|  | //===- InputSection.cpp ---------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InputSection.h" | 
|  | #include "Config.h" | 
|  | #include "InputFiles.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Relocations.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Symbols.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Target.h" | 
|  | #include "lld/Common/DWARF.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Compression.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/xxhash.h" | 
|  | #include <algorithm> | 
|  | #include <optional> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support; | 
|  | using namespace llvm::support::endian; | 
|  | using namespace llvm::sys; | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | // Returns a string to construct an error message. | 
|  | std::string elf::toStr(Ctx &ctx, const InputSectionBase *sec) { | 
|  | return (toStr(ctx, sec->file) + ":(" + sec->name + ")").str(); | 
|  | } | 
|  |  | 
|  | const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, | 
|  | const InputSectionBase *sec) { | 
|  | return s << toStr(s.ctx, sec); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, | 
|  | const typename ELFT::Shdr &hdr) { | 
|  | if (hdr.sh_type == SHT_NOBITS) | 
|  | return ArrayRef<uint8_t>(nullptr, hdr.sh_size); | 
|  | return check(file.getObj().getSectionContents(hdr)); | 
|  | } | 
|  |  | 
|  | InputSectionBase::InputSectionBase(InputFile *file, StringRef name, | 
|  | uint32_t type, uint64_t flags, uint32_t link, | 
|  | uint32_t info, uint32_t addralign, | 
|  | uint32_t entsize, ArrayRef<uint8_t> data, | 
|  | Kind sectionKind) | 
|  | : SectionBase(sectionKind, file, name, type, flags, link, info, addralign, | 
|  | entsize), | 
|  | bss(0), decodedCrel(0), keepUnique(0), nopFiller(0), | 
|  | content_(data.data()), size(data.size()) { | 
|  | // In order to reduce memory allocation, we assume that mergeable | 
|  | // sections are smaller than 4 GiB, which is not an unreasonable | 
|  | // assumption as of 2017. | 
|  | if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) | 
|  | ErrAlways(getCtx()) << this << ": section too large"; | 
|  |  | 
|  | // The ELF spec states that a value of 0 means the section has | 
|  | // no alignment constraints. | 
|  | uint32_t v = std::max<uint32_t>(addralign, 1); | 
|  | if (!isPowerOf2_64(v)) { | 
|  | Err(getCtx()) << this << ": sh_addralign is not a power of 2"; | 
|  | v = 1; | 
|  | } | 
|  | this->addralign = v; | 
|  |  | 
|  | // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no | 
|  | // longer supported. | 
|  | if (flags & SHF_COMPRESSED) { | 
|  | Ctx &ctx = file->ctx; | 
|  | invokeELFT(parseCompressedHeader, ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the | 
|  | // output section. However, for relocatable linking without | 
|  | // --force-group-allocation, the SHF_GROUP flag and section groups are retained. | 
|  | static uint64_t getFlags(Ctx &ctx, uint64_t flags) { | 
|  | flags &= ~(uint64_t)SHF_INFO_LINK; | 
|  | if (ctx.arg.resolveGroups) | 
|  | flags &= ~(uint64_t)SHF_GROUP; | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, | 
|  | const typename ELFT::Shdr &hdr, | 
|  | StringRef name, Kind sectionKind) | 
|  | : InputSectionBase(&file, name, hdr.sh_type, | 
|  | getFlags(file.ctx, hdr.sh_flags), hdr.sh_link, | 
|  | hdr.sh_info, hdr.sh_addralign, hdr.sh_entsize, | 
|  | getSectionContents(file, hdr), sectionKind) { | 
|  | // We reject object files having insanely large alignments even though | 
|  | // they are allowed by the spec. I think 4GB is a reasonable limitation. | 
|  | // We might want to relax this in the future. | 
|  | if (hdr.sh_addralign > UINT32_MAX) { | 
|  | Err(getCtx()) << &file << ": section sh_addralign is too large"; | 
|  | addralign = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t InputSectionBase::getSize() const { | 
|  | if (auto *s = dyn_cast<SyntheticSection>(this)) | 
|  | return s->getSize(); | 
|  | return size - bytesDropped; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void decompressAux(Ctx &ctx, const InputSectionBase &sec, uint8_t *out, | 
|  | size_t size) { | 
|  | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_); | 
|  | auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize) | 
|  | .slice(sizeof(typename ELFT::Chdr)); | 
|  | if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB | 
|  | ? compression::zlib::decompress(compressed, out, size) | 
|  | : compression::zstd::decompress(compressed, out, size)) | 
|  | Err(ctx) << &sec << ": decompress failed: " << std::move(e); | 
|  | } | 
|  |  | 
|  | void InputSectionBase::decompress() const { | 
|  | Ctx &ctx = getCtx(); | 
|  | uint8_t *buf = makeThreadLocalN<uint8_t>(size); | 
|  | invokeELFT(decompressAux, ctx, *this, buf, size); | 
|  | content_ = buf; | 
|  | compressed = false; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const { | 
|  | if (relSecIdx == 0) | 
|  | return {}; | 
|  | RelsOrRelas<ELFT> ret; | 
|  | auto *f = cast<ObjFile<ELFT>>(file); | 
|  | typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx]; | 
|  | if (shdr.sh_type == SHT_CREL) { | 
|  | // Return an iterator if supported by caller. | 
|  | if (supportsCrel) { | 
|  | ret.crels = Relocs<typename ELFT::Crel>( | 
|  | (const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset); | 
|  | return ret; | 
|  | } | 
|  | InputSectionBase *const &relSec = f->getSections()[relSecIdx]; | 
|  | // Otherwise, allocate a buffer to hold the decoded RELA relocations. When | 
|  | // called for the first time, relSec is null (without --emit-relocs) or an | 
|  | // InputSection with false decodedCrel. | 
|  | if (!relSec || !cast<InputSection>(relSec)->decodedCrel) { | 
|  | auto *sec = makeThreadLocal<InputSection>(*f, shdr, name); | 
|  | f->cacheDecodedCrel(relSecIdx, sec); | 
|  | sec->type = SHT_RELA; | 
|  | sec->decodedCrel = true; | 
|  |  | 
|  | RelocsCrel<ELFT::Is64Bits> entries(sec->content_); | 
|  | sec->size = entries.size() * sizeof(typename ELFT::Rela); | 
|  | auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size()); | 
|  | sec->content_ = reinterpret_cast<uint8_t *>(relas); | 
|  | for (auto [i, r] : llvm::enumerate(entries)) { | 
|  | relas[i].r_offset = r.r_offset; | 
|  | relas[i].setSymbolAndType(r.r_symidx, r.r_type, false); | 
|  | relas[i].r_addend = r.r_addend; | 
|  | } | 
|  | } | 
|  | ret.relas = {ArrayRef( | 
|  | reinterpret_cast<const typename ELFT::Rela *>(relSec->content_), | 
|  | relSec->size / sizeof(typename ELFT::Rela))}; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | const void *content = f->mb.getBufferStart() + shdr.sh_offset; | 
|  | size_t size = shdr.sh_size; | 
|  | if (shdr.sh_type == SHT_REL) { | 
|  | ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content), | 
|  | size / sizeof(typename ELFT::Rel))}; | 
|  | } else { | 
|  | assert(shdr.sh_type == SHT_RELA); | 
|  | ret.relas = { | 
|  | ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content), | 
|  | size / sizeof(typename ELFT::Rela))}; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | Ctx &SectionBase::getCtx() const { return file->ctx; } | 
|  |  | 
|  | uint64_t SectionBase::getOffset(uint64_t offset) const { | 
|  | switch (kind()) { | 
|  | case Output: { | 
|  | auto *os = cast<OutputSection>(this); | 
|  | // For output sections we treat offset -1 as the end of the section. | 
|  | return offset == uint64_t(-1) ? os->size : offset; | 
|  | } | 
|  | case Class: | 
|  | llvm_unreachable("section classes do not have offsets"); | 
|  | case Regular: | 
|  | case Synthetic: | 
|  | case Spill: | 
|  | return cast<InputSection>(this)->outSecOff + offset; | 
|  | case EHFrame: { | 
|  | // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC | 
|  | // crtbeginT.o may reference the start of an empty .eh_frame to identify the | 
|  | // start of the output .eh_frame. Just return offset. | 
|  | // | 
|  | // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be | 
|  | // discarded due to GC/ICF. We should compute the output section offset. | 
|  | const EhInputSection *es = cast<EhInputSection>(this); | 
|  | if (!es->content().empty()) | 
