| /* |
| * Copyright (c) 2014,2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "math.h" |
| |
| /* |
| Algorithm: |
| |
| Based on: |
| Ping-Tak Peter Tang |
| "Table-driven implementation of the logarithm function in IEEE |
| floating-point arithmetic" |
| ACM Transactions on Mathematical Software (TOMS) |
| Volume 16, Issue 4 (December 1990) |
| |
| |
| x very close to 1.0 is handled differently, for x everywhere else |
| a brief explanation is given below |
| |
| x = (2^m)*A |
| x = (2^m)*(G+g) with (1 <= G < 2) and (g <= 2^(-8)) |
| x = (2^m)*2*(G/2+g/2) |
| x = (2^m)*2*(F+f) with (0.5 <= F < 1) and (f <= 2^(-9)) |
| |
| Y = (2^(-1))*(2^(-m))*(2^m)*A |
| Now, range of Y is: 0.5 <= Y < 1 |
| |
| F = 0x80 + (first 7 mantissa bits) + (8th mantissa bit) |
| Now, range of F is: 128 <= F <= 256 |
| F = F / 256 |
| Now, range of F is: 0.5 <= F <= 1 |
| |
| f = -(Y-F), with (f <= 2^(-9)) |
| |
| log(x) = m*log(2) + log(2) + log(F-f) |
| log(x) = m*log(2) + log(2) + log(F) + log(1-(f/F)) |
| log(x) = m*log(2) + log(2*F) + log(1-r) |
| |
| r = (f/F), with (r <= 2^(-8)) |
| r = f*(1/F) with (1/F) precomputed to avoid division |
| |
| log(x) = m*log(2) + log(G) - poly |
| |
| log(G) is precomputed |
| poly = (r + (r^2)/2 + (r^3)/3 + (r^4)/4) + (r^5)/5)) |
| |
| log(2) and log(G) need to be maintained in extra precision |
| to avoid losing precision in the calculations |
| |
| |
| For x close to 1.0, we employ the following technique to |
| ensure faster convergence. |
| |
| log(x) = log((1+s)/(1-s)) = 2*s + (2/3)*s^3 + (2/5)*s^5 + (2/7)*s^7 |
| x = ((1+s)/(1-s)) |
| x = 1 + r |
| s = r/(2+r) |
| |
| */ |
| |
| _CLC_OVERLOAD _CLC_DEF float |
| #if defined(COMPILING_LOG2) |
| log2(float x) |
| #elif defined(COMPILING_LOG10) |
| log10(float x) |
| #else |
| log(float x) |
| #endif |
| { |
| |
| #if defined(COMPILING_LOG2) |
| const float LOG2E = 0x1.715476p+0f; // 1.4426950408889634 |
| const float LOG2E_HEAD = 0x1.700000p+0f; // 1.4375 |
| const float LOG2E_TAIL = 0x1.547652p-8f; // 0.00519504072 |
| #elif defined(COMPILING_LOG10) |
| const float LOG10E = 0x1.bcb7b2p-2f; // 0.43429448190325182 |
| const float LOG10E_HEAD = 0x1.bc0000p-2f; // 0.43359375 |
| const float LOG10E_TAIL = 0x1.6f62a4p-11f; // 0.0007007319 |
| const float LOG10_2_HEAD = 0x1.340000p-2f; // 0.30078125 |
| const float LOG10_2_TAIL = 0x1.04d426p-12f; // 0.000248745637 |
| #else |
| const float LOG2_HEAD = 0x1.62e000p-1f; // 0.693115234 |
| const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833 |
| #endif |
| |
| uint xi = as_uint(x); |
| uint ax = xi & EXSIGNBIT_SP32; |
| |
| // Calculations for |x-1| < 2^-4 |
| float r = x - 1.0f; |
| int near1 = fabs(r) < 0x1.0p-4f; |
| float u2 = MATH_DIVIDE(r, 2.0f + r); |
| float corr = u2 * r; |
| float u = u2 + u2; |
| float v = u * u; |
| float znear1, z1, z2; |
| |
| // 2/(5 * 2^5), 2/(3 * 2^3) |
| z2 = mad(u, mad(v, 0x1.99999ap-7f, 0x1.555556p-4f)*v, -corr); |
| |
| #if defined(COMPILING_LOG2) |
| z1 = as_float(as_int(r) & 0xffff0000); |
| z2 = z2 + (r - z1); |
