|  | //===- InductiveRangeCheckElimination.cpp - -------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The InductiveRangeCheckElimination pass splits a loop's iteration space into | 
|  | // three disjoint ranges.  It does that in a way such that the loop running in | 
|  | // the middle loop provably does not need range checks. As an example, it will | 
|  | // convert | 
|  | // | 
|  | //   len = < known positive > | 
|  | //   for (i = 0; i < n; i++) { | 
|  | //     if (0 <= i && i < len) { | 
|  | //       do_something(); | 
|  | //     } else { | 
|  | //       throw_out_of_bounds(); | 
|  | //     } | 
|  | //   } | 
|  | // | 
|  | // to | 
|  | // | 
|  | //   len = < known positive > | 
|  | //   limit = smin(n, len) | 
|  | //   // no first segment | 
|  | //   for (i = 0; i < limit; i++) { | 
|  | //     if (0 <= i && i < len) { // this check is fully redundant | 
|  | //       do_something(); | 
|  | //     } else { | 
|  | //       throw_out_of_bounds(); | 
|  | //     } | 
|  | //   } | 
|  | //   for (i = limit; i < n; i++) { | 
|  | //     if (0 <= i && i < len) { | 
|  | //       do_something(); | 
|  | //     } else { | 
|  | //       throw_out_of_bounds(); | 
|  | //     } | 
|  | //   } | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/PriorityWorklist.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/LoopAnalysisManager.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/LoopConstrainer.h" | 
|  | #include "llvm/Transforms/Utils/LoopSimplify.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <optional> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, | 
|  | cl::init(64)); | 
|  |  | 
|  | static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<unsigned> MinEliminatedChecks("irce-min-eliminated-checks", | 
|  | cl::Hidden, cl::init(10)); | 
|  |  | 
|  | static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> AllowNarrowLatchCondition( | 
|  | "irce-allow-narrow-latch", cl::Hidden, cl::init(true), | 
|  | cl::desc("If set to true, IRCE may eliminate wide range checks in loops " | 
|  | "with narrow latch condition.")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxTypeSizeForOverflowCheck( | 
|  | "irce-max-type-size-for-overflow-check", cl::Hidden, cl::init(32), | 
|  | cl::desc( | 
|  | "Maximum size of range check type for which can be produced runtime " | 
|  | "overflow check of its limit's computation")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | PrintScaledBoundaryRangeChecks("irce-print-scaled-boundary-range-checks", | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | #define DEBUG_TYPE "irce" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// An inductive range check is conditional branch in a loop with a condition | 
|  | /// that is provably true for some contiguous range of values taken by the | 
|  | /// containing loop's induction variable. | 
|  | /// | 
|  | class InductiveRangeCheck { | 
|  |  | 
|  | const SCEV *Begin = nullptr; | 
|  | const SCEV *Step = nullptr; | 
|  | const SCEV *End = nullptr; | 
|  | Use *CheckUse = nullptr; | 
|  |  | 
|  | static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, | 
|  | const SCEVAddRecExpr *&Index, | 
|  | const SCEV *&End); | 
|  |  | 
|  | static void | 
|  | extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, | 
|  | SmallVectorImpl<InductiveRangeCheck> &Checks, | 
|  | SmallPtrSetImpl<Value *> &Visited); | 
|  |  | 
|  | static bool parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS, | 
|  | ICmpInst::Predicate Pred, ScalarEvolution &SE, | 
|  | const SCEVAddRecExpr *&Index, | 
|  | const SCEV *&End); | 
|  |  | 
|  | static bool reassociateSubLHS(Loop *L, Value *VariantLHS, Value *InvariantRHS, | 
|  | ICmpInst::Predicate Pred, ScalarEvolution &SE, | 
|  | const SCEVAddRecExpr *&Index, const SCEV *&End); | 
|  |  | 
|  | public: | 
|  | const SCEV *getBegin() const { return Begin; } | 
|  | const SCEV *getStep() const { return Step; } | 
