| //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the LiveRangeCalc class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LiveRangeCalc.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| void LiveRangeCalc::reset(const MachineFunction *mf, |
| SlotIndexes *SI, |
| MachineDominatorTree *MDT, |
| VNInfo::Allocator *VNIA) { |
| MF = mf; |
| MRI = &MF->getRegInfo(); |
| Indexes = SI; |
| DomTree = MDT; |
| Alloc = VNIA; |
| |
| MainLiveOutData.reset(MF->getNumBlockIDs()); |
| LiveIn.clear(); |
| } |
| |
| |
| static SlotIndex getDefIndex(const SlotIndexes &Indexes, const MachineInstr &MI, |
| bool EarlyClobber) { |
| // PHI defs begin at the basic block start index. |
| if (MI.isPHI()) |
| return Indexes.getMBBStartIdx(MI.getParent()); |
| |
| // Instructions are either normal 'r', or early clobber 'e'. |
| return Indexes.getInstructionIndex(&MI).getRegSlot(EarlyClobber); |
| } |
| |
| void LiveRangeCalc::createDeadDefs(LiveInterval &LI) { |
| assert(MRI && Indexes && "call reset() first"); |
| |
| // Visit all def operands. If the same instruction has multiple defs of Reg, |
| // LR.createDeadDef() will deduplicate. |
| const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); |
| unsigned Reg = LI.reg; |
| for (const MachineOperand &MO : MRI->def_operands(Reg)) { |
| const MachineInstr *MI = MO.getParent(); |
| SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber()); |
| unsigned SubReg = MO.getSubReg(); |
| if (SubReg != 0 || LI.hasSubRanges()) { |
| unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) |
| : MRI->getMaxLaneMaskForVReg(Reg); |
| |
| // If this is the first time we see a subregister def, initialize |
| // subranges by creating a copy of the main range. |
| if (!LI.hasSubRanges() && !LI.empty()) { |
| unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg); |
| LI.createSubRangeFrom(*Alloc, ClassMask, LI); |
| } |
| |
| for (LiveInterval::subrange_iterator S = LI.subrange_begin(), |
| SE = LI.subrange_end(); S != SE; ++S) { |
| // A Mask for subregs common to the existing subrange and current def. |
| unsigned Common = S->LaneMask & Mask; |
| if (Common == 0) |
| continue; |
| // A Mask for subregs covered by the subrange but not the current def. |
| unsigned LRest = S->LaneMask & ~Mask; |
| LiveInterval::SubRange *CommonRange; |
| if (LRest != 0) { |
| // Split current subrange into Common and LRest ranges. |
| S->LaneMask = LRest; |
| CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S); |
| } else { |
| assert(Common == S->LaneMask); |
| CommonRange = &*S; |
| } |
| CommonRange->createDeadDef(Idx, *Alloc); |
| Mask &= ~Common; |
| } |
| if (Mask != 0) { |
| LiveInterval::SubRange *SubRange = LI.createSubRange(*Alloc, Mask); |
| SubRange->createDeadDef(Idx, *Alloc); |
| } |
| } |
| |
| // Create the def in LR. This may find an existing def. |
| LI.createDeadDef(Idx, *Alloc); |
| } |
| } |
| |
| |
| void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { |
| assert(MRI && Indexes && "call reset() first"); |
| |
| // Visit all def operands. If the same instruction has multiple defs of Reg, |
| // LR.createDeadDef() will deduplicate. |
| for (MachineOperand &MO : MRI->def_operands(Reg)) { |
| const MachineInstr *MI = MO.getParent(); |
| SlotIndex Idx = getDefIndex(*Indexes, *MI, MO.isEarlyClobber()); |
| // Create the def in LR. This may find an existing def. |
| LR.createDeadDef(Idx, *Alloc); |
| } |
| } |
| |
| |
