| /* |
| * Copyright (c) 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include <clc/clc.h> |
| |
| #include "config.h" |
| #include "math.h" |
| #include "tables.h" |
| #include "../clcmacro.h" |
| |
| // Algorithm: |
| // |
| // e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64) |
| // |
| // x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer |
| // n = 64*m + j, 0 <= j < 64 |
| // |
| // e^x = 2^((64*m + j + f)/64) |
| // = (2^m) * (2^(j/64)) * 2^(f/64) |
| // = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64)) |
| // |
| // f = x*(64/ln(2)) - n |
| // r = f*(ln(2)/64) = x - n*(ln(2)/64) |
| // |
| // e^x = (2^m) * (2^(j/64)) * e^r |
| // |
| // (2^(j/64)) is precomputed |
| // |
| // e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5! |
| // e^r = 1 + q |
| // |
| // q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5! |
| // |
| // e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) ) |
| |
| _CLC_DEF _CLC_OVERLOAD float __clc_exp10(float x) |
| { |
| const float X_MAX = 0x1.344134p+5f; // 128*log2/log10 : 38.53183944498959 |
| const float X_MIN = -0x1.66d3e8p+5f; // -149*log2/log10 : -44.8534693539332 |
| |
| const float R_64_BY_LOG10_2 = 0x1.a934f0p+7f; // 64*log10/log2 : 212.6033980727912 |
| const float R_LOG10_2_BY_64_LD = 0x1.340000p-8f; // log2/(64 * log10) lead : 0.004699707 |
| const float R_LOG10_2_BY_64_TL = 0x1.04d426p-18f; // log2/(64 * log10) tail : 0.00000388665057 |
| const float R_LN10 = 0x1.26bb1cp+1f; |
| |
| int return_nan = isnan(x); |
| int return_inf = x > X_MAX; |
| int return_zero = x < X_MIN; |
| |
| int n = convert_int(x * R_64_BY_LOG10_2); |
| |
| float fn = (float)n; |
| int j = n & 0x3f; |
| int m = n >> 6; |
| int m2 = m << EXPSHIFTBITS_SP32; |
| float r; |
| |
| r = R_LN10 * mad(fn, -R_LOG10_2_BY_64_TL, mad(fn, -R_LOG10_2_BY_64_LD, x)); |
| |
| // Truncated Taylor series for e^r |
| float z2 = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r); |
| |
| float two_to_jby64 = USE_TABLE(exp_tbl, j); |
| z2 = mad(two_to_jby64, z2, two_to_jby64); |
| |
| float z2s = z2 * as_float(0x1 << (m + 149)); |
| float z2n = as_float(as_int(z2) + m2); |
| z2 = m <= -126 ? z2s : z2n; |
| |
| |
| z2 = return_inf ? as_float(PINFBITPATT_SP32) : z2; |
| z2 = return_zero ? 0.0f : z2; |
| z2 = return_nan ? x : z2; |
| return z2; |
| } |
| _CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_exp10, float) |
| |
| #ifdef cl_khr_fp64 |
| _CLC_DEF _CLC_OVERLOAD double __clc_exp10(double x) |
| { |
| const double X_MAX = 0x1.34413509f79ffp+8; // 1024*ln(2)/ln(10) |
| const double X_MIN = -0x1.434e6420f4374p+8; // -1074*ln(2)/ln(10) |
| |
| const double R_64_BY_LOG10_2 = 0x1.a934f0979a371p+7; // 64*ln(10)/ln(2) |
| const double R_LOG10_2_BY_64_LD = 0x1.3441350000000p-8; // head ln(2)/(64*ln(10)) |
| const double R_LOG10_2_BY_64_TL = 0x1.3ef3fde623e25p-37; // tail ln(2)/(64*ln(10)) |
| const double R_LN10 = 0x1.26bb1bbb55516p+1; // ln(10) |
| |
| int n = convert_int(x * R_64_BY_LOG10_2); |
| |
| double dn = (double)n; |
| |
| int j = n & 0x3f; |
| int m = n >> 6; |
| |
| double r = R_LN10 * fma(-R_LOG10_2_BY_64_TL, dn, fma(-R_LOG10_2_BY_64_LD, dn, x)); |
| |
| // 6 term tail of Taylor expansion of e^r |
| double z2 = r * fma(r, |
| fma(r, |
| fma(r, |
| fma(r, |
| fma(r, 0x1.6c16c16c16c17p-10, 0x1.1111111111111p-7), |
| 0x1.5555555555555p-5), |
| 0x1.5555555555555p-3), |
| 0x1.0000000000000p-1), |
| 1.0); |
| |
| double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j); |
| z2 = fma(tv.s0 + tv.s1, z2, tv.s1) + tv.s0; |
| |
| int small_value = (m < -1022) || ((m == -1022) && (z2 < 1.0)); |
| |
| int n1 = m >> 2; |
| int n2 = m-n1; |
| double z3= z2 * as_double(((long)n1 + 1023) << 52); |
| z3 *= as_double(((long)n2 + 1023) << 52); |
| |
| z2 = ldexp(z2, m); |
| z2 = small_value ? z3: z2; |
| |
| z2 = isnan(x) ? x : z2; |
| |
| z2 = x > X_MAX ? as_double(PINFBITPATT_DP64) : z2; |
| z2 = x < X_MIN ? 0.0 : z2; |
| |
| return z2; |
| } |
| _CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_exp10, double) |
| #endif |