| //===-- Unittests for strtof ---------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/stdlib/strtof.h" |
| |
| #include "utils/UnitTest/Test.h" |
| |
| #include <errno.h> |
| #include <limits.h> |
| #include <stddef.h> |
| |
| class LlvmLibcStrToFTest : public __llvm_libc::testing::Test { |
| public: |
| void runTest(const char *inputString, const ptrdiff_t expectedStrLen, |
| const uint32_t expectedRawData, const int expectedErrno = 0) { |
| // expectedRawData is the expected float result as a uint32_t, organized |
| // according to IEEE754: |
| // |
| // +-- 1 Sign Bit +-- 23 Mantissa bits |
| // | | |
| // | +----------+----------+ |
| // | | | |
| // SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM |
| // | | |
| // +--+---+ |
| // | |
| // +-- 8 Exponent Bits |
| // |
| // This is so that the result can be compared in parts. |
| char *strEnd = nullptr; |
| |
| __llvm_libc::fputil::FPBits<float> expectedFP = |
| __llvm_libc::fputil::FPBits<float>(expectedRawData); |
| |
| errno = 0; |
| float result = __llvm_libc::strtof(inputString, &strEnd); |
| |
| __llvm_libc::fputil::FPBits<float> actualFP = |
| __llvm_libc::fputil::FPBits<float>(result); |
| |
| EXPECT_EQ(strEnd - inputString, expectedStrLen); |
| |
| EXPECT_EQ(actualFP.bits, expectedFP.bits); |
| EXPECT_EQ(actualFP.getSign(), expectedFP.getSign()); |
| EXPECT_EQ(actualFP.getExponent(), expectedFP.getExponent()); |
| EXPECT_EQ(actualFP.getMantissa(), expectedFP.getMantissa()); |
| EXPECT_EQ(errno, expectedErrno); |
| } |
| }; |
| |
| // This is the set of tests that I have working (verified correct when compared |
| // to system libc). This is here so I don't break more things when I try to fix |
| // them. |
| |
| TEST_F(LlvmLibcStrToFTest, BasicDecimalTests) { |
| runTest("1", 1, 0x3f800000); |
| runTest("123", 3, 0x42f60000); |
| runTest("1234567890", 10, 0x4e932c06u); |
| runTest("123456789012345678901", 21, 0x60d629d4); |
| runTest("0.1", 3, 0x3dcccccdu); |
| runTest(".1", 2, 0x3dcccccdu); |
| runTest("-0.123456789", 12, 0xbdfcd6eau); |
| runTest("0.11111111111111111111", 22, 0x3de38e39u); |
| runTest("0.0000000000000000000000001", 27, 0x15f79688u); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, DecimalOutOfRangeTests) { |
| runTest("555E36", 6, 0x7f800000, ERANGE); |
| runTest("1e-10000", 8, 0x0, ERANGE); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, DecimalsWithRoundingProblems) { |
| runTest("20040229", 8, 0x4b98e512); |
| runTest("20040401", 8, 0x4b98e568); |
| runTest("9E9", 3, 0x50061c46); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, DecimalSubnormals) { |
| runTest("1.4012984643248170709237295832899161312802619418765e-45", 55, 0x1, |
| ERANGE); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, DecimalWithLongExponent) { |
| runTest("1e2147483648", 12, 0x7f800000, ERANGE); |
| runTest("1e2147483646", 12, 0x7f800000, ERANGE); |
| runTest("100e2147483646", 14, 0x7f800000, ERANGE); |
| runTest("1e-2147483647", 13, 0x0, ERANGE); |
| runTest("1e-2147483649", 13, 0x0, ERANGE); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, BasicHexadecimalTests) { |
| runTest("0x1", 3, 0x3f800000); |
| runTest("0x10", 4, 0x41800000); |
| runTest("0x11", 4, 0x41880000); |
| runTest("0x0.1234", 8, 0x3d91a000); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalTests) { |
| runTest("0x0.0000000000000000000000000000000002", 38, 0x4000, ERANGE); |
| |
| // This is the largest subnormal number as represented in hex |
| runTest("0x0.00000000000000000000000000000003fffff8", 42, 0x7fffff, ERANGE); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalRoundingTests) { |
| // This is the largest subnormal number that gets rounded down to 0 (as a |
| // float) |
| runTest("0x0.00000000000000000000000000000000000004", 42, 0x0, ERANGE); |
