blob: 024184408ae84005f15fa4b2a40e1cc475529ac7 [file] [log] [blame]
// RUN: mlir-opt %s -affine-super-vectorize="virtual-vector-size=128 test-fastest-varying=0 vectorize-reductions=true" -split-input-file | FileCheck %s
// The inner reduction loop '%j' is vectorized.
func @vecdim_reduction(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %red_iter, %ld : f32
affine.yield %add : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @vecdim_reduction
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vzero:.*]] = arith.constant dense<0.000000e+00> : vector<128xf32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vzero]]) -> (vector<128xf32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[red_iter]], %[[ld]] : vector<128xf32>
// CHECK: affine.yield %[[add]] : vector<128xf32>
// CHECK: }
// CHECK: %[[final_sum:.*]] = vector.reduction "add", %[[vred:.*]] : vector<128xf32> into f32
// CHECK: affine.store %[[final_sum]], %{{.*}} : memref<256xf32>
// CHECK: }
// -----
func @vecdim_reduction_minf(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 0x7F800000 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%min = arith.minf %red_iter, %ld : f32
affine.yield %min : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_minf
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vmax:.*]] = arith.constant dense<0x7F800000> : vector<128xf32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vmax]]) -> (vector<128xf32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[min:.*]] = arith.minf %[[red_iter]], %[[ld]] : vector<128xf32>
// CHECK: affine.yield %[[min]] : vector<128xf32>
// CHECK: }
// CHECK: %[[final_min:.*]] = vector.reduction "minf", %[[vred:.*]] : vector<128xf32> into f32
// CHECK: affine.store %[[final_min]], %{{.*}} : memref<256xf32>
// CHECK: }
// -----
func @vecdim_reduction_maxf(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 0xFF800000 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%max = arith.maxf %red_iter, %ld : f32
affine.yield %max : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_maxf
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vmin:.*]] = arith.constant dense<0xFF800000> : vector<128xf32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vmin]]) -> (vector<128xf32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[max:.*]] = arith.maxf %[[red_iter]], %[[ld]] : vector<128xf32>
// CHECK: affine.yield %[[max]] : vector<128xf32>
// CHECK: }
// CHECK: %[[final_max:.*]] = vector.reduction "maxf", %[[vred:.*]] : vector<128xf32> into f32
// CHECK: affine.store %[[final_max]], %{{.*}} : memref<256xf32>
// CHECK: }
// -----
func @vecdim_reduction_minsi(%in: memref<256x512xi32>, %out: memref<256xi32>) {
%cst = arith.constant 2147483647 : i32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (i32) {
%ld = affine.load %in[%i, %j] : memref<256x512xi32>
%min = arith.minsi %red_iter, %ld : i32
affine.yield %min : i32
}
affine.store %final_red, %out[%i] : memref<256xi32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_minsi
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vmax:.*]] = arith.constant dense<2147483647> : vector<128xi32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vmax]]) -> (vector<128xi32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xi32>, vector<128xi32>
// CHECK: %[[min:.*]] = arith.minsi %[[red_iter]], %[[ld]] : vector<128xi32>
// CHECK: affine.yield %[[min]] : vector<128xi32>
// CHECK: }
// CHECK: %[[final_min:.*]] = vector.reduction "minsi", %[[vred:.*]] : vector<128xi32> into i32
// CHECK: affine.store %[[final_min]], %{{.*}} : memref<256xi32>
// CHECK: }
// -----
func @vecdim_reduction_maxsi(%in: memref<256x512xi32>, %out: memref<256xi32>) {
%cst = arith.constant -2147483648 : i32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (i32) {
%ld = affine.load %in[%i, %j] : memref<256x512xi32>
%max = arith.maxsi %red_iter, %ld : i32
affine.yield %max : i32
}
affine.store %final_red, %out[%i] : memref<256xi32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_maxsi
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vmin:.*]] = arith.constant dense<-2147483648> : vector<128xi32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vmin]]) -> (vector<128xi32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xi32>, vector<128xi32>
// CHECK: %[[max:.*]] = arith.maxsi %[[red_iter]], %[[ld]] : vector<128xi32>
// CHECK: affine.yield %[[max]] : vector<128xi32>