|  | const SCEV *getEnd() const { return End; } | 
|  |  | 
|  | void print(raw_ostream &OS) const { | 
|  | OS << "InductiveRangeCheck:\n"; | 
|  | OS << "  Begin: "; | 
|  | Begin->print(OS); | 
|  | OS << "  Step: "; | 
|  | Step->print(OS); | 
|  | OS << "  End: "; | 
|  | End->print(OS); | 
|  | OS << "\n  CheckUse: "; | 
|  | getCheckUse()->getUser()->print(OS); | 
|  | OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD | 
|  | void dump() { | 
|  | print(dbgs()); | 
|  | } | 
|  |  | 
|  | Use *getCheckUse() const { return CheckUse; } | 
|  |  | 
|  | /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If | 
|  | /// R.getEnd() le R.getBegin(), then R denotes the empty range. | 
|  |  | 
|  | class Range { | 
|  | const SCEV *Begin; | 
|  | const SCEV *End; | 
|  |  | 
|  | public: | 
|  | Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { | 
|  | assert(Begin->getType() == End->getType() && "ill-typed range!"); | 
|  | } | 
|  |  | 
|  | Type *getType() const { return Begin->getType(); } | 
|  | const SCEV *getBegin() const { return Begin; } | 
|  | const SCEV *getEnd() const { return End; } | 
|  | bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { | 
|  | if (Begin == End) | 
|  | return true; | 
|  | if (IsSigned) | 
|  | return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); | 
|  | else | 
|  | return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// This is the value the condition of the branch needs to evaluate to for the | 
|  | /// branch to take the hot successor (see (1) above). | 
|  | bool getPassingDirection() { return true; } | 
|  |  | 
|  | /// Computes a range for the induction variable (IndVar) in which the range | 
|  | /// check is redundant and can be constant-folded away.  The induction | 
|  | /// variable is not required to be the canonical {0,+,1} induction variable. | 
|  | std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, | 
|  | const SCEVAddRecExpr *IndVar, | 
|  | bool IsLatchSigned) const; | 
|  |  | 
|  | /// Parse out a set of inductive range checks from \p BI and append them to \p | 
|  | /// Checks. | 
|  | /// | 
|  | /// NB! There may be conditions feeding into \p BI that aren't inductive range | 
|  | /// checks, and hence don't end up in \p Checks. | 
|  | static void extractRangeChecksFromBranch( | 
|  | BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, | 
|  | std::optional<uint64_t> EstimatedTripCount, | 
|  | SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed); | 
|  | }; | 
|  |  | 
|  | class InductiveRangeCheckElimination { | 
|  | ScalarEvolution &SE; | 
|  | BranchProbabilityInfo *BPI; | 
|  | DominatorTree &DT; | 
|  | LoopInfo &LI; | 
|  |  | 
|  | using GetBFIFunc = llvm::function_ref<llvm::BlockFrequencyInfo &()>; | 
|  | GetBFIFunc GetBFI; | 
|  |  | 
|  | // Returns the estimated number of iterations based on block frequency info if | 
|  | // available, or on branch probability info. Nullopt is returned if the number | 
|  | // of iterations cannot be estimated. | 
|  | std::optional<uint64_t> estimatedTripCount(const Loop &L); | 
|  |  | 
|  | public: | 
|  | InductiveRangeCheckElimination(ScalarEvolution &SE, | 
|  | BranchProbabilityInfo *BPI, DominatorTree &DT, | 
|  | LoopInfo &LI, GetBFIFunc GetBFI = nullptr) | 
|  | : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {} | 
|  |  | 
|  | bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot | 
|  | /// be interpreted as a range check, return false.  Otherwise set `Index` to the | 
|  | /// SCEV being range checked, and set `End` to the upper or lower limit `Index` | 
|  | /// is being range checked. | 
|  | bool InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, | 
|  | ScalarEvolution &SE, | 
|  | const SCEVAddRecExpr *&Index, | 
|  | const SCEV *&End) { | 
|  | auto IsLoopInvariant = [&SE, L](Value *V) { | 
|  | return SE.isLoopInvariant(SE.getSCEV(V), L); | 
|  | }; | 
|  |  | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | Value *LHS = ICI->getOperand(0); | 
