blob: a5dd28be4b1af8b1b98b0087fdde738bd6e24a17 [file] [log] [blame]
//===--- AMDGPU.cpp - AMDGPU ToolChain Implementations ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "CommonArgs.h"
#include "InputInfo.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/VirtualFileSystem.h"
using namespace clang::driver;
using namespace clang::driver::tools;
using namespace clang::driver::toolchains;
using namespace clang;
using namespace llvm::opt;
void RocmInstallationDetector::scanLibDevicePath() {
assert(!LibDevicePath.empty());
const StringRef Suffix(".bc");
const StringRef Suffix2(".amdgcn.bc");
std::error_code EC;
for (llvm::vfs::directory_iterator
LI = D.getVFS().dir_begin(LibDevicePath, EC),
LE;
!EC && LI != LE; LI = LI.increment(EC)) {
StringRef FilePath = LI->path();
StringRef FileName = llvm::sys::path::filename(FilePath);
if (!FileName.endswith(Suffix))
continue;
StringRef BaseName;
if (FileName.endswith(Suffix2))
BaseName = FileName.drop_back(Suffix2.size());
else if (FileName.endswith(Suffix))
BaseName = FileName.drop_back(Suffix.size());
if (BaseName == "ocml") {
OCML = FilePath;
} else if (BaseName == "ockl") {
OCKL = FilePath;
} else if (BaseName == "opencl") {
OpenCL = FilePath;
} else if (BaseName == "hip") {
HIP = FilePath;
} else if (BaseName == "oclc_finite_only_off") {
FiniteOnly.Off = FilePath;
} else if (BaseName == "oclc_finite_only_on") {
FiniteOnly.On = FilePath;
} else if (BaseName == "oclc_daz_opt_on") {
DenormalsAreZero.On = FilePath;
} else if (BaseName == "oclc_daz_opt_off") {
DenormalsAreZero.Off = FilePath;
} else if (BaseName == "oclc_correctly_rounded_sqrt_on") {
CorrectlyRoundedSqrt.On = FilePath;
} else if (BaseName == "oclc_correctly_rounded_sqrt_off") {
CorrectlyRoundedSqrt.Off = FilePath;
} else if (BaseName == "oclc_unsafe_math_on") {
UnsafeMath.On = FilePath;
} else if (BaseName == "oclc_unsafe_math_off") {
UnsafeMath.Off = FilePath;
} else if (BaseName == "oclc_wavefrontsize64_on") {
WavefrontSize64.On = FilePath;
} else if (BaseName == "oclc_wavefrontsize64_off") {
WavefrontSize64.Off = FilePath;
} else {
// Process all bitcode filenames that look like
// ocl_isa_version_XXX.amdgcn.bc
const StringRef DeviceLibPrefix = "oclc_isa_version_";
if (!BaseName.startswith(DeviceLibPrefix))
continue;
StringRef IsaVersionNumber =
BaseName.drop_front(DeviceLibPrefix.size());
llvm::Twine GfxName = Twine("gfx") + IsaVersionNumber;
SmallString<8> Tmp;
LibDeviceMap.insert(
std::make_pair(GfxName.toStringRef(Tmp), FilePath.str()));
}
}
}
RocmInstallationDetector::RocmInstallationDetector(
const Driver &D, const llvm::Triple &HostTriple,
const llvm::opt::ArgList &Args)
: D(D) {
struct Candidate {
std::string Path;
bool StrictChecking;
Candidate(std::string Path, bool StrictChecking = false)
: Path(Path), StrictChecking(StrictChecking) {}
};
SmallVector<Candidate, 4> Candidates;
if (Args.hasArg(clang::driver::options::OPT_rocm_path_EQ)) {
Candidates.emplace_back(
Args.getLastArgValue(clang::driver::options::OPT_rocm_path_EQ).str());
} else {
// Try to find relative to the compiler binary.
const char *InstallDir = D.getInstalledDir();
// Check both a normal Unix prefix position of the clang binary, as well as
// the Windows-esque layout the ROCm packages use with the host architecture
// subdirectory of bin.
