|  | //===- FunctionSpecialization.cpp - Function Specialization ---------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/FunctionSpecialization.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/CodeMetrics.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueLattice.h" | 
|  | #include "llvm/Analysis/ValueLatticeUtils.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/Transforms/Scalar/SCCP.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/SCCPSolver.h" | 
|  | #include "llvm/Transforms/Utils/SizeOpts.h" | 
|  | #include <cmath> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "function-specialization" | 
|  |  | 
|  | STATISTIC(NumSpecsCreated, "Number of specializations created"); | 
|  |  | 
|  | static cl::opt<bool> ForceSpecialization( | 
|  | "force-specialization", cl::init(false), cl::Hidden, cl::desc( | 
|  | "Force function specialization for every call site with a constant " | 
|  | "argument")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxClones( | 
|  | "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( | 
|  | "The maximum number of clones allowed for a single function " | 
|  | "specialization")); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100), | 
|  | cl::Hidden, | 
|  | cl::desc("The maximum number of iterations allowed " | 
|  | "when searching for transitive " | 
|  | "phis")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxIncomingPhiValues( | 
|  | "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden, | 
|  | cl::desc("The maximum number of incoming values a PHI node can have to be " | 
|  | "considered during the specialization bonus estimation")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxBlockPredecessors( | 
|  | "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc( | 
|  | "The maximum number of predecessors a basic block can have to be " | 
|  | "considered during the estimation of dead code")); | 
|  |  | 
|  | static cl::opt<unsigned> MinFunctionSize( | 
|  | "funcspec-min-function-size", cl::init(500), cl::Hidden, | 
|  | cl::desc("Don't specialize functions that have less than this number of " | 
|  | "instructions")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxCodeSizeGrowth( | 
|  | "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc( | 
|  | "Maximum codesize growth allowed per function")); | 
|  |  | 
|  | static cl::opt<unsigned> MinCodeSizeSavings( | 
|  | "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, | 
|  | cl::desc("Reject specializations whose codesize savings are less than this " | 
|  | "much percent of the original function size")); | 
|  |  | 
|  | static cl::opt<unsigned> MinLatencySavings( | 
|  | "funcspec-min-latency-savings", cl::init(20), cl::Hidden, | 
|  | cl::desc("Reject specializations whose latency savings are less than this " | 
|  | "much percent of the original function size")); | 
|  |  | 
|  | static cl::opt<unsigned> MinInliningBonus( | 
|  | "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, | 
|  | cl::desc("Reject specializations whose inlining bonus is less than this " | 
|  | "much percent of the original function size")); | 
|  |  | 
|  | static cl::opt<bool> SpecializeOnAddress( | 
|  | "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( | 
|  | "Enable function specialization on the address of global values")); | 
|  |  | 
|  | static cl::opt<bool> SpecializeLiteralConstant( | 
|  | "funcspec-for-literal-constant", cl::init(true), cl::Hidden, | 
|  | cl::desc( | 
|  | "Enable specialization of functions that take a literal constant as an " | 
|  | "argument")); | 
|  |  | 
|  | bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, | 
|  | BasicBlock *Succ) const { | 
|  | unsigned I = 0; | 
|  | return all_of(predecessors(Succ), [&I, BB, Succ, this](BasicBlock *Pred) { | 
|  | return I++ < MaxBlockPredecessors && | 
|  | (Pred == BB || Pred == Succ || !isBlockExecutable(Pred)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Estimates the codesize savings due to dead code after constant propagation. | 
|  | // \p WorkList represents the basic blocks of a specialization which will | 
|  | // eventually become dead once we replace instructions that are known to be | 
|  | // constants. The successors of such blocks are added to the list as long as | 
|  | // the \p Solver found they were executable prior to specialization, and only | 
|  | // if all their predecessors are dead. | 
|  | Cost InstCostVisitor::estimateBasicBlocks( | 
|  | SmallVectorImpl<BasicBlock *> &WorkList) { | 
|  | Cost CodeSize = 0; | 
|  | // Accumulate the codesize savings of each basic block. | 
|  | while (!WorkList.empty()) { | 
|  | BasicBlock *BB = WorkList.pop_back_val(); | 
|  |  | 
|  | // These blocks are considered dead as far as the InstCostVisitor | 
|  | // is concerned. They haven't been proven dead yet by the Solver, | 
|  | // but may become if we propagate the specialization arguments. | 
|  | assert(Solver.isBlockExecutable(BB) && "BB already found dead by IPSCCP!"); | 
|  | if (!DeadBlocks.insert(BB).second) | 
|  | continue; | 
|  |  | 
|  | for (Instruction &I : *BB) { | 
|  | // If it's a known constant we have already accounted for it. | 
|  | if (KnownConstants.contains(&I)) | 
|  | continue; | 
|  |  | 
|  | Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization:     CodeSize " << C | 
|  | << " for user " << I << "\n"); | 
|  | CodeSize += C; | 
|  | } | 
|  |  | 
|  | // Keep adding dead successors to the list as long as they are | 
|  | // executable and only reachable from dead blocks. | 
|  | for (BasicBlock *SuccBB : successors(BB)) | 
|  | if (isBlockExecutable(SuccBB) && canEliminateSuccessor(BB, SuccBB)) | 
