|  | //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs loop invariant code motion, attempting to remove as much | 
|  | // code from the body of a loop as possible.  It does this by either hoisting | 
|  | // code into the preheader block, or by sinking code to the exit blocks if it is | 
|  | // safe.  This pass also promotes must-aliased memory locations in the loop to | 
|  | // live in registers, thus hoisting and sinking "invariant" loads and stores. | 
|  | // | 
|  | // Hoisting operations out of loops is a canonicalization transform.  It | 
|  | // enables and simplifies subsequent optimizations in the middle-end. | 
|  | // Rematerialization of hoisted instructions to reduce register pressure is the | 
|  | // responsibility of the back-end, which has more accurate information about | 
|  | // register pressure and also handles other optimizations than LICM that | 
|  | // increase live-ranges. | 
|  | // | 
|  | // This pass uses alias analysis for two purposes: | 
|  | // | 
|  | //  1. Moving loop invariant loads and calls out of loops.  If we can determine | 
|  | //     that a load or call inside of a loop never aliases anything stored to, | 
|  | //     we can hoist it or sink it like any other instruction. | 
|  | //  2. Scalar Promotion of Memory - If there is a store instruction inside of | 
|  | //     the loop, we try to move the store to happen AFTER the loop instead of | 
|  | //     inside of the loop.  This can only happen if a few conditions are true: | 
|  | //       A. The pointer stored through is loop invariant | 
|  | //       B. There are no stores or loads in the loop which _may_ alias the | 
|  | //          pointer.  There are no calls in the loop which mod/ref the pointer. | 
|  | //     If these conditions are true, we can promote the loads and stores in the | 
|  | //     loop of the pointer to use a temporary alloca'd variable.  We then use | 
|  | //     the SSAUpdater to construct the appropriate SSA form for the value. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/LICM.h" | 
|  | #include "llvm/ADT/PriorityWorklist.h" | 
|  | #include "llvm/ADT/SetOperations.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AliasSetTracker.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/DomTreeUpdater.h" | 
|  | #include "llvm/Analysis/GuardUtils.h" | 
|  | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/LoopNestAnalysis.h" | 
|  | #include "llvm/Analysis/LoopPass.h" | 
|  | #include "llvm/Analysis/MemorySSA.h" | 
|  | #include "llvm/Analysis/MemorySSAUpdater.h" | 
|  | #include "llvm/Analysis/MustExecute.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/PredIteratorCache.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include <algorithm> | 
|  | #include <utility> | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace llvm { | 
|  | class LPMUpdater; | 
|  | } // namespace llvm | 
|  |  | 
|  | #define DEBUG_TYPE "licm" | 
|  |  | 
|  | STATISTIC(NumCreatedBlocks, "Number of blocks created"); | 
|  | STATISTIC(NumClonedBranches, "Number of branches cloned"); | 
|  | STATISTIC(NumSunk, "Number of instructions sunk out of loop"); | 
|  | STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); | 
|  | STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); | 
|  | STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); | 
|  | STATISTIC(NumPromotionCandidates, "Number of promotion candidates"); | 
|  | STATISTIC(NumLoadPromoted, "Number of load-only promotions"); | 
|  | STATISTIC(NumLoadStorePromoted, "Number of load and store promotions"); | 
|  | STATISTIC(NumMinMaxHoisted, | 
|  | "Number of min/max expressions hoisted out of the loop"); | 
|  | STATISTIC(NumGEPsHoisted, | 
|  | "Number of geps reassociated and hoisted out of the loop"); | 
|  | STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated " | 
|  | "and hoisted out of the loop"); | 
|  | STATISTIC(NumFPAssociationsHoisted, "Number of invariant FP expressions " | 
|  | "reassociated and hoisted out of the loop"); | 
|  | STATISTIC(NumIntAssociationsHoisted, | 
|  | "Number of invariant int expressions " | 
|  | "reassociated and hoisted out of the loop"); | 
|  | STATISTIC(NumBOAssociationsHoisted, "Number of invariant BinaryOp expressions " | 
|  | "reassociated and hoisted out of the loop"); | 
|  |  | 
|  | /// Memory promotion is enabled by default. | 
|  | static cl::opt<bool> | 
|  | DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), | 
|  | cl::desc("Disable memory promotion in LICM pass")); | 
|  |  | 
|  | static cl::opt<bool> ControlFlowHoisting( | 
|  | "licm-control-flow-hoisting", cl::Hidden, cl::init(false), | 
|  | cl::desc("Enable control flow (and PHI) hoisting in LICM")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), | 
|  | cl::desc("Force thread model single in LICM pass")); | 
|  |  | 
|  | static cl::opt<uint32_t> MaxNumUsesTraversed( | 
|  | "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), | 
|  | cl::desc("Max num uses visited for identifying load " | 
|  | "invariance in loop using invariant start (default = 8)")); | 
|  |  | 
|  | static cl::opt<unsigned> FPAssociationUpperLimit( | 
|  | "licm-max-num-fp-reassociations", cl::init(5U), cl::Hidden, | 
|  | cl::desc( | 
|  | "Set upper limit for the number of transformations performed " | 
|  | "during a single round of hoisting the reassociated expressions.")); | 
|  |  | 
|  | static cl::opt<unsigned> IntAssociationUpperLimit( | 
|  | "licm-max-num-int-reassociations", cl::init(5U), cl::Hidden, | 
|  | cl::desc( | 
|  | "Set upper limit for the number of transformations performed " | 
|  | "during a single round of hoisting the reassociated expressions.")); | 
|  |  | 
|  | // Experimental option to allow imprecision in LICM in pathological cases, in | 
|  | // exchange for faster compile. This is to be removed if MemorySSA starts to | 
|  | // address the same issue. LICM calls MemorySSAWalker's | 
|  | // getClobberingMemoryAccess, up to the value of the Cap, getting perfect | 
|  | // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, | 
|  | // which may not be precise, since optimizeUses is capped. The result is | 
|  | // correct, but we may not get as "far up" as possible to get which access is | 
|  | // clobbering the one queried. | 
|  | cl::opt<unsigned> llvm::SetLicmMssaOptCap( | 
|  | "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, | 
|  | cl::desc("Enable imprecision in LICM in pathological cases, in exchange " | 
|  | "for faster compile. Caps the MemorySSA clobbering calls.")); | 
|  |  | 
|  | // Experimentally, memory promotion carries less importance than sinking and | 
|  | // hoisting. Limit when we do promotion when using MemorySSA, in order to save | 
|  | // compile time. | 
|  | cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( | 
|  | "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, | 
|  | cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " | 
|  | "effect. When MSSA in LICM is enabled, then this is the maximum " | 
|  | "number of accesses allowed to be present in a loop in order to " | 
|  | "enable memory promotion.")); | 
|  |  | 
|  | extern cl::opt<bool> ProfcheckDisableMetadataFixes; | 
|  |  | 
|  | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); | 
|  | static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | TargetTransformInfo *TTI, | 
|  | bool &FoldableInLoop, bool LoopNestMode); | 
|  | static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, | 
|  | BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, ScalarEvolution *SE, | 
|  | OptimizationRemarkEmitter *ORE); | 
|  | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, | 
|  | const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE); | 
|  | static bool isSafeToExecuteUnconditionally( | 
|  | Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, | 
|  | const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, const Instruction *CtxI, | 
|  | AssumptionCache *AC, bool AllowSpeculation); | 
|  | static bool noConflictingReadWrites(Instruction *I, MemorySSA *MSSA, | 
|  | AAResults *AA, Loop *CurLoop, | 
|  | SinkAndHoistLICMFlags &Flags); | 
|  | static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, | 
|  | Loop *CurLoop, Instruction &I, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | bool InvariantGroup); | 
|  | static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, | 
|  | MemoryUse &MU); | 
|  | /// Aggregates various functions for hoisting computations out of loop. | 
|  | static bool hoistArithmetics(Instruction &I, Loop &L, | 
|  | ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, AssumptionCache *AC, | 
|  | DominatorTree *DT); | 
|  | static Instruction *cloneInstructionInExitBlock( | 
|  | Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, | 
|  | const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU); | 
|  |  | 
|  | static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU); | 
|  |  | 
|  | static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, | 
|  | ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, ScalarEvolution *SE); | 
|  |  | 
|  | static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, | 
|  | function_ref<void(Instruction *)> Fn); | 
|  | using PointersAndHasReadsOutsideSet = | 
|  | std::pair<SmallSetVector<Value *, 8>, bool>; | 
|  | static SmallVector<PointersAndHasReadsOutsideSet, 0> | 
|  | collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); | 
|  |  | 
|  | namespace { | 
|  | struct LoopInvariantCodeMotion { | 
|  | bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, | 
|  | AssumptionCache *AC, TargetLibraryInfo *TLI, | 
|  | TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, | 
|  | OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); | 
|  |  | 
|  | LoopInvariantCodeMotion(unsigned LicmMssaOptCap, | 
|  | unsigned LicmMssaNoAccForPromotionCap, | 
|  | bool LicmAllowSpeculation) | 
|  | : LicmMssaOptCap(LicmMssaOptCap), | 
|  | LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), | 
|  | LicmAllowSpeculation(LicmAllowSpeculation) {} | 
|  |  | 
|  | private: | 
|  | unsigned LicmMssaOptCap; | 
|  | unsigned LicmMssaNoAccForPromotionCap; | 
|  | bool LicmAllowSpeculation; | 
|  | }; | 
|  |  | 
|  | struct LegacyLICMPass : public LoopPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | LegacyLICMPass( | 
|  | unsigned LicmMssaOptCap = SetLicmMssaOptCap, | 
|  | unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap, | 
|  | bool LicmAllowSpeculation = true) | 
|  | : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, | 
|  | LicmAllowSpeculation) { | 
|  | initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnLoop(Loop *L, LPPassManager &LPM) override { | 
|  | if (skipLoop(L)) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " | 
|  | << L->getHeader()->getNameOrAsOperand() << "\n"); | 
|  |  | 
|  | Function *F = L->getHeader()->getParent(); | 
|  |  | 
|  | auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); | 
|  | MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); | 
|  | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis | 
|  | // pass. Function analyses need to be preserved across loop transformations | 
|  | // but ORE cannot be preserved (see comment before the pass definition). | 
|  | OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); | 
|  | return LICM.runOnLoop( | 
|  | L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), | 
|  | &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), | 
|  | &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
|  | &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F), | 
|  | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F), | 
|  | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F), | 
|  | SE ? &SE->getSE() : nullptr, MSSA, &ORE); | 
|  | } | 
|  |  | 
|  | /// This transformation requires natural loop information & requires that | 
|  | /// loop preheaders be inserted into the CFG... | 
|  | /// | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<MemorySSAWrapperPass>(); | 
|  | AU.addPreserved<MemorySSAWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | getLoopAnalysisUsage(AU); | 
|  | LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); | 
|  | AU.addPreserved<LazyBlockFrequencyInfoPass>(); | 
|  | AU.addPreserved<LazyBranchProbabilityInfoPass>(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | LoopInvariantCodeMotion LICM; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, LPMUpdater &) { | 
|  | if (!AR.MSSA) | 
|  | reportFatalUsageError("LICM requires MemorySSA (loop-mssa)"); | 
|  |  | 
|  | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis | 
|  | // pass.  Function analyses need to be preserved across loop transformations | 
|  | // but ORE cannot be preserved (see comment before the pass definition). | 
|  | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); | 
|  |  | 
|  | LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, | 
|  | Opts.AllowSpeculation); | 
|  | if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI, | 
|  | &AR.SE, AR.MSSA, &ORE)) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | auto PA = getLoopPassPreservedAnalyses(); | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  |  | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | void LICMPass::printPipeline( | 
|  | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { | 
|  | static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline( | 
|  | OS, MapClassName2PassName); | 
|  |  | 
|  | OS << '<'; | 
|  | OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; | 
|  | OS << '>'; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, | 
|  | LPMUpdater &) { | 
|  | if (!AR.MSSA) | 
|  | reportFatalUsageError("LNICM requires MemorySSA (loop-mssa)"); | 
|  |  | 
|  | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis | 
|  | // pass.  Function analyses need to be preserved across loop transformations | 
|  | // but ORE cannot be preserved (see comment before the pass definition). | 
|  | OptimizationRemarkEmitter ORE(LN.getParent()); | 
|  |  | 
|  | LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, | 
|  | Opts.AllowSpeculation); | 
|  |  | 
|  | Loop &OutermostLoop = LN.getOutermostLoop(); | 
|  | bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC, | 
|  | &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); | 
|  |  | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | auto PA = getLoopPassPreservedAnalyses(); | 
|  |  | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | PA.preserve<LoopAnalysis>(); | 
|  | PA.preserve<MemorySSAAnalysis>(); | 
|  |  | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | void LNICMPass::printPipeline( | 
|  | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { | 
|  | static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline( | 
|  | OS, MapClassName2PassName); | 
|  |  | 
|  | OS << '<'; | 
|  | OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; | 
|  | OS << '>'; | 
|  | } | 
|  |  | 
|  | char LegacyLICMPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) | 
|  | INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, | 
|  | false) | 
|  |  | 
|  | Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } | 
|  |  | 
|  | llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L, | 
|  | MemorySSA &MSSA) | 
|  | : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, | 
|  | IsSink, L, MSSA) {} | 
|  |  | 
|  | llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( | 
|  | unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, | 
|  | Loop &L, MemorySSA &MSSA) | 
|  | : LicmMssaOptCap(LicmMssaOptCap), | 
|  | LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), | 
