | if (NamespaceDeclChain.empty()) { | 
|  | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. | 
|  | NNS = NestedNameSpecifier::getGlobal(); | 
|  | NumSpecifiers = | 
|  | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); | 
|  | } else if (NamedDecl *ND = | 
|  | dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { | 
|  | IdentifierInfo *Name = ND->getIdentifier(); | 
|  | bool SameNameSpecifier = false; | 
|  | if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { | 
|  | std::string NewNameSpecifier; | 
|  | llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); | 
|  | SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; | 
|  | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); | 
|  | NNS.print(SpecifierOStream, Context.getPrintingPolicy()); | 
|  | SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; | 
|  | } | 
|  | if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { | 
|  | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. | 
|  | NNS = NestedNameSpecifier::getGlobal(); | 
|  | NumSpecifiers = | 
|  | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the built NestedNameSpecifier would be replacing an existing | 
|  | // NestedNameSpecifier, use the number of component identifiers that | 
|  | // would need to be changed as the edit distance instead of the number | 
|  | // of components in the built NestedNameSpecifier. | 
|  | if (NNS && !CurNameSpecifierIdentifiers.empty()) { | 
|  | SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; | 
|  | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); | 
|  | NumSpecifiers = | 
|  | llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), | 
|  | llvm::ArrayRef(NewNameSpecifierIdentifiers)); | 
|  | } | 
|  |  | 
|  | SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; | 
|  | DistanceMap[NumSpecifiers].push_back(SI); | 
|  | } | 
|  |  | 
|  | /// Perform name lookup for a possible result for typo correction. | 
|  | static void LookupPotentialTypoResult(Sema &SemaRef, | 
|  | LookupResult &Res, | 
|  | IdentifierInfo *Name, | 
|  | Scope *S, CXXScopeSpec *SS, | 
|  | DeclContext *MemberContext, | 
|  | bool EnteringContext, | 
|  | bool isObjCIvarLookup, | 
|  | bool FindHidden) { | 
|  | Res.suppressDiagnostics(); | 
|  | Res.clear(); | 
|  | Res.setLookupName(Name); | 
|  | Res.setAllowHidden(FindHidden); | 
|  | if (MemberContext) { | 
|  | if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { | 
|  | if (isObjCIvarLookup) { | 
|  | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { | 
|  | Res.addDecl(Ivar); | 
|  | Res.resolveKind(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( | 
|  | Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { | 
|  | Res.addDecl(Prop); | 
|  | Res.resolveKind(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | SemaRef.LookupQualifiedName(Res, MemberContext); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SemaRef.LookupParsedName(Res, S, SS, | 
|  | /*ObjectType=*/QualType(), | 
|  | /*AllowBuiltinCreation=*/false, EnteringContext); | 
|  |  | 
|  | // Fake ivar lookup; this should really be part of | 
|  | // LookupParsedName. | 
|  | if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { | 
|  | if (Method->isInstanceMethod() && Method->getClassInterface() && | 
|  | (Res.empty() || | 
|  | (Res.isSingleResult() && | 
|  | Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { | 
|  | if (ObjCIvarDecl *IV | 
|  | = Method->getClassInterface()->lookupInstanceVariable(Name)) { | 
|  | Res.addDecl(IV); | 
|  | Res.resolveKind(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Add keywords to the consumer as possible typo corrections. | 
|  | static void AddKeywordsToConsumer(Sema &SemaRef, | 
|  | TypoCorrectionConsumer &Consumer, | 
|  | Scope *S, CorrectionCandidateCallback &CCC, | 
|  | bool AfterNestedNameSpecifier) { | 
|  | if (AfterNestedNameSpecifier) { | 
|  | // For 'X::', we know exactly which keywords can appear next. | 
|  | Consumer.addKeywordResult("template"); | 
|  | if (CCC.WantExpressionKeywords) | 