|  | WorkList.push_back(SuccBB); | 
|  | } | 
|  | return CodeSize; | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::findConstantFor(Value *V) const { | 
|  | if (auto *C = dyn_cast<Constant>(V)) | 
|  | return C; | 
|  | if (auto *C = Solver.getConstantOrNull(V)) | 
|  | return C; | 
|  | return KnownConstants.lookup(V); | 
|  | } | 
|  |  | 
|  | Cost InstCostVisitor::getCodeSizeSavingsFromPendingPHIs() { | 
|  | Cost CodeSize; | 
|  | while (!PendingPHIs.empty()) { | 
|  | Instruction *Phi = PendingPHIs.pop_back_val(); | 
|  | // The pending PHIs could have been proven dead by now. | 
|  | if (isBlockExecutable(Phi->getParent())) | 
|  | CodeSize += getCodeSizeSavingsForUser(Phi); | 
|  | } | 
|  | return CodeSize; | 
|  | } | 
|  |  | 
|  | /// Compute the codesize savings for replacing argument \p A with constant \p C. | 
|  | Cost InstCostVisitor::getCodeSizeSavingsForArg(Argument *A, Constant *C) { | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " | 
|  | << C->getNameOrAsOperand() << "\n"); | 
|  | Cost CodeSize; | 
|  | for (auto *U : A->users()) | 
|  | if (auto *UI = dyn_cast<Instruction>(U)) | 
|  | if (isBlockExecutable(UI->getParent())) | 
|  | CodeSize += getCodeSizeSavingsForUser(UI, A, C); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated bonus {CodeSize = " | 
|  | << CodeSize << "} for argument " << *A << "\n"); | 
|  | return CodeSize; | 
|  | } | 
|  |  | 
|  | /// Compute the latency savings from replacing all arguments with constants for | 
|  | /// a specialization candidate. As this function computes the latency savings | 
|  | /// for all Instructions in KnownConstants at once, it should be called only | 
|  | /// after every instruction has been visited, i.e. after: | 
|  | /// | 
|  | /// * getCodeSizeSavingsForArg has been run for every constant argument of a | 
|  | ///   specialization candidate | 
|  | /// | 
|  | /// * getCodeSizeSavingsFromPendingPHIs has been run | 
|  | /// | 
|  | /// to ensure that the latency savings are calculated for all Instructions we | 
|  | /// have visited and found to be constant. | 
|  | Cost InstCostVisitor::getLatencySavingsForKnownConstants() { | 
|  | auto &BFI = GetBFI(*F); | 
|  | Cost TotalLatency = 0; | 
|  |  | 
|  | for (auto Pair : KnownConstants) { | 
|  | Instruction *I = dyn_cast<Instruction>(Pair.first); | 
|  | if (!I) | 
|  | continue; | 
|  |  | 
|  | uint64_t Weight = BFI.getBlockFreq(I->getParent()).getFrequency() / | 
|  | BFI.getEntryFreq().getFrequency(); | 
|  |  | 
|  | Cost Latency = | 
|  | Weight * TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization:     {Latency = " << Latency | 
|  | << "} for instruction " << *I << "\n"); | 
|  |  | 
|  | TotalLatency += Latency; | 
|  | } | 
|  |  | 
|  | return TotalLatency; | 
|  | } | 
|  |  | 
|  | Cost InstCostVisitor::getCodeSizeSavingsForUser(Instruction *User, Value *Use, | 
|  | Constant *C) { | 
|  | // We have already propagated a constant for this user. | 
|  | if (KnownConstants.contains(User)) | 
|  | return 0; | 
|  |  | 
|  | // Cache the iterator before visiting. | 
|  | LastVisited = Use ? KnownConstants.insert({Use, C}).first | 
|  | : KnownConstants.end(); | 
|  |  | 
|  | Cost CodeSize = 0; | 
|  | if (auto *I = dyn_cast<SwitchInst>(User)) { | 
|  | CodeSize = estimateSwitchInst(*I); | 
|  | } else if (auto *I = dyn_cast<BranchInst>(User)) { | 
|  | CodeSize = estimateBranchInst(*I); | 
|  | } else { | 
|  | C = visit(*User); | 
|  | if (!C) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Even though it doesn't make sense to bind switch and branch instructions | 
|  | // with a constant, unlike any other instruction type, it prevents estimating | 
|  | // their bonus multiple times. | 
|  | KnownConstants.insert({User, C}); | 
|  |  | 
|  | CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization:     {CodeSize = " << CodeSize | 
|  | << "} for user " << *User << "\n"); | 
|  |  | 
|  | for (auto *U : User->users()) | 
|  | if (auto *UI = dyn_cast<Instruction>(U)) | 
|  | if (UI != User && isBlockExecutable(UI->getParent())) | 
|  | CodeSize += getCodeSizeSavingsForUser(UI, User, C); | 
|  |  | 
|  | return CodeSize; | 
|  | } | 
|  |  | 
|  | Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | if (I.getCondition() != LastVisited->first) | 
|  | return 0; | 
|  |  | 
|  | auto *C = dyn_cast<ConstantInt>(LastVisited->second); | 
|  | if (!C) | 
|  | return 0; | 
|  |  | 
|  | BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); | 
|  | // Initialize the worklist with the dead basic blocks. These are the | 
|  | // destination labels which are different from the one corresponding | 
|  | // to \p C. They should be executable and have a unique predecessor. | 
|  | SmallVector<BasicBlock *> WorkList; | 
|  | for (const auto &Case : I.cases()) { | 
|  | BasicBlock *BB = Case.getCaseSuccessor(); | 
|  | if (BB != Succ && isBlockExecutable(BB) && | 
|  | canEliminateSuccessor(I.getParent(), BB)) | 
|  | WorkList.push_back(BB); | 
|  | } | 
|  |  | 
|  | return estimateBasicBlocks(WorkList); | 
|  | } | 
|  |  | 
|  | Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | if (I.getCondition() != LastVisited->first) | 
|  | return 0; | 
|  |  | 
|  | BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); | 
|  | // Initialize the worklist with the dead successor as long as | 
|  | // it is executable and has a unique predecessor. | 
|  | SmallVector<BasicBlock *> WorkList; | 
|  | if (isBlockExecutable(Succ) && canEliminateSuccessor(I.getParent(), Succ)) | 
|  | WorkList.push_back(Succ); | 
|  |  | 
|  | return estimateBasicBlocks(WorkList); | 
|  | } | 
|  |  | 