| |
| // This is slightly larger, and thus rounded up |
| runTest("0x0.000000000000000000000000000000000000041", 43, 0x00000001, |
| ERANGE); |
| |
| // These check that we're rounding to even properly |
| runTest("0x0.0000000000000000000000000000000000000b", 42, 0x00000001, ERANGE); |
| runTest("0x0.0000000000000000000000000000000000000c", 42, 0x00000002, ERANGE); |
| |
| // These check that we're rounding to even properly even when the input bits |
| // are longer than the bit fields can contain. |
| runTest("0x1.000000000000000000000p-150", 30, 0x00000000, ERANGE); |
| runTest("0x1.000010000000000001000p-150", 30, 0x00000001, ERANGE); |
| runTest("0x1.000100000000000001000p-134", 30, 0x00008001, ERANGE); |
| runTest("0x1.FFFFFC000000000001000p-127", 30, 0x007FFFFF, ERANGE); |
| runTest("0x1.FFFFFE000000000000000p-127", 30, 0x00800000); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, HexadecimalNormalRoundingTests) { |
| // This also checks the round to even behavior by checking three adjacent |
| // numbers. |
| // This gets rounded down to even |
| runTest("0x123456500", 11, 0x4f91a2b2); |
| // This doesn't get rounded at all |
| runTest("0x123456600", 11, 0x4f91a2b3); |
| // This gets rounded up to even |
| runTest("0x123456700", 11, 0x4f91a2b4); |
| // Correct rounding for long input |
| runTest("0x1.000001000000000000000", 25, 0x3f800000); |
| runTest("0x1.000001000000000000100", 25, 0x3f800001); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, HexadecimalsWithRoundingProblems) { |
| runTest("0xFFFFFFFF", 10, 0x4f800000); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, HexadecimalOutOfRangeTests) { |
| runTest("0x123456789123456789123456789123456789", 38, 0x7f800000, ERANGE); |
| runTest("-0x123456789123456789123456789123456789", 39, 0xff800000, ERANGE); |
| runTest("0x0.00000000000000000000000000000000000001", 42, 0x0, ERANGE); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, InfTests) { |
| runTest("INF", 3, 0x7f800000); |
| runTest("INFinity", 8, 0x7f800000); |
| runTest("infnity", 3, 0x7f800000); |
| runTest("infinit", 3, 0x7f800000); |
| runTest("infinfinit", 3, 0x7f800000); |
| runTest("innf", 0, 0x0); |
| runTest("-inf", 4, 0xff800000); |
| runTest("-iNfInItY", 9, 0xff800000); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, SimpleNaNTests) { |
| runTest("NaN", 3, 0x7fc00000); |
| runTest("-nAn", 4, 0xffc00000); |
| } |
| |
| // These NaNs are of the form `NaN(n-character-sequence)` where the |
| // n-character-sequence is 0 or more letters or numbers. If there is anything |
| // other than a letter or a number, then the valid number is just `NaN`. If |
| // the sequence is valid, then the interpretation of them is implementation |
| // defined, in this case it's passed to strtoll with an automatic base, and |
| // the result is put into the mantissa if it takes up the whole width of the |
| // parentheses. |
| TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesEmptyTest) { |
| runTest("NaN()", 5, 0x7fc00000); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesValidNumberTests) { |
| runTest("NaN(1234)", 9, 0x7fc004d2); |
| runTest("NaN(0x1234)", 11, 0x7fc01234); |
| runTest("NaN(01234)", 10, 0x7fc0029c); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesInvalidSequenceTests) { |
| runTest("NaN( 1234)", 3, 0x7fc00000); |
| runTest("NaN(-1234)", 3, 0x7fc00000); |
| runTest("NaN(asd&f)", 3, 0x7fc00000); |
| runTest("NaN(123 )", 3, 0x7fc00000); |
| runTest("NaN(123+asdf)", 3, 0x7fc00000); |
| runTest("NaN(123", 3, 0x7fc00000); |
| } |
| |
| TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesValidSequenceInvalidNumberTests) { |
| runTest("NaN(1a)", 7, 0x7fc00000); |
| runTest("NaN(asdf)", 9, 0x7fc00000); |
| runTest("NaN(1A1)", 8, 0x7fc00000); |
| } |