|  | Consumer.addKeywordResult("operator"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CCC.WantObjCSuper) | 
|  | Consumer.addKeywordResult("super"); | 
|  |  | 
|  | if (CCC.WantTypeSpecifiers) { | 
|  | // Add type-specifier keywords to the set of results. | 
|  | static const char *const CTypeSpecs[] = { | 
|  | "char", "const", "double", "enum", "float", "int", "long", "short", | 
|  | "signed", "struct", "union", "unsigned", "void", "volatile", | 
|  | "_Complex", | 
|  | // storage-specifiers as well | 
|  | "extern", "inline", "static", "typedef" | 
|  | }; | 
|  |  | 
|  | for (const auto *CTS : CTypeSpecs) | 
|  | Consumer.addKeywordResult(CTS); | 
|  |  | 
|  | if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y) | 
|  | Consumer.addKeywordResult("_Imaginary"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().C99) | 
|  | Consumer.addKeywordResult("restrict"); | 
|  | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) | 
|  | Consumer.addKeywordResult("bool"); | 
|  | else if (SemaRef.getLangOpts().C99) | 
|  | Consumer.addKeywordResult("_Bool"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("class"); | 
|  | Consumer.addKeywordResult("typename"); | 
|  | Consumer.addKeywordResult("wchar_t"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus11) { | 
|  | Consumer.addKeywordResult("char16_t"); | 
|  | Consumer.addKeywordResult("char32_t"); | 
|  | Consumer.addKeywordResult("constexpr"); | 
|  | Consumer.addKeywordResult("decltype"); | 
|  | Consumer.addKeywordResult("thread_local"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().GNUKeywords) | 
|  | Consumer.addKeywordResult("typeof"); | 
|  | } else if (CCC.WantFunctionLikeCasts) { | 
|  | static const char *const CastableTypeSpecs[] = { | 
|  | "char", "double", "float", "int", "long", "short", | 
|  | "signed", "unsigned", "void" | 
|  | }; | 
|  | for (auto *kw : CastableTypeSpecs) | 
|  | Consumer.addKeywordResult(kw); | 
|  | } | 
|  |  | 
|  | if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("const_cast"); | 
|  | Consumer.addKeywordResult("dynamic_cast"); | 
|  | Consumer.addKeywordResult("reinterpret_cast"); | 
|  | Consumer.addKeywordResult("static_cast"); | 
|  | } | 
|  |  | 
|  | if (CCC.WantExpressionKeywords) { | 
|  | Consumer.addKeywordResult("sizeof"); | 
|  | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("false"); | 
|  | Consumer.addKeywordResult("true"); | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | static const char *const CXXExprs[] = { | 
|  | "delete", "new", "operator", "throw", "typeid" | 
|  | }; | 
|  | for (const auto *CE : CXXExprs) | 
|  | Consumer.addKeywordResult(CE); | 
|  |  | 
|  | if (isa<CXXMethodDecl>(SemaRef.CurContext) && | 
|  | cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) | 
|  | Consumer.addKeywordResult("this"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus11) { | 
|  | Consumer.addKeywordResult("alignof"); | 
|  | Consumer.addKeywordResult("nullptr"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().C11) { | 
|  | // FIXME: We should not suggest _Alignof if the alignof macro | 
|  | // is present. | 
|  | Consumer.addKeywordResult("_Alignof"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CCC.WantRemainingKeywords) { | 
|  | if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { | 
|  | // Statements. | 
|  | static const char *const CStmts[] = { | 
|  | "do", "else", "for", "goto", "if", "return", "switch", "while" }; | 
|  | for (const auto *CS : CStmts) | 
|  | Consumer.addKeywordResult(CS); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("catch"); | 
|  | Consumer.addKeywordResult("try"); | 
|  | } | 
|  |  | 
|  | if (S && S->getBreakParent()) | 
|  | Consumer.addKeywordResult("break"); | 
|  |  | 
|  | if (S && S->getContinueParent()) | 
|  | Consumer.addKeywordResult("continue"); | 
|  |  | 
|  | if (SemaRef.getCurFunction() && | 
|  | !SemaRef.getCurFunction()->SwitchStack.empty()) { | 
|  | Consumer.addKeywordResult("case"); | 
|  | Consumer.addKeywordResult("default"); | 