|  | bool InstCostVisitor::discoverTransitivelyIncomingValues( | 
|  | Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) { | 
|  |  | 
|  | SmallVector<PHINode *, 64> WorkList; | 
|  | WorkList.push_back(Root); | 
|  | unsigned Iter = 0; | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | PHINode *PN = WorkList.pop_back_val(); | 
|  |  | 
|  | if (++Iter > MaxDiscoveryIterations || | 
|  | PN->getNumIncomingValues() > MaxIncomingPhiValues) | 
|  | return false; | 
|  |  | 
|  | if (!TransitivePHIs.insert(PN).second) | 
|  | continue; | 
|  |  | 
|  | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { | 
|  | Value *V = PN->getIncomingValue(I); | 
|  |  | 
|  | // Disregard self-references and dead incoming values. | 
|  | if (auto *Inst = dyn_cast<Instruction>(V)) | 
|  | if (Inst == PN || !isBlockExecutable(PN->getIncomingBlock(I))) | 
|  | continue; | 
|  |  | 
|  | if (Constant *C = findConstantFor(V)) { | 
|  | // Not all incoming values are the same constant. Bail immediately. | 
|  | if (C != Const) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (auto *Phi = dyn_cast<PHINode>(V)) { | 
|  | WorkList.push_back(Phi); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We can't reason about anything else. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitPHINode(PHINode &I) { | 
|  | if (I.getNumIncomingValues() > MaxIncomingPhiValues) | 
|  | return nullptr; | 
|  |  | 
|  | bool Inserted = VisitedPHIs.insert(&I).second; | 
|  | Constant *Const = nullptr; | 
|  | bool HaveSeenIncomingPHI = false; | 
|  |  | 
|  | for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) { | 
|  | Value *V = I.getIncomingValue(Idx); | 
|  |  | 
|  | // Disregard self-references and dead incoming values. | 
|  | if (auto *Inst = dyn_cast<Instruction>(V)) | 
|  | if (Inst == &I || !isBlockExecutable(I.getIncomingBlock(Idx))) | 
|  | continue; | 
|  |  | 
|  | if (Constant *C = findConstantFor(V)) { | 
|  | if (!Const) | 
|  | Const = C; | 
|  | // Not all incoming values are the same constant. Bail immediately. | 
|  | if (C != Const) | 
|  | return nullptr; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Inserted) { | 
|  | // First time we are seeing this phi. We will retry later, after | 
|  | // all the constant arguments have been propagated. Bail for now. | 
|  | PendingPHIs.push_back(&I); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (isa<PHINode>(V)) { | 
|  | // Perhaps it is a Transitive Phi. We will confirm later. | 
|  | HaveSeenIncomingPHI = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We can't reason about anything else. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!Const) | 
|  | return nullptr; | 
|  |  | 
|  | if (!HaveSeenIncomingPHI) | 
|  | return Const; | 
|  |  | 
|  | DenseSet<PHINode *> TransitivePHIs; | 
|  | if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs)) | 
|  | return nullptr; | 
|  |  | 
|  | return Const; | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) | 
|  | return LastVisited->second; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitCallBase(CallBase &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | // Look through calls to ssa_copy intrinsics. | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(&I); | 
|  | II && II->getIntrinsicID() == Intrinsic::ssa_copy) { | 
|  | return LastVisited->second; | 
|  | } | 
|  |  | 
|  | Function *F = I.getCalledFunction(); | 
|  | if (!F || !canConstantFoldCallTo(&I, F)) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<Constant *, 8> Operands; | 
|  | Operands.reserve(I.getNumOperands()); | 
|  |  | 
|  | for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { | 
|  | Value *V = I.getOperand(Idx); | 
|  | if (isa<MetadataAsValue>(V)) | 
|  | return nullptr; | 
|  | Constant *C = findConstantFor(V); | 
|  | if (!C) | 
|  | return nullptr; | 
|  | Operands.push_back(C); | 
|  | } | 
|  |  | 
|  | auto Ops = ArrayRef(Operands.begin(), Operands.end()); | 
|  | return ConstantFoldCall(&I, F, Ops); | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | if (isa<ConstantPointerNull>(LastVisited->second)) | 
|  | return nullptr; | 
|  | return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | SmallVector<Constant *, 8> Operands; | 
|  | Operands.reserve(I.getNumOperands()); | 
|  |  | 
|  | for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { | 
|  | Value *V = I.getOperand(Idx); | 
|  | Constant *C = findConstantFor(V); | 
|  | if (!C) | 
|  | return nullptr; | 
|  | Operands.push_back(C); | 
|  | } | 
|  |  | 
|  | auto Ops = ArrayRef(Operands.begin(), Operands.end()); | 
|  | return ConstantFoldInstOperands(&I, Ops, DL); | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | if (I.getCondition() == LastVisited->first) { | 
|  | Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() | 
|  | : I.getTrueValue(); | 
|  | return findConstantFor(V); | 
|  | } | 
|  | if (Constant *Condition = findConstantFor(I.getCondition())) | 
|  | if ((I.getTrueValue() == LastVisited->first && Condition->isOneValue()) || | 
|  | (I.getFalseValue() == LastVisited->first && Condition->isZeroValue())) | 
|  | return LastVisited->second; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitCastInst(CastInst &I) { | 
|  | return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, | 
|  | I.getType(), DL); | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | Constant *Const = LastVisited->second; | 
|  | bool ConstOnRHS = I.getOperand(1) == LastVisited->first; | 
|  | Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1); | 
|  | Constant *Other = findConstantFor(V); | 
|  |  | 
|  | if (Other) { | 
|  | if (ConstOnRHS) | 
|  | std::swap(Const, Other); | 