|  | Value *RHS = ICI->getOperand(1); | 
|  |  | 
|  | if (!LHS->getType()->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | // Canonicalize to the `Index Pred Invariant` comparison | 
|  | if (IsLoopInvariant(LHS)) { | 
|  | std::swap(LHS, RHS); | 
|  | Pred = CmpInst::getSwappedPredicate(Pred); | 
|  | } else if (!IsLoopInvariant(RHS)) | 
|  | // Both LHS and RHS are loop variant | 
|  | return false; | 
|  |  | 
|  | if (parseIvAgaisntLimit(L, LHS, RHS, Pred, SE, Index, End)) | 
|  | return true; | 
|  |  | 
|  | if (reassociateSubLHS(L, LHS, RHS, Pred, SE, Index, End)) | 
|  | return true; | 
|  |  | 
|  | // TODO: support ReassociateAddLHS | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Try to parse range check in the form of "IV vs Limit" | 
|  | bool InductiveRangeCheck::parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS, | 
|  | ICmpInst::Predicate Pred, | 
|  | ScalarEvolution &SE, | 
|  | const SCEVAddRecExpr *&Index, | 
|  | const SCEV *&End) { | 
|  |  | 
|  | auto SIntMaxSCEV = [&](Type *T) { | 
|  | unsigned BitWidth = cast<IntegerType>(T)->getBitWidth(); | 
|  | return SE.getConstant(APInt::getSignedMaxValue(BitWidth)); | 
|  | }; | 
|  |  | 
|  | const auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(LHS)); | 
|  | if (!AddRec) | 
|  | return false; | 
|  |  | 
|  | // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". | 
|  | // We can potentially do much better here. | 
|  | // If we want to adjust upper bound for the unsigned range check as we do it | 
|  | // for signed one, we will need to pick Unsigned max | 
|  | switch (Pred) { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case ICmpInst::ICMP_SGE: | 
|  | if (match(RHS, m_ConstantInt<0>())) { | 
|  | Index = AddRec; | 
|  | End = SIntMaxSCEV(Index->getType()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  |  | 
|  | case ICmpInst::ICMP_SGT: | 
|  | if (match(RHS, m_ConstantInt<-1>())) { | 
|  | Index = AddRec; | 
|  | End = SIntMaxSCEV(Index->getType()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  |  | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_ULT: | 
|  | Index = AddRec; | 
|  | End = SE.getSCEV(RHS); | 
|  | return true; | 
|  |  | 
|  | case ICmpInst::ICMP_SLE: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | const SCEV *One = SE.getOne(RHS->getType()); | 
|  | const SCEV *RHSS = SE.getSCEV(RHS); | 
|  | bool Signed = Pred == ICmpInst::ICMP_SLE; | 
|  | if (SE.willNotOverflow(Instruction::BinaryOps::Add, Signed, RHSS, One)) { | 
|  | Index = AddRec; | 
|  | End = SE.getAddExpr(RHSS, One); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("default clause returns!"); | 
|  | } | 
|  |  | 
|  | // Try to parse range check in the form of "IV - Offset vs Limit" or "Offset - | 
|  | // IV vs Limit" | 
|  | bool InductiveRangeCheck::reassociateSubLHS( | 
|  | Loop *L, Value *VariantLHS, Value *InvariantRHS, ICmpInst::Predicate Pred, | 
|  | ScalarEvolution &SE, const SCEVAddRecExpr *&Index, const SCEV *&End) { | 
|  | Value *LHS, *RHS; | 
|  | if (!match(VariantLHS, m_Sub(m_Value(LHS), m_Value(RHS)))) | 
|  | return false; | 
|  |  | 
|  | const SCEV *IV = SE.getSCEV(LHS); | 
|  | const SCEV *Offset = SE.getSCEV(RHS); | 
|  | const SCEV *Limit = SE.getSCEV(InvariantRHS); | 
|  |  | 
|  | bool OffsetSubtracted = false; | 
|  | if (SE.isLoopInvariant(IV, L)) | 
|  | // "Offset - IV vs Limit" | 
|  | std::swap(IV, Offset); | 
|  | else if (SE.isLoopInvariant(Offset, L)) | 
|  | // "IV - Offset vs Limit" | 
|  | OffsetSubtracted = true; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IV); | 
|  | if (!AddRec) | 
|  | return false; | 
|  |  | 
|  | // In order to turn "IV - Offset < Limit" into "IV < Limit + Offset", we need | 
|  | // to be able to freely move values from left side of inequality to right side | 
|  | // (just as in normal linear arithmetics). Overflows make things much more | 
|  | // complicated, so we want to avoid this. | 