|  | IsSink(IsSink) { | 
|  | unsigned AccessCapCount = 0; | 
|  | for (auto *BB : L.getBlocks()) | 
|  | if (const auto *Accesses = MSSA.getBlockAccesses(BB)) | 
|  | for (const auto &MA : *Accesses) { | 
|  | (void)MA; | 
|  | ++AccessCapCount; | 
|  | if (AccessCapCount > LicmMssaNoAccForPromotionCap) { | 
|  | NoOfMemAccTooLarge = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Hoist expressions out of the specified loop. Note, alias info for inner | 
|  | /// loop is not preserved so it is not a good idea to run LICM multiple | 
|  | /// times on one loop. | 
|  | bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, | 
|  | DominatorTree *DT, AssumptionCache *AC, | 
|  | TargetLibraryInfo *TLI, | 
|  | TargetTransformInfo *TTI, | 
|  | ScalarEvolution *SE, MemorySSA *MSSA, | 
|  | OptimizationRemarkEmitter *ORE, | 
|  | bool LoopNestMode) { | 
|  | bool Changed = false; | 
|  |  | 
|  | assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); | 
|  |  | 
|  | // If this loop has metadata indicating that LICM is not to be performed then | 
|  | // just exit. | 
|  | if (hasDisableLICMTransformsHint(L)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Don't sink stores from loops with coroutine suspend instructions. | 
|  | // LICM would sink instructions into the default destination of | 
|  | // the coroutine switch. The default destination of the switch is to | 
|  | // handle the case where the coroutine is suspended, by which point the | 
|  | // coroutine frame may have been destroyed. No instruction can be sunk there. | 
|  | // FIXME: This would unfortunately hurt the performance of coroutines, however | 
|  | // there is currently no general solution for this. Similar issues could also | 
|  | // potentially happen in other passes where instructions are being moved | 
|  | // across that edge. | 
|  | bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { | 
|  | return llvm::any_of(*BB, [](Instruction &I) { | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); | 
|  | return II && II->getIntrinsicID() == Intrinsic::coro_suspend; | 
|  | }); | 
|  | }); | 
|  |  | 
|  | MemorySSAUpdater MSSAU(MSSA); | 
|  | SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, | 
|  | /*IsSink=*/true, *L, *MSSA); | 
|  |  | 
|  | // Get the preheader block to move instructions into... | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  |  | 
|  | // Compute loop safety information. | 
|  | ICFLoopSafetyInfo SafetyInfo; | 
|  | SafetyInfo.computeLoopSafetyInfo(L); | 
|  |  | 
|  | // We want to visit all of the instructions in this loop... that are not parts | 
|  | // of our subloops (they have already had their invariants hoisted out of | 
|  | // their loop, into this loop, so there is no need to process the BODIES of | 
|  | // the subloops). | 
|  | // | 
|  | // Traverse the body of the loop in depth first order on the dominator tree so | 
|  | // that we are guaranteed to see definitions before we see uses.  This allows | 
|  | // us to sink instructions in one pass, without iteration.  After sinking | 
|  | // instructions, we perform another pass to hoist them out of the loop. | 
|  | if (L->hasDedicatedExits()) | 
|  | Changed |= | 
|  | LoopNestMode | 
|  | ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT, | 
|  | TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE) | 
|  | : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, | 
|  | MSSAU, &SafetyInfo, Flags, ORE); | 
|  | Flags.setIsSink(false); | 
|  | if (Preheader) | 
|  | Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L, | 
|  | MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode, | 
|  | LicmAllowSpeculation, HasCoroSuspendInst); | 
|  |  | 
|  | // Now that all loop invariants have been removed from the loop, promote any | 
|  | // memory references to scalars that we can. | 
|  | // Don't sink stores from loops without dedicated block exits. Exits | 
|  | // containing indirect branches are not transformed by loop simplify, | 
|  | // make sure we catch that. An additional load may be generated in the | 
|  | // preheader for SSA updater, so also avoid sinking when no preheader | 
|  | // is available. | 
|  | if (!DisablePromotion && Preheader && L->hasDedicatedExits() && | 
|  | !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { | 
|  | // Figure out the loop exits and their insertion points | 
|  | SmallVector<BasicBlock *, 8> ExitBlocks; | 
|  | L->getUniqueExitBlocks(ExitBlocks); | 
|  |  | 
|  | // We can't insert into a catchswitch. | 
|  | bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { | 
|  | return isa<CatchSwitchInst>(Exit->getTerminator()); | 
|  | }); | 
|  |  | 
|  | if (!HasCatchSwitch) { | 
|  | SmallVector<BasicBlock::iterator, 8> InsertPts; | 
|  | SmallVector<MemoryAccess *, 8> MSSAInsertPts; | 
|  | InsertPts.reserve(ExitBlocks.size()); | 
|  | MSSAInsertPts.reserve(ExitBlocks.size()); | 
|  | for (BasicBlock *ExitBlock : ExitBlocks) { | 
|  | InsertPts.push_back(ExitBlock->getFirstInsertionPt()); | 
|  | MSSAInsertPts.push_back(nullptr); | 
|  | } | 
|  |  | 
|  | PredIteratorCache PIC; | 
|  |  | 
|  | // Promoting one set of accesses may make the pointers for another set | 
|  | // loop invariant, so run this in a loop. | 
|  | bool Promoted = false; | 
|  | bool LocalPromoted; | 
|  | do { | 
|  | LocalPromoted = false; | 
|  | for (auto [PointerMustAliases, HasReadsOutsideSet] : | 
|  | collectPromotionCandidates(MSSA, AA, L)) { | 
|  | LocalPromoted |= promoteLoopAccessesToScalars( | 
|  | PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, | 
|  | DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE, | 
|  | LicmAllowSpeculation, HasReadsOutsideSet); | 
|  | } | 
|  | Promoted |= LocalPromoted; | 
|  | } while (LocalPromoted); | 
|  |  | 
|  | // Once we have promoted values across the loop body we have to | 
|  | // recursively reform LCSSA as any nested loop may now have values defined | 
|  | // within the loop used in the outer loop. | 
|  | // FIXME: This is really heavy handed. It would be a bit better to use an | 
|  | // SSAUpdater strategy during promotion that was LCSSA aware and reformed | 
|  | // it as it went. | 
|  | if (Promoted) | 
|  | formLCSSARecursively(*L, *DT, LI, SE); | 
|  |  | 
|  | Changed |= Promoted; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that neither this loop nor its parent have had LCSSA broken. LICM is | 
|  | // specifically moving instructions across the loop boundary and so it is | 
|  | // especially in need of basic functional correctness checking here. | 
|  | assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); | 
|  | assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && | 
|  | "Parent loop not left in LCSSA form after LICM!"); | 
|  |  | 
|  | if (VerifyMemorySSA) | 
|  | MSSA->verifyMemorySSA(); | 
|  |  | 
|  | if (Changed && SE) | 
|  | SE->forgetLoopDispositions(); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Walk the specified region of the CFG (defined by all blocks dominated by | 
|  | /// the specified block, and that are in the current loop) in reverse depth | 
|  | /// first order w.r.t the DominatorTree.  This allows us to visit uses before | 
|  | /// definitions, allowing us to sink a loop body in one pass without iteration. | 
|  | /// | 
|  | bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, | 
|  | DominatorTree *DT, TargetLibraryInfo *TLI, | 
|  | TargetTransformInfo *TTI, Loop *CurLoop, | 
|  | MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { | 
|  |  | 
|  | // Verify inputs. | 
|  | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && | 
|  | CurLoop != nullptr && SafetyInfo != nullptr && | 
|  | "Unexpected input to sinkRegion."); | 
|  |  | 
|  | // We want to visit children before parents. We will enqueue all the parents | 
|  | // before their children in the worklist and process the worklist in reverse | 
|  | // order. | 
|  | SmallVector<BasicBlock *, 16> Worklist = | 
|  | collectChildrenInLoop(DT, N, CurLoop); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (BasicBlock *BB : reverse(Worklist)) { | 
|  | // subloop (which would already have been processed). | 
|  | if (inSubLoop(BB, CurLoop, LI)) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { | 
|  | Instruction &I = *--II; | 
|  |  | 
|  | // The instruction is not used in the loop if it is dead.  In this case, | 
|  | // we just delete it instead of sinking it. | 
|  | if (isInstructionTriviallyDead(&I, TLI)) { | 
|  | LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); | 
|  | salvageKnowledge(&I); | 
|  | salvageDebugInfo(I); | 
|  | ++II; | 
|  | eraseInstruction(I, *SafetyInfo, MSSAU); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check to see if we can sink this instruction to the exit blocks | 
|  | // of the loop.  We can do this if the all users of the instruction are | 
|  | // outside of the loop.  In this case, it doesn't even matter if the | 
|  | // operands of the instruction are loop invariant. | 
|  | // | 
|  | bool FoldableInLoop = false; | 
|  | bool LoopNestMode = OutermostLoop != nullptr; | 
|  | if (!I.mayHaveSideEffects() && | 
|  | isNotUsedOrFoldableInLoop(I, LoopNestMode ? OutermostLoop : CurLoop, | 
|  | SafetyInfo, TTI, FoldableInLoop, | 
|  | LoopNestMode) && | 
|  | canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) { | 
|  | if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { | 
|  | if (!FoldableInLoop) { | 
|  | ++II; | 
|  | salvageDebugInfo(I); | 
|  | eraseInstruction(I, *SafetyInfo, MSSAU); | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (VerifyMemorySSA) | 
|  | MSSAU.getMemorySSA()->verifyMemorySSA(); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI, | 
|  | DominatorTree *DT, TargetLibraryInfo *TLI, | 
|  | TargetTransformInfo *TTI, Loop *CurLoop, | 
|  | MemorySSAUpdater &MSSAU, | 
|  | ICFLoopSafetyInfo *SafetyInfo, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  |  | 
|  | bool Changed = false; | 
|  | SmallPriorityWorklist<Loop *, 4> Worklist; | 
|  | Worklist.insert(CurLoop); | 
|  | appendLoopsToWorklist(*CurLoop, Worklist); | 
|  | while (!Worklist.empty()) { | 
|  | Loop *L = Worklist.pop_back_val(); | 
|  | Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, | 
|  | MSSAU, SafetyInfo, Flags, ORE, CurLoop); | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // This is a helper class for hoistRegion to make it able to hoist control flow | 
|  | // in order to be able to hoist phis. The way this works is that we initially | 
|  | // start hoisting to the loop preheader, and when we see a loop invariant branch | 
|  | // we make note of this. When we then come to hoist an instruction that's | 
|  | // conditional on such a branch we duplicate the branch and the relevant control | 
|  | // flow, then hoist the instruction into the block corresponding to its original | 
|  | // block in the duplicated control flow. | 
|  | class ControlFlowHoister { | 
|  | private: | 
|  | // Information about the loop we are hoisting from | 
|  | LoopInfo *LI; | 
|  | DominatorTree *DT; | 
|  | Loop *CurLoop; | 
|  | MemorySSAUpdater &MSSAU; | 
|  |  | 
|  | // A map of blocks in the loop to the block their instructions will be hoisted | 
|  | // to. | 
|  | DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; | 
|  |  | 
|  | // The branches that we can hoist, mapped to the block that marks a | 
|  | // convergence point of their control flow. | 
|  | DenseMap<BranchInst *, BasicBlock *> HoistableBranches; | 
|  |  | 
|  | public: | 
|  | ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, | 
|  | MemorySSAUpdater &MSSAU) | 
|  | : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} | 
|  |  | 
|  | void registerPossiblyHoistableBranch(BranchInst *BI) { | 
|  | // We can only hoist conditional branches with loop invariant operands. | 
|  | if (!ControlFlowHoisting || !BI->isConditional() || | 
|  | !CurLoop->hasLoopInvariantOperands(BI)) | 
|  | return; | 
|  |  | 
|  | // The branch destinations need to be in the loop, and we don't gain | 
|  | // anything by duplicating conditional branches with duplicate successors, | 
|  | // as it's essentially the same as an unconditional branch. | 
|  | BasicBlock *TrueDest = BI->getSuccessor(0); | 
|  | BasicBlock *FalseDest = BI->getSuccessor(1); | 
|  | if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || | 
|  | TrueDest == FalseDest) | 
|  | return; | 
|  |  | 
|  | // We can hoist BI if one branch destination is the successor of the other, | 
|  | // or both have common successor which we check by seeing if the | 
|  | // intersection of their successors is non-empty. | 
|  | // TODO: This could be expanded to allowing branches where both ends | 
|  | // eventually converge to a single block. | 
|  | SmallPtrSet<BasicBlock *, 4> TrueDestSucc(llvm::from_range, | 
|  | successors(TrueDest)); | 
|  | SmallPtrSet<BasicBlock *, 4> FalseDestSucc(llvm::from_range, | 
|  | successors(FalseDest)); | 
|  | BasicBlock *CommonSucc = nullptr; | 
|  | if (TrueDestSucc.count(FalseDest)) { | 
|  | CommonSucc = FalseDest; | 
|  | } else if (FalseDestSucc.count(TrueDest)) { | 
|  | CommonSucc = TrueDest; | 
|  | } else { | 
|  | set_intersect(TrueDestSucc, FalseDestSucc); | 
|  | // If there's one common successor use that. | 
|  | if (TrueDestSucc.size() == 1) | 
|  | CommonSucc = *TrueDestSucc.begin(); | 
|  | // If there's more than one pick whichever appears first in the block list | 
|  | // (we can't use the value returned by TrueDestSucc.begin() as it's | 
|  | // unpredicatable which element gets returned). | 
|  | else if (!TrueDestSucc.empty()) { | 
|  | Function *F = TrueDest->getParent(); | 
|  | auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; | 
|  | auto It = llvm::find_if(*F, IsSucc); | 
|  | assert(It != F->end() && "Could not find successor in function"); | 
|  | CommonSucc = &*It; | 
|  | } | 
|  | } | 
|  | // The common successor has to be dominated by the branch, as otherwise | 
|  | // there will be some other path to the successor that will not be | 
|  | // controlled by this branch so any phi we hoist would be controlled by the | 
|  | // wrong condition. This also takes care of avoiding hoisting of loop back | 
|  | // edges. | 
|  | // TODO: In some cases this could be relaxed if the successor is dominated | 
|  | // by another block that's been hoisted and we can guarantee that the | 
|  | // control flow has been replicated exactly. | 
|  | if (CommonSucc && DT->dominates(BI, CommonSucc)) | 
|  | HoistableBranches[BI] = CommonSucc; | 
|  | } | 
|  |  | 
|  | bool canHoistPHI(PHINode *PN) { | 
|  | // The phi must have loop invariant operands. | 
|  | if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) | 
|  | return false; | 
|  | // We can hoist phis if the block they are in is the target of hoistable | 
|  | // branches which cover all of the predecessors of the block. | 
|  | BasicBlock *BB = PN->getParent(); | 
|  | SmallPtrSet<BasicBlock *, 8> PredecessorBlocks(llvm::from_range, | 
|  | predecessors(BB)); | 
|  | // If we have less predecessor blocks than predecessors then the phi will | 
|  | // have more than one incoming value for the same block which we can't | 
|  | // handle. | 
|  | // TODO: This could be handled be erasing some of the duplicate incoming | 
|  | // values. | 
|  | if (PredecessorBlocks.size() != pred_size(BB)) | 
|  | return false; | 
|  | for (auto &Pair : HoistableBranches) { | 
|  | if (Pair.second == BB) { | 
|  | // Which blocks are predecessors via this branch depends on if the | 
|  | // branch is triangle-like or diamond-like. | 
|  | if (Pair.first->getSuccessor(0) == BB) { | 