|  | } | 
|  | } else { | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("namespace"); | 
|  | Consumer.addKeywordResult("template"); | 
|  | } | 
|  |  | 
|  | if (S && S->isClassScope()) { | 
|  | Consumer.addKeywordResult("explicit"); | 
|  | Consumer.addKeywordResult("friend"); | 
|  | Consumer.addKeywordResult("mutable"); | 
|  | Consumer.addKeywordResult("private"); | 
|  | Consumer.addKeywordResult("protected"); | 
|  | Consumer.addKeywordResult("public"); | 
|  | Consumer.addKeywordResult("virtual"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus) { | 
|  | Consumer.addKeywordResult("using"); | 
|  |  | 
|  | if (SemaRef.getLangOpts().CPlusPlus11) | 
|  | Consumer.addKeywordResult("static_assert"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( | 
|  | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, | 
|  | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, | 
|  | DeclContext *MemberContext, bool EnteringContext, | 
|  | const ObjCObjectPointerType *OPT, bool ErrorRecovery) { | 
|  |  | 
|  | if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || | 
|  | DisableTypoCorrection) | 
|  | return nullptr; | 
|  |  | 
|  | // In Microsoft mode, don't perform typo correction in a template member | 
|  | // function dependent context because it interferes with the "lookup into | 
|  | // dependent bases of class templates" feature. | 
|  | if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && | 
|  | isa<CXXMethodDecl>(CurContext)) | 
|  | return nullptr; | 
|  |  | 
|  | // We only attempt to correct typos for identifiers. | 
|  | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | 
|  | if (!Typo) | 
|  | return nullptr; | 
|  |  | 
|  | // If the scope specifier itself was invalid, don't try to correct | 
|  | // typos. | 
|  | if (SS && SS->isInvalid()) | 
|  | return nullptr; | 
|  |  | 
|  | // Never try to correct typos during any kind of code synthesis. | 
|  | if (!CodeSynthesisContexts.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't try to correct 'super'. | 
|  | if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) | 
|  | return nullptr; | 
|  |  | 
|  | // Abort if typo correction already failed for this specific typo. | 
|  | IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); | 
|  | if (locs != TypoCorrectionFailures.end() && | 
|  | locs->second.count(TypoName.getLoc())) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't try to correct the identifier "vector" when in AltiVec mode. | 
|  | // TODO: Figure out why typo correction misbehaves in this case, fix it, and | 
|  | // remove this workaround. | 
|  | if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) | 
|  | return nullptr; | 
|  |  | 
|  | // Provide a stop gap for files that are just seriously broken.  Trying | 
|  | // to correct all typos can turn into a HUGE performance penalty, causing | 
|  | // some files to take minutes to get rejected by the parser. | 
|  | unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; | 
|  | if (Limit && TyposCorrected >= Limit) | 
|  | return nullptr; | 
|  | ++TyposCorrected; | 
|  |  | 
|  | // If we're handling a missing symbol error, using modules, and the | 
|  | // special search all modules option is used, look for a missing import. | 
|  | if (ErrorRecovery && getLangOpts().Modules && | 
|  | getLangOpts().ModulesSearchAll) { | 
|  | // The following has the side effect of loading the missing module. | 
|  | getModuleLoader().lookupMissingImports(Typo->getName(), | 
|  | TypoName.getBeginLoc()); | 
|  | } | 
|  |  | 
|  | // Extend the lifetime of the callback. We delayed this until here | 
|  | // to avoid allocations in the hot path (which is where no typo correction | 
|  | // occurs). Note that CorrectionCandidateCallback is polymorphic and | 
|  | // initially stack-allocated. | 
|  | std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); | 
|  | auto Consumer = std::make_unique<TypoCorrectionConsumer>( | 
|  | *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, | 
