| /* |
| * Copyright (c) 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #pragma OPENCL EXTENSION cl_khr_fp64 : enable |
| |
| _CLC_INLINE double2 |
| __libclc__sincos_piby4(double x, double xx) |
| { |
| // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ... |
| // = x * (1 - x^2/3! + x^4/5! - x^6/7! ... |
| // = x * f(w) |
| // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ... |
| // We use a minimax approximation of (f(w) - 1) / w |
| // because this produces an expansion in even powers of x. |
| // If xx (the tail of x) is non-zero, we add a correction |
| // term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx) |
| // is an approximation to cos(x)*sin(xx) valid because |
| // xx is tiny relative to x. |
| |
| // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ... |
| // = f(w) |
| // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ... |
| // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w) |
| // because this produces an expansion in even powers of x. |
| // If xx (the tail of x) is non-zero, we subtract a correction |
| // term g(x,xx) = x*xx to the result, where g(x,xx) |
| // is an approximation to sin(x)*sin(xx) valid because |
| // xx is tiny relative to x. |
| |
| const double sc1 = -0.166666666666666646259241729; |
| const double sc2 = 0.833333333333095043065222816e-2; |
| const double sc3 = -0.19841269836761125688538679e-3; |
| const double sc4 = 0.275573161037288022676895908448e-5; |
| const double sc5 = -0.25051132068021699772257377197e-7; |
| const double sc6 = 0.159181443044859136852668200e-9; |
| |
| const double cc1 = 0.41666666666666665390037e-1; |
| const double cc2 = -0.13888888888887398280412e-2; |
| const double cc3 = 0.248015872987670414957399e-4; |
| const double cc4 = -0.275573172723441909470836e-6; |
| const double cc5 = 0.208761463822329611076335e-8; |
| const double cc6 = -0.113826398067944859590880e-10; |
| |
| double x2 = x * x; |
| double x3 = x2 * x; |
| double r = 0.5 * x2; |
| double t = 1.0 - r; |
| |
| double sp = fma(fma(fma(fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2); |
| |
| double cp = t + fma(fma(fma(fma(fma(fma(cc6, x2, cc5), x2, cc4), x2, cc3), x2, cc2), x2, cc1), |
| x2*x2, fma(x, xx, (1.0 - t) - r)); |
| |
| double2 ret; |
| ret.lo = x - fma(-x3, sc1, fma(fma(-x3, sp, 0.5*xx), x2, -xx)); |
| ret.hi = cp; |
| |
| return ret; |
| } |
| |
| _CLC_INLINE double2 |
| __clc_tan_piby4(double x, double xx) |
| { |
| const double piby4_lead = 7.85398163397448278999e-01; // 0x3fe921fb54442d18 |
| const double piby4_tail = 3.06161699786838240164e-17; // 0x3c81a62633145c06 |
| |
| // In order to maintain relative precision transform using the identity: |
| // tan(pi/4-x) = (1-tan(x))/(1+tan(x)) for arguments close to pi/4. |
| // Similarly use tan(x-pi/4) = (tan(x)-1)/(tan(x)+1) close to -pi/4. |
| |
| int ca = x > 0.68; |
| int cb = x < -0.68; |
| double transform = ca ? 1.0 : 0.0; |
| transform = cb ? -1.0 : transform; |
| |
| double tx = fma(-transform, x, piby4_lead) + fma(-transform, xx, piby4_tail); |
| int c = ca | cb; |
| x = c ? tx : x; |
| xx = c ? 0.0 : xx; |
| |
| // Core Remez [2,3] approximation to tan(x+xx) on the interval [0,0.68]. |
| double t1 = x; |
| double r = fma(2.0, x*xx, x*x); |
| |
| double a = fma(r, |
| fma(r, 0.224044448537022097264602535574e-3, -0.229345080057565662883358588111e-1), |
| 0.372379159759792203640806338901e0); |
| |
| double b = fma(r, |
| fma(r, |
| fma(r, -0.232371494088563558304549252913e-3, 0.260656620398645407524064091208e-1), |
| -0.515658515729031149329237816945e0), |
| 0.111713747927937668539901657944e1); |
| |
| double t2 = fma(MATH_DIVIDE(a, b), x*r, xx); |
| |
| double tp = t1 + t2; |
| |
| // Compute -1.0/(t1 + t2) accurately |
| double z1 = as_double(as_long(tp) & 0xffffffff00000000L); |
| double z2 = t2 - (z1 - t1); |
| double trec = -MATH_RECIP(tp); |
| double trec_top = as_double(as_long(trec) & 0xffffffff00000000L); |
| |
| double tpr = fma(fma(trec_top, z2, fma(trec_top, z1, 1.0)), trec, trec_top); |
| |
| double tpt = transform * (1.0 - MATH_DIVIDE(2.0*tp, 1.0 + tp)); |
| double tptr = transform * (MATH_DIVIDE(2.0*tp, tp - 1.0) - 1.0); |
| |
| double2 ret; |
| ret.lo = c ? tpt : tp; |
| ret.hi = c ? tptr : tpr; |
| return ret; |
| } |