|  | PredecessorBlocks.erase(Pair.first->getParent()); | 
|  | PredecessorBlocks.erase(Pair.first->getSuccessor(1)); | 
|  | } else if (Pair.first->getSuccessor(1) == BB) { | 
|  | PredecessorBlocks.erase(Pair.first->getParent()); | 
|  | PredecessorBlocks.erase(Pair.first->getSuccessor(0)); | 
|  | } else { | 
|  | PredecessorBlocks.erase(Pair.first->getSuccessor(0)); | 
|  | PredecessorBlocks.erase(Pair.first->getSuccessor(1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | // PredecessorBlocks will now be empty if for every predecessor of BB we | 
|  | // found a hoistable branch source. | 
|  | return PredecessorBlocks.empty(); | 
|  | } | 
|  |  | 
|  | BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { | 
|  | if (!ControlFlowHoisting) | 
|  | return CurLoop->getLoopPreheader(); | 
|  | // If BB has already been hoisted, return that | 
|  | if (auto It = HoistDestinationMap.find(BB); It != HoistDestinationMap.end()) | 
|  | return It->second; | 
|  |  | 
|  | // Check if this block is conditional based on a pending branch | 
|  | auto HasBBAsSuccessor = | 
|  | [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { | 
|  | return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || | 
|  | Pair.first->getSuccessor(1) == BB); | 
|  | }; | 
|  | auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); | 
|  |  | 
|  | // If not involved in a pending branch, hoist to preheader | 
|  | BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); | 
|  | if (It == HoistableBranches.end()) { | 
|  | LLVM_DEBUG(dbgs() << "LICM using " | 
|  | << InitialPreheader->getNameOrAsOperand() | 
|  | << " as hoist destination for " | 
|  | << BB->getNameOrAsOperand() << "\n"); | 
|  | HoistDestinationMap[BB] = InitialPreheader; | 
|  | return InitialPreheader; | 
|  | } | 
|  | BranchInst *BI = It->first; | 
|  | assert(std::none_of(std::next(It), HoistableBranches.end(), | 
|  | HasBBAsSuccessor) && | 
|  | "BB is expected to be the target of at most one branch"); | 
|  |  | 
|  | LLVMContext &C = BB->getContext(); | 
|  | BasicBlock *TrueDest = BI->getSuccessor(0); | 
|  | BasicBlock *FalseDest = BI->getSuccessor(1); | 
|  | BasicBlock *CommonSucc = HoistableBranches[BI]; | 
|  | BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); | 
|  |  | 
|  | // Create hoisted versions of blocks that currently don't have them | 
|  | auto CreateHoistedBlock = [&](BasicBlock *Orig) { | 
|  | auto [It, Inserted] = HoistDestinationMap.try_emplace(Orig); | 
|  | if (!Inserted) | 
|  | return It->second; | 
|  | BasicBlock *New = | 
|  | BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); | 
|  | It->second = New; | 
|  | DT->addNewBlock(New, HoistTarget); | 
|  | if (CurLoop->getParentLoop()) | 
|  | CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); | 
|  | ++NumCreatedBlocks; | 
|  | LLVM_DEBUG(dbgs() << "LICM created " << New->getName() | 
|  | << " as hoist destination for " << Orig->getName() | 
|  | << "\n"); | 
|  | return New; | 
|  | }; | 
|  | BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); | 
|  | BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); | 
|  | BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); | 
|  |  | 
|  | // Link up these blocks with branches. | 
|  | if (!HoistCommonSucc->getTerminator()) { | 
|  | // The new common successor we've generated will branch to whatever that | 
|  | // hoist target branched to. | 
|  | BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); | 
|  | assert(TargetSucc && "Expected hoist target to have a single successor"); | 
|  | HoistCommonSucc->moveBefore(TargetSucc); | 
|  | BranchInst::Create(TargetSucc, HoistCommonSucc); | 
|  | } | 
|  | if (!HoistTrueDest->getTerminator()) { | 
|  | HoistTrueDest->moveBefore(HoistCommonSucc); | 
|  | BranchInst::Create(HoistCommonSucc, HoistTrueDest); | 
|  | } | 
|  | if (!HoistFalseDest->getTerminator()) { | 
|  | HoistFalseDest->moveBefore(HoistCommonSucc); | 
|  | BranchInst::Create(HoistCommonSucc, HoistFalseDest); | 
|  | } | 
|  |  | 
|  | // If BI is being cloned to what was originally the preheader then | 
|  | // HoistCommonSucc will now be the new preheader. | 
|  | if (HoistTarget == InitialPreheader) { | 
|  | // Phis in the loop header now need to use the new preheader. | 
|  | InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); | 
|  | MSSAU.wireOldPredecessorsToNewImmediatePredecessor( | 
|  | HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); | 
|  | // The new preheader dominates the loop header. | 
|  | DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); | 
|  | DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); | 
|  | DT->changeImmediateDominator(HeaderNode, PreheaderNode); | 
|  | // The preheader hoist destination is now the new preheader, with the | 
|  | // exception of the hoist destination of this branch. | 
|  | for (auto &Pair : HoistDestinationMap) | 
|  | if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) | 
|  | Pair.second = HoistCommonSucc; | 
|  | } | 
|  |  | 
|  | // Now finally clone BI. | 
|  | auto *NewBI = | 
|  | BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition(), | 
|  | HoistTarget->getTerminator()->getIterator()); | 
|  | HoistTarget->getTerminator()->eraseFromParent(); | 
|  | // md_prof should also come from the original branch - since the | 
|  | // condition was hoisted, the branch probabilities shouldn't change. | 
|  | if (!ProfcheckDisableMetadataFixes) | 
|  | NewBI->copyMetadata(*BI, {LLVMContext::MD_prof}); | 
|  | // FIXME: Issue #152767: debug info should also be the same as the | 
|  | // original branch, **if** the user explicitly indicated that. | 
|  | NewBI->setDebugLoc(HoistTarget->getTerminator()->getDebugLoc()); | 
|  |  | 
|  | ++NumClonedBranches; | 
|  |  | 
|  | assert(CurLoop->getLoopPreheader() && | 
|  | "Hoisting blocks should not have destroyed preheader"); | 
|  | return HoistDestinationMap[BB]; | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | /// Walk the specified region of the CFG (defined by all blocks dominated by | 
|  | /// the specified block, and that are in the current loop) in depth first | 
|  | /// order w.r.t the DominatorTree.  This allows us to visit definitions before | 
|  | /// uses, allowing us to hoist a loop body in one pass without iteration. | 
|  | /// | 
|  | bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, | 
|  | DominatorTree *DT, AssumptionCache *AC, | 
|  | TargetLibraryInfo *TLI, Loop *CurLoop, | 
|  | MemorySSAUpdater &MSSAU, ScalarEvolution *SE, | 
|  | ICFLoopSafetyInfo *SafetyInfo, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | OptimizationRemarkEmitter *ORE, bool LoopNestMode, | 
|  | bool AllowSpeculation, bool HasCoroSuspendInst) { | 
|  | // Verify inputs. | 
|  | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && | 
|  | CurLoop != nullptr && SafetyInfo != nullptr && | 
|  | "Unexpected input to hoistRegion."); | 
|  |  | 
|  | ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); | 
|  |  | 
|  | // Keep track of instructions that have been hoisted, as they may need to be | 
|  | // re-hoisted if they end up not dominating all of their uses. | 
|  | SmallVector<Instruction *, 16> HoistedInstructions; | 
|  |  | 
|  | // For PHI hoisting to work we need to hoist blocks before their successors. | 
|  | // We can do this by iterating through the blocks in the loop in reverse | 
|  | // post-order. | 
|  | LoopBlocksRPO Worklist(CurLoop); | 
|  | Worklist.perform(LI); | 
|  | bool Changed = false; | 
|  | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
|  | for (BasicBlock *BB : Worklist) { | 
|  | // Only need to process the contents of this block if it is not part of a | 
|  | // subloop (which would already have been processed). | 
|  | if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) | 
|  | continue; | 
|  |  | 
|  | for (Instruction &I : llvm::make_early_inc_range(*BB)) { | 
|  | // Try hoisting the instruction out to the preheader.  We can only do | 
|  | // this if all of the operands of the instruction are loop invariant and | 
|  | // if it is safe to hoist the instruction. We also check block frequency | 
|  | // to make sure instruction only gets hoisted into colder blocks. | 
|  | // TODO: It may be safe to hoist if we are hoisting to a conditional block | 
|  | // and we have accurately duplicated the control flow from the loop header | 
|  | // to that block. | 
|  | if (CurLoop->hasLoopInvariantOperands(&I, HasCoroSuspendInst) && | 
|  | canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) && | 
|  | isSafeToExecuteUnconditionally(I, DT, TLI, CurLoop, SafetyInfo, ORE, | 
|  | Preheader->getTerminator(), AC, | 
|  | AllowSpeculation)) { | 
|  | hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | 
|  | MSSAU, SE, ORE); | 
|  | HoistedInstructions.push_back(&I); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Attempt to remove floating point division out of the loop by | 
|  | // converting it to a reciprocal multiplication. | 
|  | if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && | 
|  | CurLoop->isLoopInvariant(I.getOperand(1))) { | 
|  | auto Divisor = I.getOperand(1); | 
|  | auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); | 
|  | auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); | 
|  | ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); | 
|  | SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); | 
|  | ReciprocalDivisor->insertBefore(I.getIterator()); | 
|  | ReciprocalDivisor->setDebugLoc(I.getDebugLoc()); | 
|  |  | 
|  | auto Product = | 
|  | BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); | 
|  | Product->setFastMathFlags(I.getFastMathFlags()); | 
|  | SafetyInfo->insertInstructionTo(Product, I.getParent()); | 
|  | Product->insertAfter(I.getIterator()); | 
|  | Product->setDebugLoc(I.getDebugLoc()); | 
|  | I.replaceAllUsesWith(Product); | 
|  | eraseInstruction(I, *SafetyInfo, MSSAU); | 
|  |  | 
|  | hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), | 
|  | SafetyInfo, MSSAU, SE, ORE); | 
|  | HoistedInstructions.push_back(ReciprocalDivisor); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto IsInvariantStart = [&](Instruction &I) { | 
|  | using namespace PatternMatch; | 
|  | return I.use_empty() && | 
|  | match(&I, m_Intrinsic<Intrinsic::invariant_start>()); | 
|  | }; | 
|  | auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { | 
|  | return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && | 
|  | SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); | 
|  | }; | 
|  | if ((IsInvariantStart(I) || isGuard(&I)) && | 
|  | CurLoop->hasLoopInvariantOperands(&I, HasCoroSuspendInst) && | 
|  | MustExecuteWithoutWritesBefore(I)) { | 
|  | hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | 
|  | MSSAU, SE, ORE); | 
|  | HoistedInstructions.push_back(&I); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(&I)) { | 
|  | if (CFH.canHoistPHI(PN)) { | 
|  | // Redirect incoming blocks first to ensure that we create hoisted | 
|  | // versions of those blocks before we hoist the phi. | 
|  | for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) | 
|  | PN->setIncomingBlock( | 
|  | i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); | 
|  | hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | 
|  | MSSAU, SE, ORE); | 
|  | assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to reassociate instructions so that part of computations can be | 
|  | // done out of loop. | 
|  | if (hoistArithmetics(I, *CurLoop, *SafetyInfo, MSSAU, AC, DT)) { | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Remember possibly hoistable branches so we can actually hoist them | 
|  | // later if needed. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(&I)) | 
|  | CFH.registerPossiblyHoistableBranch(BI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we hoisted instructions to a conditional block they may not dominate | 
|  | // their uses that weren't hoisted (such as phis where some operands are not | 
|  | // loop invariant). If so make them unconditional by moving them to their | 
|  | // immediate dominator. We iterate through the instructions in reverse order | 
|  | // which ensures that when we rehoist an instruction we rehoist its operands, | 
|  | // and also keep track of where in the block we are rehoisting to make sure | 
|  | // that we rehoist instructions before the instructions that use them. | 
|  | Instruction *HoistPoint = nullptr; | 
|  | if (ControlFlowHoisting) { | 
|  | for (Instruction *I : reverse(HoistedInstructions)) { | 
|  | if (!llvm::all_of(I->uses(), | 
|  | [&](Use &U) { return DT->dominates(I, U); })) { | 
|  | BasicBlock *Dominator = | 
|  | DT->getNode(I->getParent())->getIDom()->getBlock(); | 
|  | if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { | 
|  | if (HoistPoint) | 
|  | assert(DT->dominates(Dominator, HoistPoint->getParent()) && | 
|  | "New hoist point expected to dominate old hoist point"); | 
|  | HoistPoint = Dominator->getTerminator(); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "LICM rehoisting to " | 
|  | << HoistPoint->getParent()->getNameOrAsOperand() | 
|  | << ": " << *I << "\n"); | 
|  | moveInstructionBefore(*I, HoistPoint->getIterator(), *SafetyInfo, MSSAU, | 
|  | SE); | 
|  | HoistPoint = I; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (VerifyMemorySSA) | 
|  | MSSAU.getMemorySSA()->verifyMemorySSA(); | 
|  |  | 
|  | // Now that we've finished hoisting make sure that LI and DT are still | 
|  | // valid. | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | if (Changed) { | 
|  | assert(DT->verify(DominatorTree::VerificationLevel::Fast) && | 
|  | "Dominator tree verification failed"); | 
|  | LI->verify(*DT); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Return true if LI is invariant within scope of the loop. LI is invariant if | 
|  | // CurLoop is dominated by an invariant.start representing the same memory | 
|  | // location and size as the memory location LI loads from, and also the | 
|  | // invariant.start has no uses. | 
|  | static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, | 
|  | Loop *CurLoop) { | 
|  | Value *Addr = LI->getPointerOperand(); | 
|  | const DataLayout &DL = LI->getDataLayout(); | 
|  | const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); | 
|  |  | 
|  | // It is not currently possible for clang to generate an invariant.start | 
|  | // intrinsic with scalable vector types because we don't support thread local | 
|  | // sizeless types and we don't permit sizeless types in structs or classes. | 
|  | // Furthermore, even if support is added for this in future the intrinsic | 
|  | // itself is defined to have a size of -1 for variable sized objects. This | 
|  | // makes it impossible to verify if the intrinsic envelops our region of | 
|  | // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> | 
|  | // types would have a -1 parameter, but the former is clearly double the size | 
|  | // of the latter. | 
|  | if (LocSizeInBits.isScalable()) | 
|  | return false; | 
|  |  | 
|  | // If we've ended up at a global/constant, bail. We shouldn't be looking at | 
|  | // uselists for non-local Values in a loop pass. | 
|  | if (isa<Constant>(Addr)) | 
|  | return false; | 
|  |  | 
|  | unsigned UsesVisited = 0; | 
|  | // Traverse all uses of the load operand value, to see if invariant.start is | 
|  | // one of the uses, and whether it dominates the load instruction. | 
|  | for (auto *U : Addr->users()) { | 
|  | // Avoid traversing for Load operand with high number of users. | 
|  | if (++UsesVisited > MaxNumUsesTraversed) | 
|  | return false; | 
|  | IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); | 