|  | EnteringContext); | 
|  |  | 
|  | // Perform name lookup to find visible, similarly-named entities. | 
|  | bool IsUnqualifiedLookup = false; | 
|  | DeclContext *QualifiedDC = MemberContext; | 
|  | if (MemberContext) { | 
|  | LookupVisibleDecls(MemberContext, LookupKind, *Consumer); | 
|  |  | 
|  | // Look in qualified interfaces. | 
|  | if (OPT) { | 
|  | for (auto *I : OPT->quals()) | 
|  | LookupVisibleDecls(I, LookupKind, *Consumer); | 
|  | } | 
|  | } else if (SS && SS->isSet()) { | 
|  | QualifiedDC = computeDeclContext(*SS, EnteringContext); | 
|  | if (!QualifiedDC) | 
|  | return nullptr; | 
|  |  | 
|  | LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); | 
|  | } else { | 
|  | IsUnqualifiedLookup = true; | 
|  | } | 
|  |  | 
|  | // Determine whether we are going to search in the various namespaces for | 
|  | // corrections. | 
|  | bool SearchNamespaces | 
|  | = getLangOpts().CPlusPlus && | 
|  | (IsUnqualifiedLookup || (SS && SS->isSet())); | 
|  |  | 
|  | if (IsUnqualifiedLookup || SearchNamespaces) { | 
|  | // For unqualified lookup, look through all of the names that we have | 
|  | // seen in this translation unit. | 
|  | // FIXME: Re-add the ability to skip very unlikely potential corrections. | 
|  | for (const auto &I : Context.Idents) | 
|  | Consumer->FoundName(I.getKey()); | 
|  |  | 
|  | // Walk through identifiers in external identifier sources. | 
|  | // FIXME: Re-add the ability to skip very unlikely potential corrections. | 
|  | if (IdentifierInfoLookup *External | 
|  | = Context.Idents.getExternalIdentifierLookup()) { | 
|  | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); | 
|  | do { | 
|  | StringRef Name = Iter->Next(); | 
|  | if (Name.empty()) | 
|  | break; | 
|  |  | 
|  | Consumer->FoundName(Name); | 
|  | } while (true); | 
|  | } | 
|  | } | 
|  |  | 
|  | AddKeywordsToConsumer(*this, *Consumer, S, | 
|  | *Consumer->getCorrectionValidator(), | 
|  | SS && SS->isNotEmpty()); | 
|  |  | 
|  | // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going | 
|  | // to search those namespaces. | 
|  | if (SearchNamespaces) { | 
|  | // Load any externally-known namespaces. | 
|  | if (ExternalSource && !LoadedExternalKnownNamespaces) { | 
|  | SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; | 
|  | LoadedExternalKnownNamespaces = true; | 
|  | ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); | 
|  | for (auto *N : ExternalKnownNamespaces) | 
|  | KnownNamespaces[N] = true; | 
|  | } | 
|  |  | 
|  | Consumer->addNamespaces(KnownNamespaces); | 
|  | } | 
|  |  | 
|  | return Consumer; | 
|  | } | 
|  |  | 
|  | TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, | 
|  | Sema::LookupNameKind LookupKind, | 
|  | Scope *S, CXXScopeSpec *SS, | 
|  | CorrectionCandidateCallback &CCC, | 
|  | CorrectTypoKind Mode, | 
|  | DeclContext *MemberContext, | 
|  | bool EnteringContext, | 
|  | const ObjCObjectPointerType *OPT, | 
|  | bool RecordFailure) { | 
|  | // Always let the ExternalSource have the first chance at correction, even | 
|  | // if we would otherwise have given up. | 
|  | if (ExternalSource) { | 
|  | if (TypoCorrection Correction = | 
|  | ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, | 
|  | MemberContext, EnteringContext, OPT)) | 
|  | return Correction; | 
|  | } | 
|  |  | 
|  | // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; | 
|  | // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for | 
|  | // some instances of CTC_Unknown, while WantRemainingKeywords is true | 
|  | // for CTC_Unknown but not for CTC_ObjCMessageReceiver. | 
|  | bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; | 
|  |  | 
|  | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); | 
|  | auto Consumer = makeTypoCorrectionConsumer( | 
|  | TypoName, LookupKind, S, SS, CCC, MemberContext, EnteringContext, OPT, | 
|  | Mode == CorrectTypoKind::ErrorRecovery); | 
|  |  | 
|  | if (!Consumer) | 
|  | return TypoCorrection(); | 
|  |  | 
|  | // If we haven't found anything, we're done. | 