| static SlotIndex getUseIndex(const SlotIndexes &Indexes, |
| const MachineOperand &MO) { |
| const MachineInstr *MI = MO.getParent(); |
| unsigned OpNo = (&MO - &MI->getOperand(0)); |
| if (MI->isPHI()) { |
| assert(!MO.isDef() && "Cannot handle PHI def of partial register."); |
| // The actual place where a phi operand is used is the end of the pred MBB. |
| // PHI operands are paired: (Reg, PredMBB). |
| return Indexes.getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); |
| } |
| |
| // Check for early-clobber redefs. |
| bool isEarlyClobber = false; |
| unsigned DefIdx; |
| if (MO.isDef()) { |
| isEarlyClobber = MO.isEarlyClobber(); |
| } else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { |
| // FIXME: This would be a lot easier if tied early-clobber uses also |
| // had an early-clobber flag. |
| isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); |
| } |
| return Indexes.getInstructionIndex(MI).getRegSlot(isEarlyClobber); |
| } |
| |
| |
| void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg) { |
| assert(MRI && Indexes && "call reset() first"); |
| |
| // Visit all operands that read Reg. This may include partial defs. |
| for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { |
| // Clear all kill flags. They will be reinserted after register allocation |
| // by LiveIntervalAnalysis::addKillFlags(). |
| if (MO.isUse()) |
| MO.setIsKill(false); |
| if (!MO.readsReg()) |
| continue; |
| // MI is reading Reg. We may have visited MI before if it happens to be |
| // reading Reg multiple times. That is OK, extend() is idempotent. |
| SlotIndex Idx = getUseIndex(*Indexes, MO); |
| extend(LR, Idx, Reg, MainLiveOutData); |
| } |
| } |
| |
| |
| void LiveRangeCalc::extendToUses(LiveInterval &LI) { |
| assert(MRI && Indexes && "call reset() first"); |
| |
| const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); |
| SmallVector<LiveOutData,2> LiveOuts; |
| unsigned NumSubRanges = 0; |
| for (LiveInterval::subrange_iterator S = LI.subrange_begin(), |
| SE = LI.subrange_end(); S != SE; ++S, ++NumSubRanges) { |
| LiveOuts.push_back(LiveOutData()); |
| LiveOuts.back().reset(MF->getNumBlockIDs()); |
| } |
| |
| // Visit all operands that read Reg. This may include partial defs. |
| unsigned Reg = LI.reg; |
| for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { |
| // Clear all kill flags. They will be reinserted after register allocation |
| // by LiveIntervalAnalysis::addKillFlags(). |
| if (MO.isUse()) |
| MO.setIsKill(false); |
| if (!MO.readsReg()) |
| continue; |
| SlotIndex Idx = getUseIndex(*Indexes, MO); |
| unsigned SubReg = MO.getSubReg(); |
| if (MO.isUse() && (LI.hasSubRanges() || SubReg != 0)) { |
| unsigned Mask = SubReg != 0 |
| ? TRI.getSubRegIndexLaneMask(SubReg) |
| : Mask = MRI->getMaxLaneMaskForVReg(Reg); |
| |
| // If this is the first time we see a subregister def/use. Initialize |
| // subranges by creating a copy of the main range. |
| if (!LI.hasSubRanges()) { |
| unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg); |
| LI.createSubRangeFrom(*Alloc, ClassMask, LI); |
| LiveOuts.insert(LiveOuts.begin(), LiveOutData()); |
| LiveOuts.front().reset(MF->getNumBlockIDs()); |
| ++NumSubRanges; |
| } |
| unsigned SubRangeIdx = 0; |
| for (LiveInterval::subrange_iterator S = LI.subrange_begin(), |
| SE = LI.subrange_end(); S != SE; ++S, ++SubRangeIdx) { |
| // A Mask for subregs common to the existing subrange and current def. |