|  | // If there are escaping uses of invariant.start instruction, the load maybe | 
|  | // non-invariant. | 
|  | if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || | 
|  | !II->use_empty()) | 
|  | continue; | 
|  | ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); | 
|  | // The intrinsic supports having a -1 argument for variable sized objects | 
|  | // so we should check for that here. | 
|  | if (InvariantSize->isNegative()) | 
|  | continue; | 
|  | uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; | 
|  | // Confirm the invariant.start location size contains the load operand size | 
|  | // in bits. Also, the invariant.start should dominate the load, and we | 
|  | // should not hoist the load out of a loop that contains this dominating | 
|  | // invariant.start. | 
|  | if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits && | 
|  | DT->properlyDominates(II->getParent(), CurLoop->getHeader())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Return true if-and-only-if we know how to (mechanically) both hoist and | 
|  | /// sink a given instruction out of a loop.  Does not address legality | 
|  | /// concerns such as aliasing or speculation safety. | 
|  | bool isHoistableAndSinkableInst(Instruction &I) { | 
|  | // Only these instructions are hoistable/sinkable. | 
|  | return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || | 
|  | isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || | 
|  | isa<BinaryOperator>(I) || isa<SelectInst>(I) || | 
|  | isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || | 
|  | isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || | 
|  | isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || | 
|  | isa<InsertValueInst>(I) || isa<FreezeInst>(I)); | 
|  | } | 
|  |  | 
|  | /// Return true if I is the only Instruction with a MemoryAccess in L. | 
|  | bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, | 
|  | const MemorySSAUpdater &MSSAU) { | 
|  | for (auto *BB : L->getBlocks()) | 
|  | if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) { | 
|  | int NotAPhi = 0; | 
|  | for (const auto &Acc : *Accs) { | 
|  | if (isa<MemoryPhi>(&Acc)) | 
|  | continue; | 
|  | const auto *MUD = cast<MemoryUseOrDef>(&Acc); | 
|  | if (MUD->getMemoryInst() != I || NotAPhi++ == 1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA, | 
|  | BatchAAResults &BAA, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | MemoryUseOrDef *MA) { | 
|  | // See declaration of SetLicmMssaOptCap for usage details. | 
|  | if (Flags.tooManyClobberingCalls()) | 
|  | return MA->getDefiningAccess(); | 
|  |  | 
|  | MemoryAccess *Source = | 
|  | MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, BAA); | 
|  | Flags.incrementClobberingCalls(); | 
|  | return Source; | 
|  | } | 
|  |  | 
|  | bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, | 
|  | Loop *CurLoop, MemorySSAUpdater &MSSAU, | 
|  | bool TargetExecutesOncePerLoop, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | // If we don't understand the instruction, bail early. | 
|  | if (!isHoistableAndSinkableInst(I)) | 
|  | return false; | 
|  |  | 
|  | MemorySSA *MSSA = MSSAU.getMemorySSA(); | 
|  | // Loads have extra constraints we have to verify before we can hoist them. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { | 
|  | if (!LI->isUnordered()) | 
|  | return false; // Don't sink/hoist volatile or ordered atomic loads! | 
|  |  | 
|  | // Loads from constant memory are always safe to move, even if they end up | 
|  | // in the same alias set as something that ends up being modified. | 
|  | if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0)))) | 
|  | return true; | 
|  | if (LI->hasMetadata(LLVMContext::MD_invariant_load)) | 
|  | return true; | 
|  |  | 
|  | if (LI->isAtomic() && !TargetExecutesOncePerLoop) | 
|  | return false; // Don't risk duplicating unordered loads | 
|  |  | 
|  | // This checks for an invariant.start dominating the load. | 
|  | if (isLoadInvariantInLoop(LI, DT, CurLoop)) | 
|  | return true; | 
|  |  | 
|  | auto MU = cast<MemoryUse>(MSSA->getMemoryAccess(LI)); | 
|  |  | 
|  | bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group); | 
|  |  | 
|  | bool Invalidated = pointerInvalidatedByLoop( | 
|  | MSSA, MU, CurLoop, I, Flags, InvariantGroup); | 
|  | // Check loop-invariant address because this may also be a sinkable load | 
|  | // whose address is not necessarily loop-invariant. | 
|  | if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemarkMissed( | 
|  | DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) | 
|  | << "failed to move load with loop-invariant address " | 
|  | "because the loop may invalidate its value"; | 
|  | }); | 
|  |  | 
|  | return !Invalidated; | 
|  | } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { | 
|  | // Don't sink calls which can throw. | 
|  | if (CI->mayThrow()) | 
|  | return false; | 
|  |  | 
|  | // Convergent attribute has been used on operations that involve | 
|  | // inter-thread communication which results are implicitly affected by the | 
|  | // enclosing control flows. It is not safe to hoist or sink such operations | 
|  | // across control flow. | 
|  | if (CI->isConvergent()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Current LLVM IR semantics don't work well with coroutines and | 
|  | // thread local globals. We currently treat getting the address of a thread | 
|  | // local global as not accessing memory, even though it may not be a | 
|  | // constant throughout a function with coroutines. Remove this check after | 
|  | // we better model semantics of thread local globals. | 
|  | if (CI->getFunction()->isPresplitCoroutine()) | 
|  | return false; | 
|  |  | 
|  | using namespace PatternMatch; | 
|  | if (match(CI, m_Intrinsic<Intrinsic::assume>())) | 
|  | // Assumes don't actually alias anything or throw | 
|  | return true; | 
|  |  | 
|  | // Handle simple cases by querying alias analysis. | 
|  | MemoryEffects Behavior = AA->getMemoryEffects(CI); | 
|  |  | 
|  | if (Behavior.doesNotAccessMemory()) | 
|  | return true; | 
|  | if (Behavior.onlyReadsMemory()) { | 
|  | // Might have stale MemoryDef for call that was later inferred to be | 
|  | // read-only. | 
|  | auto *MU = dyn_cast<MemoryUse>(MSSA->getMemoryAccess(CI)); | 
|  | if (!MU) | 
|  | return false; | 
|  |  | 
|  | // If we can prove there are no writes to the memory read by the call, we | 
|  | // can hoist or sink. | 
|  | return !pointerInvalidatedByLoop( | 
|  | MSSA, MU, CurLoop, I, Flags, /*InvariantGroup=*/false); | 
|  | } | 
|  |  | 
|  | if (Behavior.onlyWritesMemory()) { | 
|  | // can hoist or sink if there are no conflicting read/writes to the | 
|  | // memory location written to by the call. | 
|  | return noConflictingReadWrites(CI, MSSA, AA, CurLoop, Flags); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } else if (auto *FI = dyn_cast<FenceInst>(&I)) { | 
|  | // Fences alias (most) everything to provide ordering.  For the moment, | 
|  | // just give up if there are any other memory operations in the loop. | 
|  | return isOnlyMemoryAccess(FI, CurLoop, MSSAU); | 
|  | } else if (auto *SI = dyn_cast<StoreInst>(&I)) { | 
|  | if (!SI->isUnordered()) | 
|  | return false; // Don't sink/hoist volatile or ordered atomic store! | 
|  |  | 
|  | // We can only hoist a store that we can prove writes a value which is not | 
|  | // read or overwritten within the loop.  For those cases, we fallback to | 
|  | // load store promotion instead.  TODO: We can extend this to cases where | 
|  | // there is exactly one write to the location and that write dominates an | 
|  | // arbitrary number of reads in the loop. | 
|  | if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) | 
|  | return true; | 
|  | return noConflictingReadWrites(SI, MSSA, AA, CurLoop, Flags); | 
|  | } | 
|  |  | 
|  | assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); | 
|  |  | 
|  | // We've established mechanical ability and aliasing, it's up to the caller | 
|  | // to check fault safety | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns true if a PHINode is a trivially replaceable with an | 
|  | /// Instruction. | 
|  | /// This is true when all incoming values are that instruction. | 
|  | /// This pattern occurs most often with LCSSA PHI nodes. | 
|  | /// | 
|  | static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { | 
|  | for (const Value *IncValue : PN.incoming_values()) | 
|  | if (IncValue != &I) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the instruction is foldable in the loop. | 
|  | static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const TargetTransformInfo *TTI) { | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { | 
|  | InstructionCost CostI = | 
|  | TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); | 
|  | if (CostI != TargetTransformInfo::TCC_Free) | 
|  | return false; | 
|  | // For a GEP, we cannot simply use getInstructionCost because currently | 
|  | // it optimistically assumes that a GEP will fold into addressing mode | 
|  | // regardless of its users. | 
|  | const BasicBlock *BB = GEP->getParent(); | 
|  | for (const User *U : GEP->users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if (CurLoop->contains(UI) && | 
|  | (BB != UI->getParent() || | 
|  | (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the only users of this instruction are outside of | 
|  | /// the loop. If this is true, we can sink the instruction to the exit | 
|  | /// blocks of the loop. | 
|  | /// | 
|  | /// We also return true if the instruction could be folded away in lowering. | 
|  | /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop). | 
|  | static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, | 
|  | const LoopSafetyInfo *SafetyInfo, | 
|  | TargetTransformInfo *TTI, | 
|  | bool &FoldableInLoop, bool LoopNestMode) { | 
|  | const auto &BlockColors = SafetyInfo->getBlockColors(); | 
|  | bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI); | 
|  | for (const User *U : I.users()) { | 
|  | const Instruction *UI = cast<Instruction>(U); | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(UI)) { | 
|  | const BasicBlock *BB = PN->getParent(); | 
|  | // We cannot sink uses in catchswitches. | 
|  | if (isa<CatchSwitchInst>(BB->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | // We need to sink a callsite to a unique funclet.  Avoid sinking if the | 
|  | // phi use is too muddled. | 
|  | if (isa<CallInst>(I)) | 
|  | if (!BlockColors.empty() && | 
|  | BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) | 
|  | return false; | 
|  |  | 
|  | if (LoopNestMode) { | 
|  | while (isa<PHINode>(UI) && UI->hasOneUser() && | 
|  | UI->getNumOperands() == 1) { | 
|  | if (!CurLoop->contains(UI)) | 
|  | break; | 
|  | UI = cast<Instruction>(UI->user_back()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CurLoop->contains(UI)) { | 
|  | if (IsFoldable) { | 
|  | FoldableInLoop = true; | 
|  | continue; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Instruction *cloneInstructionInExitBlock( | 
|  | Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, | 
|  | const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) { | 
|  | Instruction *New; | 
|  | if (auto *CI = dyn_cast<CallInst>(&I)) { | 
|  | const auto &BlockColors = SafetyInfo->getBlockColors(); | 
|  |  | 
|  | // Sinking call-sites need to be handled differently from other | 
|  | // instructions.  The cloned call-site needs a funclet bundle operand | 
|  | // appropriate for its location in the CFG. | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); | 
|  | BundleIdx != BundleEnd; ++BundleIdx) { | 
|  | OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); | 
|  | if (Bundle.getTagID() == LLVMContext::OB_funclet) | 
|  | continue; | 
|  |  | 
|  | OpBundles.emplace_back(Bundle); | 
|  | } | 
|  |  | 
|  | if (!BlockColors.empty()) { | 
|  | const ColorVector &CV = BlockColors.find(&ExitBlock)->second; | 
|  | assert(CV.size() == 1 && "non-unique color for exit block!"); | 
|  | BasicBlock *BBColor = CV.front(); | 
|  | BasicBlock::iterator EHPad = BBColor->getFirstNonPHIIt(); | 
|  | if (EHPad->isEHPad()) | 
|  | OpBundles.emplace_back("funclet", &*EHPad); | 
|  | } | 
|  |  | 
|  | New = CallInst::Create(CI, OpBundles); | 
|  | New->copyMetadata(*CI); | 
|  | } else { | 
|  | New = I.clone(); | 
|  | } | 
|  |  | 
|  | New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt()); | 
|  | if (!I.getName().empty()) | 
|  | New->setName(I.getName() + ".le"); | 
|  |  | 
|  | if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) { | 
|  | // Create a new MemoryAccess and let MemorySSA set its defining access. | 
|  | // After running some passes, MemorySSA might be outdated, and the | 
|  | // instruction `I` may have become a non-memory touching instruction. | 
|  | MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB( | 
|  | New, nullptr, New->getParent(), MemorySSA::Beginning, | 
|  | /*CreationMustSucceed=*/false); | 
|  | if (NewMemAcc) { | 
|  | if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) | 
|  | MSSAU.insertDef(MemDef, /*RenameUses=*/true); | 
|  | else { | 
|  | auto *MemUse = cast<MemoryUse>(NewMemAcc); | 
|  | MSSAU.insertUse(MemUse, /*RenameUses=*/true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build LCSSA PHI nodes for any in-loop operands (if legal).  Note that | 
|  | // this is particularly cheap because we can rip off the PHI node that we're | 
|  | // replacing for the number and blocks of the predecessors. | 
|  | // OPT: If this shows up in a profile, we can instead finish sinking all | 
|  | // invariant instructions, and then walk their operands to re-establish | 
|  | // LCSSA. That will eliminate creating PHI nodes just to nuke them when | 
|  | // sinking bottom-up. | 
|  | for (Use &Op : New->operands()) | 
|  | if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { | 
|  | auto *OInst = cast<Instruction>(Op.get()); | 
|  | PHINode *OpPN = | 
|  | PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), | 
|  | OInst->getName() + ".lcssa"); | 
|  | OpPN->insertBefore(ExitBlock.begin()); | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | 
|  | OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); | 
|  | Op = OpPN; | 
|  | } | 
|  | return New; | 
|  | } | 
|  |  | 
|  | static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU) { | 
|  | MSSAU.removeMemoryAccess(&I); | 
|  | SafetyInfo.removeInstruction(&I); | 
|  | I.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, | 
|  | ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, | 
|  | ScalarEvolution *SE) { | 
|  | SafetyInfo.removeInstruction(&I); | 
|  | SafetyInfo.insertInstructionTo(&I, Dest->getParent()); | 
|  | I.moveBefore(*Dest->getParent(), Dest); | 
|  | if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( | 
|  | MSSAU.getMemorySSA()->getMemoryAccess(&I))) | 
|  | MSSAU.moveToPlace(OldMemAcc, Dest->getParent(), | 
|  | MemorySSA::BeforeTerminator); | 
|  | if (SE) | 
|  | SE->forgetBlockAndLoopDispositions(&I); | 
|  | } | 
|  |  | 
|  | static Instruction *sinkThroughTriviallyReplaceablePHI( | 
|  | PHINode *TPN, Instruction *I, LoopInfo *LI, | 
|  | SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, | 
|  | const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, | 
|  | MemorySSAUpdater &MSSAU) { | 
|  | assert(isTriviallyReplaceablePHI(*TPN, *I) && | 
|  | "Expect only trivially replaceable PHI"); | 
|  | BasicBlock *ExitBlock = TPN->getParent(); | 
|  | auto [It, Inserted] = SunkCopies.try_emplace(ExitBlock); | 
|  | if (Inserted) | 