|  | if (Consumer->empty()) | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | // Make sure the best edit distance (prior to adding any namespace qualifiers) | 
|  | // is not more that about a third of the length of the typo's identifier. | 
|  | unsigned ED = Consumer->getBestEditDistance(true); | 
|  | unsigned TypoLen = Typo->getName().size(); | 
|  | if (ED > 0 && TypoLen / ED < 3) | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | TypoCorrection BestTC = Consumer->getNextCorrection(); | 
|  | TypoCorrection SecondBestTC = Consumer->getNextCorrection(); | 
|  | if (!BestTC) | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | ED = BestTC.getEditDistance(); | 
|  |  | 
|  | if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { | 
|  | // If this was an unqualified lookup and we believe the callback | 
|  | // object wouldn't have filtered out possible corrections, note | 
|  | // that no correction was found. | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  | } | 
|  |  | 
|  | // If only a single name remains, return that result. | 
|  | if (!SecondBestTC || | 
|  | SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { | 
|  | const TypoCorrection &Result = BestTC; | 
|  |  | 
|  | // Don't correct to a keyword that's the same as the typo; the keyword | 
|  | // wasn't actually in scope. | 
|  | if (ED == 0 && Result.isKeyword()) | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | TypoCorrection TC = Result; | 
|  | TC.setCorrectionRange(SS, TypoName); | 
|  | checkCorrectionVisibility(*this, TC); | 
|  | return TC; | 
|  | } else if (SecondBestTC && ObjCMessageReceiver) { | 
|  | // Prefer 'super' when we're completing in a message-receiver | 
|  | // context. | 
|  |  | 
|  | if (BestTC.getCorrection().getAsString() != "super") { | 
|  | if (SecondBestTC.getCorrection().getAsString() == "super") | 
|  | BestTC = SecondBestTC; | 
|  | else if ((*Consumer)["super"].front().isKeyword()) | 
|  | BestTC = (*Consumer)["super"].front(); | 
|  | } | 
|  | // Don't correct to a keyword that's the same as the typo; the keyword | 
|  | // wasn't actually in scope. | 
|  | if (BestTC.getEditDistance() == 0 || | 
|  | BestTC.getCorrection().getAsString() != "super") | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); | 
|  |  | 
|  | BestTC.setCorrectionRange(SS, TypoName); | 
|  | return BestTC; | 
|  | } | 
|  |  | 
|  | // Record the failure's location if needed and return an empty correction. If | 
|  | // this was an unqualified lookup and we believe the callback object did not | 
|  | // filter out possible corrections, also cache the failure for the typo. | 
|  | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); | 
|  | } | 
|  |  | 
|  | void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { | 
|  | if (!CDecl) return; | 
|  |  | 
|  | if (isKeyword()) | 
|  | CorrectionDecls.clear(); | 
|  |  | 
|  | CorrectionDecls.push_back(CDecl); | 
|  |  | 
|  | if (!CorrectionName) | 
|  | CorrectionName = CDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | std::string TypoCorrection::getAsString(const LangOptions &LO) const { | 
|  | if (CorrectionNameSpec) { | 
|  | std::string tmpBuffer; | 
|  | llvm::raw_string_ostream PrefixOStream(tmpBuffer); | 
|  | CorrectionNameSpec.print(PrefixOStream, PrintingPolicy(LO)); | 
|  | PrefixOStream << CorrectionName; | 
|  | return PrefixOStream.str(); | 
|  | } | 
|  |  | 
|  | return CorrectionName.getAsString(); | 
|  | } | 
|  |  | 
|  | bool CorrectionCandidateCallback::ValidateCandidate( | 
|  | const TypoCorrection &candidate) { | 
|  | if (!candidate.isResolved()) | 
|  | return true; | 
|  |  | 
|  | if (candidate.isKeyword()) | 
|  | return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || | 
|  | WantRemainingKeywords || WantObjCSuper; | 
|  |  | 
|  | bool HasNonType = false; | 
|  | bool HasStaticMethod = false; | 
|  | bool HasNonStaticMethod = false; | 
|  | for (Decl *D : candidate) { | 
|  | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) | 
|  | D = FTD->getTemplatedDecl(); | 