// CHECK: }
// CHECK: %[[final_max:.*]] = vector.reduction "maxsi", %[[vred:.*]] : vector<128xi32> into i32
// CHECK: affine.store %[[final_max]], %{{.*}} : memref<256xi32>
// CHECK: }
// -----
func @vecdim_reduction_minui(%in: memref<256x512xi32>, %out: memref<256xi32>) {
%cst = arith.constant -1 : i32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (i32) {
%ld = affine.load %in[%i, %j] : memref<256x512xi32>
%min = arith.minui %red_iter, %ld : i32
affine.yield %min : i32
}
affine.store %final_red, %out[%i] : memref<256xi32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_minui
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vmax:.*]] = arith.constant dense<-1> : vector<128xi32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vmax]]) -> (vector<128xi32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xi32>, vector<128xi32>
// CHECK: %[[min:.*]] = arith.minui %[[red_iter]], %[[ld]] : vector<128xi32>
// CHECK: affine.yield %[[min]] : vector<128xi32>
// CHECK: }
// CHECK: %[[final_min:.*]] = vector.reduction "minui", %[[vred:.*]] : vector<128xi32> into i32
// CHECK: affine.store %[[final_min]], %{{.*}} : memref<256xi32>
// CHECK: }
// -----
func @vecdim_reduction_maxui(%in: memref<256x512xi32>, %out: memref<256xi32>) {
%cst = arith.constant 0 : i32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (i32) {
%ld = affine.load %in[%i, %j] : memref<256x512xi32>
%max = arith.maxui %red_iter, %ld : i32
affine.yield %max : i32
}
affine.store %final_red, %out[%i] : memref<256xi32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_maxui
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vmin:.*]] = arith.constant dense<0> : vector<128xi32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vmin]]) -> (vector<128xi32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xi32>, vector<128xi32>
// CHECK: %[[max:.*]] = arith.maxui %[[red_iter]], %[[ld]] : vector<128xi32>
// CHECK: affine.yield %[[max]] : vector<128xi32>
// CHECK: }
// CHECK: %[[final_max:.*]] = vector.reduction "maxui", %[[vred:.*]] : vector<128xi32> into i32
// CHECK: affine.store %[[final_max]], %{{.*}} : memref<256xi32>
// CHECK: }
// -----
// The inner reduction loop '%j' is vectorized. (The order of addf's operands is
// different than in the previous test case).
func @vecdim_reduction_comm(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %ld, %red_iter : f32
affine.yield %add : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_comm
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vzero:.*]] = arith.constant dense<0.000000e+00> : vector<128xf32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vzero]]) -> (vector<128xf32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[ld]], %[[red_iter]] : vector<128xf32>
// CHECK: affine.yield %[[add]] : vector<128xf32>
// CHECK: }
// CHECK: %[[final_sum:.*]] = vector.reduction "add", %[[vred:.*]] : vector<128xf32> into f32
// CHECK: affine.store %[[final_sum]], %{{.*}} : memref<256xf32>
// CHECK: }
// -----
// The inner reduction loop '%j' is vectorized. Transforming the input before
// performing the accumulation doesn't cause any problem.
func @vecdim_reduction_expsin(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%sin = math.sin %ld : f32
%exp = math.exp %sin : f32
%add = arith.addf %red_iter, %exp : f32
affine.yield %add : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_expsin
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vzero:.*]] = arith.constant dense<0.000000e+00> : vector<128xf32>
// CHECK: %[[vred:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[red_iter:.*]] = %[[vzero]]) -> (vector<128xf32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[sin:.*]] = math.sin %[[ld]]
// CHECK: %[[exp:.*]] = math.exp %[[sin]]
// CHECK: %[[add:.*]] = arith.addf %[[red_iter]], %[[exp]] : vector<128xf32>
// CHECK: affine.yield %[[add]] : vector<128xf32>
// CHECK: }
// CHECK: %[[final_sum:.*]] = vector.reduction "add", %[[vred:.*]] : vector<128xf32> into f32
// CHECK: affine.store %[[final_sum]], %{{.*}} : memref<256xf32>
// CHECK: }
// -----
// Two reductions at the same time. The inner reduction loop '%j' is vectorized.
func @two_vecdim_reductions(%in: memref<256x512xf32>, %out_sum: memref<256xf32>, %out_prod: memref<256xf32>) {
%cst = arith.constant 1.000000e+00 : f32
affine.for %i = 0 to 256 {
// Note that we pass the same constant '1.0' as initial values for both
// reductions.