|  | return ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); | 
|  | } | 
|  |  | 
|  | // If we haven't found Other to be a specific constant value, we may still be | 
|  | // able to constant fold using information from the lattice value. | 
|  | const ValueLatticeElement &ConstLV = ValueLatticeElement::get(Const); | 
|  | const ValueLatticeElement &OtherLV = Solver.getLatticeValueFor(V); | 
|  | auto &V1State = ConstOnRHS ? OtherLV : ConstLV; | 
|  | auto &V2State = ConstOnRHS ? ConstLV : OtherLV; | 
|  | return V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL); | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); | 
|  | } | 
|  |  | 
|  | Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { | 
|  | assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); | 
|  |  | 
|  | bool ConstOnRHS = I.getOperand(1) == LastVisited->first; | 
|  | Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1); | 
|  | Constant *Other = findConstantFor(V); | 
|  | Value *OtherVal = Other ? Other : V; | 
|  | Value *ConstVal = LastVisited->second; | 
|  |  | 
|  | if (ConstOnRHS) | 
|  | std::swap(ConstVal, OtherVal); | 
|  |  | 
|  | return dyn_cast_or_null<Constant>( | 
|  | simplifyBinOp(I.getOpcode(), ConstVal, OtherVal, SimplifyQuery(DL))); | 
|  | } | 
|  |  | 
|  | Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, | 
|  | CallInst *Call) { | 
|  | Value *StoreValue = nullptr; | 
|  | for (auto *User : Alloca->users()) { | 
|  | // We can't use llvm::isAllocaPromotable() as that would fail because of | 
|  | // the usage in the CallInst, which is what we check here. | 
|  | if (User == Call) | 
|  | continue; | 
|  |  | 
|  | if (auto *Store = dyn_cast<StoreInst>(User)) { | 
|  | // This is a duplicate store, bail out. | 
|  | if (StoreValue || Store->isVolatile()) | 
|  | return nullptr; | 
|  | StoreValue = Store->getValueOperand(); | 
|  | continue; | 
|  | } | 
|  | // Bail if there is any other unknown usage. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!StoreValue) | 
|  | return nullptr; | 
|  |  | 
|  | return getCandidateConstant(StoreValue); | 
|  | } | 
|  |  | 
|  | // A constant stack value is an AllocaInst that has a single constant | 
|  | // value stored to it. Return this constant if such an alloca stack value | 
|  | // is a function argument. | 
|  | Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, | 
|  | Value *Val) { | 
|  | if (!Val) | 
|  | return nullptr; | 
|  | Val = Val->stripPointerCasts(); | 
|  | if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) | 
|  | return ConstVal; | 
|  | auto *Alloca = dyn_cast<AllocaInst>(Val); | 
|  | if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) | 
|  | return nullptr; | 
|  | return getPromotableAlloca(Alloca, Call); | 
|  | } | 
|  |  | 
|  | // To support specializing recursive functions, it is important to propagate | 
|  | // constant arguments because after a first iteration of specialisation, a | 
|  | // reduced example may look like this: | 
|  | // | 
|  | //     define internal void @RecursiveFn(i32* arg1) { | 
|  | //       %temp = alloca i32, align 4 | 
|  | //       store i32 2 i32* %temp, align 4 | 
|  | //       call void @RecursiveFn.1(i32* nonnull %temp) | 
|  | //       ret void | 
|  | //     } | 
|  | // | 
|  | // Before a next iteration, we need to propagate the constant like so | 
|  | // which allows further specialization in next iterations. | 
|  | // | 
|  | //     @funcspec.arg = internal constant i32 2 | 
|  | // | 
|  | //     define internal void @someFunc(i32* arg1) { | 
|  | //       call void @otherFunc(i32* nonnull @funcspec.arg) | 
|  | //       ret void | 
|  | //     } | 
|  | // | 
|  | // See if there are any new constant values for the callers of \p F via | 
|  | // stack variables and promote them to global variables. | 
|  | void FunctionSpecializer::promoteConstantStackValues(Function *F) { | 
|  | for (User *U : F->users()) { | 
|  |  | 
|  | auto *Call = dyn_cast<CallInst>(U); | 
|  | if (!Call) | 
|  | continue; | 
|  |  | 
|  | if (!Solver.isBlockExecutable(Call->getParent())) | 
|  | continue; | 
|  |  | 
|  | for (const Use &U : Call->args()) { | 
|  | unsigned Idx = Call->getArgOperandNo(&U); | 
|  | Value *ArgOp = Call->getArgOperand(Idx); | 
|  | Type *ArgOpType = ArgOp->getType(); | 
|  |  | 
|  | if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) | 
|  | continue; | 
|  |  | 
|  | auto *ConstVal = getConstantStackValue(Call, ArgOp); | 
|  | if (!ConstVal) | 
|  | continue; | 
|  |  | 
|  | Value *GV = new GlobalVariable(M, ConstVal->getType(), true, | 
|  | GlobalValue::InternalLinkage, ConstVal, | 
|  | "specialized.arg." + Twine(++NGlobals)); | 
|  | Call->setArgOperand(Idx, GV); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics | 
|  | // interfere with the promoteConstantStackValues() optimization. | 
|  | static void removeSSACopy(Function &F) { | 
|  | for (BasicBlock &BB : F) { | 
|  | for (Instruction &Inst : llvm::make_early_inc_range(BB)) { | 
|  | auto *II = dyn_cast<IntrinsicInst>(&Inst); | 
|  | if (!II) | 
|  | continue; | 
|  | if (II->getIntrinsicID() != Intrinsic::ssa_copy) | 
|  | continue; | 
|  | Inst.replaceAllUsesWith(II->getOperand(0)); | 
|  | Inst.eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Remove any ssa_copy intrinsics that may have been introduced. | 
|  | void FunctionSpecializer::cleanUpSSA() { | 
|  | for (Function *F : Specializations) | 
|  | removeSSACopy(*F); | 
|  | } | 
|  |  | 
|  |  | 
|  | template <> struct llvm::DenseMapInfo<SpecSig> { | 
|  | static inline SpecSig getEmptyKey() { return {~0U, {}}; } | 
|  |  | 