|  | if (InputSection *isec = es->getParent()) | 
|  | return isec->outSecOff + es->getParentOffset(offset); | 
|  | return offset; | 
|  | } | 
|  | case Merge: | 
|  | const MergeInputSection *ms = cast<MergeInputSection>(this); | 
|  | if (InputSection *isec = ms->getParent()) | 
|  | return isec->outSecOff + ms->getParentOffset(offset); | 
|  | return ms->getParentOffset(offset); | 
|  | } | 
|  | llvm_unreachable("invalid section kind"); | 
|  | } | 
|  |  | 
|  | uint64_t SectionBase::getVA(uint64_t offset) const { | 
|  | const OutputSection *out = getOutputSection(); | 
|  | return (out ? out->addr : 0) + getOffset(offset); | 
|  | } | 
|  |  | 
|  | OutputSection *SectionBase::getOutputSection() { | 
|  | InputSection *sec; | 
|  | if (auto *isec = dyn_cast<InputSection>(this)) | 
|  | sec = isec; | 
|  | else if (auto *ms = dyn_cast<MergeInputSection>(this)) | 
|  | sec = ms->getParent(); | 
|  | else if (auto *eh = dyn_cast<EhInputSection>(this)) | 
|  | sec = eh->getParent(); | 
|  | else | 
|  | return cast<OutputSection>(this); | 
|  | return sec ? sec->getParent() : nullptr; | 
|  | } | 
|  |  | 
|  | // When a section is compressed, `rawData` consists with a header followed | 
|  | // by zlib-compressed data. This function parses a header to initialize | 
|  | // `uncompressedSize` member and remove the header from `rawData`. | 
|  | template <typename ELFT> | 
|  | void InputSectionBase::parseCompressedHeader(Ctx &ctx) { | 
|  | flags &= ~(uint64_t)SHF_COMPRESSED; | 
|  |  | 
|  | // New-style header | 
|  | if (content().size() < sizeof(typename ELFT::Chdr)) { | 
|  | ErrAlways(ctx) << this << ": corrupted compressed section"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data()); | 
|  | if (hdr->ch_type == ELFCOMPRESS_ZLIB) { | 
|  | if (!compression::zlib::isAvailable()) | 
|  | ErrAlways(ctx) << this | 
|  | << " is compressed with ELFCOMPRESS_ZLIB, but lld is " | 
|  | "not built with zlib support"; | 
|  | } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { | 
|  | if (!compression::zstd::isAvailable()) | 
|  | ErrAlways(ctx) << this | 
|  | << " is compressed with ELFCOMPRESS_ZSTD, but lld is " | 
|  | "not built with zstd support"; | 
|  | } else { | 
|  | ErrAlways(ctx) << this << ": unsupported compression type (" | 
|  | << uint32_t(hdr->ch_type) << ")"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | compressed = true; | 
|  | compressedSize = size; | 
|  | size = hdr->ch_size; | 
|  | addralign = std::max<uint32_t>(hdr->ch_addralign, 1); | 
|  | } | 
|  |  | 
|  | InputSection *InputSectionBase::getLinkOrderDep() const { | 
|  | assert(flags & SHF_LINK_ORDER); | 
|  | if (!link) | 
|  | return nullptr; | 
|  | return cast<InputSection>(file->getSections()[link]); | 
|  | } | 
|  |  | 
|  | // Find a symbol that encloses a given location. | 
|  | Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset, | 
|  | uint8_t type) const { | 
|  | if (file->isInternal()) | 
|  | return nullptr; | 
|  | for (Symbol *b : file->getSymbols()) | 
|  | if (Defined *d = dyn_cast<Defined>(b)) | 
|  | if (d->section == this && d->value <= offset && | 
|  | offset < d->value + d->size && (type == 0 || type == d->type)) | 
|  | return d; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Returns an object file location string. Used to construct an error message. | 
|  | std::string InputSectionBase::getLocation(uint64_t offset) const { | 
|  | std::string secAndOffset = | 
|  | (name + "+0x" + Twine::utohexstr(offset) + ")").str(); | 
|  |  | 
|  | std::string filename = toStr(getCtx(), file); | 
|  | if (Defined *d = getEnclosingFunction(offset)) | 
|  | return filename + ":(function " + toStr(getCtx(), *d) + ": " + secAndOffset; | 
|  |  | 
|  | return filename + ":(" + secAndOffset; | 
|  | } | 
|  |  | 
|  | static void printFileLine(const ELFSyncStream &s, StringRef path, | 
|  | unsigned line) { | 
|  | StringRef filename = path::filename(path); | 
|  | s << filename << ':' << line; | 
|  | if (filename != path) | 
|  | s << " (" << path << ':' << line << ')'; | 
|  | } | 
|  |  | 
|  | // Print an error message that looks like this: | 
|  | // | 
|  | //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) | 
|  | const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, | 
|  | InputSectionBase::SrcMsg &&msg) { | 
|  | auto &sec = msg.sec; | 
|  | if (sec.file->kind() != InputFile::ObjKind) | 
|  | return s; | 
|  | auto &file = cast<ELFFileBase>(*sec.file); | 
|  |  | 
|  | // First, look up the DWARF line table. | 
|  | ArrayRef<InputSectionBase *> sections = file.getSections(); | 
|  | auto it = llvm::find(sections, &sec); | 
|  | uint64_t sectionIndex = it != sections.end() | 
|  | ? it - sections.begin() | 
|  | : object::SectionedAddress::UndefSection; | 
|  | DWARFCache *dwarf = file.getDwarf(); | 
|  | if (auto info = dwarf->getDILineInfo(msg.offset, sectionIndex)) | 
|  | printFileLine(s, info->FileName, info->Line); | 
|  | else if (auto fileLine = dwarf->getVariableLoc(msg.sym.getName())) | 
|  | // If it failed, look up again as a variable. | 
|  | printFileLine(s, fileLine->first, fileLine->second); | 
|  | else | 
|  | // File.sourceFile contains STT_FILE symbol, and that is a last resort. | 
|  | s << file.sourceFile; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | // Returns a filename string along with an optional section name. This | 
|  | // function is intended to be used for constructing an error | 
|  | // message. The returned message looks like this: | 
|  | // | 
|  | //   path/to/foo.o:(function bar) | 
|  | // | 
|  | // or | 
|  | // | 
|  | //   path/to/foo.o:(function bar) in archive path/to/bar.a | 
|  | const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, | 
|  | InputSectionBase::ObjMsg &&msg) { | 
|  | auto *sec = msg.sec; | 
|  | s << sec->file->getName() << ":("; | 
|  |  | 
|  | // Find a symbol that encloses a given location. getObjMsg may be called | 
|  | // before ObjFile::initSectionsAndLocalSyms where local symbols are | 
|  | // initialized. | 
|  | if (Defined *d = sec->getEnclosingSymbol(msg.offset)) | 
|  | s << d; | 
|  | else | 
|  | s << sec->name << "+0x" << Twine::utohexstr(msg.offset); | 
|  | s << ')'; | 
|  | if (!sec->file->archiveName.empty()) | 
|  | s << (" in archive " + sec->file->archiveName).str(); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source, | 
|  | InputSectionDescription &isd) | 
|  | : InputSection(source.file, source.name, source.type, source.flags, | 
|  | source.addralign, source.addralign, {}, SectionBase::Spill), | 
|  | isd(&isd) {} | 
|  |  | 
|  | InputSection InputSection::discarded(nullptr, "", 0, 0, 0, 0, | 
|  | ArrayRef<uint8_t>()); | 
|  |  | 
|  | InputSection::InputSection(InputFile *f, StringRef name, uint32_t type, | 
|  | uint64_t flags, uint32_t addralign, uint32_t entsize, | 
|  | ArrayRef<uint8_t> data, Kind k) | 
|  | : InputSectionBase(f, name, type, flags, | 
|  | /*link=*/0, /*info=*/0, addralign, /*entsize=*/entsize, | 
|  | data, k) { | 
|  | assert(f || this == &InputSection::discarded); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, | 
|  | StringRef name) | 
|  | : InputSectionBase(f, header, name, InputSectionBase::Regular) {} | 
|  |  | 
|  | // Copy SHT_GROUP section contents. Used only for the -r option. | 
|  | template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { | 
|  | // ELFT::Word is the 32-bit integral type in the target endianness. | 
|  | using u32 = typename ELFT::Word; | 
|  | ArrayRef<u32> from = getDataAs<u32>(); | 
|  | auto *to = reinterpret_cast<u32 *>(buf); | 
|  |  | 
|  | // The first entry is not a section number but a flag. | 
|  | *to++ = from[0]; | 
|  |  | 
|  | // Adjust section numbers because section numbers in an input object files are | 
|  | // different in the output. We also need to handle combined or discarded | 
|  | // members. | 
|  | ArrayRef<InputSectionBase *> sections = file->getSections(); | 
|  | DenseSet<uint32_t> seen; | 
|  | for (uint32_t idx : from.slice(1)) { | 
|  | OutputSection *osec = sections[idx]->getOutputSection(); | 
|  | if (osec && seen.insert(osec->sectionIndex).second) | 