| unsigned Common = S->LaneMask & Mask; |
| if (Common == 0) |
| continue; |
| // A Mask for subregs covered by the subrange but not the current def. |
| unsigned LRest = S->LaneMask & ~Mask; |
| LiveInterval::SubRange *CommonRange; |
| unsigned CommonRangeIdx; |
| if (LRest != 0) { |
| // Split current subrange into Common and LRest ranges. |
| S->LaneMask = LRest; |
| CommonRange = LI.createSubRangeFrom(*Alloc, Common, *S); |
| CommonRangeIdx = 0; |
| LiveOuts.insert(LiveOuts.begin(), LiveOutData()); |
| LiveOuts.front().reset(MF->getNumBlockIDs()); |
| ++NumSubRanges; |
| ++SubRangeIdx; |
| } else { |
| // The subrange and current def lanemasks match completely. |
| assert(Common == S->LaneMask); |
| CommonRange = &*S; |
| CommonRangeIdx = SubRangeIdx; |
| } |
| extend(*CommonRange, Idx, Reg, LiveOuts[CommonRangeIdx]); |
| Mask &= ~Common; |
| } |
| assert(SubRangeIdx == NumSubRanges); |
| } |
| extend(LI, Idx, Reg, MainLiveOutData); |
| } |
| } |
| |
| |
| void LiveRangeCalc::updateFromLiveIns(LiveOutData &LiveOuts) { |
| LiveRangeUpdater Updater; |
| for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(), |
| E = LiveIn.end(); I != E; ++I) { |
| if (!I->DomNode) |
| continue; |
| MachineBasicBlock *MBB = I->DomNode->getBlock(); |
| assert(I->Value && "No live-in value found"); |
| SlotIndex Start, End; |
| std::tie(Start, End) = Indexes->getMBBRange(MBB); |
| |
| if (I->Kill.isValid()) |
| // Value is killed inside this block. |
| End = I->Kill; |
| else { |
| // The value is live-through, update LiveOut as well. |
| // Defer the Domtree lookup until it is needed. |
| assert(LiveOuts.Seen.test(MBB->getNumber())); |
| LiveOuts.Map[MBB] = LiveOutPair(I->Value, nullptr); |
| } |
| Updater.setDest(&I->LR); |
| Updater.add(Start, End, I->Value); |
| } |
| LiveIn.clear(); |
| } |
| |
| |
| void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg, |
| LiveOutData &LiveOuts) { |
| assert(Kill.isValid() && "Invalid SlotIndex"); |
| assert(Indexes && "Missing SlotIndexes"); |
| assert(DomTree && "Missing dominator tree"); |
| |
| MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill.getPrevSlot()); |
| assert(KillMBB && "No MBB at Kill"); |
| |
| // Is there a def in the same MBB we can extend? |
| if (LR.extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill)) |
| return; |
| |
| // Find the single reaching def, or determine if Kill is jointly dominated by |
| // multiple values, and we may need to create even more phi-defs to preserve |
| // VNInfo SSA form. Perform a search for all predecessor blocks where we |
| // know the dominating VNInfo. |
| if (findReachingDefs(LR, *KillMBB, Kill, PhysReg, LiveOuts)) |
| return; |
| |
| // When there were multiple different values, we may need new PHIs. |
| calculateValues(LiveOuts); |
| } |
| |
| |
| // This function is called by a client after using the low-level API to add |
| // live-out and live-in blocks. The unique value optimization is not |
| // available, SplitEditor::transferValues handles that case directly anyway. |
| void LiveRangeCalc::calculateValues(LiveOutData &LiveOuts) { |
| assert(Indexes && "Missing SlotIndexes"); |
| assert(DomTree && "Missing dominator tree"); |
| updateSSA(LiveOuts); |
| updateFromLiveIns(LiveOuts); |
| } |
| |
| |
| bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB, |
| SlotIndex Kill, unsigned PhysReg, |
| LiveOutData &LiveOuts) { |