%sum, %prod = affine.for %j = 0 to 512 iter_args(%part_sum = %cst, %part_prod = %cst) -> (f32, f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %part_sum, %ld : f32
%mul = arith.mulf %part_prod, %ld : f32
affine.yield %add, %mul : f32, f32
}
affine.store %sum, %out_sum[%i] : memref<256xf32>
affine.store %prod, %out_prod[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @two_vecdim_reductions
// CHECK: %[[cst:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vzero:.*]] = arith.constant dense<0.000000e+00> : vector<128xf32>
// CHECK: %[[vone:.*]] = arith.constant dense<1.000000e+00> : vector<128xf32>
// CHECK: %[[vred:.*]]:2 = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[part_sum:.*]] = %[[vzero]], %[[part_prod:.*]] = %[[vone]]) -> (vector<128xf32>, vector<128xf32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[part_sum]], %[[ld]] : vector<128xf32>
// CHECK: %[[mul:.*]] = arith.mulf %[[part_prod]], %[[ld]] : vector<128xf32>
// CHECK: affine.yield %[[add]], %[[mul]] : vector<128xf32>, vector<128xf32>
// CHECK: }
// CHECK: %[[nonfinal_sum:.*]] = vector.reduction "add", %[[vred:.*]]#0 : vector<128xf32> into f32
// Note that to compute the final sum we need to add the original initial value
// (%cst) since it is not zero.
// CHECK: %[[final_sum:.*]] = arith.addf %[[nonfinal_sum]], %[[cst]] : f32
// For the final product we don't need to do this additional step because the
// initial value equals to 1 (the neutral element for multiplication).
// CHECK: %[[final_prod:.*]] = vector.reduction "mul", %[[vred:.*]]#1 : vector<128xf32> into f32
// CHECK: affine.store %[[final_sum]], %{{.*}} : memref<256xf32>
// CHECK: affine.store %[[final_prod]], %{{.*}} : memref<256xf32>
// CHECK: }
// -----
// The integer case.
func @two_vecdim_reductions_int(%in: memref<256x512xi64>, %out_sum: memref<256xi64>, %out_prod: memref<256xi64>) {
%cst0 = arith.constant 0 : i64
%cst1 = arith.constant 1 : i64
affine.for %i = 0 to 256 {
%sum, %prod = affine.for %j = 0 to 512 iter_args(%part_sum = %cst0, %part_prod = %cst1) -> (i64, i64) {
%ld = affine.load %in[%i, %j] : memref<256x512xi64>
%add = arith.addi %part_sum, %ld : i64
%mul = arith.muli %part_prod, %ld : i64
affine.yield %add, %mul : i64, i64
}
affine.store %sum, %out_sum[%i] : memref<256xi64>
affine.store %prod, %out_prod[%i] : memref<256xi64>
}
return
}
// CHECK-LABEL: @two_vecdim_reductions
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vzero:.*]] = arith.constant dense<0> : vector<128xi64>
// CHECK: %[[vone:.*]] = arith.constant dense<1> : vector<128xi64>
// CHECK: %[[vred:.*]]:2 = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[part_sum:.*]] = %[[vzero]], %[[part_prod:.*]] = %[[vone]]) -> (vector<128xi64>, vector<128xi64>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xi64>, vector<128xi64>
// CHECK: %[[add:.*]] = arith.addi %[[part_sum]], %[[ld]] : vector<128xi64>
// CHECK: %[[mul:.*]] = arith.muli %[[part_prod]], %[[ld]] : vector<128xi64>
// CHECK: affine.yield %[[add]], %[[mul]] : vector<128xi64>, vector<128xi64>
// CHECK: }
// CHECK: %[[final_sum:.*]] = vector.reduction "add", %[[vred:.*]]#0 : vector<128xi64> into i64
// CHECK: %[[final_prod:.*]] = vector.reduction "mul", %[[vred:.*]]#1 : vector<128xi64> into i64
// CHECK: affine.store %[[final_sum]], %{{.*}} : memref<256xi64>
// CHECK: affine.store %[[final_prod]], %{{.*}} : memref<256xi64>
// CHECK: }
// -----
// The outer reduction loop '%j' is vectorized.