|  | *to++ = osec->sectionIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputSectionBase *InputSection::getRelocatedSection() const { | 
|  | if (file->isInternal() || !isStaticRelSecType(type)) | 
|  | return nullptr; | 
|  | ArrayRef<InputSectionBase *> sections = file->getSections(); | 
|  | return sections[info]; | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf) { | 
|  | bool linkerRelax = | 
|  | ctx.arg.relax && is_contained({EM_RISCV, EM_LOONGARCH}, ctx.arg.emachine); | 
|  | if (!ctx.arg.relocatable && (linkerRelax || ctx.arg.branchToBranch)) { | 
|  | // On LoongArch and RISC-V, relaxation might change relocations: copy | 
|  | // from internal ones that are updated by relaxation. | 
|  | InputSectionBase *sec = getRelocatedSection(); | 
|  | copyRelocations<ELFT, RelTy>( | 
|  | ctx, buf, | 
|  | llvm::make_range(sec->relocations.begin(), sec->relocations.end())); | 
|  | } else { | 
|  | // Convert the raw relocations in the input section into Relocation objects | 
|  | // suitable to be used by copyRelocations below. | 
|  | struct MapRel { | 
|  | Ctx &ctx; | 
|  | const ObjFile<ELFT> &file; | 
|  | Relocation operator()(const RelTy &rel) const { | 
|  | // RelExpr is not used so set to a dummy value. | 
|  | return Relocation{R_NONE, rel.getType(ctx.arg.isMips64EL), rel.r_offset, | 
|  | getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)}; | 
|  | } | 
|  | }; | 
|  |  | 
|  | using RawRels = ArrayRef<RelTy>; | 
|  | using MapRelIter = | 
|  | llvm::mapped_iterator<typename RawRels::iterator, MapRel>; | 
|  | auto mapRel = MapRel{ctx, *getFile<ELFT>()}; | 
|  | RawRels rawRels = getDataAs<RelTy>(); | 
|  | auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel), | 
|  | MapRelIter(rawRels.end(), mapRel)); | 
|  | copyRelocations<ELFT, RelTy>(ctx, buf, rels); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is used for -r and --emit-relocs. We can't use memcpy to copy | 
|  | // relocations because we need to update symbol table offset and section index | 
|  | // for each relocation. So we copy relocations one by one. | 
|  | template <class ELFT, class RelTy, class RelIt> | 
|  | void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf, | 
|  | llvm::iterator_range<RelIt> rels) { | 
|  | const TargetInfo &target = *ctx.target; | 
|  | InputSectionBase *sec = getRelocatedSection(); | 
|  | (void)sec->contentMaybeDecompress(); // uncompress if needed | 
|  |  | 
|  | for (const Relocation &rel : rels) { | 
|  | RelType type = rel.type; | 
|  | const ObjFile<ELFT> *file = getFile<ELFT>(); | 
|  | Symbol &sym = *rel.sym; | 
|  |  | 
|  | auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); | 
|  | buf += sizeof(RelTy); | 
|  |  | 
|  | if (RelTy::HasAddend) | 
|  | p->r_addend = rel.addend; | 
|  |  | 
|  | // Output section VA is zero for -r, so r_offset is an offset within the | 
|  | // section, but for --emit-relocs it is a virtual address. | 
|  | p->r_offset = sec->getVA(rel.offset); | 
|  | p->setSymbolAndType(ctx.in.symTab->getSymbolIndex(sym), type, | 
|  | ctx.arg.isMips64EL); | 
|  |  | 
|  | if (sym.type == STT_SECTION) { | 
|  | // We combine multiple section symbols into only one per | 
|  | // section. This means we have to update the addend. That is | 
|  | // trivial for Elf_Rela, but for Elf_Rel we have to write to the | 
|  | // section data. We do that by adding to the Relocation vector. | 
|  |  | 
|  | // .eh_frame is horribly special and can reference discarded sections. To | 
|  | // avoid having to parse and recreate .eh_frame, we just replace any | 
|  | // relocation in it pointing to discarded sections with R_*_NONE, which | 
|  | // hopefully creates a frame that is ignored at runtime. Also, don't warn | 
|  | // on .gcc_except_table and debug sections. | 
|  | // | 
|  | // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc | 
|  | auto *d = dyn_cast<Defined>(&sym); | 
|  | if (!d) { | 
|  | if (!isDebugSection(*sec) && sec->name != ".eh_frame" && | 
|  | sec->name != ".gcc_except_table" && sec->name != ".got2" && | 
|  | sec->name != ".toc") { | 
|  | uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; | 
|  | Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; | 
|  | Warn(ctx) << "relocation refers to a discarded section: " | 
|  | << CHECK2(file->getObj().getSectionName(sec), file) | 
|  | << "\n>>> referenced by " << getObjMsg(p->r_offset); | 
|  | } | 
|  | p->setSymbolAndType(0, 0, false); | 
|  | continue; | 
|  | } | 
|  | SectionBase *section = d->section; | 
|  | assert(section->isLive()); | 
|  |  | 
|  | int64_t addend = rel.addend; | 
|  | const uint8_t *bufLoc = sec->content().begin() + rel.offset; | 
|  | if (!RelTy::HasAddend) | 
|  | addend = target.getImplicitAddend(bufLoc, type); | 
|  |  | 
|  | if (ctx.arg.emachine == EM_MIPS && | 
|  | target.getRelExpr(type, sym, bufLoc) == RE_MIPS_GOTREL) { | 
|  | // Some MIPS relocations depend on "gp" value. By default, | 
|  | // this value has 0x7ff0 offset from a .got section. But | 
|  | // relocatable files produced by a compiler or a linker | 
|  | // might redefine this default value and we must use it | 
|  | // for a calculation of the relocation result. When we | 
|  | // generate EXE or DSO it's trivial. Generating a relocatable | 
|  | // output is more difficult case because the linker does | 
|  | // not calculate relocations in this mode and loses | 
|  | // individual "gp" values used by each input object file. | 
|  | // As a workaround we add the "gp" value to the relocation | 
|  | // addend and save it back to the file. | 
|  | addend += sec->getFile<ELFT>()->mipsGp0; | 
|  | } | 
|  |  | 
|  | if (RelTy::HasAddend) | 
|  | p->r_addend = | 
|  | sym.getVA(ctx, addend) - section->getOutputSection()->addr; | 
|  | // For SHF_ALLOC sections relocated by REL, append a relocation to | 
|  | // sec->relocations so that relocateAlloc transitively called by | 
|  | // writeSections will update the implicit addend. Non-SHF_ALLOC sections | 
|  | // utilize relocateNonAlloc to process raw relocations and do not need | 
|  | // this sec->relocations change. | 
|  | else if (ctx.arg.relocatable && (sec->flags & SHF_ALLOC) && | 
|  | type != target.noneRel) | 
|  | sec->addReloc({R_ABS, type, rel.offset, addend, &sym}); | 
|  | } else if (ctx.arg.emachine == EM_PPC && type == R_PPC_PLTREL24 && | 
|  | p->r_addend >= 0x8000 && sec->file->ppc32Got2) { | 
|  | // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 | 
|  | // indicates that r30 is relative to the input section .got2 | 
|  | // (r_addend>=0x8000), after linking, r30 should be relative to the output | 
|  | // section .got2 . To compensate for the shift, adjust r_addend by | 
|  | // ppc32Got->outSecOff. | 
|  | p->r_addend += sec->file->ppc32Got2->outSecOff; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak | 
|  | // references specially. The general rule is that the value of the symbol in | 
|  | // this context is the address of the place P. A further special case is that | 
|  | // branch relocations to an undefined weak reference resolve to the next | 
|  | // instruction. | 
|  | static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, | 
|  | uint32_t p) { | 
|  | switch (type) { | 
|  | // Unresolved branch relocations to weak references resolve to next | 
|  | // instruction, this will be either 2 or 4 bytes on from P. | 
|  | case R_ARM_THM_JUMP8: | 
|  | case R_ARM_THM_JUMP11: | 
|  | return p + 2 + a; | 
|  | case R_ARM_CALL: | 
|  | case R_ARM_JUMP24: | 
|  | case R_ARM_PC24: | 
|  | case R_ARM_PLT32: | 
|  | case R_ARM_PREL31: | 
|  | case R_ARM_THM_JUMP19: | 
|  | case R_ARM_THM_JUMP24: | 
|  | return p + 4 + a; | 
|  | case R_ARM_THM_CALL: | 
|  | // We don't want an interworking BLX to ARM | 
|  | return p + 5 + a; | 
|  | // Unresolved non branch pc-relative relocations | 
|  | // R_ARM_TARGET2 which can be resolved relatively is not present as it never | 
|  | // targets a weak-reference. | 
|  | case R_ARM_MOVW_PREL_NC: | 
|  | case R_ARM_MOVT_PREL: | 
|  | case R_ARM_REL32: | 
|  | case R_ARM_THM_ALU_PREL_11_0: | 
|  | case R_ARM_THM_MOVW_PREL_NC: | 
|  | case R_ARM_THM_MOVT_PREL: | 
|  | case R_ARM_THM_PC12: | 
|  | return p + a; | 