|  | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (Method->isStatic()) | 
|  | HasStaticMethod = true; | 
|  | else | 
|  | HasNonStaticMethod = true; | 
|  | } | 
|  | if (!isa<TypeDecl>(D)) | 
|  | HasNonType = true; | 
|  | } | 
|  |  | 
|  | if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && | 
|  | !candidate.getCorrectionSpecifier()) | 
|  | return false; | 
|  |  | 
|  | return WantTypeSpecifiers || HasNonType; | 
|  | } | 
|  |  | 
|  | FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, | 
|  | bool HasExplicitTemplateArgs, | 
|  | MemberExpr *ME) | 
|  | : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), | 
|  | CurContext(SemaRef.CurContext), MemberFn(ME) { | 
|  | WantTypeSpecifiers = false; | 
|  | WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && | 
|  | !HasExplicitTemplateArgs && NumArgs == 1; | 
|  | WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; | 
|  | WantRemainingKeywords = false; | 
|  | } | 
|  |  | 
|  | bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { | 
|  | if (!candidate.getCorrectionDecl()) | 
|  | return candidate.isKeyword(); | 
|  |  | 
|  | for (auto *C : candidate) { | 
|  | FunctionDecl *FD = nullptr; | 
|  | NamedDecl *ND = C->getUnderlyingDecl(); | 
|  | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) | 
|  | FD = FTD->getTemplatedDecl(); | 
|  | if (!HasExplicitTemplateArgs && !FD) { | 
|  | if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { | 
|  | // If the Decl is neither a function nor a template function, | 
|  | // determine if it is a pointer or reference to a function. If so, | 
|  | // check against the number of arguments expected for the pointee. | 
|  | QualType ValType = cast<ValueDecl>(ND)->getType(); | 
|  | if (ValType.isNull()) | 
|  | continue; | 
|  | if (ValType->isAnyPointerType() || ValType->isReferenceType()) | 
|  | ValType = ValType->getPointeeType(); | 
|  | if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) | 
|  | if (FPT->getNumParams() == NumArgs) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // A typo for a function-style cast can look like a function call in C++. | 
|  | if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr | 
|  | : isa<TypeDecl>(ND)) && | 
|  | CurContext->getParentASTContext().getLangOpts().CPlusPlus) | 
|  | // Only a class or class template can take two or more arguments. | 
|  | return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); | 
|  |  | 
|  | // Skip the current candidate if it is not a FunctionDecl or does not accept | 
|  | // the current number of arguments. | 
|  | if (!FD || !(FD->getNumParams() >= NumArgs && | 
|  | FD->getMinRequiredArguments() <= NumArgs)) | 
|  | continue; | 
|  |  | 
|  | // If the current candidate is a non-static C++ method, skip the candidate | 
|  | // unless the method being corrected--or the current DeclContext, if the | 
|  | // function being corrected is not a method--is a method in the same class | 
|  | // or a descendent class of the candidate's parent class. | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | if (MemberFn || !MD->isStatic()) { | 
|  | const auto *CurMD = | 
|  | MemberFn | 
|  | ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl()) | 
|  | : dyn_cast_if_present<CXXMethodDecl>(CurContext); | 
|  | const CXXRecordDecl *CurRD = | 
|  | CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; | 
|  | const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); | 
|  | if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseTypo(const TypoCorrection &Correction, | 
|  | const PartialDiagnostic &TypoDiag, | 
|  | bool ErrorRecovery) { | 
|  | diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), | 
|  | ErrorRecovery); | 
|  | } | 
|  |  | 
|  | /// Find which declaration we should import to provide the definition of | 
|  | /// the given declaration. | 
|  | static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D)) | 
|  | return VD->getDefinition(); | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