|  | It->second = cloneInstructionInExitBlock(*I, *ExitBlock, *TPN, LI, | 
|  | SafetyInfo, MSSAU); | 
|  | return It->second; | 
|  | } | 
|  |  | 
|  | static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { | 
|  | BasicBlock *BB = PN->getParent(); | 
|  | if (!BB->canSplitPredecessors()) | 
|  | return false; | 
|  | // It's not impossible to split EHPad blocks, but if BlockColors already exist | 
|  | // it require updating BlockColors for all offspring blocks accordingly. By | 
|  | // skipping such corner case, we can make updating BlockColors after splitting | 
|  | // predecessor fairly simple. | 
|  | if (!SafetyInfo->getBlockColors().empty() && | 
|  | BB->getFirstNonPHIIt()->isEHPad()) | 
|  | return false; | 
|  | for (BasicBlock *BBPred : predecessors(BB)) { | 
|  | if (isa<IndirectBrInst>(BBPred->getTerminator())) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, | 
|  | LoopInfo *LI, const Loop *CurLoop, | 
|  | LoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater *MSSAU) { | 
|  | #ifndef NDEBUG | 
|  | SmallVector<BasicBlock *, 32> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(llvm::from_range, ExitBlocks); | 
|  | #endif | 
|  | BasicBlock *ExitBB = PN->getParent(); | 
|  | assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); | 
|  |  | 
|  | // Split predecessors of the loop exit to make instructions in the loop are | 
|  | // exposed to exit blocks through trivially replaceable PHIs while keeping the | 
|  | // loop in the canonical form where each predecessor of each exit block should | 
|  | // be contained within the loop. For example, this will convert the loop below | 
|  | // from | 
|  | // | 
|  | // LB1: | 
|  | //   %v1 = | 
|  | //   br %LE, %LB2 | 
|  | // LB2: | 
|  | //   %v2 = | 
|  | //   br %LE, %LB1 | 
|  | // LE: | 
|  | //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable | 
|  | // | 
|  | // to | 
|  | // | 
|  | // LB1: | 
|  | //   %v1 = | 
|  | //   br %LE.split, %LB2 | 
|  | // LB2: | 
|  | //   %v2 = | 
|  | //   br %LE.split2, %LB1 | 
|  | // LE.split: | 
|  | //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable | 
|  | //   br %LE | 
|  | // LE.split2: | 
|  | //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable | 
|  | //   br %LE | 
|  | // LE: | 
|  | //   %p = phi [%p1, %LE.split], [%p2, %LE.split2] | 
|  | // | 
|  | const auto &BlockColors = SafetyInfo->getBlockColors(); | 
|  | SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); | 
|  | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); | 
|  | while (!PredBBs.empty()) { | 
|  | BasicBlock *PredBB = *PredBBs.begin(); | 
|  | assert(CurLoop->contains(PredBB) && | 
|  | "Expect all predecessors are in the loop"); | 
|  | if (PN->getBasicBlockIndex(PredBB) >= 0) { | 
|  | BasicBlock *NewPred = SplitBlockPredecessors( | 
|  | ExitBB, PredBB, ".split.loop.exit", &DTU, LI, MSSAU, true); | 
|  | // Since we do not allow splitting EH-block with BlockColors in | 
|  | // canSplitPredecessors(), we can simply assign predecessor's color to | 
|  | // the new block. | 
|  | if (!BlockColors.empty()) | 
|  | // Grab a reference to the ColorVector to be inserted before getting the | 
|  | // reference to the vector we are copying because inserting the new | 
|  | // element in BlockColors might cause the map to be reallocated. | 
|  | SafetyInfo->copyColors(NewPred, PredBB); | 
|  | } | 
|  | PredBBs.remove(PredBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// When an instruction is found to only be used outside of the loop, this | 
|  | /// function moves it to the exit blocks and patches up SSA form as needed. | 
|  | /// This method is guaranteed to remove the original instruction from its | 
|  | /// position, and may either delete it or move it to outside of the loop. | 
|  | /// | 
|  | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, | 
|  | const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) { | 
|  | bool Changed = false; | 
|  | LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); | 
|  |  | 
|  | // Iterate over users to be ready for actual sinking. Replace users via | 
|  | // unreachable blocks with undef and make all user PHIs trivially replaceable. | 
|  | SmallPtrSet<Instruction *, 8> VisitedUsers; | 
|  | for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { | 
|  | auto *User = cast<Instruction>(*UI); | 
|  | Use &U = UI.getUse(); | 
|  | ++UI; | 
|  |  | 
|  | if (VisitedUsers.count(User) || CurLoop->contains(User)) | 
|  | continue; | 
|  |  | 
|  | if (!DT->isReachableFromEntry(User->getParent())) { | 
|  | U = PoisonValue::get(I.getType()); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The user must be a PHI node. | 
|  | PHINode *PN = cast<PHINode>(User); | 
|  |  | 
|  | // Surprisingly, instructions can be used outside of loops without any | 
|  | // exits.  This can only happen in PHI nodes if the incoming block is | 
|  | // unreachable. | 
|  | BasicBlock *BB = PN->getIncomingBlock(U); | 
|  | if (!DT->isReachableFromEntry(BB)) { | 
|  | U = PoisonValue::get(I.getType()); | 
|  | Changed = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VisitedUsers.insert(PN); | 
|  | if (isTriviallyReplaceablePHI(*PN, I)) | 
|  | continue; | 
|  |  | 
|  | if (!canSplitPredecessors(PN, SafetyInfo)) | 
|  | return Changed; | 
|  |  | 
|  | // Split predecessors of the PHI so that we can make users trivially | 
|  | // replaceable. | 
|  | splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU); | 
|  |  | 
|  | // Should rebuild the iterators, as they may be invalidated by | 
|  | // splitPredecessorsOfLoopExit(). | 
|  | UI = I.user_begin(); | 
|  | UE = I.user_end(); | 
|  | } | 
|  |  | 
|  | if (VisitedUsers.empty()) | 
|  | return Changed; | 
|  |  | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) | 
|  | << "sinking " << ore::NV("Inst", &I); | 
|  | }); | 
|  | if (isa<LoadInst>(I)) | 
|  | ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) | 
|  | ++NumMovedCalls; | 
|  | ++NumSunk; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | SmallVector<BasicBlock *, 32> ExitBlocks; | 
|  | CurLoop->getUniqueExitBlocks(ExitBlocks); | 
|  | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(llvm::from_range, ExitBlocks); | 
|  | #endif | 
|  |  | 
|  | // Clones of this instruction. Don't create more than one per exit block! | 
|  | SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; | 
|  |  | 
|  | // If this instruction is only used outside of the loop, then all users are | 
|  | // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of | 
|  | // the instruction. | 
|  | // First check if I is worth sinking for all uses. Sink only when it is worth | 
|  | // across all uses. | 
|  | SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); | 
|  | for (auto *UI : Users) { | 
|  | auto *User = cast<Instruction>(UI); | 
|  |  | 
|  | if (CurLoop->contains(User)) | 
|  | continue; | 
|  |  | 
|  | PHINode *PN = cast<PHINode>(User); | 
|  | assert(ExitBlockSet.count(PN->getParent()) && | 
|  | "The LCSSA PHI is not in an exit block!"); | 
|  |  | 
|  | // The PHI must be trivially replaceable. | 
|  | Instruction *New = sinkThroughTriviallyReplaceablePHI( | 
|  | PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); | 
|  | // As we sink the instruction out of the BB, drop its debug location. | 
|  | New->dropLocation(); | 
|  | PN->replaceAllUsesWith(New); | 
|  | eraseInstruction(*PN, *SafetyInfo, MSSAU); | 
|  | Changed = true; | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// When an instruction is found to only use loop invariant operands that | 
|  | /// is safe to hoist, this instruction is called to do the dirty work. | 
|  | /// | 
|  | static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, | 
|  | BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, ScalarEvolution *SE, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " | 
|  | << I << "\n"); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " | 
|  | << ore::NV("Inst", &I); | 
|  | }); | 
|  |  | 
|  | // Metadata can be dependent on conditions we are hoisting above. | 
|  | // Conservatively strip all metadata on the instruction unless we were | 
|  | // guaranteed to execute I if we entered the loop, in which case the metadata | 
|  | // is valid in the loop preheader. | 
|  | // Similarly, If I is a call and it is not guaranteed to execute in the loop, | 
|  | // then moving to the preheader means we should strip attributes on the call | 
|  | // that can cause UB since we may be hoisting above conditions that allowed | 
|  | // inferring those attributes. They may not be valid at the preheader. | 
|  | if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) && | 
|  | // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning | 
|  | // time in isGuaranteedToExecute if we don't actually have anything to | 
|  | // drop.  It is a compile time optimization, not required for correctness. | 
|  | !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) { | 
|  | if (ProfcheckDisableMetadataFixes) | 
|  | I.dropUBImplyingAttrsAndMetadata(); | 
|  | else | 
|  | I.dropUBImplyingAttrsAndMetadata({LLVMContext::MD_prof}); | 
|  | } | 
|  |  | 
|  | if (isa<PHINode>(I)) | 
|  | // Move the new node to the end of the phi list in the destination block. | 
|  | moveInstructionBefore(I, Dest->getFirstNonPHIIt(), *SafetyInfo, MSSAU, SE); | 
|  | else | 
|  | // Move the new node to the destination block, before its terminator. | 
|  | moveInstructionBefore(I, Dest->getTerminator()->getIterator(), *SafetyInfo, | 
|  | MSSAU, SE); | 
|  |  | 
|  | I.updateLocationAfterHoist(); | 
|  |  | 
|  | if (isa<LoadInst>(I)) | 
|  | ++NumMovedLoads; | 
|  | else if (isa<CallInst>(I)) | 
|  | ++NumMovedCalls; | 
|  | ++NumHoisted; | 
|  | } | 
|  |  | 
|  | /// Only sink or hoist an instruction if it is not a trapping instruction, | 
|  | /// or if the instruction is known not to trap when moved to the preheader. | 
|  | /// or if it is a trapping instruction and is guaranteed to execute. | 
|  | static bool isSafeToExecuteUnconditionally( | 
|  | Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, | 
|  | const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, const Instruction *CtxI, | 
|  | AssumptionCache *AC, bool AllowSpeculation) { | 
|  | if (AllowSpeculation && | 
|  | isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI)) | 
|  | return true; | 
|  |  | 
|  | bool GuaranteedToExecute = | 
|  | SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); | 
|  |  | 
|  | if (!GuaranteedToExecute) { | 
|  | auto *LI = dyn_cast<LoadInst>(&Inst); | 
|  | if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemarkMissed( | 
|  | DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) | 
|  | << "failed to hoist load with loop-invariant address " | 
|  | "because load is conditionally executed"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | return GuaranteedToExecute; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class LoopPromoter : public LoadAndStorePromoter { | 
|  | Value *SomePtr; // Designated pointer to store to. | 
|  | SmallVectorImpl<BasicBlock *> &LoopExitBlocks; | 
|  | SmallVectorImpl<BasicBlock::iterator> &LoopInsertPts; | 
|  | SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; | 
|  | PredIteratorCache &PredCache; | 
|  | MemorySSAUpdater &MSSAU; | 
|  | LoopInfo &LI; | 
|  | DebugLoc DL; | 
|  | Align Alignment; | 
|  | bool UnorderedAtomic; | 
|  | AAMDNodes AATags; | 
|  | ICFLoopSafetyInfo &SafetyInfo; | 
|  | bool CanInsertStoresInExitBlocks; | 
|  | ArrayRef<const Instruction *> Uses; | 
|  |  | 
|  | // We're about to add a use of V in a loop exit block.  Insert an LCSSA phi | 
|  | // (if legal) if doing so would add an out-of-loop use to an instruction | 
|  | // defined in-loop. | 
|  | Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { | 
|  | if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) | 
|  | return V; | 
|  |  | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | // We need to create an LCSSA PHI node for the incoming value and | 
|  | // store that. | 
|  | PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), | 
|  | I->getName() + ".lcssa"); | 
|  | PN->insertBefore(BB->begin()); | 
|  | for (BasicBlock *Pred : PredCache.get(BB)) | 
|  | PN->addIncoming(I, Pred); | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | public: | 
|  | LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, | 
|  | SmallVectorImpl<BasicBlock *> &LEB, | 
|  | SmallVectorImpl<BasicBlock::iterator> &LIP, | 
|  | SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, | 
|  | MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl, | 
|  | Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, | 
|  | ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks) | 
|  | : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB), | 
|  | LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU), | 
|  | LI(li), DL(std::move(dl)), Alignment(Alignment), | 
|  | UnorderedAtomic(UnorderedAtomic), AATags(AATags), | 
|  | SafetyInfo(SafetyInfo), | 
|  | CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {} | 
|  |  | 
|  | void insertStoresInLoopExitBlocks() { | 
|  | // Insert stores after in the loop exit blocks.  Each exit block gets a | 
|  | // store of the live-out values that feed them.  Since we've already told | 
|  | // the SSA updater about the defs in the loop and the preheader | 
|  | // definition, it is all set and we can start using it. | 
|  | DIAssignID *NewID = nullptr; | 
|  | for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { | 
|  | BasicBlock *ExitBlock = LoopExitBlocks[i]; | 
|  | Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); | 
|  | LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); | 
|  | Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); | 
|  | BasicBlock::iterator InsertPos = LoopInsertPts[i]; | 
|  | StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); | 
|  | if (UnorderedAtomic) | 
|  | NewSI->setOrdering(AtomicOrdering::Unordered); | 
|  | NewSI->setAlignment(Alignment); | 
|  | NewSI->setDebugLoc(DL); | 
|  | // Attach DIAssignID metadata to the new store, generating it on the | 
|  | // first loop iteration. | 
|  | if (i == 0) { | 
|  | // NewSI will have its DIAssignID set here if there are any stores in | 
|  | // Uses with a DIAssignID attachment. This merged ID will then be | 
|  | // attached to the other inserted stores (in the branch below). | 
|  | NewSI->mergeDIAssignID(Uses); | 
|  | NewID = cast_or_null<DIAssignID>( | 
|  | NewSI->getMetadata(LLVMContext::MD_DIAssignID)); | 
|  | } else { | 
|  | // Attach the DIAssignID (or nullptr) merged from Uses in the branch | 
|  | // above. | 
|  | NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID); | 
|  | } | 
|  |  | 
|  | if (AATags) | 
|  | NewSI->setAAMetadata(AATags); | 
|  |  | 
|  | MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; | 
|  | MemoryAccess *NewMemAcc; | 
|  | if (!MSSAInsertPoint) { | 
|  | NewMemAcc = MSSAU.createMemoryAccessInBB( | 
|  | NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); | 
|  | } else { | 
|  | NewMemAcc = | 
|  | MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); | 
|  | } | 
|  | MSSAInsertPts[i] = NewMemAcc; | 
|  | MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true); | 
|  | // FIXME: true for safety, false may still be correct. | 
|  | } | 
|  | } | 
|  |  | 
|  | void doExtraRewritesBeforeFinalDeletion() override { | 
|  | if (CanInsertStoresInExitBlocks) | 
|  | insertStoresInLoopExitBlocks(); | 
|  | } | 
|  |  | 
|  | void instructionDeleted(Instruction *I) const override { | 
|  | SafetyInfo.removeInstruction(I); | 
|  | MSSAU.removeMemoryAccess(I); | 