|  | static inline SpecSig getTombstoneKey() { return {~1U, {}}; } | 
|  |  | 
|  | static unsigned getHashValue(const SpecSig &S) { | 
|  | return static_cast<unsigned>(hash_value(S)); | 
|  | } | 
|  |  | 
|  | static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  |  | 
|  | FunctionSpecializer::~FunctionSpecializer() { | 
|  | LLVM_DEBUG( | 
|  | if (NumSpecsCreated > 0) | 
|  | dbgs() << "FnSpecialization: Created " << NumSpecsCreated | 
|  | << " specializations in module " << M.getName() << "\n"); | 
|  | // Eliminate dead code. | 
|  | removeDeadFunctions(); | 
|  | cleanUpSSA(); | 
|  | } | 
|  |  | 
|  | /// Get the unsigned Value of given Cost object. Assumes the Cost is always | 
|  | /// non-negative, which is true for both TCK_CodeSize and TCK_Latency, and | 
|  | /// always Valid. | 
|  | static unsigned getCostValue(const Cost &C) { | 
|  | int64_t Value = C.getValue(); | 
|  |  | 
|  | assert(Value >= 0 && "CodeSize and Latency cannot be negative"); | 
|  | // It is safe to down cast since we know the arguments cannot be negative and | 
|  | // Cost is of type int64_t. | 
|  | return static_cast<unsigned>(Value); | 
|  | } | 
|  |  | 
|  | /// Attempt to specialize functions in the module to enable constant | 
|  | /// propagation across function boundaries. | 
|  | /// | 
|  | /// \returns true if at least one function is specialized. | 
|  | bool FunctionSpecializer::run() { | 
|  | // Find possible specializations for each function. | 
|  | SpecMap SM; | 
|  | SmallVector<Spec, 32> AllSpecs; | 
|  | unsigned NumCandidates = 0; | 
|  | for (Function &F : M) { | 
|  | if (!isCandidateFunction(&F)) | 
|  | continue; | 
|  |  | 
|  | auto [It, Inserted] = FunctionMetrics.try_emplace(&F); | 
|  | CodeMetrics &Metrics = It->second; | 
|  | //Analyze the function. | 
|  | if (Inserted) { | 
|  | SmallPtrSet<const Value *, 32> EphValues; | 
|  | CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); | 
|  | for (BasicBlock &BB : F) | 
|  | Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); | 
|  | } | 
|  |  | 
|  | // When specializing literal constants is enabled, always require functions | 
|  | // to be larger than MinFunctionSize, to prevent excessive specialization. | 
|  | const bool RequireMinSize = | 
|  | !ForceSpecialization && | 
|  | (SpecializeLiteralConstant || !F.hasFnAttribute(Attribute::NoInline)); | 
|  |  | 
|  | // If the code metrics reveal that we shouldn't duplicate the function, | 
|  | // or if the code size implies that this function is easy to get inlined, | 
|  | // then we shouldn't specialize it. | 
|  | if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || | 
|  | (RequireMinSize && Metrics.NumInsts < MinFunctionSize)) | 
|  | continue; | 
|  |  | 
|  | // When specialization on literal constants is disabled, only consider | 
|  | // recursive functions when running multiple times to save wasted analysis, | 
|  | // as we will not be able to specialize on any newly found literal constant | 
|  | // return values. | 
|  | if (!SpecializeLiteralConstant && !Inserted && !Metrics.isRecursive) | 
|  | continue; | 
|  |  | 
|  | int64_t Sz = Metrics.NumInsts.getValue(); | 
|  | assert(Sz > 0 && "CodeSize should be positive"); | 
|  | // It is safe to down cast from int64_t, NumInsts is always positive. | 
|  | unsigned FuncSize = static_cast<unsigned>(Sz); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " | 
|  | << F.getName() << " is " << FuncSize << "\n"); | 
|  |  | 
|  | if (Inserted && Metrics.isRecursive) | 
|  | promoteConstantStackValues(&F); | 
|  |  | 
|  | if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "FnSpecialization: No possible specializations found for " | 
|  | << F.getName() << "\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ++NumCandidates; | 
|  | } | 
|  |  | 
|  | if (!NumCandidates) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "FnSpecialization: No possible specializations found in module\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Choose the most profitable specialisations, which fit in the module | 
|  | // specialization budget, which is derived from maximum number of | 
|  | // specializations per specialization candidate function. | 
|  | auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { | 
|  | if (AllSpecs[I].Score != AllSpecs[J].Score) | 
|  | return AllSpecs[I].Score > AllSpecs[J].Score; | 
|  | return I > J; | 
|  | }; | 
|  | const unsigned NSpecs = | 
|  | std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); | 
|  | SmallVector<unsigned> BestSpecs(NSpecs + 1); | 
|  | std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); | 
|  | if (AllSpecs.size() > NSpecs) { | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " | 
|  | << "the maximum number of clones threshold.\n" | 
|  | << "FnSpecialization: Specializing the " | 
|  | << NSpecs | 
|  | << " most profitable candidates.\n"); | 
|  | std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); | 
|  | for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { | 
|  | BestSpecs[NSpecs] = I; | 
|  | std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); | 
|  | std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; | 
|  | for (unsigned I = 0; I < NSpecs; ++I) { | 
|  | const Spec &S = AllSpecs[BestSpecs[I]]; | 
|  | dbgs() << "FnSpecialization: Function " << S.F->getName() | 
|  | << " , score " << S.Score << "\n"; | 
|  | for (const ArgInfo &Arg : S.Sig.Args) | 
|  | dbgs() << "FnSpecialization:   FormalArg = " | 
|  | << Arg.Formal->getNameOrAsOperand() | 
|  | << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() | 
|  | << "\n"; | 
|  | }); | 
|  |  | 
|  | // Create the chosen specializations. | 
