| /* |
| * Copyright (c) 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <clc/clc.h> |
| |
| #include "math.h" |
| #include "tables.h" |
| #include "../clcmacro.h" |
| |
| _CLC_OVERLOAD _CLC_DEF float sinh(float x) |
| { |
| // After dealing with special cases the computation is split into regions as follows. |
| // abs(x) >= max_sinh_arg: |
| // sinh(x) = sign(x)*Inf |
| // abs(x) >= small_threshold: |
| // sinh(x) = sign(x)*exp(abs(x))/2 computed using the splitexp and scaleDouble functions as for exp_amd(). |
| // abs(x) < small_threshold: |
| // compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0))) |
| // sinh(x) is then sign(x)*z. |
| |
| const float max_sinh_arg = 0x1.65a9fap+6f; |
| const float small_threshold = 0x1.0a2b24p+3f; |
| |
| uint ux = as_uint(x); |
| uint aux = ux & EXSIGNBIT_SP32; |
| uint xs = ux ^ aux; |
| float y = as_float(aux); |
| |
| // We find the integer part y0 of y and the increment dy = y - y0. We then compute |
| // z = sinh(y) = sinh(y0)cosh(dy) + cosh(y0)sinh(dy) |
| // where sinh(y0) and cosh(y0) are tabulated above. |
| int ind = (int) y; |
| ind = (uint)ind > 36U ? 0 : ind; |
| |
| float dy = y - ind; |
| float dy2 = dy * dy; |
| |
| float sdy = mad(dy2, |
| mad(dy2, |
| mad(dy2, |
| mad(dy2, |
| mad(dy2, |
| mad(dy2, 0.7746188980094184251527126e-12f, 0.160576793121939886190847e-9f), |
| 0.250521176994133472333666e-7f), |
| 0.275573191913636406057211e-5f), |
| 0.198412698413242405162014e-3f), |
| 0.833333333333329931873097e-2f), |
| 0.166666666666666667013899e0f); |
| sdy = mad(sdy, dy*dy2, dy); |
| |
| float cdy = mad(dy2, |
| mad(dy2, |
| mad(dy2, |
| mad(dy2, |
| mad(dy2, |
| mad(dy2, 0.1163921388172173692062032e-10f, 0.208744349831471353536305e-8f), |
| 0.275573350756016588011357e-6f), |
| 0.248015872460622433115785e-4f), |
| 0.138888888889814854814536e-2f), |
| 0.416666666666660876512776e-1f), |
| 0.500000000000000005911074e0f); |
| cdy = mad(cdy, dy2, 1.0f); |
| |
| float2 tv = USE_TABLE(sinhcosh_tbl, ind); |
| float z = mad(tv.s1, sdy, tv.s0 * cdy); |
| z = as_float(xs | as_uint(z)); |
| |
| // When y is large enough so that the negative exponential is negligible, |
| // so sinh(y) is approximated by sign(x)*exp(y)/2. |
| float t = exp(y - 0x1.62e500p-1f); |
| float zsmall = mad(0x1.a0210ep-18f, t, t); |
| zsmall = as_float(xs | as_uint(zsmall)); |
| z = y >= small_threshold ? zsmall : z; |
| |
| // Corner cases |
| float zinf = as_float(PINFBITPATT_SP32 | xs); |
| z = y >= max_sinh_arg ? zinf : z; |
| z = aux > PINFBITPATT_SP32 | aux < 0x38800000U ? x : z; |
| |
| return z; |
| } |
| |
| _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, sinh, float); |
| |
| #ifdef cl_khr_fp64 |
| #pragma OPENCL EXTENSION cl_khr_fp64 : enable |
| |
| _CLC_OVERLOAD _CLC_DEF double sinh(double x) |
| { |
| // After dealing with special cases the computation is split into |
| // regions as follows: |
| // |
| // abs(x) >= max_sinh_arg: |
| // sinh(x) = sign(x)*Inf |
| // |
| // abs(x) >= small_threshold: |
| // sinh(x) = sign(x)*exp(abs(x))/2 computed using the |
| // splitexp and scaleDouble functions as for exp_amd(). |
| // |
| // abs(x) < small_threshold: |
| // compute p = exp(y) - 1 and then z = 0.5*(p+(p/(p+1.0))) |
| // sinh(x) is then sign(x)*z. |
| |
| const double max_sinh_arg = 7.10475860073943977113e+02; // 0x408633ce8fb9f87e |
| |
| // This is where exp(-x) is insignificant compared to exp(x) = ln(2^27) |
| const double small_threshold = 0x1.2b708872320e2p+4; |
| |
| double y = fabs(x); |
| |
| // In this range we find the integer part y0 of y |
| // and the increment dy = y - y0. We then compute |
| // z = sinh(y) = sinh(y0)cosh(dy) + cosh(y0)sinh(dy) |
| // where sinh(y0) and cosh(y0) are obtained from tables |
| |
| int ind = min((int)y, 36); |
| double dy = y - ind; |
| double dy2 = dy * dy; |
| |
| double sdy = dy * dy2 * |
| fma(dy2, |
| fma(dy2, |
| fma(dy2, |
| fma(dy2, |
| fma(dy2, |
| fma(dy2, 0.7746188980094184251527126e-12, 0.160576793121939886190847e-9), |
| 0.250521176994133472333666e-7), |
| 0.275573191913636406057211e-5), |
| 0.198412698413242405162014e-3), |
| 0.833333333333329931873097e-2), |
| 0.166666666666666667013899e0); |
| |
| double cdy = dy2 * fma(dy2, |
| fma(dy2, |
| fma(dy2, |
| fma(dy2, |
| fma(dy2, |
| fma(dy2, 0.1163921388172173692062032e-10, 0.208744349831471353536305e-8), |
| 0.275573350756016588011357e-6), |
| 0.248015872460622433115785e-4), |
| 0.138888888889814854814536e-2), |
| 0.416666666666660876512776e-1), |
| 0.500000000000000005911074e0); |
| |
| // At this point sinh(dy) is approximated by dy + sdy. |
| // Shift some significant bits from dy to sdy. |
| double sdy1 = as_double(as_ulong(dy) & 0xfffffffff8000000UL); |
| double sdy2 = sdy + (dy - sdy1); |
| |
| double2 tv = USE_TABLE(cosh_tbl, ind); |
| double cl = tv.s0; |
| double ct = tv.s1; |
| tv = USE_TABLE(sinh_tbl, ind); |
| double sl = tv.s0; |
| double st = tv.s1; |
| |
| double z = fma(cl, sdy1, fma(sl, cdy, fma(cl, sdy2, fma(ct, sdy1, fma(st, cdy, ct*sdy2)) + st))) + sl; |
| |
| // Other cases |
| z = (y < 0x1.0p-28) | isnan(x) | isinf(x) ? y : z; |
| |
| double t = exp(y - 0x1.62e42fefa3800p-1); |
| t = fma(t, -0x1.ef35793c76641p-45, t); |
| z = y >= small_threshold ? t : z; |
| z = y >= max_sinh_arg ? as_double(PINFBITPATT_DP64) : z; |
| |
| return copysign(z, x); |
| } |
| |
| _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, sinh, double) |
| |
| #endif |