|  | // p + a is unrepresentable as negative immediates can't be encoded. | 
|  | case R_ARM_THM_PC8: | 
|  | return p; | 
|  | } | 
|  | llvm_unreachable("ARM pc-relative relocation expected\n"); | 
|  | } | 
|  |  | 
|  | // The comment above getARMUndefinedRelativeWeakVA applies to this function. | 
|  | static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { | 
|  | switch (type) { | 
|  | // Unresolved branch relocations to weak references resolve to next | 
|  | // instruction, this is 4 bytes on from P. | 
|  | case R_AARCH64_CALL26: | 
|  | case R_AARCH64_CONDBR19: | 
|  | case R_AARCH64_JUMP26: | 
|  | case R_AARCH64_TSTBR14: | 
|  | return p + 4; | 
|  | // Unresolved non branch pc-relative relocations | 
|  | case R_AARCH64_PREL16: | 
|  | case R_AARCH64_PREL32: | 
|  | case R_AARCH64_PREL64: | 
|  | case R_AARCH64_ADR_PREL_LO21: | 
|  | case R_AARCH64_LD_PREL_LO19: | 
|  | case R_AARCH64_PLT32: | 
|  | return p; | 
|  | } | 
|  | llvm_unreachable("AArch64 pc-relative relocation expected\n"); | 
|  | } | 
|  |  | 
|  | static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { | 
|  | switch (type) { | 
|  | case R_RISCV_BRANCH: | 
|  | case R_RISCV_JAL: | 
|  | case R_RISCV_CALL: | 
|  | case R_RISCV_CALL_PLT: | 
|  | case R_RISCV_RVC_BRANCH: | 
|  | case R_RISCV_RVC_JUMP: | 
|  | case R_RISCV_PLT32: | 
|  | return p; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ARM SBREL relocations are of the form S + A - B where B is the static base | 
|  | // The ARM ABI defines base to be "addressing origin of the output segment | 
|  | // defining the symbol S". We defined the "addressing origin"/static base to be | 
|  | // the base of the PT_LOAD segment containing the Sym. | 
|  | // The procedure call standard only defines a Read Write Position Independent | 
|  | // RWPI variant so in practice we should expect the static base to be the base | 
|  | // of the RW segment. | 
|  | static uint64_t getARMStaticBase(const Symbol &sym) { | 
|  | OutputSection *os = sym.getOutputSection(); | 
|  | if (!os || !os->ptLoad || !os->ptLoad->firstSec) { | 
|  | Err(os->ctx) << "SBREL relocation to " << sym.getName() | 
|  | << " without static base"; | 
|  | return 0; | 
|  | } | 
|  | return os->ptLoad->firstSec->addr; | 
|  | } | 
|  |  | 
|  | // For RE_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually | 
|  | // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA | 
|  | // is calculated using PCREL_HI20's symbol. | 
|  | // | 
|  | // This function returns the R_RISCV_PCREL_HI20 relocation from the | 
|  | // R_RISCV_PCREL_LO12 relocation. | 
|  | static Relocation *getRISCVPCRelHi20(Ctx &ctx, const InputSectionBase *loSec, | 
|  | const Relocation &loReloc) { | 
|  | uint64_t addend = loReloc.addend; | 
|  | Symbol *sym = loReloc.sym; | 
|  |  | 
|  | const Defined *d = cast<Defined>(sym); | 
|  | if (!d->section) { | 
|  | Err(ctx) << loSec->getLocation(loReloc.offset) | 
|  | << ": R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " | 
|  | << sym->getName(); | 
|  | return nullptr; | 
|  | } | 
|  | InputSection *hiSec = cast<InputSection>(d->section); | 
|  |  | 
|  | if (hiSec != loSec) | 
|  | Err(ctx) << loSec->getLocation(loReloc.offset) | 
|  | << ": R_RISCV_PCREL_LO12 relocation points to a symbol '" | 
|  | << sym->getName() << "' in a different section '" << hiSec->name | 
|  | << "'"; | 
|  |  | 
|  | if (addend != 0) | 
|  | Warn(ctx) << loSec->getLocation(loReloc.offset) | 
|  | << ": non-zero addend in R_RISCV_PCREL_LO12 relocation to " | 
|  | << hiSec->getObjMsg(d->value) << " is ignored"; | 
|  |  | 
|  | // Relocations are sorted by offset, so we can use std::equal_range to do | 
|  | // binary search. | 
|  | Relocation hiReloc; | 
|  | hiReloc.offset = d->value; | 
|  | auto range = | 
|  | std::equal_range(hiSec->relocs().begin(), hiSec->relocs().end(), hiReloc, | 
|  | [](const Relocation &lhs, const Relocation &rhs) { | 
|  | return lhs.offset < rhs.offset; | 
|  | }); | 
|  |  | 
|  | for (auto it = range.first; it != range.second; ++it) | 
|  | if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || | 
|  | it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) | 
|  | return &*it; | 
|  |  | 
|  | Err(ctx) << loSec->getLocation(loReloc.offset) | 
|  | << ": R_RISCV_PCREL_LO12 relocation points to " | 
|  | << hiSec->getObjMsg(d->value) | 
|  | << " without an associated R_RISCV_PCREL_HI20 relocation"; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // A TLS symbol's virtual address is relative to the TLS segment. Add a | 
|  | // target-specific adjustment to produce a thread-pointer-relative offset. | 
|  | static int64_t getTlsTpOffset(Ctx &ctx, const Symbol &s) { | 
|  | // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. | 
|  | if (&s == ctx.sym.tlsModuleBase) | 
|  | return 0; | 
|  |  | 
|  | // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 | 
|  | // while most others use Variant 1. At run time TP will be aligned to p_align. | 
|  |  | 
|  | // Variant 1. TP will be followed by an optional gap (which is the size of 2 | 
|  | // pointers on ARM/AArch64, 0 on other targets), followed by alignment | 
|  | // padding, then the static TLS blocks. The alignment padding is added so that | 
|  | // (TP + gap + padding) is congruent to p_vaddr modulo p_align. | 
|  | // | 
|  | // Variant 2. Static TLS blocks, followed by alignment padding are placed | 
|  | // before TP. The alignment padding is added so that (TP - padding - | 
|  | // p_memsz) is congruent to p_vaddr modulo p_align. | 
|  | PhdrEntry *tls = ctx.tlsPhdr; | 
|  | if (!tls) // Reported an error in getSymVA | 
|  | return 0; | 
|  | switch (ctx.arg.emachine) { | 
|  | // Variant 1. | 
|  | case EM_ARM: | 
|  | case EM_AARCH64: | 
|  | return s.getVA(ctx, 0) + ctx.arg.wordsize * 2 + | 
|  | ((tls->p_vaddr - ctx.arg.wordsize * 2) & (tls->p_align - 1)); | 
|  | case EM_MIPS: | 
|  | case EM_PPC: | 
|  | case EM_PPC64: | 
|  | // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is | 
|  | // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library | 
|  | // data and 0xf000 of the program's TLS segment. | 
|  | return s.getVA(ctx, 0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; | 
|  | case EM_LOONGARCH: | 
|  | case EM_RISCV: | 
|  | // See the comment in handleTlsRelocation. For TLSDESC=>IE, | 
|  | // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While | 
|  | // `tls` may be null, the return value is ignored. | 
|  | if (s.type != STT_TLS) | 
|  | return 0; | 
|  | return s.getVA(ctx, 0) + (tls->p_vaddr & (tls->p_align - 1)); | 
|  |  | 
|  | // Variant 2. | 
|  | case EM_HEXAGON: | 
|  | case EM_S390: | 
|  | case EM_SPARCV9: | 
|  | case EM_386: | 
|  | case EM_X86_64: | 
|  | return s.getVA(ctx, 0) - tls->p_memsz - | 
|  | ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); | 
|  | default: | 
|  | llvm_unreachable("unhandled ctx.arg.emachine"); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t InputSectionBase::getRelocTargetVA(Ctx &ctx, const Relocation &r, | 
|  | uint64_t p) const { | 
|  | int64_t a = r.addend; | 
|  | switch (r.expr) { | 
|  | case R_ABS: | 
|  | case R_DTPREL: | 
|  | case R_RELAX_TLS_LD_TO_LE_ABS: | 
|  | case R_RELAX_GOT_PC_NOPIC: | 
|  | case RE_AARCH64_AUTH: | 
|  | case RE_RISCV_ADD: | 
|  | case RE_RISCV_LEB128: | 
|  | return r.sym->getVA(ctx, a); | 
|  | case R_ADDEND: | 
|  | return a; | 
|  | case R_RELAX_HINT: | 
|  | return 0; | 
|  | case RE_ARM_SBREL: | 
|  | return r.sym->getVA(ctx, a) - getARMStaticBase(*r.sym); | 
|  | case R_GOT: | 
|  | case RE_AARCH64_AUTH_GOT: | 
|  | case R_RELAX_TLS_GD_TO_IE_ABS: | 
|  | return r.sym->getGotVA(ctx) + a; | 
|  | case RE_LOONGARCH_GOT: | 
|  | // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc r.type | 
|  | // for their page offsets. The arithmetics are different in the TLS case | 
|  | // so we have to duplicate some logic here. | 
|  | if (r.sym->hasFlag(NEEDS_TLSGD) && r.type != R_LARCH_TLS_IE_PC_LO12) | 
|  | // Like RE_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. | 
|  | return ctx.in.got->getGlobalDynAddr(*r.sym) + a; | 
|  | return r.sym->getGotVA(ctx) + a; | 
|  | case R_GOTONLY_PC: | 
|  | return ctx.in.got->getVA() + a - p; | 