func @vecdim_reduction_nested(%in: memref<256x512xf32>, %out: memref<1xf32>) {
%cst = arith.constant 0.000000e+00 : f32
%outer_red = affine.for %j = 0 to 512 iter_args(%outer_iter = %cst) -> (f32) {
%inner_red = affine.for %i = 0 to 256 iter_args(%inner_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %inner_iter, %ld : f32
affine.yield %add : f32
}
%outer_add = arith.addf %outer_iter, %inner_red : f32
affine.yield %outer_add : f32
}
affine.store %outer_red, %out[0] : memref<1xf32>
return
}
// CHECK-LABEL: @vecdim_reduction_nested
// CHECK: %[[vzero:.*]] = arith.constant dense<0.000000e+00> : vector<128xf32>
// CHECK: %[[outer_red:.*]] = affine.for %{{.*}} = 0 to 512 step 128 iter_args(%[[outer_iter:.*]] = %[[vzero]]) -> (vector<128xf32>) {
// CHECK: %[[vzero:.*]] = arith.constant dense<0.000000e+00> : vector<128xf32>
// CHECK: %[[inner_red:.*]] = affine.for %{{.*}} = 0 to 256 iter_args(%[[inner_iter:.*]] = %[[vzero]]) -> (vector<128xf32>) {
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[inner_iter]], %[[ld]] : vector<128xf32>
// CHECK: affine.yield %[[add]] : vector<128xf32>
// CHECK: }
// CHECK: %[[outer_add:.*]] = arith.addf %[[outer_iter]], %[[inner_red]] : vector<128xf32>
// CHECK: affine.yield %[[outer_add]] : vector<128xf32>
// CHECK: }
// CHECK: %[[final_sum:.*]] = vector.reduction "add", %[[outer_red:.*]] : vector<128xf32> into f32
// CHECK: affine.store %[[final_sum]], %{{.*}} : memref<1xf32>
// -----
// The inner reduction loop '%j' computes partial sums as a side effect and
// is not vectorized.
func @vecdim_partial_sums_1_rejected(%in: memref<256x512xf32>, %out_sum: memref<256xf32>, %out_prod: memref<256xf32>, %out_partsum: memref<256x512xf32>) {
%cst = arith.constant 1.000000e+00 : f32
affine.for %i = 0 to 256 {
%sum, %prod = affine.for %j = 0 to 512 iter_args(%part_sum = %cst, %part_prod = %cst) -> (f32, f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %part_sum, %ld : f32
%mul = arith.mulf %part_prod, %ld : f32
affine.store %add, %out_partsum[%i, %j] : memref<256x512xf32>
affine.yield %add, %mul : f32, f32
}
affine.store %sum, %out_sum[%i] : memref<256xf32>
affine.store %prod, %out_prod[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @vecdim_partial_sums_1_rejected
// CHECK-NOT: vector
// -----
// The inner reduction loop '%j' computes partial sums as a side effect and
// is not vectorized.
func @vecdim_partial_sums_2_rejected(%in: memref<256x512xf32>, %out_sum: memref<256xf32>, %out_prod: memref<256xf32>, %out_partsum: memref<256x512xf32>) {
%cst = arith.constant 1.000000e+00 : f32
affine.for %i = 0 to 256 {
%sum, %prod = affine.for %j = 0 to 512 iter_args(%part_sum = %cst, %part_prod = %cst) -> (f32, f32) {
affine.store %part_sum, %out_partsum[%i, %j] : memref<256x512xf32>
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %part_sum, %ld : f32
%mul = arith.mulf %part_prod, %ld : f32
affine.yield %add, %mul : f32, f32
}
affine.store %sum, %out_sum[%i] : memref<256xf32>
affine.store %prod, %out_prod[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @vecdim_partial_sums_2_rejected
// CHECK-NOT: vector
// -----
// The inner reduction loop '%j' performs an unknown reduction operation and is
// not vectorized.
func @vecdim_unknown_reduction_rejected(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 1.000000e+00 : f32
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
%add = arith.addf %red_iter, %red_iter : f32
affine.yield %add : f32
}
affine.store %final_red, %out[0] : memref<256xf32>
return
}
// CHECK-LABEL: @vecdim_unknown_reduction_rejected
// CHECK-NOT: vector
// -----
// The inner reduction loop '%j' doesn't perform any operation which is not
// recognized as a standard reduction.
func @vecdim_none_reduction_rejected(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 1.000000e+00 : f32
%final_red = affine.for %j = 0 to 512 iter_args(%red_iter = %cst) -> (f32) {
affine.yield %red_iter : f32
}
affine.store %final_red, %out[0] : memref<256xf32>
return
}
// CHECK-LABEL: @vecdim_none_reduction_rejected
// CHECK-NOT: vector
// -----
// The number of iterations is not divisable by the vector size, so a mask has
// to be applied to the last update of the accumulator.