| znear1 = mad(z1, LOG2E_HEAD, mad(z2, LOG2E_HEAD, mad(z1, LOG2E_TAIL, z2*LOG2E_TAIL))); |
| #elif defined(COMPILING_LOG10) |
| z1 = as_float(as_int(r) & 0xffff0000); |
| z2 = z2 + (r - z1); |
| znear1 = mad(z1, LOG10E_HEAD, mad(z2, LOG10E_HEAD, mad(z1, LOG10E_TAIL, z2*LOG10E_TAIL))); |
| #else |
| znear1 = z2 + r; |
| #endif |
| |
| // Calculations for x not near 1 |
| int m = (int)(xi >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; |
| |
| // Normalize subnormal |
| uint xis = as_uint(as_float(xi | 0x3f800000) - 1.0f); |
| int ms = (int)(xis >> EXPSHIFTBITS_SP32) - 253; |
| int c = m == -127; |
| m = c ? ms : m; |
| uint xin = c ? xis : xi; |
| |
| float mf = (float)m; |
| uint indx = (xin & 0x007f0000) + ((xin & 0x00008000) << 1); |
| |
| // F - Y |
| float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (xin & MANTBITS_SP32)); |
| |
| indx = indx >> 16; |
| r = f * USE_TABLE(log_inv_tbl, indx); |
| |
| // 1/3, 1/2 |
| float poly = mad(mad(r, 0x1.555556p-2f, 0.5f), r*r, r); |
| |
| #if defined(COMPILING_LOG2) |
| float2 tv = USE_TABLE(log2_tbl, indx); |
| z1 = tv.s0 + mf; |
| z2 = mad(poly, -LOG2E, tv.s1); |
| #elif defined(COMPILING_LOG10) |
| float2 tv = USE_TABLE(log10_tbl, indx); |
| z1 = mad(mf, LOG10_2_HEAD, tv.s0); |
| z2 = mad(poly, -LOG10E, mf*LOG10_2_TAIL) + tv.s1; |
| #else |
| float2 tv = USE_TABLE(log_tbl, indx); |
| z1 = mad(mf, LOG2_HEAD, tv.s0); |
| z2 = mad(mf, LOG2_TAIL, -poly) + tv.s1; |
| #endif |
| |
| float z = z1 + z2; |
| z = near1 ? znear1 : z; |
| |
| // Corner cases |
| z = ax >= PINFBITPATT_SP32 ? x : z; |
| z = xi != ax ? as_float(QNANBITPATT_SP32) : z; |
| z = ax == 0 ? as_float(NINFBITPATT_SP32) : z; |
| |
| return z; |
| } |
| |
| #ifdef cl_khr_fp64 |
| |
| _CLC_OVERLOAD _CLC_DEF double |
| #if defined(COMPILING_LOG2) |
| log2(double x) |
| #elif defined(COMPILING_LOG10) |
| log10(double x) |
| #else |
| log(double x) |
| #endif |
| { |
| |
| #ifndef COMPILING_LOG2 |
| // log2_lead and log2_tail sum to an extra-precise version of ln(2) |
| const double log2_lead = 6.93147122859954833984e-01; /* 0x3fe62e42e0000000 */ |
| const double log2_tail = 5.76999904754328540596e-08; /* 0x3e6efa39ef35793c */ |
| #endif |
| |
| #if defined(COMPILING_LOG10) |
| // log10e_lead and log10e_tail sum to an extra-precision version of log10(e) (19 bits in lead) |
| const double log10e_lead = 4.34293746948242187500e-01; /* 0x3fdbcb7800000000 */ |
| const double log10e_tail = 7.3495500964015109100644e-7; /* 0x3ea8a93728719535 */ |
| #elif defined(COMPILING_LOG2) |
| // log2e_lead and log2e_tail sum to an extra-precision version of log2(e) (19 bits in lead) |
| const double log2e_lead = 1.44269180297851562500E+00; /* 0x3FF7154400000000 */ |
| const double log2e_tail = 3.23791044778235969970E-06; /* 0x3ECB295C17F0BBBE */ |
| #endif |
| |
| // log_thresh1 = 9.39412117004394531250e-1 = 0x3fee0faa00000000 |
| // log_thresh2 = 1.06449508666992187500 = 0x3ff1082c00000000 |
| const double log_thresh1 = 0x1.e0faap-1; |
| const double log_thresh2 = 0x1.1082cp+0; |
| |