|  | case R_GOTPLTONLY_PC: | 
|  | return ctx.in.gotPlt->getVA() + a - p; | 
|  | case R_GOTREL: | 
|  | case RE_PPC64_RELAX_TOC: | 
|  | return r.sym->getVA(ctx, a) - ctx.in.got->getVA(); | 
|  | case R_GOTPLTREL: | 
|  | return r.sym->getVA(ctx, a) - ctx.in.gotPlt->getVA(); | 
|  | case R_GOTPLT: | 
|  | case R_RELAX_TLS_GD_TO_IE_GOTPLT: | 
|  | return r.sym->getGotVA(ctx) + a - ctx.in.gotPlt->getVA(); | 
|  | case R_TLSLD_GOT_OFF: | 
|  | case R_GOT_OFF: | 
|  | case R_RELAX_TLS_GD_TO_IE_GOT_OFF: | 
|  | return r.sym->getGotOffset(ctx) + a; | 
|  | case RE_AARCH64_GOT_PAGE_PC: | 
|  | case RE_AARCH64_AUTH_GOT_PAGE_PC: | 
|  | case RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: | 
|  | return getAArch64Page(r.sym->getGotVA(ctx) + a) - getAArch64Page(p); | 
|  | case RE_AARCH64_GOT_PAGE: | 
|  | return r.sym->getGotVA(ctx) + a - getAArch64Page(ctx.in.got->getVA()); | 
|  | case R_GOT_PC: | 
|  | case RE_AARCH64_AUTH_GOT_PC: | 
|  | case R_RELAX_TLS_GD_TO_IE: | 
|  | return r.sym->getGotVA(ctx) + a - p; | 
|  | case R_GOTPLT_GOTREL: | 
|  | return r.sym->getGotPltVA(ctx) + a - ctx.in.got->getVA(); | 
|  | case R_GOTPLT_PC: | 
|  | return r.sym->getGotPltVA(ctx) + a - p; | 
|  | case RE_LOONGARCH_GOT_PAGE_PC: | 
|  | case RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC: | 
|  | if (r.sym->hasFlag(NEEDS_TLSGD)) | 
|  | return getLoongArchPageDelta(ctx.in.got->getGlobalDynAddr(*r.sym) + a, p, | 
|  | r.type); | 
|  | return getLoongArchPageDelta(r.sym->getGotVA(ctx) + a, p, r.type); | 
|  | case RE_MIPS_GOTREL: | 
|  | return r.sym->getVA(ctx, a) - ctx.in.mipsGot->getGp(file); | 
|  | case RE_MIPS_GOT_GP: | 
|  | return ctx.in.mipsGot->getGp(file) + a; | 
|  | case RE_MIPS_GOT_GP_PC: { | 
|  | // R_MIPS_LO16 expression has RE_MIPS_GOT_GP_PC r.type iif the target | 
|  | // is _gp_disp symbol. In that case we should use the following | 
|  | // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | // microMIPS variants of these relocations use slightly different | 
|  | // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() | 
|  | // to correctly handle less-significant bit of the microMIPS symbol. | 
|  | uint64_t v = ctx.in.mipsGot->getGp(file) + a - p; | 
|  | if (r.type == R_MIPS_LO16 || r.type == R_MICROMIPS_LO16) | 
|  | v += 4; | 
|  | if (r.type == R_MICROMIPS_LO16 || r.type == R_MICROMIPS_HI16) | 
|  | v -= 1; | 
|  | return v; | 
|  | } | 
|  | case RE_MIPS_GOT_LOCAL_PAGE: | 
|  | // If relocation against MIPS local symbol requires GOT entry, this entry | 
|  | // should be initialized by 'page address'. This address is high 16-bits | 
|  | // of sum the symbol's value and the addend. | 
|  | return ctx.in.mipsGot->getVA() + | 
|  | ctx.in.mipsGot->getPageEntryOffset(file, *r.sym, a) - | 
|  | ctx.in.mipsGot->getGp(file); | 
|  | case RE_MIPS_GOT_OFF: | 
|  | case RE_MIPS_GOT_OFF32: | 
|  | // In case of MIPS if a GOT relocation has non-zero addend this addend | 
|  | // should be applied to the GOT entry content not to the GOT entry offset. | 
|  | // That is why we use separate expression r.type. | 
|  | return ctx.in.mipsGot->getVA() + | 
|  | ctx.in.mipsGot->getSymEntryOffset(file, *r.sym, a) - | 
|  | ctx.in.mipsGot->getGp(file); | 
|  | case RE_MIPS_TLSGD: | 
|  | return ctx.in.mipsGot->getVA() + | 
|  | ctx.in.mipsGot->getGlobalDynOffset(file, *r.sym) - | 
|  | ctx.in.mipsGot->getGp(file); | 
|  | case RE_MIPS_TLSLD: | 
|  | return ctx.in.mipsGot->getVA() + ctx.in.mipsGot->getTlsIndexOffset(file) - | 
|  | ctx.in.mipsGot->getGp(file); | 
|  | case RE_AARCH64_PAGE_PC: { | 
|  | uint64_t val = r.sym->isUndefWeak() ? p + a : r.sym->getVA(ctx, a); | 
|  | return getAArch64Page(val) - getAArch64Page(p); | 
|  | } | 
|  | case RE_RISCV_PC_INDIRECT: { | 
|  | if (const Relocation *hiRel = getRISCVPCRelHi20(ctx, this, r)) | 
|  | return getRelocTargetVA(ctx, *hiRel, r.sym->getVA(ctx)); | 
|  | return 0; | 
|  | } | 
|  | case RE_LOONGARCH_PAGE_PC: | 
|  | return getLoongArchPageDelta(r.sym->getVA(ctx, a), p, r.type); | 
|  | case R_PC: | 
|  | case RE_ARM_PCA: { | 
|  | uint64_t dest; | 
|  | if (r.expr == RE_ARM_PCA) | 
|  | // Some PC relative ARM (Thumb) relocations align down the place. | 
|  | p = p & 0xfffffffc; | 
|  | if (r.sym->isUndefined()) { | 
|  | // On ARM and AArch64 a branch to an undefined weak resolves to the next | 
|  | // instruction, otherwise the place. On RISC-V, resolve an undefined weak | 
|  | // to the same instruction to cause an infinite loop (making the user | 
|  | // aware of the issue) while ensuring no overflow. | 
|  | // Note: if the symbol is hidden, its binding has been converted to local, | 
|  | // so we just check isUndefined() here. | 
|  | if (ctx.arg.emachine == EM_ARM) | 
|  | dest = getARMUndefinedRelativeWeakVA(r.type, a, p); | 
|  | else if (ctx.arg.emachine == EM_AARCH64) | 
|  | dest = getAArch64UndefinedRelativeWeakVA(r.type, p) + a; | 
|  | else if (ctx.arg.emachine == EM_PPC) | 
|  | dest = p; | 
|  | else if (ctx.arg.emachine == EM_RISCV) | 
|  | dest = getRISCVUndefinedRelativeWeakVA(r.type, p) + a; | 
|  | else | 
|  | dest = r.sym->getVA(ctx, a); | 
|  | } else { | 
|  | dest = r.sym->getVA(ctx, a); | 
|  | } | 
|  | return dest - p; | 
|  | } | 
|  | case R_PLT: | 
|  | return r.sym->getPltVA(ctx) + a; | 
|  | case R_PLT_PC: | 
|  | case RE_PPC64_CALL_PLT: | 
|  | return r.sym->getPltVA(ctx) + a - p; | 
|  | case RE_LOONGARCH_PLT_PAGE_PC: | 
|  | return getLoongArchPageDelta(r.sym->getPltVA(ctx) + a, p, r.type); | 
|  | case R_PLT_GOTPLT: | 
|  | return r.sym->getPltVA(ctx) + a - ctx.in.gotPlt->getVA(); | 
|  | case R_PLT_GOTREL: | 
|  | return r.sym->getPltVA(ctx) + a - ctx.in.got->getVA(); | 
|  | case RE_PPC32_PLTREL: | 
|  | // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 | 
|  | // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for | 
|  | // target VA computation. | 
|  | return r.sym->getPltVA(ctx) - p; | 
|  | case RE_PPC64_CALL: { | 
|  | uint64_t symVA = r.sym->getVA(ctx, a); | 
|  | // If we have an undefined weak symbol, we might get here with a symbol | 
|  | // address of zero. That could overflow, but the code must be unreachable, | 
|  | // so don't bother doing anything at all. | 
|  | if (!symVA) | 
|  | return 0; | 
|  |  | 
|  | // PPC64 V2 ABI describes two entry points to a function. The global entry | 
|  | // point is used for calls where the caller and callee (may) have different | 
|  | // TOC base pointers and r2 needs to be modified to hold the TOC base for | 
|  | // the callee. For local calls the caller and callee share the same | 
|  | // TOC base and so the TOC pointer initialization code should be skipped by | 
|  | // branching to the local entry point. | 
|  | return symVA - p + | 
|  | getPPC64GlobalEntryToLocalEntryOffset(ctx, r.sym->stOther); | 
|  | } | 
|  | case RE_PPC64_TOCBASE: | 
|  | return getPPC64TocBase(ctx) + a; | 
|  | case R_RELAX_GOT_PC: | 
|  | case RE_PPC64_RELAX_GOT_PC: | 
|  | return r.sym->getVA(ctx, a) - p; | 
|  | case R_RELAX_TLS_GD_TO_LE: | 
|  | case R_RELAX_TLS_IE_TO_LE: | 
|  | case R_RELAX_TLS_LD_TO_LE: | 
|  | case R_TPREL: | 
|  | // It is not very clear what to return if the symbol is undefined. With | 
|  | // --noinhibit-exec, even a non-weak undefined reference may reach here. | 
|  | // Just return A, which matches R_ABS, and the behavior of some dynamic | 
|  | // loaders. | 
|  | if (r.sym->isUndefined()) | 
|  | return a; | 
|  | return getTlsTpOffset(ctx, *r.sym) + a; | 
|  | case R_RELAX_TLS_GD_TO_LE_NEG: | 
|  | case R_TPREL_NEG: | 
|  | if (r.sym->isUndefined()) | 
|  | return a; | 
|  | return -getTlsTpOffset(ctx, *r.sym) + a; | 
|  | case R_SIZE: | 
|  | return r.sym->getSize() + a; | 
|  | case R_TLSDESC: | 
|  | case RE_AARCH64_AUTH_TLSDESC: | 
|  | return ctx.in.got->getTlsDescAddr(*r.sym) + a; | 
|  | case R_TLSDESC_PC: | 
|  | return ctx.in.got->getTlsDescAddr(*r.sym) + a - p; | 
|  | case R_TLSDESC_GOTPLT: | 
|  | return ctx.in.got->getTlsDescAddr(*r.sym) + a - ctx.in.gotPlt->getVA(); | 
|  | case RE_AARCH64_TLSDESC_PAGE: | 
|  | case RE_AARCH64_AUTH_TLSDESC_PAGE: | 
|  | return getAArch64Page(ctx.in.got->getTlsDescAddr(*r.sym) + a) - | 
|  | getAArch64Page(p); | 