| unsigned KillMBBNum = KillMBB.getNumber(); |
| |
| // Block numbers where LR should be live-in. |
| SmallVector<unsigned, 16> WorkList(1, KillMBBNum); |
| |
| // Remember if we have seen more than one value. |
| bool UniqueVNI = true; |
| VNInfo *TheVNI = nullptr; |
| |
| // Using Seen as a visited set, perform a BFS for all reaching defs. |
| for (unsigned i = 0; i != WorkList.size(); ++i) { |
| MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); |
| |
| #ifndef NDEBUG |
| if (MBB->pred_empty()) { |
| MBB->getParent()->verify(); |
| llvm_unreachable("Use not jointly dominated by defs."); |
| } |
| |
| if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && |
| !MBB->isLiveIn(PhysReg)) { |
| MBB->getParent()->verify(); |
| errs() << "The register needs to be live in to BB#" << MBB->getNumber() |
| << ", but is missing from the live-in list.\n"; |
| llvm_unreachable("Invalid global physical register"); |
| } |
| #endif |
| |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| MachineBasicBlock *Pred = *PI; |
| |
| // Is this a known live-out block? |
| if (LiveOuts.Seen.test(Pred->getNumber())) { |
| if (VNInfo *VNI = LiveOuts.Map[Pred].first) { |
| if (TheVNI && TheVNI != VNI) |
| UniqueVNI = false; |
| TheVNI = VNI; |
| } |
| continue; |
| } |
| |
| SlotIndex Start, End; |
| std::tie(Start, End) = Indexes->getMBBRange(Pred); |
| |
| // First time we see Pred. Try to determine the live-out value, but set |
| // it as null if Pred is live-through with an unknown value. |
| VNInfo *VNI = LR.extendInBlock(Start, End); |
| LiveOuts.setLiveOutValue(Pred, VNI); |
| if (VNI) { |
| if (TheVNI && TheVNI != VNI) |
| UniqueVNI = false; |
| TheVNI = VNI; |
| continue; |
| } |
| |
| // No, we need a live-in value for Pred as well |
| if (Pred != &KillMBB) |
| WorkList.push_back(Pred->getNumber()); |
| else |
| // Loopback to KillMBB, so value is really live through. |
| Kill = SlotIndex(); |
| } |
| } |
| |
| LiveIn.clear(); |
| |
| // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but |
| // neither require it. Skip the sorting overhead for small updates. |
| if (WorkList.size() > 4) |
| array_pod_sort(WorkList.begin(), WorkList.end()); |
| |
| // If a unique reaching def was found, blit in the live ranges immediately. |
| if (UniqueVNI) { |
| LiveRangeUpdater Updater(&LR); |
| for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(), |
| E = WorkList.end(); I != E; ++I) { |
| SlotIndex Start, End; |
| std::tie(Start, End) = Indexes->getMBBRange(*I); |
| // Trim the live range in KillMBB. |
| if (*I == KillMBBNum && Kill.isValid()) |
| End = Kill; |
| else |
| LiveOuts.Map[MF->getBlockNumbered(*I)] = |
| LiveOutPair(TheVNI, nullptr); |
| Updater.add(Start, End, TheVNI); |
| } |
| return true; |
| } |
| |
| // Multiple values were found, so transfer the work list to the LiveIn array |
| // where UpdateSSA will use it as a work list. |
| LiveIn.reserve(WorkList.size()); |
| for (SmallVectorImpl<unsigned>::const_iterator |
| I = WorkList.begin(), E = WorkList.end(); I != E; ++I) { |
| MachineBasicBlock *MBB = MF->getBlockNumbered(*I); |
| addLiveInBlock(LR, DomTree->getNode(MBB)); |
| if (MBB == &KillMBB) |
| LiveIn.back().Kill = Kill; |
| } |
| |
| return false; |
| } |
| |
| |
| // This is essentially the same iterative algorithm that SSAUpdater uses, |
| // except we already have a dominator tree, so we don't have to recompute it. |
| void LiveRangeCalc::updateSSA(LiveOutData &LiveOuts) { |