|  | SmallPtrSet<Function *, 8> OriginalFuncs; | 
|  | SmallVector<Function *> Clones; | 
|  | for (unsigned I = 0; I < NSpecs; ++I) { | 
|  | Spec &S = AllSpecs[BestSpecs[I]]; | 
|  |  | 
|  | // Accumulate the codesize growth for the function, now we are creating the | 
|  | // specialization. | 
|  | FunctionGrowth[S.F] += S.CodeSize; | 
|  |  | 
|  | S.Clone = createSpecialization(S.F, S.Sig); | 
|  |  | 
|  | // Update the known call sites to call the clone. | 
|  | for (CallBase *Call : S.CallSites) { | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call | 
|  | << " to call " << S.Clone->getName() << "\n"); | 
|  | Call->setCalledFunction(S.Clone); | 
|  | } | 
|  |  | 
|  | Clones.push_back(S.Clone); | 
|  | OriginalFuncs.insert(S.F); | 
|  | } | 
|  |  | 
|  | Solver.solveWhileResolvedUndefsIn(Clones); | 
|  |  | 
|  | // Update the rest of the call sites - these are the recursive calls, calls | 
|  | // to discarded specialisations and calls that may match a specialisation | 
|  | // after the solver runs. | 
|  | for (Function *F : OriginalFuncs) { | 
|  | auto [Begin, End] = SM[F]; | 
|  | updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); | 
|  | } | 
|  |  | 
|  | for (Function *F : Clones) { | 
|  | if (F->getReturnType()->isVoidTy()) | 
|  | continue; | 
|  | if (F->getReturnType()->isStructTy()) { | 
|  | auto *STy = cast<StructType>(F->getReturnType()); | 
|  | if (!Solver.isStructLatticeConstant(F, STy)) | 
|  | continue; | 
|  | } else { | 
|  | auto It = Solver.getTrackedRetVals().find(F); | 
|  | assert(It != Solver.getTrackedRetVals().end() && | 
|  | "Return value ought to be tracked"); | 
|  | if (SCCPSolver::isOverdefined(It->second)) | 
|  | continue; | 
|  | } | 
|  | for (User *U : F->users()) { | 
|  | if (auto *CS = dyn_cast<CallBase>(U)) { | 
|  | //The user instruction does not call our function. | 
|  | if (CS->getCalledFunction() != F) | 
|  | continue; | 
|  | Solver.resetLatticeValueFor(CS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rerun the solver to notify the users of the modified callsites. | 
|  | Solver.solveWhileResolvedUndefs(); | 
|  |  | 
|  | for (Function *F : OriginalFuncs) | 
|  | if (FunctionMetrics[F].isRecursive) | 
|  | promoteConstantStackValues(F); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void FunctionSpecializer::removeDeadFunctions() { | 
|  | for (Function *F : FullySpecialized) { | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " | 
|  | << F->getName() << "\n"); | 
|  | if (FAM) | 
|  | FAM->clear(*F, F->getName()); | 
|  | F->eraseFromParent(); | 
|  | } | 
|  | FullySpecialized.clear(); | 
|  | } | 
|  |  | 
|  | /// Clone the function \p F and remove the ssa_copy intrinsics added by | 
|  | /// the SCCPSolver in the cloned version. | 
|  | static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) { | 
|  | ValueToValueMapTy Mappings; | 
|  | Function *Clone = CloneFunction(F, Mappings); | 
|  | Clone->setName(F->getName() + ".specialized." + Twine(NSpecs)); | 
|  | removeSSACopy(*Clone); | 
|  | return Clone; | 
|  | } | 
|  |  | 
|  | bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize, | 
|  | SmallVectorImpl<Spec> &AllSpecs, | 
|  | SpecMap &SM) { | 
|  | // A mapping from a specialisation signature to the index of the respective | 
|  | // entry in the all specialisation array. Used to ensure uniqueness of | 
|  | // specialisations. | 
|  | DenseMap<SpecSig, unsigned> UniqueSpecs; | 
|  |  | 
|  | // Get a list of interesting arguments. | 
|  | SmallVector<Argument *> Args; | 
|  | for (Argument &Arg : F->args()) | 
|  | if (isArgumentInteresting(&Arg)) | 
|  | Args.push_back(&Arg); | 
|  |  | 
|  | if (Args.empty()) | 
|  | return false; | 
|  |  | 
|  | for (User *U : F->users()) { | 
|  | if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) | 
|  | continue; | 
|  | auto &CS = *cast<CallBase>(U); | 
|  |  | 
|  | // The user instruction does not call our function. | 
|  | if (CS.getCalledFunction() != F) | 
|  | continue; | 
|  |  | 
|  | // If the call site has attribute minsize set, that callsite won't be | 
|  | // specialized. | 
|  | if (CS.hasFnAttr(Attribute::MinSize)) | 
|  | continue; | 
|  |  | 
|  | // If the parent of the call site will never be executed, we don't need | 
|  | // to worry about the passed value. | 
|  | if (!Solver.isBlockExecutable(CS.getParent())) | 
|  | continue; | 
|  |  | 
|  | // Examine arguments and create a specialisation candidate from the | 
|  | // constant operands of this call site. | 
|  | SpecSig S; | 
|  | for (Argument *A : Args) { | 
|  | Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); | 
|  | if (!C) | 
|  | continue; | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " | 
|  | << A->getName() << " : " << C->getNameOrAsOperand() | 
|  | << "\n"); | 
|  | S.Args.push_back({A, C}); | 
|  | } | 
|  |  | 
|  | if (S.Args.empty()) | 
|  | continue; | 
|  |  | 
|  | // Check if we have encountered the same specialisation already. | 
|  | if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { | 
|  | // Existing specialisation. Add the call to the list to rewrite, unless | 
|  | // it's a recursive call. A specialisation, generated because of a | 
|  | // recursive call may end up as not the best specialisation for all | 
|  | // the cloned instances of this call, which result from specialising | 
|  | // functions. Hence we don't rewrite the call directly, but match it with | 
|  | // the best specialisation once all specialisations are known. | 
|  | if (CS.getFunction() == F) | 
|  | continue; | 
|  | const unsigned Index = It->second; | 
|  | AllSpecs[Index].CallSites.push_back(&CS); | 