// Strip off directory (usually bin)
StringRef ParentDir = llvm::sys::path::parent_path(InstallDir);
StringRef ParentName = llvm::sys::path::filename(ParentDir);
// Some builds use bin/{host arch}, so go up again.
if (ParentName == "bin") {
ParentDir = llvm::sys::path::parent_path(ParentDir);
ParentName = llvm::sys::path::filename(ParentDir);
}
if (ParentName == "llvm") {
// Some versions of the rocm llvm package install to /opt/rocm/llvm/bin
Candidates.emplace_back(llvm::sys::path::parent_path(ParentDir).str(),
/*StrictChecking=*/true);
}
Candidates.emplace_back(D.SysRoot + "/opt/rocm");
}
bool NoBuiltinLibs = Args.hasArg(options::OPT_nogpulib);
assert(LibDevicePath.empty());
if (Args.hasArg(clang::driver::options::OPT_hip_device_lib_path_EQ)) {
LibDevicePath
= Args.getLastArgValue(clang::driver::options::OPT_hip_device_lib_path_EQ);
} else if (const char *LibPathEnv = ::getenv("HIP_DEVICE_LIB_PATH")) {
LibDevicePath = LibPathEnv;
}
auto &FS = D.getVFS();
if (!LibDevicePath.empty()) {
// Maintain compatability with HIP flag/envvar pointing directly at the
// bitcode library directory. This points directly at the library path instead
// of the rocm root installation.
if (!FS.exists(LibDevicePath))
return;
scanLibDevicePath();
IsValid = allGenericLibsValid() && !LibDeviceMap.empty();
return;
}
for (const auto &Candidate : Candidates) {
InstallPath = Candidate.Path;
if (InstallPath.empty() || !FS.exists(InstallPath))
continue;
// The install path situation in old versions of ROCm is a real mess, and
// use a different install layout. Multiple copies of the device libraries
// exist for each frontend project, and differ depending on which build
// system produced the packages. Standalone OpenCL builds also have a
// different directory structure from the ROCm OpenCL package.
//
// The desired structure is (${ROCM_ROOT} or
// ${OPENCL_ROOT})/amdgcn/bitcode/*, so try to detect this layout.
// BinPath = InstallPath + "/bin";
llvm::sys::path::append(IncludePath, InstallPath, "include");
llvm::sys::path::append(LibDevicePath, InstallPath, "amdgcn", "bitcode");
// We don't need the include path for OpenCL, since clang already ships with
// the default header.
bool CheckLibDevice = (!NoBuiltinLibs || Candidate.StrictChecking);
if (CheckLibDevice && !FS.exists(LibDevicePath))
continue;
scanLibDevicePath();
if (!NoBuiltinLibs) {
// Check that the required non-target libraries are all available.
if (!allGenericLibsValid())
continue;
// Check that we have found at least one libdevice that we can link in if
// -nobuiltinlib hasn't been specified.
if (LibDeviceMap.empty())
continue;
}
IsValid = true;
break;
}
}
void RocmInstallationDetector::print(raw_ostream &OS) const {
if (isValid())
OS << "Found ROCm installation: " << InstallPath << '\n';
}
void RocmInstallationDetector::AddHIPIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
// HIP header includes standard library wrapper headers under clang
// cuda_wrappers directory. Since these wrapper headers include_next
// standard C++ headers, whereas libc++ headers include_next other clang
// headers. The include paths have to follow this order:
// - wrapper include path
// - standard C++ include path
// - other clang include path
// Since standard C++ and other clang include paths are added in other
// places after this function, here we only need to make sure wrapper
// include path is added.