|  | } | 
|  |  | 
|  | bool shouldDelete(Instruction *I) const override { | 
|  | if (isa<StoreInst>(I)) | 
|  | return CanInsertStoresInExitBlocks; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, | 
|  | DominatorTree *DT) { | 
|  | // We can perform the captured-before check against any instruction in the | 
|  | // loop header, as the loop header is reachable from any instruction inside | 
|  | // the loop. | 
|  | // TODO: ReturnCaptures=true shouldn't be necessary here. | 
|  | return capturesNothing(PointerMayBeCapturedBefore( | 
|  | V, /*ReturnCaptures=*/true, L->getHeader()->getTerminator(), DT, | 
|  | /*IncludeI=*/false, CaptureComponents::Provenance)); | 
|  | } | 
|  |  | 
|  | /// Return true if we can prove that a caller cannot inspect the object if an | 
|  | /// unwind occurs inside the loop. | 
|  | bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L, | 
|  | DominatorTree *DT) { | 
|  | bool RequiresNoCaptureBeforeUnwind; | 
|  | if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind)) | 
|  | return false; | 
|  |  | 
|  | return !RequiresNoCaptureBeforeUnwind || | 
|  | isNotCapturedBeforeOrInLoop(Object, L, DT); | 
|  | } | 
|  |  | 
|  | bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT, | 
|  | TargetTransformInfo *TTI) { | 
|  | // The object must be function-local to start with, and then not captured | 
|  | // before/in the loop. | 
|  | return (isIdentifiedFunctionLocal(Object) && | 
|  | isNotCapturedBeforeOrInLoop(Object, L, DT)) || | 
|  | (TTI->isSingleThreaded() || SingleThread); | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | /// Try to promote memory values to scalars by sinking stores out of the | 
|  | /// loop and moving loads to before the loop.  We do this by looping over | 
|  | /// the stores in the loop, looking for stores to Must pointers which are | 
|  | /// loop invariant. | 
|  | /// | 
|  | bool llvm::promoteLoopAccessesToScalars( | 
|  | const SmallSetVector<Value *, 8> &PointerMustAliases, | 
|  | SmallVectorImpl<BasicBlock *> &ExitBlocks, | 
|  | SmallVectorImpl<BasicBlock::iterator> &InsertPts, | 
|  | SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, | 
|  | LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, | 
|  | const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, | 
|  | MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, | 
|  | OptimizationRemarkEmitter *ORE, bool AllowSpeculation, | 
|  | bool HasReadsOutsideSet) { | 
|  | // Verify inputs. | 
|  | assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && | 
|  | SafetyInfo != nullptr && | 
|  | "Unexpected Input to promoteLoopAccessesToScalars"); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "Trying to promote set of must-aliased pointers:\n"; | 
|  | for (Value *Ptr : PointerMustAliases) | 
|  | dbgs() << "  " << *Ptr << "\n"; | 
|  | }); | 
|  | ++NumPromotionCandidates; | 
|  |  | 
|  | Value *SomePtr = *PointerMustAliases.begin(); | 
|  | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | 
|  |  | 
|  | // It is not safe to promote a load/store from the loop if the load/store is | 
|  | // conditional.  For example, turning: | 
|  | // | 
|  | //    for () { if (c) *P += 1; } | 
|  | // | 
|  | // into: | 
|  | // | 
|  | //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp; | 
|  | // | 
|  | // is not safe, because *P may only be valid to access if 'c' is true. | 
|  | // | 
|  | // The safety property divides into two parts: | 
|  | // p1) The memory may not be dereferenceable on entry to the loop.  In this | 
|  | //    case, we can't insert the required load in the preheader. | 
|  | // p2) The memory model does not allow us to insert a store along any dynamic | 
|  | //    path which did not originally have one. | 
|  | // | 
|  | // If at least one store is guaranteed to execute, both properties are | 
|  | // satisfied, and promotion is legal. | 
|  | // | 
|  | // This, however, is not a necessary condition. Even if no store/load is | 
|  | // guaranteed to execute, we can still establish these properties. | 
|  | // We can establish (p1) by proving that hoisting the load into the preheader | 
|  | // is safe (i.e. proving dereferenceability on all paths through the loop). We | 
|  | // can use any access within the alias set to prove dereferenceability, | 
|  | // since they're all must alias. | 
|  | // | 
|  | // There are two ways establish (p2): | 
|  | // a) Prove the location is thread-local. In this case the memory model | 
|  | // requirement does not apply, and stores are safe to insert. | 
|  | // b) Prove a store dominates every exit block. In this case, if an exit | 
|  | // blocks is reached, the original dynamic path would have taken us through | 
|  | // the store, so inserting a store into the exit block is safe. Note that this | 
|  | // is different from the store being guaranteed to execute. For instance, | 
|  | // if an exception is thrown on the first iteration of the loop, the original | 
|  | // store is never executed, but the exit blocks are not executed either. | 
|  |  | 
|  | bool DereferenceableInPH = false; | 
|  | bool StoreIsGuanteedToExecute = false; | 
|  | bool LoadIsGuaranteedToExecute = false; | 
|  | bool FoundLoadToPromote = false; | 
|  |  | 
|  | // Goes from Unknown to either Safe or Unsafe, but can't switch between them. | 
|  | enum { | 
|  | StoreSafe, | 
|  | StoreUnsafe, | 
|  | StoreSafetyUnknown, | 
|  | } StoreSafety = StoreSafetyUnknown; | 
|  |  | 
|  | SmallVector<Instruction *, 64> LoopUses; | 
|  |  | 
|  | // We start with an alignment of one and try to find instructions that allow | 
|  | // us to prove better alignment. | 
|  | Align Alignment; | 
|  | // Keep track of which types of access we see | 
|  | bool SawUnorderedAtomic = false; | 
|  | bool SawNotAtomic = false; | 
|  | AAMDNodes AATags; | 
|  |  | 
|  | const DataLayout &MDL = Preheader->getDataLayout(); | 
|  |  | 
|  | // If there are reads outside the promoted set, then promoting stores is | 
|  | // definitely not safe. | 
|  | if (HasReadsOutsideSet) | 
|  | StoreSafety = StoreUnsafe; | 
|  |  | 
|  | if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) { | 
|  | // If a loop can throw, we have to insert a store along each unwind edge. | 
|  | // That said, we can't actually make the unwind edge explicit. Therefore, | 
|  | // we have to prove that the store is dead along the unwind edge.  We do | 
|  | // this by proving that the caller can't have a reference to the object | 
|  | // after return and thus can't possibly load from the object. | 
|  | Value *Object = getUnderlyingObject(SomePtr); | 
|  | if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT)) | 
|  | StoreSafety = StoreUnsafe; | 
|  | } | 
|  |  | 
|  | // Check that all accesses to pointers in the alias set use the same type. | 
|  | // We cannot (yet) promote a memory location that is loaded and stored in | 
|  | // different sizes.  While we are at it, collect alignment and AA info. | 
|  | Type *AccessTy = nullptr; | 
|  | for (Value *ASIV : PointerMustAliases) { | 
|  | for (Use &U : ASIV->uses()) { | 
|  | // Ignore instructions that are outside the loop. | 
|  | Instruction *UI = dyn_cast<Instruction>(U.getUser()); | 
|  | if (!UI || !CurLoop->contains(UI)) | 
|  | continue; | 
|  |  | 
|  | // If there is an non-load/store instruction in the loop, we can't promote | 
|  | // it. | 
|  | if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { | 
|  | if (!Load->isUnordered()) | 
|  | return false; | 
|  |  | 
|  | SawUnorderedAtomic |= Load->isAtomic(); | 
|  | SawNotAtomic |= !Load->isAtomic(); | 
|  | FoundLoadToPromote = true; | 
|  |  | 
|  | Align InstAlignment = Load->getAlign(); | 
|  |  | 
|  | if (!LoadIsGuaranteedToExecute) | 
|  | LoadIsGuaranteedToExecute = | 
|  | SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop); | 
|  |  | 
|  | // Note that proving a load safe to speculate requires proving | 
|  | // sufficient alignment at the target location.  Proving it guaranteed | 
|  | // to execute does as well.  Thus we can increase our guaranteed | 
|  | // alignment as well. | 
|  | if (!DereferenceableInPH || (InstAlignment > Alignment)) | 
|  | if (isSafeToExecuteUnconditionally( | 
|  | *Load, DT, TLI, CurLoop, SafetyInfo, ORE, | 
|  | Preheader->getTerminator(), AC, AllowSpeculation)) { | 
|  | DereferenceableInPH = true; | 
|  | Alignment = std::max(Alignment, InstAlignment); | 
|  | } | 
|  | } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { | 
|  | // Stores *of* the pointer are not interesting, only stores *to* the | 
|  | // pointer. | 
|  | if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) | 
|  | continue; | 
|  | if (!Store->isUnordered()) | 
|  | return false; | 
|  |  | 
|  | SawUnorderedAtomic |= Store->isAtomic(); | 
|  | SawNotAtomic |= !Store->isAtomic(); | 
|  |  | 
|  | // If the store is guaranteed to execute, both properties are satisfied. | 
|  | // We may want to check if a store is guaranteed to execute even if we | 
|  | // already know that promotion is safe, since it may have higher | 
|  | // alignment than any other guaranteed stores, in which case we can | 
|  | // raise the alignment on the promoted store. | 
|  | Align InstAlignment = Store->getAlign(); | 
|  | bool GuaranteedToExecute = | 
|  | SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop); | 
|  | StoreIsGuanteedToExecute |= GuaranteedToExecute; | 
|  | if (GuaranteedToExecute) { | 
|  | DereferenceableInPH = true; | 
|  | if (StoreSafety == StoreSafetyUnknown) | 
|  | StoreSafety = StoreSafe; | 
|  | Alignment = std::max(Alignment, InstAlignment); | 
|  | } | 
|  |  | 
|  | // If a store dominates all exit blocks, it is safe to sink. | 
|  | // As explained above, if an exit block was executed, a dominating | 
|  | // store must have been executed at least once, so we are not | 
|  | // introducing stores on paths that did not have them. | 
|  | // Note that this only looks at explicit exit blocks. If we ever | 
|  | // start sinking stores into unwind edges (see above), this will break. | 
|  | if (StoreSafety == StoreSafetyUnknown && | 
|  | llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { | 
|  | return DT->dominates(Store->getParent(), Exit); | 
|  | })) | 
|  | StoreSafety = StoreSafe; | 
|  |  | 
|  | // If the store is not guaranteed to execute, we may still get | 
|  | // deref info through it. | 
|  | if (!DereferenceableInPH) { | 
|  | DereferenceableInPH = isDereferenceableAndAlignedPointer( | 
|  | Store->getPointerOperand(), Store->getValueOperand()->getType(), | 
|  | Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI); | 
|  | } | 
|  | } else | 
|  | continue; // Not a load or store. | 
|  |  | 
|  | if (!AccessTy) | 
|  | AccessTy = getLoadStoreType(UI); | 
|  | else if (AccessTy != getLoadStoreType(UI)) | 
|  | return false; | 
|  |  | 
|  | // Merge the AA tags. | 
|  | if (LoopUses.empty()) { | 
|  | // On the first load/store, just take its AA tags. | 
|  | AATags = UI->getAAMetadata(); | 
|  | } else if (AATags) { | 
|  | AATags = AATags.merge(UI->getAAMetadata()); | 
|  | } | 
|  |  | 
|  | LoopUses.push_back(UI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found both an unordered atomic instruction and a non-atomic memory | 
|  | // access, bail.  We can't blindly promote non-atomic to atomic since we | 
|  | // might not be able to lower the result.  We can't downgrade since that | 
|  | // would violate memory model.  Also, align 0 is an error for atomics. | 
|  | if (SawUnorderedAtomic && SawNotAtomic) | 
|  | return false; | 
|  |  | 
|  | // If we're inserting an atomic load in the preheader, we must be able to | 
|  | // lower it.  We're only guaranteed to be able to lower naturally aligned | 
|  | // atomics. | 
|  | if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy)) | 
|  | return false; | 
|  |  | 
|  | // If we couldn't prove we can hoist the load, bail. | 
|  | if (!DereferenceableInPH) { | 
|  | LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We know we can hoist the load, but don't have a guaranteed store. | 
|  | // Check whether the location is writable and thread-local. If it is, then we | 
|  | // can insert stores along paths which originally didn't have them without | 
|  | // violating the memory model. | 
|  | if (StoreSafety == StoreSafetyUnknown) { | 
|  | Value *Object = getUnderlyingObject(SomePtr); | 
|  | bool ExplicitlyDereferenceableOnly; | 
|  | if (isWritableObject(Object, ExplicitlyDereferenceableOnly) && | 
|  | (!ExplicitlyDereferenceableOnly || | 
|  | isDereferenceablePointer(SomePtr, AccessTy, MDL)) && | 
|  | isThreadLocalObject(Object, CurLoop, DT, TTI)) | 
|  | StoreSafety = StoreSafe; | 
|  | } | 
|  |  | 
|  | // If we've still failed to prove we can sink the store, hoist the load | 
|  | // only, if possible. | 
|  | if (StoreSafety != StoreSafe && !FoundLoadToPromote) | 
|  | // If we cannot hoist the load either, give up. | 
|  | return false; | 
|  |  | 
|  | // Lets do the promotion! | 
|  | if (StoreSafety == StoreSafe) { | 
|  | LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr | 
|  | << '\n'); | 
|  | ++NumLoadStorePromoted; | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr | 
|  | << '\n'); | 
|  | ++NumLoadPromoted; | 
|  | } | 
|  |  | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", | 
|  | LoopUses[0]) | 
|  | << "Moving accesses to memory location out of the loop"; | 
|  | }); | 
|  |  | 
|  | // Look at all the loop uses, and try to merge their locations. | 
|  | std::vector<DebugLoc> LoopUsesLocs; | 
|  | for (auto U : LoopUses) | 
|  | LoopUsesLocs.push_back(U->getDebugLoc()); | 
|  | auto DL = DebugLoc::getMergedLocations(LoopUsesLocs); | 
|  |  | 
|  | // We use the SSAUpdater interface to insert phi nodes as required. | 
|  | SmallVector<PHINode *, 16> NewPHIs; | 
|  | SSAUpdater SSA(&NewPHIs); | 
|  | LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts, | 
|  | MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment, | 
|  | SawUnorderedAtomic, | 
|  | StoreIsGuanteedToExecute ? AATags : AAMDNodes(), | 
|  | *SafetyInfo, StoreSafety == StoreSafe); | 
|  |  | 
|  | // Set up the preheader to have a definition of the value.  It is the live-out | 
|  | // value from the preheader that uses in the loop will use. | 
|  | LoadInst *PreheaderLoad = nullptr; | 
|  | if (FoundLoadToPromote || !StoreIsGuanteedToExecute) { | 
|  | PreheaderLoad = | 
|  | new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted", | 
|  | Preheader->getTerminator()->getIterator()); | 
|  | if (SawUnorderedAtomic) | 
|  | PreheaderLoad->setOrdering(AtomicOrdering::Unordered); | 
|  | PreheaderLoad->setAlignment(Alignment); | 
|  | PreheaderLoad->setDebugLoc(DebugLoc::getDropped()); | 
|  | if (AATags && LoadIsGuaranteedToExecute) | 
|  | PreheaderLoad->setAAMetadata(AATags); | 
|  |  | 
|  | MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB( | 
|  | PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); | 
|  | MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); | 
|  | MSSAU.insertUse(NewMemUse, /*RenameUses=*/true); | 
|  | SSA.AddAvailableValue(Preheader, PreheaderLoad); | 
|  | } else { | 
|  | SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy)); | 
|  | } | 
|  |  | 
|  | if (VerifyMemorySSA) | 
|  | MSSAU.getMemorySSA()->verifyMemorySSA(); | 
|  | // Rewrite all the loads in the loop and remember all the definitions from | 
|  | // stores in the loop. | 
|  | Promoter.run(LoopUses); | 
|  |  | 
|  | if (VerifyMemorySSA) | 
|  | MSSAU.getMemorySSA()->verifyMemorySSA(); | 
|  | // If the SSAUpdater didn't use the load in the preheader, just zap it now. | 