|  | } else { | 
|  | // Calculate the specialisation gain. | 
|  | Cost CodeSize; | 
|  | unsigned Score = 0; | 
|  | InstCostVisitor Visitor = getInstCostVisitorFor(F); | 
|  | for (ArgInfo &A : S.Args) { | 
|  | CodeSize += Visitor.getCodeSizeSavingsForArg(A.Formal, A.Actual); | 
|  | Score += getInliningBonus(A.Formal, A.Actual); | 
|  | } | 
|  | CodeSize += Visitor.getCodeSizeSavingsFromPendingPHIs(); | 
|  |  | 
|  | unsigned CodeSizeSavings = getCostValue(CodeSize); | 
|  | unsigned SpecSize = FuncSize - CodeSizeSavings; | 
|  |  | 
|  | auto IsProfitable = [&]() -> bool { | 
|  | // No check required. | 
|  | if (ForceSpecialization) | 
|  | return true; | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "FnSpecialization: Specialization bonus {Inlining = " | 
|  | << Score << " (" << (Score * 100 / FuncSize) << "%)}\n"); | 
|  |  | 
|  | // Minimum inlining bonus. | 
|  | if (Score > MinInliningBonus * FuncSize / 100) | 
|  | return true; | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "FnSpecialization: Specialization bonus {CodeSize = " | 
|  | << CodeSizeSavings << " (" | 
|  | << (CodeSizeSavings * 100 / FuncSize) << "%)}\n"); | 
|  |  | 
|  | // Minimum codesize savings. | 
|  | if (CodeSizeSavings < MinCodeSizeSavings * FuncSize / 100) | 
|  | return false; | 
|  |  | 
|  | // Lazily compute the Latency, to avoid unnecessarily computing BFI. | 
|  | unsigned LatencySavings = | 
|  | getCostValue(Visitor.getLatencySavingsForKnownConstants()); | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "FnSpecialization: Specialization bonus {Latency = " | 
|  | << LatencySavings << " (" | 
|  | << (LatencySavings * 100 / FuncSize) << "%)}\n"); | 
|  |  | 
|  | // Minimum latency savings. | 
|  | if (LatencySavings < MinLatencySavings * FuncSize / 100) | 
|  | return false; | 
|  | // Maximum codesize growth. | 
|  | if ((FunctionGrowth[F] + SpecSize) / FuncSize > MaxCodeSizeGrowth) | 
|  | return false; | 
|  |  | 
|  | Score += std::max(CodeSizeSavings, LatencySavings); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Discard unprofitable specialisations. | 
|  | if (!IsProfitable()) | 
|  | continue; | 
|  |  | 
|  | // Create a new specialisation entry. | 
|  | auto &Spec = AllSpecs.emplace_back(F, S, Score, SpecSize); | 
|  | if (CS.getFunction() != F) | 
|  | Spec.CallSites.push_back(&CS); | 
|  | const unsigned Index = AllSpecs.size() - 1; | 
|  | UniqueSpecs[S] = Index; | 
|  | if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) | 
|  | It->second.second = Index + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return !UniqueSpecs.empty(); | 
|  | } | 
|  |  | 
|  | bool FunctionSpecializer::isCandidateFunction(Function *F) { | 
|  | if (F->isDeclaration() || F->arg_empty()) | 
|  | return false; | 
|  |  | 
|  | if (F->hasFnAttribute(Attribute::NoDuplicate)) | 
|  | return false; | 
|  |  | 
|  | // Do not specialize the cloned function again. | 
|  | if (Specializations.contains(F)) | 
|  | return false; | 
|  |  | 
|  | // If we're optimizing the function for size, we shouldn't specialize it. | 
|  | if (shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) | 
|  | return false; | 
|  |  | 
|  | // Exit if the function is not executable. There's no point in specializing | 
|  | // a dead function. | 
|  | if (!Solver.isBlockExecutable(&F->getEntryBlock())) | 
|  | return false; | 
|  |  | 
|  | // It wastes time to specialize a function which would get inlined finally. | 
|  | if (F->hasFnAttribute(Attribute::AlwaysInline)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() | 
|  | << "\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Function *FunctionSpecializer::createSpecialization(Function *F, | 
|  | const SpecSig &S) { | 
|  | Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1); | 
|  |  | 
|  | // The original function does not neccessarily have internal linkage, but the | 
|  | // clone must. | 
|  | Clone->setLinkage(GlobalValue::InternalLinkage); | 
|  |  | 
|  | // Initialize the lattice state of the arguments of the function clone, | 
|  | // marking the argument on which we specialized the function constant | 
|  | // with the given value. | 
|  | Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); | 
|  | Solver.markBlockExecutable(&Clone->front()); | 
|  | Solver.addArgumentTrackedFunction(Clone); | 
|  | Solver.addTrackedFunction(Clone); | 
|  |  | 
|  | // Mark all the specialized functions | 
|  | Specializations.insert(Clone); | 
|  | ++NumSpecsCreated; | 
|  |  | 
|  | return Clone; | 
|  | } | 
|  |  | 
|  | /// Compute the inlining bonus for replacing argument \p A with constant \p C. | 
|  | /// The below heuristic is only concerned with exposing inlining | 
|  | /// opportunities via indirect call promotion. If the argument is not a | 
|  | /// (potentially casted) function pointer, give up. | 
|  | unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) { | 
|  | Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); | 
|  | if (!CalledFunction) | 
|  | return 0; | 
|  |  | 
|  | // Get TTI for the called function (used for the inline cost). | 
|  | auto &CalleeTTI = (GetTTI)(*CalledFunction); | 
|  |  | 
|  | // Look at all the call sites whose called value is the argument. | 
|  | // Specializing the function on the argument would allow these indirect | 
|  | // calls to be promoted to direct calls. If the indirect call promotion | 
|  | // would likely enable the called function to be inlined, specializing is a | 
|  | // good idea. | 
|  | int InliningBonus = 0; | 
|  | for (User *U : A->users()) { | 
|  | if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) | 