|  | case RE_LOONGARCH_TLSDESC_PAGE_PC: | 
|  | return getLoongArchPageDelta(ctx.in.got->getTlsDescAddr(*r.sym) + a, p, | 
|  | r.type); | 
|  | case R_TLSGD_GOT: | 
|  | return ctx.in.got->getGlobalDynOffset(*r.sym) + a; | 
|  | case R_TLSGD_GOTPLT: | 
|  | return ctx.in.got->getGlobalDynAddr(*r.sym) + a - ctx.in.gotPlt->getVA(); | 
|  | case R_TLSGD_PC: | 
|  | return ctx.in.got->getGlobalDynAddr(*r.sym) + a - p; | 
|  | case RE_LOONGARCH_TLSGD_PAGE_PC: | 
|  | return getLoongArchPageDelta(ctx.in.got->getGlobalDynAddr(*r.sym) + a, p, | 
|  | r.type); | 
|  | case R_TLSLD_GOTPLT: | 
|  | return ctx.in.got->getVA() + ctx.in.got->getTlsIndexOff() + a - | 
|  | ctx.in.gotPlt->getVA(); | 
|  | case R_TLSLD_GOT: | 
|  | return ctx.in.got->getTlsIndexOff() + a; | 
|  | case R_TLSLD_PC: | 
|  | return ctx.in.got->getTlsIndexVA() + a - p; | 
|  | default: | 
|  | llvm_unreachable("invalid expression"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function applies relocations to sections without SHF_ALLOC bit. | 
|  | // Such sections are never mapped to memory at runtime. Debug sections are | 
|  | // an example. Relocations in non-alloc sections are much easier to | 
|  | // handle than in allocated sections because it will never need complex | 
|  | // treatment such as GOT or PLT (because at runtime no one refers them). | 
|  | // So, we handle relocations for non-alloc sections directly in this | 
|  | // function as a performance optimization. | 
|  | template <class ELFT, class RelTy> | 
|  | void InputSection::relocateNonAlloc(Ctx &ctx, uint8_t *buf, | 
|  | Relocs<RelTy> rels) { | 
|  | const unsigned bits = sizeof(typename ELFT::uint) * 8; | 
|  | const TargetInfo &target = *ctx.target; | 
|  | const auto emachine = ctx.arg.emachine; | 
|  | const bool isDebug = isDebugSection(*this); | 
|  | const bool isDebugLine = isDebug && name == ".debug_line"; | 
|  | std::optional<uint64_t> tombstone; | 
|  | if (isDebug) { | 
|  | if (name == ".debug_loc" || name == ".debug_ranges") | 
|  | tombstone = 1; | 
|  | else if (name == ".debug_names") | 
|  | tombstone = UINT64_MAX; // tombstone value | 
|  | else | 
|  | tombstone = 0; | 
|  | } | 
|  | for (const auto &patAndValue : llvm::reverse(ctx.arg.deadRelocInNonAlloc)) | 
|  | if (patAndValue.first.match(this->name)) { | 
|  | tombstone = patAndValue.second; | 
|  | break; | 
|  | } | 
|  |  | 
|  | const InputFile *f = this->file; | 
|  | for (auto it = rels.begin(), end = rels.end(); it != end; ++it) { | 
|  | const RelTy &rel = *it; | 
|  | const RelType type = rel.getType(ctx.arg.isMips64EL); | 
|  | const uint64_t offset = rel.r_offset; | 
|  | uint8_t *bufLoc = buf + offset; | 
|  | int64_t addend = getAddend<ELFT>(rel); | 
|  | if (!RelTy::HasAddend) | 
|  | addend += target.getImplicitAddend(bufLoc, type); | 
|  |  | 
|  | Symbol &sym = f->getRelocTargetSym(rel); | 
|  | RelExpr expr = target.getRelExpr(type, sym, bufLoc); | 
|  | if (expr == R_NONE) | 
|  | continue; | 
|  | auto *ds = dyn_cast<Defined>(&sym); | 
|  |  | 
|  | if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) { | 
|  | if (++it != end && | 
|  | it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 && | 
|  | it->r_offset == offset) { | 
|  | uint64_t val; | 
|  | if (!ds && tombstone) { | 
|  | val = *tombstone; | 
|  | } else { | 
|  | val = sym.getVA(ctx, addend) - | 
|  | (f->getRelocTargetSym(*it).getVA(ctx) + getAddend<ELFT>(*it)); | 
|  | } | 
|  | if (overwriteULEB128(bufLoc, val) >= 0x80) | 
|  | Err(ctx) << getLocation(offset) << ": ULEB128 value " << val | 
|  | << " exceeds available space; references '" << &sym << "'"; | 
|  | continue; | 
|  | } | 
|  | Err(ctx) << getLocation(offset) | 
|  | << ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (tombstone && (expr == R_ABS || expr == R_DTPREL)) { | 
|  | // Resolve relocations in .debug_* referencing (discarded symbols or ICF | 
|  | // folded section symbols) to a tombstone value. Resolving to addend is | 
|  | // unsatisfactory because the result address range may collide with a | 
|  | // valid range of low address, or leave multiple CUs claiming ownership of | 
|  | // the same range of code, which may confuse consumers. | 
|  | // | 
|  | // To address the problems, we use -1 as a tombstone value for most | 
|  | // .debug_* sections. We have to ignore the addend because we don't want | 
|  | // to resolve an address attribute (which may have a non-zero addend) to | 
|  | // -1+addend (wrap around to a low address). | 
|  | // | 
|  | // R_DTPREL type relocations represent an offset into the dynamic thread | 
|  | // vector. The computed value is st_value plus a non-negative offset. | 
|  | // Negative values are invalid, so -1 can be used as the tombstone value. | 
|  | // | 
|  | // If the referenced symbol is relative to a discarded section (due to | 
|  | // --gc-sections, COMDAT, etc), it has been converted to a Undefined. | 
|  | // `ds->folded` catches the ICF folded case. However, resolving a | 
|  | // relocation in .debug_line to -1 would stop debugger users from setting | 
|  | // breakpoints on the folded-in function, so exclude .debug_line. | 
|  | // | 
|  | // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value | 
|  | // (base address selection entry), use 1 (which is used by GNU ld for | 
|  | // .debug_ranges). | 
|  | // | 
|  | // TODO To reduce disruption, we use 0 instead of -1 as the tombstone | 
|  | // value. Enable -1 in a future release. | 
|  | if (!ds || (ds->folded && !isDebugLine)) { | 
|  | // If -z dead-reloc-in-nonalloc= is specified, respect it. | 
|  | uint64_t value = SignExtend64<bits>(*tombstone); | 
|  | // For a 32-bit local TU reference in .debug_names, X86_64::relocate | 
|  | // requires that the unsigned value for R_X86_64_32 is truncated to | 
|  | // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit | 
|  | // absolute relocations and do not need this change. | 
|  | if (emachine == EM_X86_64 && type == R_X86_64_32) | 
|  | value = static_cast<uint32_t>(value); | 
|  | target.relocateNoSym(bufLoc, type, value); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For a relocatable link, content relocated by relocation types with an | 
|  | // explicit addend, such as RELA, remain unchanged and we can stop here. | 
|  | // While content relocated by relocation types with an implicit addend, such | 
|  | // as REL, needs the implicit addend updated. | 
|  | if (ctx.arg.relocatable && (RelTy::HasAddend || sym.type != STT_SECTION)) | 
|  | continue; | 
|  |  | 
|  | // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC | 
|  | // sections. | 
|  | if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL || | 
|  | expr == RE_RISCV_ADD || expr == RE_ARM_SBREL) { | 
|  | target.relocateNoSym(bufLoc, type, | 
|  | SignExtend64<bits>(sym.getVA(ctx, addend))); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (expr == R_SIZE) { | 
|  | target.relocateNoSym(bufLoc, type, | 
|  | SignExtend64<bits>(sym.getSize() + addend)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the control reaches here, we found a PC-relative relocation in a | 
|  | // non-ALLOC section. Since non-ALLOC section is not loaded into memory | 
|  | // at runtime, the notion of PC-relative doesn't make sense here. So, | 
|  | // this is a usage error. However, GNU linkers historically accept such | 
|  | // relocations without any errors and relocate them as if they were at | 
|  | // address 0. For bug-compatibility, we accept them with warnings. We | 
|  | // know Steel Bank Common Lisp as of 2018 have this bug. | 
|  | // | 
|  | // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations | 
|  | // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in | 
|  | // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to | 
|  | // keep this bug-compatible code for a while. | 
|  | bool isErr = expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC); | 
|  | { | 
|  | ELFSyncStream diag(ctx, isErr && !ctx.arg.noinhibitExec | 
|  | ? DiagLevel::Err | 
|  | : DiagLevel::Warn); | 
|  | diag << getLocation(offset) << ": has non-ABS relocation " << type | 
|  | << " against symbol '" << &sym << "'"; | 
|  | } | 
|  | if (!isErr) | 