SmallString<128> P(D.ResourceDir);
llvm::sys::path::append(P, "include");
llvm::sys::path::append(P, "cuda_wrappers");
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(P));
}
if (DriverArgs.hasArg(options::OPT_nogpuinc))
return;
if (!isValid()) {
D.Diag(diag::err_drv_no_rocm_installation);
return;
}
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath()));
CC1Args.push_back("-include");
CC1Args.push_back("__clang_hip_runtime_wrapper.h");
}
void amdgpu::Linker::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
std::string Linker = getToolChain().GetProgramPath(getShortName());
ArgStringList CmdArgs;
AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs, JA);
CmdArgs.push_back("-shared");
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
C.addCommand(
std::make_unique<Command>(JA, *this, ResponseFileSupport::AtFileCurCP(),
Args.MakeArgString(Linker), CmdArgs, Inputs));
}
void amdgpu::getAMDGPUTargetFeatures(const Driver &D,
const llvm::opt::ArgList &Args,
std::vector<StringRef> &Features) {
if (const Arg *dAbi = Args.getLastArg(options::OPT_mamdgpu_debugger_abi))
D.Diag(diag::err_drv_clang_unsupported) << dAbi->getAsString(Args);
if (Args.getLastArg(options::OPT_mwavefrontsize64)) {
Features.push_back("-wavefrontsize16");
Features.push_back("-wavefrontsize32");
Features.push_back("+wavefrontsize64");
}
if (Args.getLastArg(options::OPT_mno_wavefrontsize64)) {
Features.push_back("-wavefrontsize16");
Features.push_back("+wavefrontsize32");
Features.push_back("-wavefrontsize64");
}
handleTargetFeaturesGroup(
Args, Features, options::OPT_m_amdgpu_Features_Group);
}
/// AMDGPU Toolchain
AMDGPUToolChain::AMDGPUToolChain(const Driver &D, const llvm::Triple &Triple,
const ArgList &Args)
: Generic_ELF(D, Triple, Args),
OptionsDefault({{options::OPT_O, "3"},
{options::OPT_cl_std_EQ, "CL1.2"}}) {}
Tool *AMDGPUToolChain::buildLinker() const {
return new tools::amdgpu::Linker(*this);
}
DerivedArgList *
AMDGPUToolChain::TranslateArgs(const DerivedArgList &Args, StringRef BoundArch,
Action::OffloadKind DeviceOffloadKind) const {
DerivedArgList *DAL =
Generic_ELF::TranslateArgs(Args, BoundArch, DeviceOffloadKind);
// Do nothing if not OpenCL (-x cl)
if (!Args.getLastArgValue(options::OPT_x).equals("cl"))
return DAL;
if (!DAL)
DAL = new DerivedArgList(Args.getBaseArgs());
for (auto *A : Args)
DAL->append(A);
const OptTable &Opts = getDriver().getOpts();
// Phase 1 (.cl -> .bc)
if (Args.hasArg(options::OPT_c) && Args.hasArg(options::OPT_emit_llvm)) {
DAL->AddFlagArg(nullptr, Opts.getOption(getTriple().isArch64Bit()
? options::OPT_m64
: options::OPT_m32));
// Have to check OPT_O4, OPT_O0 & OPT_Ofast separately
// as they defined that way in Options.td
if (!Args.hasArg(options::OPT_O, options::OPT_O0, options::OPT_O4,
options::OPT_Ofast))
DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_O),
getOptionDefault(options::OPT_O));
}
return DAL;
}
bool AMDGPUToolChain::getDefaultDenormsAreZeroForTarget(
llvm::AMDGPU::GPUKind Kind) {
// Assume nothing without a specific target.
if (Kind == llvm::AMDGPU::GK_NONE)
return false;
const unsigned ArchAttr = llvm::AMDGPU::getArchAttrAMDGCN(Kind);
// Default to enabling f32 denormals by default on subtargets where fma is
// fast with denormals
const bool BothDenormAndFMAFast =
(ArchAttr & llvm::AMDGPU::FEATURE_FAST_FMA_F32) &&
(ArchAttr & llvm::AMDGPU::FEATURE_FAST_DENORMAL_F32);
return !BothDenormAndFMAFast;
}
llvm::DenormalMode AMDGPUToolChain::getDefaultDenormalModeForType(
const llvm::opt::ArgList &DriverArgs, const JobAction &JA,
const llvm::fltSemantics *FPType) const {
// Denormals should always be enabled for f16 and f64.
if (!FPType || FPType != &llvm::APFloat::IEEEsingle())
return llvm::DenormalMode::getIEEE();
if (JA.getOffloadingDeviceKind() == Action::OFK_HIP ||
JA.getOffloadingDeviceKind() == Action::OFK_Cuda) {
auto Kind = llvm::AMDGPU::parseArchAMDGCN(JA.getOffloadingArch());
if (FPType && FPType == &llvm::APFloat::IEEEsingle() &&
DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
options::OPT_fno_cuda_flush_denormals_to_zero,
getDefaultDenormsAreZeroForTarget(Kind)))
return llvm::DenormalMode::getPreserveSign();
return llvm::DenormalMode::getIEEE();
}
const StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_mcpu_EQ);
auto Kind = llvm::AMDGPU::parseArchAMDGCN(GpuArch);
// TODO: There are way too many flags that change this. Do we need to check
// them all?
bool DAZ = DriverArgs.hasArg(options::OPT_cl_denorms_are_zero) ||
getDefaultDenormsAreZeroForTarget(Kind);
// Outputs are flushed to zero (FTZ), preserving sign. Denormal inputs are
// also implicit treated as zero (DAZ).