| assert(Indexes && "Missing SlotIndexes"); |
| assert(DomTree && "Missing dominator tree"); |
| |
| // Interate until convergence. |
| unsigned Changes; |
| do { |
| Changes = 0; |
| // Propagate live-out values down the dominator tree, inserting phi-defs |
| // when necessary. |
| for (SmallVectorImpl<LiveInBlock>::iterator I = LiveIn.begin(), |
| E = LiveIn.end(); I != E; ++I) { |
| MachineDomTreeNode *Node = I->DomNode; |
| // Skip block if the live-in value has already been determined. |
| if (!Node) |
| continue; |
| MachineBasicBlock *MBB = Node->getBlock(); |
| MachineDomTreeNode *IDom = Node->getIDom(); |
| LiveOutPair IDomValue; |
| |
| // We need a live-in value to a block with no immediate dominator? |
| // This is probably an unreachable block that has survived somehow. |
| bool needPHI = !IDom |
| || !LiveOuts.Seen.test(IDom->getBlock()->getNumber()); |
| |
| // IDom dominates all of our predecessors, but it may not be their |
| // immediate dominator. Check if any of them have live-out values that are |
| // properly dominated by IDom. If so, we need a phi-def here. |
| if (!needPHI) { |
| IDomValue = LiveOuts.Map[IDom->getBlock()]; |
| |
| // Cache the DomTree node that defined the value. |
| if (IDomValue.first && !IDomValue.second) |
| LiveOuts.Map[IDom->getBlock()].second = IDomValue.second = |
| DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); |
| |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| LiveOutPair &Value = LiveOuts.Map[*PI]; |
| if (!Value.first || Value.first == IDomValue.first) |
| continue; |
| |
| // Cache the DomTree node that defined the value. |
| if (!Value.second) |
| Value.second = |
| DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); |
| |
| // This predecessor is carrying something other than IDomValue. |
| // It could be because IDomValue hasn't propagated yet, or it could be |
| // because MBB is in the dominance frontier of that value. |
| if (DomTree->dominates(IDom, Value.second)) { |
| needPHI = true; |
| break; |
| } |
| } |
| } |
| |
| // The value may be live-through even if Kill is set, as can happen when |
| // we are called from extendRange. In that case LiveOutSeen is true, and |
| // LiveOut indicates a foreign or missing value. |
| LiveOutPair &LOP = LiveOuts.Map[MBB]; |
| |
| // Create a phi-def if required. |
| if (needPHI) { |
| ++Changes; |
| assert(Alloc && "Need VNInfo allocator to create PHI-defs"); |
| SlotIndex Start, End; |
| std::tie(Start, End) = Indexes->getMBBRange(MBB); |
| LiveRange &LR = I->LR; |
| VNInfo *VNI = LR.getNextValue(Start, *Alloc); |
| I->Value = VNI; |
| // This block is done, we know the final value. |
| I->DomNode = nullptr; |
| |
| // Add liveness since updateFromLiveIns now skips this node. |
| if (I->Kill.isValid()) |
| LR.addSegment(LiveInterval::Segment(Start, I->Kill, VNI)); |
| else { |
| LR.addSegment(LiveInterval::Segment(Start, End, VNI)); |
| LOP = LiveOutPair(VNI, Node); |
| } |
| } else if (IDomValue.first) { |
| // No phi-def here. Remember incoming value. |
| I->Value = IDomValue.first; |
| |
| // If the IDomValue is killed in the block, don't propagate through. |
| if (I->Kill.isValid()) |
| continue; |
| |
| // Propagate IDomValue if it isn't killed: |
| // MBB is live-out and doesn't define its own value. |
| if (LOP.first == IDomValue.first) |
| continue; |
| ++Changes; |
| LOP = IDomValue; |
| } |
| } |
| } while (Changes); |
| } |