|  | target.relocateNoSym( | 
|  | bufLoc, type, | 
|  | SignExtend64<bits>(sym.getVA(ctx, addend - offset - outSecOff))); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void InputSectionBase::relocate(Ctx &ctx, uint8_t *buf, uint8_t *bufEnd) { | 
|  | if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) | 
|  | adjustSplitStackFunctionPrologues<ELFT>(ctx, buf, bufEnd); | 
|  |  | 
|  | if (flags & SHF_ALLOC) { | 
|  | ctx.target->relocateAlloc(*this, buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto *sec = cast<InputSection>(this); | 
|  | // For a relocatable link, also call relocateNonAlloc() to rewrite applicable | 
|  | // locations with tombstone values. | 
|  | invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, ctx, buf); | 
|  | } | 
|  |  | 
|  | // For each function-defining prologue, find any calls to __morestack, | 
|  | // and replace them with calls to __morestack_non_split. | 
|  | static void switchMorestackCallsToMorestackNonSplit( | 
|  | Ctx &ctx, DenseSet<Defined *> &prologues, | 
|  | SmallVector<Relocation *, 0> &morestackCalls) { | 
|  |  | 
|  | // If the target adjusted a function's prologue, all calls to | 
|  | // __morestack inside that function should be switched to | 
|  | // __morestack_non_split. | 
|  | Symbol *moreStackNonSplit = ctx.symtab->find("__morestack_non_split"); | 
|  | if (!moreStackNonSplit) { | 
|  | ErrAlways(ctx) << "mixing split-stack objects requires a definition of " | 
|  | "__morestack_non_split"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Sort both collections to compare addresses efficiently. | 
|  | llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { | 
|  | return l->offset < r->offset; | 
|  | }); | 
|  | std::vector<Defined *> functions(prologues.begin(), prologues.end()); | 
|  | llvm::sort(functions, [](const Defined *l, const Defined *r) { | 
|  | return l->value < r->value; | 
|  | }); | 
|  |  | 
|  | auto it = morestackCalls.begin(); | 
|  | for (Defined *f : functions) { | 
|  | // Find the first call to __morestack within the function. | 
|  | while (it != morestackCalls.end() && (*it)->offset < f->value) | 
|  | ++it; | 
|  | // Adjust all calls inside the function. | 
|  | while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { | 
|  | (*it)->sym = moreStackNonSplit; | 
|  | ++it; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool enclosingPrologueAttempted(uint64_t offset, | 
|  | const DenseSet<Defined *> &prologues) { | 
|  | for (Defined *f : prologues) | 
|  | if (f->value <= offset && offset < f->value + f->size) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If a function compiled for split stack calls a function not | 
|  | // compiled for split stack, then the caller needs its prologue | 
|  | // adjusted to ensure that the called function will have enough stack | 
|  | // available. Find those functions, and adjust their prologues. | 
|  | template <class ELFT> | 
|  | void InputSectionBase::adjustSplitStackFunctionPrologues(Ctx &ctx, uint8_t *buf, | 
|  | uint8_t *end) { | 
|  | DenseSet<Defined *> prologues; | 
|  | SmallVector<Relocation *, 0> morestackCalls; | 
|  |  | 
|  | for (Relocation &rel : relocs()) { | 
|  | // Ignore calls into the split-stack api. | 
|  | if (rel.sym->getName().starts_with("__morestack")) { | 
|  | if (rel.sym->getName() == "__morestack") | 
|  | morestackCalls.push_back(&rel); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // A relocation to non-function isn't relevant. Sometimes | 
|  | // __morestack is not marked as a function, so this check comes | 
|  | // after the name check. | 
|  | if (rel.sym->type != STT_FUNC) | 
|  | continue; | 
|  |  | 
|  | // If the callee's-file was compiled with split stack, nothing to do.  In | 
|  | // this context, a "Defined" symbol is one "defined by the binary currently | 
|  | // being produced". So an "undefined" symbol might be provided by a shared | 
|  | // library. It is not possible to tell how such symbols were compiled, so be | 
|  | // conservative. | 
|  | if (Defined *d = dyn_cast<Defined>(rel.sym)) | 
|  | if (InputSection *isec = cast_or_null<InputSection>(d->section)) | 
|  | if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) | 
|  | continue; | 
|  |  | 
|  | if (enclosingPrologueAttempted(rel.offset, prologues)) | 
|  | continue; | 
|  |  | 
|  | if (Defined *f = getEnclosingFunction(rel.offset)) { | 
|  | prologues.insert(f); | 
|  | if (ctx.target->adjustPrologueForCrossSplitStack(buf + f->value, end, | 
|  | f->stOther)) | 
|  | continue; | 
|  | if (!getFile<ELFT>()->someNoSplitStack) | 
|  | Err(ctx) | 
|  | << this << ": " << f->getName() << " (with -fsplit-stack) calls " | 
|  | << rel.sym->getName() | 
|  | << " (without -fsplit-stack), but couldn't adjust its prologue"; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ctx.target->needsMoreStackNonSplit) | 
|  | switchMorestackCallsToMorestackNonSplit(ctx, prologues, morestackCalls); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void InputSection::writeTo(Ctx &ctx, uint8_t *buf) { | 
|  | if (LLVM_UNLIKELY(type == SHT_NOBITS)) | 
|  | return; | 
|  | // If -r or --emit-relocs is given, then an InputSection | 
|  | // may be a relocation section. | 
|  | if (LLVM_UNLIKELY(type == SHT_RELA)) { | 
|  | copyRelocations<ELFT, typename ELFT::Rela>(ctx, buf); | 
|  | return; | 
|  | } | 
|  | if (LLVM_UNLIKELY(type == SHT_REL)) { | 
|  | copyRelocations<ELFT, typename ELFT::Rel>(ctx, buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If -r is given, we may have a SHT_GROUP section. | 
|  | if (LLVM_UNLIKELY(type == SHT_GROUP)) { | 
|  | copyShtGroup<ELFT>(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is a compressed section, uncompress section contents directly | 
|  | // to the buffer. | 
|  | if (compressed) { | 
|  | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_); | 
|  | auto compressed = ArrayRef<uint8_t>(content_, compressedSize) | 
|  | .slice(sizeof(typename ELFT::Chdr)); | 
|  | size_t size = this->size; | 
|  | if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB | 
|  | ? compression::zlib::decompress(compressed, buf, size) | 
|  | : compression::zstd::decompress(compressed, buf, size)) | 
|  | Err(ctx) << this << ": decompress failed: " << std::move(e); | 
|  | uint8_t *bufEnd = buf + size; | 
|  | relocate<ELFT>(ctx, buf, bufEnd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Copy section contents from source object file to output file | 
|  | // and then apply relocations. | 
|  | memcpy(buf, content().data(), content().size()); | 
|  | relocate<ELFT>(ctx, buf, buf + content().size()); | 
|  | } | 
|  |  | 
|  | void InputSection::replace(InputSection *other) { | 
|  | addralign = std::max(addralign, other->addralign); | 
|  |  | 
|  | // When a section is replaced with another section that was allocated to | 
|  | // another partition, the replacement section (and its associated sections) | 
|  | // need to be placed in the main partition so that both partitions will be | 
|  | // able to access it. | 
|  | if (partition != other->partition) { | 
|  | partition = 1; | 
|  | for (InputSection *isec : dependentSections) | 
|  | isec->partition = 1; | 
|  | } | 
|  |  | 
|  | other->repl = repl; | 
|  | other->markDead(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | EhInputSection::EhInputSection(ObjFile<ELFT> &f, | 
|  | const typename ELFT::Shdr &header, | 
|  | StringRef name) | 
|  | : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} | 
|  |  | 
|  | SyntheticSection *EhInputSection::getParent() const { | 
|  | return cast_or_null<SyntheticSection>(parent); | 
|  | } | 
|  |  | 
|  | // .eh_frame is a sequence of CIE or FDE records. | 
|  | // This function splits an input section into records and returns them. | 
|  | template <class ELFT> void EhInputSection::split() { | 
|  | const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false); | 
|  | // getReloc expects the relocations to be sorted by r_offset. See the comment | 
|  | // in scanRelocs. | 
|  | if (rels.areRelocsRel()) { | 
|  | SmallVector<typename ELFT::Rel, 0> storage; | 
|  | split<ELFT>(sortRels(rels.rels, storage)); | 
|  | } else { | 