func @vecdim_reduction_masked(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to 500 iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %red_iter, %ld : f32
affine.yield %add : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK: #[[$map0:.*]] = affine_map<([[d0:.*]]) -> (-[[d0]] + 500)>
// CHECK-LABEL: @vecdim_reduction_masked
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vzero:.*]] = arith.constant dense<0.000000e+00> : vector<128xf32>
// CHECK: %[[vred:.*]] = affine.for %[[iv:.*]] = 0 to 500 step 128 iter_args(%[[red_iter:.*]] = %[[vzero]]) -> (vector<128xf32>) {
// CHECK: %[[elems_left:.*]] = affine.apply #[[$map0]](%[[iv]])
// CHECK: %[[mask:.*]] = vector.create_mask %[[elems_left]] : vector<128xi1>
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[red_iter]], %[[ld]] : vector<128xf32>
// CHECK: %[[new_acc:.*]] = select %[[mask]], %[[add]], %[[red_iter]] : vector<128xi1>, vector<128xf32>
// CHECK: affine.yield %[[new_acc]] : vector<128xf32>
// CHECK: }
// CHECK: %[[final_sum:.*]] = vector.reduction "add", %[[vred:.*]] : vector<128xf32> into f32
// CHECK: affine.store %[[final_sum]], %{{.*}} : memref<256xf32>
// CHECK: }
// -----
// The number of iteration is not known, so a mask has to be applied.
func @vecdim_reduction_masked_unknown_ub(%in: memref<256x512xf32>, %out: memref<256xf32>, %bnd: index) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to %bnd iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %red_iter, %ld : f32
affine.yield %add : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK: #[[$map1:.*]] = affine_map<([[d0:.*]]){{\[}}[[s0:.*]]{{\]}} -> (-[[d0]] + [[s0]])>
// CHECK-LABEL: @vecdim_reduction_masked_unknown_ub
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %[[vzero:.*]] = arith.constant dense<0.000000e+00> : vector<128xf32>
// CHECK: %[[vred:.*]] = affine.for %[[iv:.*]] = 0 to %[[bnd:.*]] step 128 iter_args(%[[red_iter:.*]] = %[[vzero]]) -> (vector<128xf32>) {
// CHECK: %[[elems_left:.*]] = affine.apply #[[$map1]](%[[iv]])[%[[bnd]]]
// CHECK: %[[mask:.*]] = vector.create_mask %[[elems_left]] : vector<128xi1>
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[red_iter]], %[[ld]] : vector<128xf32>
// CHECK: %[[new_acc:.*]] = select %[[mask]], %[[add]], %[[red_iter]] : vector<128xi1>, vector<128xf32>
// CHECK: affine.yield %[[new_acc]] : vector<128xf32>
// CHECK: }
// CHECK: %[[final_sum:.*]] = vector.reduction "add", %[[vred:.*]] : vector<128xf32> into f32
// CHECK: affine.store %[[final_sum]], %{{.*}} : memref<256xf32>
// CHECK: }
// -----
// The lower bound is nonzero, but the number of iterations is divisible by the
// vector size, so masking is not needed.
func @vecdim_reduction_nonzero_lb(%in: memref<256x512xf32>, %out: memref<256xf32>) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 127 to 511 iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %red_iter, %ld : f32
affine.yield %add : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK-LABEL: @vecdim_reduction_nonzero_lb
// CHECK: %{{.*}} = affine.for %{{.*}} = 127 to 511 step 128 iter_args({{.*}}) -> (vector<128xf32>) {
// CHECK-NOT: vector.create_mask
// -----
// The lower bound is unknown, so we need to create a mask.
func @vecdim_reduction_masked_unknown_lb(%in: memref<256x512xf32>, %out: memref<256xf32>, %lb: index) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = %lb to 512 iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %red_iter, %ld : f32
affine.yield %add : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK: #[[$map2:.*]] = affine_map<([[d0:.*]]) -> (-[[d0]] + 512)>
// CHECK-LABEL: @vecdim_reduction_masked_unknown_lb
// CHECK: %{{.*}} = affine.for %[[iv:.*]] = %[[lb:.*]] to 512 step 128 iter_args(%[[red_iter:.*]] = {{.*}}) -> (vector<128xf32>) {
// CHECK: %[[elems_left:.*]] = affine.apply #[[$map2]](%[[iv]])
// CHECK: %[[mask:.*]] = vector.create_mask %[[elems_left]] : vector<128xi1>
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[red_iter]], %[[ld]] : vector<128xf32>
// CHECK: %[[new_acc:.*]] = select %[[mask]], %[[add]], %[[red_iter]] : vector<128xi1>, vector<128xf32>
// CHECK: affine.yield %[[new_acc]] : vector<128xf32>
// -----
// The upper bound is a minimum expression.