| int is_near = x >= log_thresh1 & x <= log_thresh2; |
| |
| // Near 1 code |
| double r = x - 1.0; |
| double u = r / (2.0 + r); |
| double correction = r * u; |
| u = u + u; |
| double v = u * u; |
| double r1 = r; |
| |
| const double ca_1 = 8.33333333333317923934e-02; /* 0x3fb55555555554e6 */ |
| const double ca_2 = 1.25000000037717509602e-02; /* 0x3f89999999bac6d4 */ |
| const double ca_3 = 2.23213998791944806202e-03; /* 0x3f62492307f1519f */ |
| const double ca_4 = 4.34887777707614552256e-04; /* 0x3f3c8034c85dfff0 */ |
| |
| double r2 = fma(u*v, fma(v, fma(v, fma(v, ca_4, ca_3), ca_2), ca_1), -correction); |
| |
| #if defined(COMPILING_LOG10) |
| r = r1; |
| r1 = as_double(as_ulong(r1) & 0xffffffff00000000); |
| r2 = r2 + (r - r1); |
| double ret_near = fma(log10e_lead, r1, fma(log10e_lead, r2, fma(log10e_tail, r1, log10e_tail * r2))); |
| #elif defined(COMPILING_LOG2) |
| r = r1; |
| r1 = as_double(as_ulong(r1) & 0xffffffff00000000); |
| r2 = r2 + (r - r1); |
| double ret_near = fma(log2e_lead, r1, fma(log2e_lead, r2, fma(log2e_tail, r1, log2e_tail*r2))); |
| #else |
| double ret_near = r1 + r2; |
| #endif |
| |
| // This is the far from 1 code |
| |
| // Deal with subnormal |
| ulong ux = as_ulong(x); |
| ulong uxs = as_ulong(as_double(0x03d0000000000000UL | ux) - 0x1.0p-962); |
| int c = ux < IMPBIT_DP64; |
| ux = c ? uxs : ux; |
| int expadjust = c ? 60 : 0; |
| |
| int xexp = ((as_int2(ux).hi >> 20) & 0x7ff) - EXPBIAS_DP64 - expadjust; |
| double f = as_double(HALFEXPBITS_DP64 | (ux & MANTBITS_DP64)); |
| int index = as_int2(ux).hi >> 13; |
| index = ((0x80 | (index & 0x7e)) >> 1) + (index & 0x1); |
| |
| double2 tv = USE_TABLE(ln_tbl, index - 64); |
| double z1 = tv.s0; |
| double q = tv.s1; |
| |
| double f1 = index * 0x1.0p-7; |
| double f2 = f - f1; |
| u = f2 / fma(f2, 0.5, f1); |
| v = u * u; |
| |
| const double cb_1 = 8.33333333333333593622e-02; /* 0x3fb5555555555557 */ |
| const double cb_2 = 1.24999999978138668903e-02; /* 0x3f89999999865ede */ |
| const double cb_3 = 2.23219810758559851206e-03; /* 0x3f6249423bd94741 */ |
| |
| double poly = v * fma(v, fma(v, cb_3, cb_2), cb_1); |
| double z2 = q + fma(u, poly, u); |
| |
| double dxexp = (double)xexp; |
| #if defined (COMPILING_LOG10) |
| // Add xexp * log(2) to z1,z2 to get log(x) |
| r1 = fma(dxexp, log2_lead, z1); |
| r2 = fma(dxexp, log2_tail, z2); |
| double ret_far = fma(log10e_lead, r1, fma(log10e_lead, r2, fma(log10e_tail, r1, log10e_tail*r2))); |
| #elif defined(COMPILING_LOG2) |
| r1 = fma(log2e_lead, z1, dxexp); |
| r2 = fma(log2e_lead, z2, fma(log2e_tail, z1, log2e_tail*z2)); |
| double ret_far = r1 + r2; |
| #else |
| r1 = fma(dxexp, log2_lead, z1); |
| r2 = fma(dxexp, log2_tail, z2); |
| double ret_far = r1 + r2; |
| #endif |
| |
| double ret = is_near ? ret_near : ret_far; |
| |
| ret = isinf(x) ? as_double(PINFBITPATT_DP64) : ret; |
| ret = isnan(x) | (x < 0.0) ? as_double(QNANBITPATT_DP64) : ret; |
| ret = x == 0.0 ? as_double(NINFBITPATT_DP64) : ret; |
| return ret; |
| } |
| |
| #endif // cl_khr_fp64 |