|  | if (PreheaderLoad && PreheaderLoad->use_empty()) | 
|  | eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, | 
|  | function_ref<void(Instruction *)> Fn) { | 
|  | for (const BasicBlock *BB : L->blocks()) | 
|  | if (const auto *Accesses = MSSA->getBlockAccesses(BB)) | 
|  | for (const auto &Access : *Accesses) | 
|  | if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access)) | 
|  | Fn(MUD->getMemoryInst()); | 
|  | } | 
|  |  | 
|  | // The bool indicates whether there might be reads outside the set, in which | 
|  | // case only loads may be promoted. | 
|  | static SmallVector<PointersAndHasReadsOutsideSet, 0> | 
|  | collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { | 
|  | BatchAAResults BatchAA(*AA); | 
|  | AliasSetTracker AST(BatchAA); | 
|  |  | 
|  | auto IsPotentiallyPromotable = [L](const Instruction *I) { | 
|  | if (const auto *SI = dyn_cast<StoreInst>(I)) { | 
|  | const Value *PtrOp = SI->getPointerOperand(); | 
|  | return !isa<ConstantData>(PtrOp) && L->isLoopInvariant(PtrOp); | 
|  | } | 
|  | if (const auto *LI = dyn_cast<LoadInst>(I)) { | 
|  | const Value *PtrOp = LI->getPointerOperand(); | 
|  | return !isa<ConstantData>(PtrOp) && L->isLoopInvariant(PtrOp); | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Populate AST with potentially promotable accesses. | 
|  | SmallPtrSet<Value *, 16> AttemptingPromotion; | 
|  | foreachMemoryAccess(MSSA, L, [&](Instruction *I) { | 
|  | if (IsPotentiallyPromotable(I)) { | 
|  | AttemptingPromotion.insert(I); | 
|  | AST.add(I); | 
|  | } | 
|  | }); | 
|  |  | 
|  | // We're only interested in must-alias sets that contain a mod. | 
|  | SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets; | 
|  | for (AliasSet &AS : AST) | 
|  | if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) | 
|  | Sets.push_back({&AS, false}); | 
|  |  | 
|  | if (Sets.empty()) | 
|  | return {}; // Nothing to promote... | 
|  |  | 
|  | // Discard any sets for which there is an aliasing non-promotable access. | 
|  | foreachMemoryAccess(MSSA, L, [&](Instruction *I) { | 
|  | if (AttemptingPromotion.contains(I)) | 
|  | return; | 
|  |  | 
|  | llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) { | 
|  | ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA); | 
|  | // Cannot promote if there are writes outside the set. | 
|  | if (isModSet(MR)) | 
|  | return true; | 
|  | if (isRefSet(MR)) { | 
|  | // Remember reads outside the set. | 
|  | Pair.setInt(true); | 
|  | // If this is a mod-only set and there are reads outside the set, | 
|  | // we will not be able to promote, so bail out early. | 
|  | return !Pair.getPointer()->isRef(); | 
|  | } | 
|  | return false; | 
|  | }); | 
|  | }); | 
|  |  | 
|  | SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result; | 
|  | for (auto [Set, HasReadsOutsideSet] : Sets) { | 
|  | SmallSetVector<Value *, 8> PointerMustAliases; | 
|  | for (const auto &MemLoc : *Set) | 
|  | PointerMustAliases.insert(const_cast<Value *>(MemLoc.Ptr)); | 
|  | Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // For a given store instruction or writeonly call instruction, this function | 
|  | // checks that there are no read or writes that conflict with the memory | 
|  | // access in the instruction | 
|  | static bool noConflictingReadWrites(Instruction *I, MemorySSA *MSSA, | 
|  | AAResults *AA, Loop *CurLoop, | 
|  | SinkAndHoistLICMFlags &Flags) { | 
|  | assert(isa<CallInst>(*I) || isa<StoreInst>(*I)); | 
|  | // If there are more accesses than the Promotion cap, then give up as we're | 
|  | // not walking a list that long. | 
|  | if (Flags.tooManyMemoryAccesses()) | 
|  | return false; | 
|  |  | 
|  | auto *IMD = MSSA->getMemoryAccess(I); | 
|  | BatchAAResults BAA(*AA); | 
|  | auto *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, IMD); | 
|  | // Make sure there are no clobbers inside the loop. | 
|  | if (!MSSA->isLiveOnEntryDef(Source) && CurLoop->contains(Source->getBlock())) | 
|  | return false; | 
|  |  | 
|  | // If there are interfering Uses (i.e. their defining access is in the | 
|  | // loop), or ordered loads (stored as Defs!), don't move this store. | 
|  | // Could do better here, but this is conservatively correct. | 
|  | // TODO: Cache set of Uses on the first walk in runOnLoop, update when | 
|  | // moving accesses. Can also extend to dominating uses. | 
|  | for (auto *BB : CurLoop->getBlocks()) { | 
|  | auto *Accesses = MSSA->getBlockAccesses(BB); | 
|  | if (!Accesses) | 
|  | continue; | 
|  | for (const auto &MA : *Accesses) | 
|  | if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { | 
|  | auto *MD = getClobberingMemoryAccess(*MSSA, BAA, Flags, | 
|  | const_cast<MemoryUse *>(MU)); | 
|  | if (!MSSA->isLiveOnEntryDef(MD) && CurLoop->contains(MD->getBlock())) | 
|  | return false; | 
|  | // Disable hoisting past potentially interfering loads. Optimized | 
|  | // Uses may point to an access outside the loop, as getClobbering | 
|  | // checks the previous iteration when walking the backedge. | 
|  | // FIXME: More precise: no Uses that alias I. | 
|  | if (!Flags.getIsSink() && !MSSA->dominates(IMD, MU)) | 
|  | return false; | 
|  | } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { | 
|  | if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { | 
|  | (void)LI; // Silence warning. | 
|  | assert(!LI->isUnordered() && "Expected unordered load"); | 
|  | return false; | 
|  | } | 
|  | // Any call, while it may not be clobbering I, it may be a use. | 
|  | if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { | 
|  | // Check if the call may read from the memory location written | 
|  | // to by I. Check CI's attributes and arguments; the number of | 
|  | // such checks performed is limited above by NoOfMemAccTooLarge. | 
|  | if (auto *SI = dyn_cast<StoreInst>(I)) { | 
|  | ModRefInfo MRI = BAA.getModRefInfo(CI, MemoryLocation::get(SI)); | 
|  | if (isModOrRefSet(MRI)) | 
|  | return false; | 
|  | } else { | 
|  | auto *SCI = cast<CallInst>(I); | 
|  | // If the instruction we are wanting to hoist is also a call | 
|  | // instruction then we need not check mod/ref info with itself | 
|  | if (SCI == CI) | 
|  | continue; | 
|  | ModRefInfo MRI = BAA.getModRefInfo(CI, SCI); | 
|  | if (isModOrRefSet(MRI)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, | 
|  | Loop *CurLoop, Instruction &I, | 
|  | SinkAndHoistLICMFlags &Flags, | 
|  | bool InvariantGroup) { | 
|  | // For hoisting, use the walker to determine safety | 
|  | if (!Flags.getIsSink()) { | 
|  | // If hoisting an invariant group, we only need to check that there | 
|  | // is no store to the loaded pointer between the start of the loop, | 
|  | // and the load (since all values must be the same). | 
|  |  | 
|  | // This can be checked in two conditions: | 
|  | // 1) if the memoryaccess is outside the loop | 
|  | // 2) the earliest access is at the loop header, | 
|  | // if the memory loaded is the phi node | 
|  |  | 
|  | BatchAAResults BAA(MSSA->getAA()); | 
|  | MemoryAccess *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, MU); | 
|  | return !MSSA->isLiveOnEntryDef(Source) && | 
|  | CurLoop->contains(Source->getBlock()) && | 
|  | !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa<MemoryPhi>(Source)); | 
|  | } | 
|  |  | 
|  | // For sinking, we'd need to check all Defs below this use. The getClobbering | 
|  | // call will look on the backedge of the loop, but will check aliasing with | 
|  | // the instructions on the previous iteration. | 
|  | // For example: | 
|  | // for (i ... ) | 
|  | //   load a[i] ( Use (LoE) | 
|  | //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop. | 
|  | //   i++; | 
|  | // The load sees no clobbering inside the loop, as the backedge alias check | 
|  | // does phi translation, and will check aliasing against store a[i-1]. | 
|  | // However sinking the load outside the loop, below the store is incorrect. | 
|  |  | 
|  | // For now, only sink if there are no Defs in the loop, and the existing ones | 
|  | // precede the use and are in the same block. | 
|  | // FIXME: Increase precision: Safe to sink if Use post dominates the Def; | 
|  | // needs PostDominatorTreeAnalysis. | 
|  | // FIXME: More precise: no Defs that alias this Use. | 
|  | if (Flags.tooManyMemoryAccesses()) | 
|  | return true; | 
|  | for (auto *BB : CurLoop->getBlocks()) | 
|  | if (pointerInvalidatedByBlock(*BB, *MSSA, *MU)) | 
|  | return true; | 
|  | // When sinking, the source block may not be part of the loop so check it. | 
|  | if (!CurLoop->contains(&I)) | 
|  | return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) { | 
|  | if (const auto *Accesses = MSSA.getBlockDefs(&BB)) | 
|  | for (const auto &MA : *Accesses) | 
|  | if (const auto *MD = dyn_cast<MemoryDef>(&MA)) | 
|  | if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A < | 
|  | /// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their | 
|  | /// minimun can be computed outside of loop, and X is not a loop-invariant. | 
|  | static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU) { | 
|  | bool Inverse = false; | 
|  | using namespace PatternMatch; | 
|  | Value *Cond1, *Cond2; | 
|  | if (match(&I, m_LogicalOr(m_Value(Cond1), m_Value(Cond2)))) { | 
|  | Inverse = true; | 
|  | } else if (match(&I, m_LogicalAnd(m_Value(Cond1), m_Value(Cond2)))) { | 
|  | // Do nothing | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | auto MatchICmpAgainstInvariant = [&](Value *C, CmpPredicate &P, Value *&LHS, | 
|  | Value *&RHS) { | 
|  | if (!match(C, m_OneUse(m_ICmp(P, m_Value(LHS), m_Value(RHS))))) | 
|  | return false; | 
|  | if (!LHS->getType()->isIntegerTy()) | 
|  | return false; | 
|  | if (!ICmpInst::isRelational(P)) | 
|  | return false; | 
|  | if (L.isLoopInvariant(LHS)) { | 
|  | std::swap(LHS, RHS); | 
|  | P = ICmpInst::getSwappedPredicate(P); | 
|  | } | 
|  | if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS)) | 
|  | return false; | 
|  | if (Inverse) | 
|  | P = ICmpInst::getInversePredicate(P); | 
|  | return true; | 
|  | }; | 
|  | CmpPredicate P1, P2; | 
|  | Value *LHS1, *LHS2, *RHS1, *RHS2; | 
|  | if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) || | 
|  | !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2)) | 
|  | return false; | 
|  | auto MatchingPred = CmpPredicate::getMatching(P1, P2); | 
|  | if (!MatchingPred || LHS1 != LHS2) | 
|  | return false; | 
|  |  | 
|  | // Everything is fine, we can do the transform. | 
|  | bool UseMin = ICmpInst::isLT(*MatchingPred) || ICmpInst::isLE(*MatchingPred); | 
|  | assert( | 
|  | (UseMin || ICmpInst::isGT(*MatchingPred) || | 
|  | ICmpInst::isGE(*MatchingPred)) && | 
|  | "Relational predicate is either less (or equal) or greater (or equal)!"); | 
|  | Intrinsic::ID id = ICmpInst::isSigned(*MatchingPred) | 
|  | ? (UseMin ? Intrinsic::smin : Intrinsic::smax) | 
|  | : (UseMin ? Intrinsic::umin : Intrinsic::umax); | 
|  | auto *Preheader = L.getLoopPreheader(); | 
|  | assert(Preheader && "Loop is not in simplify form?"); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | // We are about to create a new guaranteed use for RHS2 which might not exist | 
|  | // before (if it was a non-taken input of logical and/or instruction). If it | 
|  | // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are | 
|  | // introduced, so they don't need this. | 
|  | if (isa<SelectInst>(I)) | 
|  | RHS2 = Builder.CreateFreeze(RHS2, RHS2->getName() + ".fr"); | 
|  | Value *NewRHS = Builder.CreateBinaryIntrinsic( | 
|  | id, RHS1, RHS2, nullptr, | 
|  | StringRef("invariant.") + | 
|  | (ICmpInst::isSigned(*MatchingPred) ? "s" : "u") + | 
|  | (UseMin ? "min" : "max")); | 
|  | Builder.SetInsertPoint(&I); | 
|  | ICmpInst::Predicate P = *MatchingPred; | 
|  | if (Inverse) | 
|  | P = ICmpInst::getInversePredicate(P); | 
|  | Value *NewCond = Builder.CreateICmp(P, LHS1, NewRHS); | 
|  | NewCond->takeName(&I); | 
|  | I.replaceAllUsesWith(NewCond); | 
|  | eraseInstruction(I, SafetyInfo, MSSAU); | 
|  | Instruction &CondI1 = *cast<Instruction>(Cond1); | 
|  | Instruction &CondI2 = *cast<Instruction>(Cond2); | 
|  | salvageDebugInfo(CondI1); | 
|  | salvageDebugInfo(CondI2); | 
|  | eraseInstruction(CondI1, SafetyInfo, MSSAU); | 
|  | eraseInstruction(CondI2, SafetyInfo, MSSAU); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if | 
|  | /// this allows hoisting the inner GEP. | 
|  | static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, AssumptionCache *AC, | 
|  | DominatorTree *DT) { | 
|  | auto *GEP = dyn_cast<GetElementPtrInst>(&I); | 
|  | if (!GEP) | 
|  | return false; | 
|  |  | 
|  | // Do not try to hoist a constant GEP out of the loop via reassociation. | 
|  | // Constant GEPs can often be folded into addressing modes, and reassociating | 
|  | // them may inhibit CSE of a common base. | 
|  | if (GEP->hasAllConstantIndices()) | 
|  | return false; | 
|  |  | 
|  | auto *Src = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand()); | 
|  | if (!Src || !Src->hasOneUse() || !L.contains(Src)) | 
|  | return false; | 
|  |  | 
|  | Value *SrcPtr = Src->getPointerOperand(); | 
|  | auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); }; | 
|  | if (!L.isLoopInvariant(SrcPtr) || !all_of(GEP->indices(), LoopInvariant)) | 
|  | return false; | 
|  |  | 
|  | // This can only happen if !AllowSpeculation, otherwise this would already be | 
|  | // handled. | 
|  | // FIXME: Should we respect AllowSpeculation in these reassociation folds? | 
|  | // The flag exists to prevent metadata dropping, which is not relevant here. | 
|  | if (all_of(Src->indices(), LoopInvariant)) | 
|  | return false; | 
|  |  | 
|  | // The swapped GEPs are inbounds if both original GEPs are inbounds | 
|  | // and the sign of the offsets is the same. For simplicity, only | 
|  | // handle both offsets being non-negative. | 
|  | const DataLayout &DL = GEP->getDataLayout(); | 
|  | auto NonNegative = [&](Value *V) { | 
|  | return isKnownNonNegative(V, SimplifyQuery(DL, DT, AC, GEP)); | 
|  | }; | 
|  | bool IsInBounds = Src->isInBounds() && GEP->isInBounds() && | 
|  | all_of(Src->indices(), NonNegative) && | 
|  | all_of(GEP->indices(), NonNegative); | 
|  |  | 
|  | BasicBlock *Preheader = L.getLoopPreheader(); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | Value *NewSrc = Builder.CreateGEP(GEP->getSourceElementType(), SrcPtr, | 
|  | SmallVector<Value *>(GEP->indices()), | 
|  | "invariant.gep", IsInBounds); | 
|  | Builder.SetInsertPoint(GEP); | 
|  | Value *NewGEP = Builder.CreateGEP(Src->getSourceElementType(), NewSrc, | 
|  | SmallVector<Value *>(Src->indices()), "gep", | 
|  | IsInBounds); | 
|  | GEP->replaceAllUsesWith(NewGEP); | 
|  | eraseInstruction(*GEP, SafetyInfo, MSSAU); | 
|  | salvageDebugInfo(*Src); | 
|  | eraseInstruction(*Src, SafetyInfo, MSSAU); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here | 
|  | /// C1 and C2 are loop invariants and LV is a loop-variant. | 
|  | static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS, | 
|  | Value *InvariantRHS, ICmpInst &ICmp, Loop &L, | 
|  | ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, | 
|  | AssumptionCache *AC, DominatorTree *DT) { | 
|  | assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); | 
|  | assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); | 
|  |  | 
|  | bool IsSigned = ICmpInst::isSigned(Pred); | 
|  |  | 
|  | // Try to represent VariantLHS as sum of invariant and variant operands. | 
|  | using namespace PatternMatch; | 
|  | Value *VariantOp, *InvariantOp; | 
|  | if (IsSigned && | 
|  | !match(VariantLHS, m_NSWAdd(m_Value(VariantOp), m_Value(InvariantOp)))) | 
|  | return false; | 
|  | if (!IsSigned && | 