|  | return FD->getDefinition(); | 
|  | if (const auto *TD = dyn_cast<TagDecl>(D)) | 
|  | return TD->getDefinition(); | 
|  | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) | 
|  | return ID->getDefinition(); | 
|  | if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D)) | 
|  | return PD->getDefinition(); | 
|  | if (const auto *TD = dyn_cast<TemplateDecl>(D)) | 
|  | if (const NamedDecl *TTD = TD->getTemplatedDecl()) | 
|  | return getDefinitionToImport(TTD); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, | 
|  | MissingImportKind MIK, bool Recover) { | 
|  | // Suggest importing a module providing the definition of this entity, if | 
|  | // possible. | 
|  | const NamedDecl *Def = getDefinitionToImport(Decl); | 
|  | if (!Def) | 
|  | Def = Decl; | 
|  |  | 
|  | Module *Owner = getOwningModule(Def); | 
|  | assert(Owner && "definition of hidden declaration is not in a module"); | 
|  |  | 
|  | llvm::SmallVector<Module*, 8> OwningModules; | 
|  | OwningModules.push_back(Owner); | 
|  | auto Merged = Context.getModulesWithMergedDefinition(Def); | 
|  | llvm::append_range(OwningModules, Merged); | 
|  |  | 
|  | diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, | 
|  | Recover); | 
|  | } | 
|  |  | 
|  | /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic | 
|  | /// suggesting the addition of a #include of the specified file. | 
|  | static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E, | 
|  | llvm::StringRef IncludingFile) { | 
|  | bool IsAngled = false; | 
|  | auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( | 
|  | E, IncludingFile, &IsAngled); | 
|  | return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, | 
|  | SourceLocation DeclLoc, | 
|  | ArrayRef<Module *> Modules, | 
|  | MissingImportKind MIK, bool Recover) { | 
|  | assert(!Modules.empty()); | 
|  |  | 
|  | // See https://github.com/llvm/llvm-project/issues/73893. It is generally | 
|  | // confusing than helpful to show the namespace is not visible. | 
|  | if (isa<NamespaceDecl>(Decl)) | 
|  | return; | 
|  |  | 
|  | auto NotePrevious = [&] { | 
|  | // FIXME: Suppress the note backtrace even under | 
|  | // -fdiagnostics-show-note-include-stack. We don't care how this | 
|  | // declaration was previously reached. | 
|  | Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; | 
|  | }; | 
|  |  | 
|  | // Weed out duplicates from module list. | 
|  | llvm::SmallVector<Module*, 8> UniqueModules; | 
|  | llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; | 
|  | for (auto *M : Modules) { | 
|  | if (M->isExplicitGlobalModule() || M->isPrivateModule()) | 
|  | continue; | 
|  | if (UniqueModuleSet.insert(M).second) | 
|  | UniqueModules.push_back(M); | 
|  | } | 
|  |  | 
|  | // Try to find a suitable header-name to #include. | 
|  | std::string HeaderName; | 
|  | if (OptionalFileEntryRef Header = | 
|  | PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { | 
|  | if (const FileEntry *FE = | 
|  | SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) | 
|  | HeaderName = | 
|  | getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName()); | 
|  | } | 
|  |  | 
|  | // If we have a #include we should suggest, or if all definition locations | 
|  | // were in global module fragments, don't suggest an import. | 
|  | if (!HeaderName.empty() || UniqueModules.empty()) { | 
|  | // FIXME: Find a smart place to suggest inserting a #include, and add | 
|  | // a FixItHint there. | 
|  | Diag(UseLoc, diag::err_module_unimported_use_header) | 
|  | << (int)MIK << Decl << !HeaderName.empty() << HeaderName; | 
|  | // Produce a note showing where the entity was declared. | 
|  | NotePrevious(); | 
|  | if (Recover) | 
|  | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Modules = UniqueModules; | 
|  |  | 
|  | auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { | 
|  | if (M->isModuleMapModule()) | 
|  | return M->getFullModuleName(); | 
|  |  | 
|  | if (M->isImplicitGlobalModule()) | 
|  | M = M->getTopLevelModule(); | 
|  |  | 