|  | continue; | 
|  | auto *CS = cast<CallBase>(U); | 
|  | if (CS->getCalledOperand() != A) | 
|  | continue; | 
|  | if (CS->getFunctionType() != CalledFunction->getFunctionType()) | 
|  | continue; | 
|  |  | 
|  | // Get the cost of inlining the called function at this call site. Note | 
|  | // that this is only an estimate. The called function may eventually | 
|  | // change in a way that leads to it not being inlined here, even though | 
|  | // inlining looks profitable now. For example, one of its called | 
|  | // functions may be inlined into it, making the called function too large | 
|  | // to be inlined into this call site. | 
|  | // | 
|  | // We apply a boost for performing indirect call promotion by increasing | 
|  | // the default threshold by the threshold for indirect calls. | 
|  | auto Params = getInlineParams(); | 
|  | Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; | 
|  | InlineCost IC = | 
|  | getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); | 
|  |  | 
|  | // We clamp the bonus for this call to be between zero and the default | 
|  | // threshold. | 
|  | if (IC.isAlways()) | 
|  | InliningBonus += Params.DefaultThreshold; | 
|  | else if (IC.isVariable() && IC.getCostDelta() > 0) | 
|  | InliningBonus += IC.getCostDelta(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << InliningBonus | 
|  | << " for user " << *U << "\n"); | 
|  | } | 
|  |  | 
|  | return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0; | 
|  | } | 
|  |  | 
|  | /// Determine if it is possible to specialise the function for constant values | 
|  | /// of the formal parameter \p A. | 
|  | bool FunctionSpecializer::isArgumentInteresting(Argument *A) { | 
|  | // No point in specialization if the argument is unused. | 
|  | if (A->user_empty()) | 
|  | return false; | 
|  |  | 
|  | Type *Ty = A->getType(); | 
|  | if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || | 
|  | (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) | 
|  | return false; | 
|  |  | 
|  | // SCCP solver does not record an argument that will be constructed on | 
|  | // stack. | 
|  | if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) | 
|  | return false; | 
|  |  | 
|  | // For non-argument-tracked functions every argument is overdefined. | 
|  | if (!Solver.isArgumentTrackedFunction(A->getParent())) | 
|  | return true; | 
|  |  | 
|  | // Check the lattice value and decide if we should attemt to specialize, | 
|  | // based on this argument. No point in specialization, if the lattice value | 
|  | // is already a constant. | 
|  | bool IsOverdefined = Ty->isStructTy() | 
|  | ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) | 
|  | : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | if (IsOverdefined) | 
|  | dbgs() << "FnSpecialization: Found interesting parameter " | 
|  | << A->getNameOrAsOperand() << "\n"; | 
|  | else | 
|  | dbgs() << "FnSpecialization: Nothing to do, parameter " | 
|  | << A->getNameOrAsOperand() << " is already constant\n"; | 
|  | ); | 
|  | return IsOverdefined; | 
|  | } | 
|  |  | 
|  | /// Check if the value \p V  (an actual argument) is a constant or can only | 
|  | /// have a constant value. Return that constant. | 
|  | Constant *FunctionSpecializer::getCandidateConstant(Value *V) { | 
|  | if (isa<PoisonValue>(V)) | 
|  | return nullptr; | 
|  |  | 
|  | // Select for possible specialisation values that are constants or | 
|  | // are deduced to be constants or constant ranges with a single element. | 
|  | Constant *C = dyn_cast<Constant>(V); | 
|  | if (!C) | 
|  | C = Solver.getConstantOrNull(V); | 
|  |  | 
|  | // Don't specialize on (anything derived from) the address of a non-constant | 
|  | // global variable, unless explicitly enabled. | 
|  | if (C && C->getType()->isPointerTy() && !C->isNullValue()) | 
|  | if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); | 
|  | GV && !(GV->isConstant() || SpecializeOnAddress)) | 
|  | return nullptr; | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, | 
|  | const Spec *End) { | 
|  | // Collect the call sites that need updating. | 
|  | SmallVector<CallBase *> ToUpdate; | 
|  | for (User *U : F->users()) | 
|  | if (auto *CS = dyn_cast<CallBase>(U); | 
|  | CS && CS->getCalledFunction() == F && | 
|  | Solver.isBlockExecutable(CS->getParent())) | 
|  | ToUpdate.push_back(CS); | 
|  |  | 
|  | unsigned NCallsLeft = ToUpdate.size(); | 
|  | for (CallBase *CS : ToUpdate) { | 
|  | bool ShouldDecrementCount = CS->getFunction() == F; | 
|  |  | 
|  | // Find the best matching specialisation. | 
|  | const Spec *BestSpec = nullptr; | 
|  | for (const Spec &S : make_range(Begin, End)) { | 
|  | if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) | 
|  | continue; | 
|  |  | 
|  | if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { | 
|  | unsigned ArgNo = Arg.Formal->getArgNo(); | 
|  | return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; | 
|  | })) | 
|  | continue; | 
|  |  | 
|  | BestSpec = &S; | 
|  | } | 
|  |  | 
|  | if (BestSpec) { | 
|  | LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS | 
|  | << " to call " << BestSpec->Clone->getName() << "\n"); | 
|  | CS->setCalledFunction(BestSpec->Clone); | 
|  | ShouldDecrementCount = true; | 
|  | } | 
|  |  | 
|  | if (ShouldDecrementCount) | 
|  | --NCallsLeft; | 
|  | } | 
|  |  | 
|  | // If the function has been completely specialized, the original function | 
|  | // is no longer needed. Mark it unreachable. | 
|  | if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { | 
|  | Solver.markFunctionUnreachable(F); | 
|  | FullySpecialized.insert(F); | 
|  | } | 
|  | } |