|  | SmallVector<typename ELFT::Rela, 0> storage; | 
|  | split<ELFT>(sortRels(rels.relas, storage)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT, class RelTy> | 
|  | void EhInputSection::split(ArrayRef<RelTy> rels) { | 
|  | ArrayRef<uint8_t> d = content(); | 
|  | const char *msg = nullptr; | 
|  | unsigned relI = 0; | 
|  | while (!d.empty()) { | 
|  | if (d.size() < 4) { | 
|  | msg = "CIE/FDE too small"; | 
|  | break; | 
|  | } | 
|  | uint64_t size = endian::read32<ELFT::Endianness>(d.data()); | 
|  | if (size == 0) // ZERO terminator | 
|  | break; | 
|  | uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4); | 
|  | size += 4; | 
|  | if (LLVM_UNLIKELY(size > d.size())) { | 
|  | // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, | 
|  | // but we do not support that format yet. | 
|  | msg = size == UINT32_MAX + uint64_t(4) | 
|  | ? "CIE/FDE too large" | 
|  | : "CIE/FDE ends past the end of the section"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Find the first relocation that points to [off,off+size). Relocations | 
|  | // have been sorted by r_offset. | 
|  | const uint64_t off = d.data() - content().data(); | 
|  | while (relI != rels.size() && rels[relI].r_offset < off) | 
|  | ++relI; | 
|  | unsigned firstRel = -1; | 
|  | if (relI != rels.size() && rels[relI].r_offset < off + size) | 
|  | firstRel = relI; | 
|  | (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel); | 
|  | d = d.slice(size); | 
|  | } | 
|  | if (msg) | 
|  | Err(file->ctx) << "corrupted .eh_frame: " << msg << "\n>>> defined in " | 
|  | << getObjMsg(d.data() - content().data()); | 
|  | } | 
|  |  | 
|  | // Return the offset in an output section for a given input offset. | 
|  | uint64_t EhInputSection::getParentOffset(uint64_t offset) const { | 
|  | auto it = partition_point( | 
|  | fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; }); | 
|  | if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { | 
|  | it = partition_point( | 
|  | cies, [=](EhSectionPiece p) { return p.inputOff <= offset; }); | 
|  | if (it == cies.begin()) // invalid piece | 
|  | return offset; | 
|  | } | 
|  | if (it[-1].outputOff == -1) // invalid piece | 
|  | return offset - it[-1].inputOff; | 
|  | return it[-1].outputOff + (offset - it[-1].inputOff); | 
|  | } | 
|  |  | 
|  | static size_t findNull(StringRef s, size_t entSize) { | 
|  | for (unsigned i = 0, n = s.size(); i != n; i += entSize) { | 
|  | const char *b = s.begin() + i; | 
|  | if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) | 
|  | return i; | 
|  | } | 
|  | llvm_unreachable(""); | 
|  | } | 
|  |  | 
|  | // Split SHF_STRINGS section. Such section is a sequence of | 
|  | // null-terminated strings. | 
|  | void MergeInputSection::splitStrings(StringRef s, size_t entSize) { | 
|  | const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections; | 
|  | const char *p = s.data(), *end = s.data() + s.size(); | 
|  | if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) { | 
|  | Err(getCtx()) << this << ": string is not null terminated"; | 
|  | pieces.emplace_back(entSize, 0, false); | 
|  | return; | 
|  | } | 
|  | if (entSize == 1) { | 
|  | // Optimize the common case. | 
|  | do { | 
|  | size_t size = strlen(p); | 
|  | pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); | 
|  | p += size + 1; | 
|  | } while (p != end); | 
|  | } else { | 
|  | do { | 
|  | size_t size = findNull(StringRef(p, end - p), entSize); | 
|  | pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live); | 
|  | p += size + entSize; | 
|  | } while (p != end); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Split non-SHF_STRINGS section. Such section is a sequence of | 
|  | // fixed size records. | 
|  | void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, | 
|  | size_t entSize) { | 
|  | size_t size = data.size(); | 
|  | assert((size % entSize) == 0); | 
|  | const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections; | 
|  |  | 
|  | pieces.resize_for_overwrite(size / entSize); | 
|  | for (size_t i = 0, j = 0; i != size; i += entSize, j++) | 
|  | pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live}; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, | 
|  | const typename ELFT::Shdr &header, | 
|  | StringRef name) | 
|  | : InputSectionBase(f, header, name, InputSectionBase::Merge) {} | 
|  |  | 
|  | MergeInputSection::MergeInputSection(Ctx &ctx, StringRef name, uint32_t type, | 
|  | uint64_t flags, uint64_t entsize, | 
|  | ArrayRef<uint8_t> data) | 
|  | : InputSectionBase(ctx.internalFile, name, type, flags, /*link=*/0, | 
|  | /*info=*/0, | 
|  | /*addralign=*/entsize, entsize, data, | 
|  | SectionBase::Merge) {} | 
|  |  | 
|  | // This function is called after we obtain a complete list of input sections | 
|  | // that need to be linked. This is responsible to split section contents | 
|  | // into small chunks for further processing. | 
|  | // | 
|  | // Note that this function is called from parallelForEach. This must be | 
|  | // thread-safe (i.e. no memory allocation from the pools). | 
|  | void MergeInputSection::splitIntoPieces() { | 
|  | assert(pieces.empty()); | 
|  |  | 
|  | if (flags & SHF_STRINGS) | 
|  | splitStrings(toStringRef(contentMaybeDecompress()), entsize); | 
|  | else | 
|  | splitNonStrings(contentMaybeDecompress(), entsize); | 
|  | } | 
|  |  | 
|  | SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { | 
|  | if (content().size() <= offset) { | 
|  | Err(getCtx()) << this << ": offset is outside the section"; | 
|  | return pieces[0]; | 
|  | } | 
|  | return partition_point( | 
|  | pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; | 
|  | } | 
|  |  | 
|  | // Return the offset in an output section for a given input offset. | 
|  | uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { | 
|  | const SectionPiece &piece = getSectionPiece(offset); | 
|  | return piece.outputOff + (offset - piece.inputOff); | 
|  | } | 
|  |  | 
|  | template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, | 
|  | StringRef); | 
|  | template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, | 
|  | StringRef); | 
|  | template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, | 
|  | StringRef); | 
|  | template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, | 
|  | StringRef); | 
|  |  | 
|  | template void InputSection::writeTo<ELF32LE>(Ctx &, uint8_t *); | 
|  | template void InputSection::writeTo<ELF32BE>(Ctx &, uint8_t *); | 
|  | template void InputSection::writeTo<ELF64LE>(Ctx &, uint8_t *); | 
|  | template void InputSection::writeTo<ELF64BE>(Ctx &, uint8_t *); | 
|  |  | 
|  | template RelsOrRelas<ELF32LE> | 
|  | InputSectionBase::relsOrRelas<ELF32LE>(bool) const; | 
|  | template RelsOrRelas<ELF32BE> | 
|  | InputSectionBase::relsOrRelas<ELF32BE>(bool) const; | 
|  | template RelsOrRelas<ELF64LE> | 
|  | InputSectionBase::relsOrRelas<ELF64LE>(bool) const; | 
|  | template RelsOrRelas<ELF64BE> | 
|  | InputSectionBase::relsOrRelas<ELF64BE>(bool) const; | 
|  |  | 
|  | template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, | 
|  | const ELF32LE::Shdr &, StringRef); | 
|  | template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, | 
|  | const ELF32BE::Shdr &, StringRef); | 
|  | template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, | 
|  | const ELF64LE::Shdr &, StringRef); | 
|  | template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, | 
|  | const ELF64BE::Shdr &, StringRef); | 
|  |  | 
|  | template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, | 
|  | const ELF32LE::Shdr &, StringRef); | 
|  | template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, | 
|  | const ELF32BE::Shdr &, StringRef); | 
|  | template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, | 
|  | const ELF64LE::Shdr &, StringRef); | 
|  | template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, | 
|  | const ELF64BE::Shdr &, StringRef); | 
|  |  | 
|  | template void EhInputSection::split<ELF32LE>(); | 
|  | template void EhInputSection::split<ELF32BE>(); | 
|  | template void EhInputSection::split<ELF64LE>(); | 
|  | template void EhInputSection::split<ELF64BE>(); |