|  | // If the current module unit is in the same module with M, it is OK to show | 
|  | // the partition name. Otherwise, it'll be sufficient to show the primary | 
|  | // module name. | 
|  | if (getASTContext().isInSameModule(M, getCurrentModule())) | 
|  | return M->getTopLevelModuleName().str(); | 
|  | else | 
|  | return M->getPrimaryModuleInterfaceName().str(); | 
|  | }; | 
|  |  | 
|  | if (Modules.size() > 1) { | 
|  | std::string ModuleList; | 
|  | unsigned N = 0; | 
|  | for (const auto *M : Modules) { | 
|  | ModuleList += "\n        "; | 
|  | if (++N == 5 && N != Modules.size()) { | 
|  | ModuleList += "[...]"; | 
|  | break; | 
|  | } | 
|  | ModuleList += GetModuleNameForDiagnostic(M); | 
|  | } | 
|  |  | 
|  | Diag(UseLoc, diag::err_module_unimported_use_multiple) | 
|  | << (int)MIK << Decl << ModuleList; | 
|  | } else { | 
|  | // FIXME: Add a FixItHint that imports the corresponding module. | 
|  | Diag(UseLoc, diag::err_module_unimported_use) | 
|  | << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); | 
|  | } | 
|  |  | 
|  | NotePrevious(); | 
|  |  | 
|  | // Try to recover by implicitly importing this module. | 
|  | if (Recover) | 
|  | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); | 
|  | } | 
|  |  | 
|  | void Sema::diagnoseTypo(const TypoCorrection &Correction, | 
|  | const PartialDiagnostic &TypoDiag, | 
|  | const PartialDiagnostic &PrevNote, | 
|  | bool ErrorRecovery) { | 
|  | std::string CorrectedStr = Correction.getAsString(getLangOpts()); | 
|  | std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); | 
|  | FixItHint FixTypo = FixItHint::CreateReplacement( | 
|  | Correction.getCorrectionRange(), CorrectedStr); | 
|  |  | 
|  | // Maybe we're just missing a module import. | 
|  | if (Correction.requiresImport()) { | 
|  | NamedDecl *Decl = Correction.getFoundDecl(); | 
|  | assert(Decl && "import required but no declaration to import"); | 
|  |  | 
|  | diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, | 
|  | MissingImportKind::Declaration, ErrorRecovery); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) | 
|  | << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); | 
|  |  | 
|  | NamedDecl *ChosenDecl = | 
|  | Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); | 
|  |  | 
|  | // For builtin functions which aren't declared anywhere in source, | 
|  | // don't emit the "declared here" note. | 
|  | if (const auto *FD = dyn_cast_if_present<FunctionDecl>(ChosenDecl); | 
|  | FD && FD->getBuiltinID() && | 
|  | PrevNote.getDiagID() == diag::note_previous_decl && | 
|  | Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) { | 
|  | ChosenDecl = nullptr; | 
|  | } | 
|  |  | 
|  | if (PrevNote.getDiagID() && ChosenDecl) | 
|  | Diag(ChosenDecl->getLocation(), PrevNote) | 
|  | << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); | 
|  |  | 
|  | // Add any extra diagnostics. | 
|  | for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) | 
|  | Diag(Correction.getCorrectionRange().getBegin(), PD); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { | 
|  | DeclarationNameInfo Name(II, IILoc); | 
|  | LookupResult R(*this, Name, LookupAnyName, | 
|  | RedeclarationKind::NotForRedeclaration); | 
|  | R.suppressDiagnostics(); | 
|  | R.setHideTags(false); | 
|  | LookupName(R, S); | 
|  | R.dump(); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnPragmaDump(Expr *E) { | 
|  | E->dump(); | 
|  | } | 
|  |  | 
|  | RedeclarationKind Sema::forRedeclarationInCurContext() const { | 
|  | // A declaration with an owning module for linkage can never link against | 
|  | // anything that is not visible. We don't need to check linkage here; if | 
|  | // the context has internal linkage, redeclaration lookup won't find things | 
|  | // from other TUs, and we can't safely compute linkage yet in general. | 
|  | if (cast<Decl>(CurContext)->getOwningModuleForLinkage()) | 
|  | return RedeclarationKind::ForVisibleRedeclaration; | 
|  | return RedeclarationKind::ForExternalRedeclaration; | 
|  | } |