return DAZ ? llvm::DenormalMode::getPreserveSign() :
llvm::DenormalMode::getIEEE();
}
bool AMDGPUToolChain::isWave64(const llvm::opt::ArgList &DriverArgs,
llvm::AMDGPU::GPUKind Kind) {
const unsigned ArchAttr = llvm::AMDGPU::getArchAttrAMDGCN(Kind);
static bool HasWave32 = (ArchAttr & llvm::AMDGPU::FEATURE_WAVE32);
return !HasWave32 || DriverArgs.hasFlag(
options::OPT_mwavefrontsize64, options::OPT_mno_wavefrontsize64, false);
}
/// ROCM Toolchain
ROCMToolChain::ROCMToolChain(const Driver &D, const llvm::Triple &Triple,
const ArgList &Args)
: AMDGPUToolChain(D, Triple, Args),
RocmInstallation(D, Triple, Args) { }
void AMDGPUToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
// Default to "hidden" visibility, as object level linking will not be
// supported for the foreseeable future.
if (!DriverArgs.hasArg(options::OPT_fvisibility_EQ,
options::OPT_fvisibility_ms_compat)) {
CC1Args.push_back("-fvisibility");
CC1Args.push_back("hidden");
CC1Args.push_back("-fapply-global-visibility-to-externs");
}
}
void ROCMToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
AMDGPUToolChain::addClangTargetOptions(DriverArgs, CC1Args,
DeviceOffloadingKind);
// For the OpenCL case where there is no offload target, accept -nostdlib to
// disable bitcode linking.
if (DeviceOffloadingKind == Action::OFK_None &&
DriverArgs.hasArg(options::OPT_nostdlib))
return;
if (DriverArgs.hasArg(options::OPT_nogpulib))
return;
if (!RocmInstallation.isValid()) {
getDriver().Diag(diag::err_drv_no_rocm_installation);
return;
}
// Get the device name and canonicalize it
const StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_mcpu_EQ);
auto Kind = llvm::AMDGPU::parseArchAMDGCN(GpuArch);
const StringRef CanonArch = llvm::AMDGPU::getArchNameAMDGCN(Kind);
std::string LibDeviceFile = RocmInstallation.getLibDeviceFile(CanonArch);
if (LibDeviceFile.empty()) {
getDriver().Diag(diag::err_drv_no_rocm_device_lib) << GpuArch;
return;
}
bool Wave64 = isWave64(DriverArgs, Kind);
// TODO: There are way too many flags that change this. Do we need to check
// them all?
bool DAZ = DriverArgs.hasArg(options::OPT_cl_denorms_are_zero) ||
getDefaultDenormsAreZeroForTarget(Kind);
bool FiniteOnly = DriverArgs.hasArg(options::OPT_cl_finite_math_only);
bool UnsafeMathOpt =
DriverArgs.hasArg(options::OPT_cl_unsafe_math_optimizations);
bool FastRelaxedMath = DriverArgs.hasArg(options::OPT_cl_fast_relaxed_math);
bool CorrectSqrt =
DriverArgs.hasArg(options::OPT_cl_fp32_correctly_rounded_divide_sqrt);
// Add the OpenCL specific bitcode library.
CC1Args.push_back("-mlink-builtin-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(RocmInstallation.getOpenCLPath()));
// Add the generic set of libraries.
RocmInstallation.addCommonBitcodeLibCC1Args(
DriverArgs, CC1Args, LibDeviceFile, Wave64, DAZ, FiniteOnly,
UnsafeMathOpt, FastRelaxedMath, CorrectSqrt);
}
void RocmInstallationDetector::addCommonBitcodeLibCC1Args(
const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args,
StringRef LibDeviceFile, bool Wave64, bool DAZ, bool FiniteOnly,
bool UnsafeMathOpt, bool FastRelaxedMath, bool CorrectSqrt) const {
static const char LinkBitcodeFlag[] = "-mlink-builtin-bitcode";
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(getOCMLPath()));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(getOCKLPath()));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(getDenormalsAreZeroPath(DAZ)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(
getUnsafeMathPath(UnsafeMathOpt || FastRelaxedMath)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(
getFiniteOnlyPath(FiniteOnly || FastRelaxedMath)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(
DriverArgs.MakeArgString(getCorrectlyRoundedSqrtPath(CorrectSqrt)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(getWavefrontSize64Path(Wave64)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));
}