func @vecdim_reduction_complex_ub(%in: memref<256x512xf32>, %out: memref<256xf32>, %M: index, %N: index) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_red = affine.for %j = 0 to min affine_map<(d0, d1) -> (d0, d1*2)>(%M, %N) iter_args(%red_iter = %cst) -> (f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%add = arith.addf %red_iter, %ld : f32
affine.yield %add : f32
}
affine.store %final_red, %out[%i] : memref<256xf32>
}
return
}
// CHECK: #[[$map3:.*]] = affine_map<([[d0:.*]], [[d1:.*]]) -> ([[d0]], [[d1]] * 2)>
// CHECK: #[[$map3_sub:.*]] = affine_map<([[d0:.*]], [[d1:.*]]) -> ([[d0]] - [[d1]])>
// CHECK-LABEL: @vecdim_reduction_complex_ub
// CHECK: %{{.*}} = affine.for %[[iv:.*]] = 0 to min #[[$map3]](%[[M:.*]], %[[N:.*]]) step 128 iter_args(%[[red_iter:.*]] = {{.*}}) -> (vector<128xf32>) {
// CHECK: %[[ub:.*]] = affine.min #[[$map3]](%[[M]], %[[N]])
// CHECK: %[[elems_left:.*]] = affine.apply #[[$map3_sub]](%[[ub]], %[[iv]])
// CHECK: %[[mask:.*]] = vector.create_mask %[[elems_left]] : vector<128xi1>
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[red_iter]], %[[ld]] : vector<128xf32>
// CHECK: %[[new_acc:.*]] = select %[[mask]], %[[add]], %[[red_iter]] : vector<128xi1>, vector<128xf32>
// CHECK: affine.yield %[[new_acc]] : vector<128xf32>
// -----
// The same mask is applied to both reductions.
func @vecdim_two_reductions_masked(%in: memref<256x512xf32>, %out: memref<512xf32>) {
%cst = arith.constant 0.000000e+00 : f32
affine.for %i = 0 to 256 {
%final_sum, %final_expsum = affine.for %j = 0 to 500 iter_args(%sum_iter = %cst, %expsum_iter = %cst) -> (f32, f32) {
%ld = affine.load %in[%i, %j] : memref<256x512xf32>
%exp = math.exp %ld : f32
%add = arith.addf %sum_iter, %ld : f32
%eadd = arith.addf %expsum_iter, %exp : f32
affine.yield %add, %eadd : f32, f32
}
affine.store %final_sum, %out[2*%i] : memref<512xf32>
affine.store %final_expsum, %out[2*%i + 1] : memref<512xf32>
}
return
}
// CHECK: #[[$map4:.*]] = affine_map<([[d0:.*]]) -> (-[[d0]] + 500)>
// CHECK-LABEL: @vecdim_two_reductions_masked
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK: %{{.*}} = affine.for %[[iv:.*]] = 0 to 500 step 128 iter_args(%[[sum_iter:.*]] = {{.*}}, %[[esum_iter:.*]] = {{.*}}) -> (vector<128xf32>, vector<128xf32>) {
// CHECK: %[[elems_left:.*]] = affine.apply #[[$map4]](%[[iv]])
// CHECK: %[[mask:.*]] = vector.create_mask %[[elems_left]] : vector<128xi1>
// CHECK: %[[ld:.*]] = vector.transfer_read %{{.*}} : memref<256x512xf32>, vector<128xf32>
// CHECK: %[[exp:.*]] = math.exp %[[ld]] : vector<128xf32>
// CHECK: %[[add:.*]] = arith.addf %[[sum_iter]], %[[ld]] : vector<128xf32>
// CHECK: %[[eadd:.*]] = arith.addf %[[esum_iter]], %[[exp]] : vector<128xf32>
// CHECK: %[[new_acc:.*]] = select %[[mask]], %[[add]], %[[sum_iter]] : vector<128xi1>, vector<128xf32>
// CHECK: %[[new_eacc:.*]] = select %[[mask]], %[[eadd]], %[[esum_iter]] : vector<128xi1>, vector<128xf32>
// CHECK: affine.yield %[[new_acc]], %[[new_eacc]] : vector<128xf32>
// CHECK: }