| /* |
| * Copyright (c) 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <clc/clc.h> |
| |
| #include <math/clc_remainder.h> |
| #include "../clcmacro.h" |
| #include "config.h" |
| #include "math.h" |
| |
| _CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y) |
| { |
| int ux = as_int(x); |
| int ax = ux & EXSIGNBIT_SP32; |
| float xa = as_float(ax); |
| int sx = ux ^ ax; |
| int ex = ax >> EXPSHIFTBITS_SP32; |
| |
| int uy = as_int(y); |
| int ay = uy & EXSIGNBIT_SP32; |
| float ya = as_float(ay); |
| int ey = ay >> EXPSHIFTBITS_SP32; |
| |
| float xr = as_float(0x3f800000 | (ax & 0x007fffff)); |
| float yr = as_float(0x3f800000 | (ay & 0x007fffff)); |
| int c; |
| int k = ex - ey; |
| |
| while (k > 0) { |
| c = xr >= yr; |
| xr -= c ? yr : 0.0f; |
| xr += xr; |
| --k; |
| } |
| |
| c = xr >= yr; |
| xr -= c ? yr : 0.0f; |
| |
| int lt = ex < ey; |
| |
| xr = lt ? xa : xr; |
| yr = lt ? ya : yr; |
| |
| |
| float s = as_float(ey << EXPSHIFTBITS_SP32); |
| xr *= lt ? 1.0f : s; |
| |
| c = ax == ay; |
| xr = c ? 0.0f : xr; |
| |
| xr = as_float(sx ^ as_int(xr)); |
| |
| c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0; |
| xr = c ? as_float(QNANBITPATT_SP32) : xr; |
| |
| return xr; |
| |
| } |
| _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_fmod, float, float); |
| |
| #ifdef cl_khr_fp64 |
| _CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y) |
| { |
| ulong ux = as_ulong(x); |
| ulong ax = ux & ~SIGNBIT_DP64; |
| ulong xsgn = ux ^ ax; |
| double dx = as_double(ax); |
| int xexp = convert_int(ax >> EXPSHIFTBITS_DP64); |
| int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64); |
| xexp1 = xexp < 1 ? xexp1 : xexp; |
| |
| ulong uy = as_ulong(y); |
| ulong ay = uy & ~SIGNBIT_DP64; |
| double dy = as_double(ay); |
| int yexp = convert_int(ay >> EXPSHIFTBITS_DP64); |
| int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64); |
| yexp1 = yexp < 1 ? yexp1 : yexp; |
| |
| // First assume |x| > |y| |
| |
| // Set ntimes to the number of times we need to do a |
| // partial remainder. If the exponent of x is an exact multiple |
| // of 53 larger than the exponent of y, and the mantissa of x is |
| // less than the mantissa of y, ntimes will be one too large |
| // but it doesn't matter - it just means that we'll go round |
| // the loop below one extra time. |
| int ntimes = max(0, (xexp1 - yexp1) / 53); |
| double w = ldexp(dy, ntimes * 53); |
| w = ntimes == 0 ? dy : w; |
| double scale = ntimes == 0 ? 1.0 : 0x1.0p-53; |
| |
| // Each time round the loop we compute a partial remainder. |
| // This is done by subtracting a large multiple of w |
| // from x each time, where w is a scaled up version of y. |
| // The subtraction must be performed exactly in quad |
| // precision, though the result at each stage can |
| // fit exactly in a double precision number. |
| int i; |
| double t, v, p, pp; |
| |
| for (i = 0; i < ntimes; i++) { |
| // Compute integral multiplier |
| t = trunc(dx / w); |
| |
| // Compute w * t in quad precision |
| p = w * t; |
| pp = fma(w, t, -p); |
| |
| // Subtract w * t from dx |
| v = dx - p; |
| dx = v + (((dx - v) - p) - pp); |
| |
| // If t was one too large, dx will be negative. Add back one w. |
| dx += dx < 0.0 ? w : 0.0; |
| |
| // Scale w down by 2^(-53) for the next iteration |
| w *= scale; |
| } |
| |
| // One more time |
| // Variable todd says whether the integer t is odd or not |
| t = floor(dx / w); |
| long lt = (long)t; |
| int todd = lt & 1; |
| |
| p = w * t; |
| pp = fma(w, t, -p); |
| v = dx - p; |
| dx = v + (((dx - v) - p) - pp); |
| i = dx < 0.0; |
| todd ^= i; |
| dx += i ? w : 0.0; |
| |
| // At this point, dx lies in the range [0,dy) |
| double ret = as_double(xsgn ^ as_ulong(dx)); |
| dx = as_double(ax); |
| |
| // Now handle |x| == |y| |
| int c = dx == dy; |
| t = as_double(xsgn); |
| ret = c ? t : ret; |
| |
| // Next, handle |x| < |y| |
| c = dx < dy; |
| ret = c ? x : ret; |
| |
| // We don't need anything special for |x| == 0 |
| |
| // |y| is 0 |
| c = dy == 0.0; |
| ret = c ? as_double(QNANBITPATT_DP64) : ret; |
| |
| // y is +-Inf, NaN |
| c = yexp > BIASEDEMAX_DP64; |
| t = y == y ? x : y; |
| ret = c ? t : ret; |
| |
| // x is +=Inf, NaN |
| c = xexp > BIASEDEMAX_DP64; |
| ret = c ? as_double(QNANBITPATT_DP64) : ret; |
| |
| return ret; |
| } |
| _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double, double); |
| #endif |