|  | !match(VariantLHS, m_NUWAdd(m_Value(VariantOp), m_Value(InvariantOp)))) | 
|  | return false; | 
|  |  | 
|  | // LHS itself is a loop-variant, try to represent it in the form: | 
|  | // "VariantOp + InvariantOp". If it is possible, then we can reassociate. | 
|  | if (L.isLoopInvariant(VariantOp)) | 
|  | std::swap(VariantOp, InvariantOp); | 
|  | if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) | 
|  | return false; | 
|  |  | 
|  | // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to | 
|  | // freely move values from left side of inequality to right side (just as in | 
|  | // normal linear arithmetics). Overflows make things much more complicated, so | 
|  | // we want to avoid this. | 
|  | auto &DL = L.getHeader()->getDataLayout(); | 
|  | SimplifyQuery SQ(DL, DT, AC, &ICmp); | 
|  | if (IsSigned && computeOverflowForSignedSub(InvariantRHS, InvariantOp, SQ) != | 
|  | llvm::OverflowResult::NeverOverflows) | 
|  | return false; | 
|  | if (!IsSigned && | 
|  | computeOverflowForUnsignedSub(InvariantRHS, InvariantOp, SQ) != | 
|  | llvm::OverflowResult::NeverOverflows) | 
|  | return false; | 
|  | auto *Preheader = L.getLoopPreheader(); | 
|  | assert(Preheader && "Loop is not in simplify form?"); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | Value *NewCmpOp = | 
|  | Builder.CreateSub(InvariantRHS, InvariantOp, "invariant.op", | 
|  | /*HasNUW*/ !IsSigned, /*HasNSW*/ IsSigned); | 
|  | ICmp.setPredicate(Pred); | 
|  | ICmp.setOperand(0, VariantOp); | 
|  | ICmp.setOperand(1, NewCmpOp); | 
|  |  | 
|  | Instruction &DeadI = cast<Instruction>(*VariantLHS); | 
|  | salvageDebugInfo(DeadI); | 
|  | eraseInstruction(DeadI, SafetyInfo, MSSAU); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to reassociate and hoist the following two patterns: | 
|  | /// LV - C1 < C2 --> LV < C1 + C2, | 
|  | /// C1 - LV < C2 --> LV > C1 - C2. | 
|  | static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS, | 
|  | Value *InvariantRHS, ICmpInst &ICmp, Loop &L, | 
|  | ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, | 
|  | AssumptionCache *AC, DominatorTree *DT) { | 
|  | assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); | 
|  | assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); | 
|  |  | 
|  | bool IsSigned = ICmpInst::isSigned(Pred); | 
|  |  | 
|  | // Try to represent VariantLHS as sum of invariant and variant operands. | 
|  | using namespace PatternMatch; | 
|  | Value *VariantOp, *InvariantOp; | 
|  | if (IsSigned && | 
|  | !match(VariantLHS, m_NSWSub(m_Value(VariantOp), m_Value(InvariantOp)))) | 
|  | return false; | 
|  | if (!IsSigned && | 
|  | !match(VariantLHS, m_NUWSub(m_Value(VariantOp), m_Value(InvariantOp)))) | 
|  | return false; | 
|  |  | 
|  | bool VariantSubtracted = false; | 
|  | // LHS itself is a loop-variant, try to represent it in the form: | 
|  | // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If | 
|  | // the variant operand goes with minus, we use a slightly different scheme. | 
|  | if (L.isLoopInvariant(VariantOp)) { | 
|  | std::swap(VariantOp, InvariantOp); | 
|  | VariantSubtracted = true; | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  | if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) | 
|  | return false; | 
|  |  | 
|  | // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to | 
|  | // freely move values from left side of inequality to right side (just as in | 
|  | // normal linear arithmetics). Overflows make things much more complicated, so | 
|  | // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that | 
|  | // "C1 - C2" does not overflow. | 
|  | auto &DL = L.getHeader()->getDataLayout(); | 
|  | SimplifyQuery SQ(DL, DT, AC, &ICmp); | 
|  | if (VariantSubtracted && IsSigned) { | 
|  | // C1 - LV < C2 --> LV > C1 - C2 | 
|  | if (computeOverflowForSignedSub(InvariantOp, InvariantRHS, SQ) != | 
|  | llvm::OverflowResult::NeverOverflows) | 
|  | return false; | 
|  | } else if (VariantSubtracted && !IsSigned) { | 
|  | // C1 - LV < C2 --> LV > C1 - C2 | 
|  | if (computeOverflowForUnsignedSub(InvariantOp, InvariantRHS, SQ) != | 
|  | llvm::OverflowResult::NeverOverflows) | 
|  | return false; | 
|  | } else if (!VariantSubtracted && IsSigned) { | 
|  | // LV - C1 < C2 --> LV < C1 + C2 | 
|  | if (computeOverflowForSignedAdd(InvariantOp, InvariantRHS, SQ) != | 
|  | llvm::OverflowResult::NeverOverflows) | 
|  | return false; | 
|  | } else { // !VariantSubtracted && !IsSigned | 
|  | // LV - C1 < C2 --> LV < C1 + C2 | 
|  | if (computeOverflowForUnsignedAdd(InvariantOp, InvariantRHS, SQ) != | 
|  | llvm::OverflowResult::NeverOverflows) | 
|  | return false; | 
|  | } | 
|  | auto *Preheader = L.getLoopPreheader(); | 
|  | assert(Preheader && "Loop is not in simplify form?"); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | Value *NewCmpOp = | 
|  | VariantSubtracted | 
|  | ? Builder.CreateSub(InvariantOp, InvariantRHS, "invariant.op", | 
|  | /*HasNUW*/ !IsSigned, /*HasNSW*/ IsSigned) | 
|  | : Builder.CreateAdd(InvariantOp, InvariantRHS, "invariant.op", | 
|  | /*HasNUW*/ !IsSigned, /*HasNSW*/ IsSigned); | 
|  | ICmp.setPredicate(Pred); | 
|  | ICmp.setOperand(0, VariantOp); | 
|  | ICmp.setOperand(1, NewCmpOp); | 
|  |  | 
|  | Instruction &DeadI = cast<Instruction>(*VariantLHS); | 
|  | salvageDebugInfo(DeadI); | 
|  | eraseInstruction(DeadI, SafetyInfo, MSSAU); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Reassociate and hoist add/sub expressions. | 
|  | static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, AssumptionCache *AC, | 
|  | DominatorTree *DT) { | 
|  | using namespace PatternMatch; | 
|  | CmpPredicate Pred; | 
|  | Value *LHS, *RHS; | 
|  | if (!match(&I, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) | 
|  | return false; | 
|  |  | 
|  | // Put variant operand to LHS position. | 
|  | if (L.isLoopInvariant(LHS)) { | 
|  | std::swap(LHS, RHS); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  | // We want to delete the initial operation after reassociation, so only do it | 
|  | // if it has no other uses. | 
|  | if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS) || !LHS->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // TODO: We could go with smarter context, taking common dominator of all I's | 
|  | // users instead of I itself. | 
|  | if (hoistAdd(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT)) | 
|  | return true; | 
|  |  | 
|  | if (hoistSub(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isReassociableOp(Instruction *I, unsigned IntOpcode, | 
|  | unsigned FPOpcode) { | 
|  | if (I->getOpcode() == IntOpcode) | 
|  | return true; | 
|  | if (I->getOpcode() == FPOpcode && I->hasAllowReassoc() && | 
|  | I->hasNoSignedZeros()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try to reassociate expressions like ((A1 * B1) + (A2 * B2) + ...) * C where | 
|  | /// A1, A2, ... and C are loop invariants into expressions like | 
|  | /// ((A1 * C * B1) + (A2 * C * B2) + ...) and hoist the (A1 * C), (A2 * C), ... | 
|  | /// invariant expressions. This functions returns true only if any hoisting has | 
|  | /// actually occured. | 
|  | static bool hoistMulAddAssociation(Instruction &I, Loop &L, | 
|  | ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, AssumptionCache *AC, | 
|  | DominatorTree *DT) { | 
|  | if (!isReassociableOp(&I, Instruction::Mul, Instruction::FMul)) | 
|  | return false; | 
|  | Value *VariantOp = I.getOperand(0); | 
|  | Value *InvariantOp = I.getOperand(1); | 
|  | if (L.isLoopInvariant(VariantOp)) | 
|  | std::swap(VariantOp, InvariantOp); | 
|  | if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) | 
|  | return false; | 
|  | Value *Factor = InvariantOp; | 
|  |  | 
|  | // First, we need to make sure we should do the transformation. | 
|  | SmallVector<Use *> Changes; | 
|  | SmallVector<BinaryOperator *> Adds; | 
|  | SmallVector<BinaryOperator *> Worklist; | 
|  | if (BinaryOperator *VariantBinOp = dyn_cast<BinaryOperator>(VariantOp)) | 
|  | Worklist.push_back(VariantBinOp); | 
|  | while (!Worklist.empty()) { | 
|  | BinaryOperator *BO = Worklist.pop_back_val(); | 
|  | if (!BO->hasOneUse()) | 
|  | return false; | 
|  | if (isReassociableOp(BO, Instruction::Add, Instruction::FAdd) && | 
|  | isa<BinaryOperator>(BO->getOperand(0)) && | 
|  | isa<BinaryOperator>(BO->getOperand(1))) { | 
|  | Worklist.push_back(cast<BinaryOperator>(BO->getOperand(0))); | 
|  | Worklist.push_back(cast<BinaryOperator>(BO->getOperand(1))); | 
|  | Adds.push_back(BO); | 
|  | continue; | 
|  | } | 
|  | if (!isReassociableOp(BO, Instruction::Mul, Instruction::FMul) || | 
|  | L.isLoopInvariant(BO)) | 
|  | return false; | 
|  | Use &U0 = BO->getOperandUse(0); | 
|  | Use &U1 = BO->getOperandUse(1); | 
|  | if (L.isLoopInvariant(U0)) | 
|  | Changes.push_back(&U0); | 
|  | else if (L.isLoopInvariant(U1)) | 
|  | Changes.push_back(&U1); | 
|  | else | 
|  | return false; | 
|  | unsigned Limit = I.getType()->isIntOrIntVectorTy() | 
|  | ? IntAssociationUpperLimit | 
|  | : FPAssociationUpperLimit; | 
|  | if (Changes.size() > Limit) | 
|  | return false; | 
|  | } | 
|  | if (Changes.empty()) | 
|  | return false; | 
|  |  | 
|  | // Drop the poison flags for any adds we looked through. | 
|  | if (I.getType()->isIntOrIntVectorTy()) { | 
|  | for (auto *Add : Adds) | 
|  | Add->dropPoisonGeneratingFlags(); | 
|  | } | 
|  |  | 
|  | // We know we should do it so let's do the transformation. | 
|  | auto *Preheader = L.getLoopPreheader(); | 
|  | assert(Preheader && "Loop is not in simplify form?"); | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | for (auto *U : Changes) { | 
|  | assert(L.isLoopInvariant(U->get())); | 
|  | auto *Ins = cast<BinaryOperator>(U->getUser()); | 
|  | Value *Mul; | 
|  | if (I.getType()->isIntOrIntVectorTy()) { | 
|  | Mul = Builder.CreateMul(U->get(), Factor, "factor.op.mul"); | 
|  | // Drop the poison flags on the original multiply. | 
|  | Ins->dropPoisonGeneratingFlags(); | 
|  | } else | 
|  | Mul = Builder.CreateFMulFMF(U->get(), Factor, Ins, "factor.op.fmul"); | 
|  |  | 
|  | // Rewrite the reassociable instruction. | 
|  | unsigned OpIdx = U->getOperandNo(); | 
|  | auto *LHS = OpIdx == 0 ? Mul : Ins->getOperand(0); | 
|  | auto *RHS = OpIdx == 1 ? Mul : Ins->getOperand(1); | 
|  | auto *NewBO = | 
|  | BinaryOperator::Create(Ins->getOpcode(), LHS, RHS, | 
|  | Ins->getName() + ".reass", Ins->getIterator()); | 
|  | NewBO->setDebugLoc(DebugLoc::getDropped()); | 
|  | NewBO->copyIRFlags(Ins); | 
|  | if (VariantOp == Ins) | 
|  | VariantOp = NewBO; | 
|  | Ins->replaceAllUsesWith(NewBO); | 
|  | eraseInstruction(*Ins, SafetyInfo, MSSAU); | 
|  | } | 
|  |  | 
|  | I.replaceAllUsesWith(VariantOp); | 
|  | eraseInstruction(I, SafetyInfo, MSSAU); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Reassociate associative binary expressions of the form | 
|  | /// | 
|  | /// 1. "(LV op C1) op C2" ==> "LV op (C1 op C2)" | 
|  | /// 2. "(C1 op LV) op C2" ==> "LV op (C1 op C2)" | 
|  | /// 3. "C2 op (C1 op LV)" ==> "LV op (C1 op C2)" | 
|  | /// 4. "C2 op (LV op C1)" ==> "LV op (C1 op C2)" | 
|  | /// | 
|  | /// where op is an associative BinOp, LV is a loop variant, and C1 and C2 are | 
|  | /// loop invariants that we want to hoist, noting that associativity implies | 
|  | /// commutativity. | 
|  | static bool hoistBOAssociation(Instruction &I, Loop &L, | 
|  | ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, AssumptionCache *AC, | 
|  | DominatorTree *DT) { | 
|  | auto *BO = dyn_cast<BinaryOperator>(&I); | 
|  | if (!BO || !BO->isAssociative()) | 
|  | return false; | 
|  |  | 
|  | Instruction::BinaryOps Opcode = BO->getOpcode(); | 
|  | bool LVInRHS = L.isLoopInvariant(BO->getOperand(0)); | 
|  | auto *BO0 = dyn_cast<BinaryOperator>(BO->getOperand(LVInRHS)); | 
|  | if (!BO0 || BO0->getOpcode() != Opcode || !BO0->isAssociative() || | 
|  | BO0->hasNUsesOrMore(BO0->getType()->isIntegerTy() ? 2 : 3)) | 
|  | return false; | 
|  |  | 
|  | Value *LV = BO0->getOperand(0); | 
|  | Value *C1 = BO0->getOperand(1); | 
|  | Value *C2 = BO->getOperand(!LVInRHS); | 
|  |  | 
|  | assert(BO->isCommutative() && BO0->isCommutative() && | 
|  | "Associativity implies commutativity"); | 
|  | if (L.isLoopInvariant(LV) && !L.isLoopInvariant(C1)) | 
|  | std::swap(LV, C1); | 
|  | if (L.isLoopInvariant(LV) || !L.isLoopInvariant(C1) || !L.isLoopInvariant(C2)) | 
|  | return false; | 
|  |  | 
|  | auto *Preheader = L.getLoopPreheader(); | 
|  | assert(Preheader && "Loop is not in simplify form?"); | 
|  |  | 
|  | IRBuilder<> Builder(Preheader->getTerminator()); | 
|  | auto *Inv = Builder.CreateBinOp(Opcode, C1, C2, "invariant.op"); | 
|  |  | 
|  | auto *NewBO = BinaryOperator::Create( | 
|  | Opcode, LV, Inv, BO->getName() + ".reass", BO->getIterator()); | 
|  | NewBO->setDebugLoc(DebugLoc::getDropped()); | 
|  |  | 
|  | if (Opcode == Instruction::FAdd || Opcode == Instruction::FMul) { | 
|  | // Intersect FMF flags for FADD and FMUL. | 
|  | FastMathFlags Intersect = BO->getFastMathFlags() & BO0->getFastMathFlags(); | 
|  | if (auto *I = dyn_cast<Instruction>(Inv)) | 
|  | I->setFastMathFlags(Intersect); | 
|  | NewBO->setFastMathFlags(Intersect); | 
|  | } else { | 
|  | OverflowTracking Flags; | 
|  | Flags.AllKnownNonNegative = false; | 
|  | Flags.AllKnownNonZero = false; | 
|  | Flags.mergeFlags(*BO); | 
|  | Flags.mergeFlags(*BO0); | 
|  | // If `Inv` was not constant-folded, a new Instruction has been created. | 
|  | if (auto *I = dyn_cast<Instruction>(Inv)) | 
|  | Flags.applyFlags(*I); | 
|  | Flags.applyFlags(*NewBO); | 
|  | } | 
|  |  | 
|  | BO->replaceAllUsesWith(NewBO); | 
|  | eraseInstruction(*BO, SafetyInfo, MSSAU); | 
|  |  | 
|  | // (LV op C1) might not be erased if it has more uses than the one we just | 
|  | // replaced. | 
|  | if (BO0->use_empty()) { | 
|  | salvageDebugInfo(*BO0); | 
|  | eraseInstruction(*BO0, SafetyInfo, MSSAU); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hoistArithmetics(Instruction &I, Loop &L, | 
|  | ICFLoopSafetyInfo &SafetyInfo, | 
|  | MemorySSAUpdater &MSSAU, AssumptionCache *AC, | 
|  | DominatorTree *DT) { | 
|  | // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them | 
|  | // into (x < min(INV1, INV2)), and hoisting the invariant part of this | 
|  | // expression out of the loop. | 
|  | if (hoistMinMax(I, L, SafetyInfo, MSSAU)) { | 
|  | ++NumHoisted; | 
|  | ++NumMinMaxHoisted; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to hoist GEPs by reassociation. | 
|  | if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) { | 
|  | ++NumHoisted; | 
|  | ++NumGEPsHoisted; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to hoist add/sub's by reassociation. | 
|  | if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) { | 
|  | ++NumHoisted; | 
|  | ++NumAddSubHoisted; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool IsInt = I.getType()->isIntOrIntVectorTy(); | 
|  | if (hoistMulAddAssociation(I, L, SafetyInfo, MSSAU, AC, DT)) { | 
|  | ++NumHoisted; | 
|  | if (IsInt) | 
|  | ++NumIntAssociationsHoisted; | 
|  | else | 
|  | ++NumFPAssociationsHoisted; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (hoistBOAssociation(I, L, SafetyInfo, MSSAU, AC, DT)) { | 
|  | ++NumHoisted; | 
|  | ++NumBOAssociationsHoisted; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Little predicate that returns true if the specified basic block is in | 
|  | /// a subloop of the current one, not the current one itself. | 
|  | /// | 
|  | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { | 
|  | assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); | 
|  | return LI->getLoopFor(BB) != CurLoop; | 
|  | } |