|  | // | 
|  | // Let's prove that the initial subtraction doesn't overflow with all IV's | 
|  | // values from the safe range constructed for that check. | 
|  | // | 
|  | // [Case 1] IV - Offset < Limit | 
|  | // It doesn't overflow if: | 
|  | //     SINT_MIN <= IV - Offset <= SINT_MAX | 
|  | // In terms of scaled SINT we need to prove: | 
|  | //     SINT_MIN + Offset <= IV <= SINT_MAX + Offset | 
|  | // Safe range will be constructed: | 
|  | //     0 <= IV < Limit + Offset | 
|  | // It means that 'IV - Offset' doesn't underflow, because: | 
|  | //     SINT_MIN + Offset < 0 <= IV | 
|  | // and doesn't overflow: | 
|  | //     IV < Limit + Offset <= SINT_MAX + Offset | 
|  | // | 
|  | // [Case 2] Offset - IV > Limit | 
|  | // It doesn't overflow if: | 
|  | //     SINT_MIN <= Offset - IV <= SINT_MAX | 
|  | // In terms of scaled SINT we need to prove: | 
|  | //     -SINT_MIN >= IV - Offset >= -SINT_MAX | 
|  | //     Offset - SINT_MIN >= IV >= Offset - SINT_MAX | 
|  | // Safe range will be constructed: | 
|  | //     0 <= IV < Offset - Limit | 
|  | // It means that 'Offset - IV' doesn't underflow, because | 
|  | //     Offset - SINT_MAX < 0 <= IV | 
|  | // and doesn't overflow: | 
|  | //     IV < Offset - Limit <= Offset - SINT_MIN | 
|  | // | 
|  | // For the computed upper boundary of the IV's range (Offset +/- Limit) we | 
|  | // don't know exactly whether it overflows or not. So if we can't prove this | 
|  | // fact at compile time, we scale boundary computations to a wider type with | 
|  | // the intention to add runtime overflow check. | 
|  |  | 
|  | auto getExprScaledIfOverflow = [&](Instruction::BinaryOps BinOp, | 
|  | const SCEV *LHS, | 
|  | const SCEV *RHS) -> const SCEV * { | 
|  | const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, | 
|  | SCEV::NoWrapFlags, unsigned); | 
|  | switch (BinOp) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported binary op"); | 
|  | case Instruction::Add: | 
|  | Operation = &ScalarEvolution::getAddExpr; | 
|  | break; | 
|  | case Instruction::Sub: | 
|  | Operation = &ScalarEvolution::getMinusSCEV; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (SE.willNotOverflow(BinOp, ICmpInst::isSigned(Pred), LHS, RHS, | 
|  | cast<Instruction>(VariantLHS))) | 
|  | return (SE.*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0); | 
|  |  | 
|  | // We couldn't prove that the expression does not overflow. | 
|  | // Than scale it to a wider type to check overflow at runtime. | 
|  | auto *Ty = cast<IntegerType>(LHS->getType()); | 
|  | if (Ty->getBitWidth() > MaxTypeSizeForOverflowCheck) | 
|  | return nullptr; | 
|  |  | 
|  | auto WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); | 
|  | return (SE.*Operation)(SE.getSignExtendExpr(LHS, WideTy), | 
|  | SE.getSignExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap, | 
|  | 0); | 
|  | }; | 
|  |  | 
|  | if (OffsetSubtracted) | 
|  | // "IV - Offset < Limit" -> "IV" < Offset + Limit | 
|  | Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Offset, Limit); | 
|  | else { | 
|  | // "Offset - IV > Limit" -> "IV" < Offset - Limit | 
|  | Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Sub, Offset, Limit); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { | 
|  | // "Expr <= Limit" -> "Expr < Limit + 1" | 
|  | if (Pred == ICmpInst::ICMP_SLE && Limit) | 
|  | Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Limit, | 
|  | SE.getOne(Limit->getType())); | 
|  | if (Limit) { | 
|  | Index = AddRec; | 
|  | End = Limit; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void InductiveRangeCheck::extractRangeChecksFromCond( | 
|  | Loop *L, ScalarEvolution &SE, Use &ConditionUse, | 
|  | SmallVectorImpl<InductiveRangeCheck> &Checks, | 
|  | SmallPtrSetImpl<Value *> &Visited) { | 
|  | Value *Condition = ConditionUse.get(); | 
|  | if (!Visited.insert(Condition).second) | 
|  | return; | 
|  |  | 
|  | // TODO: Do the same for OR, XOR, NOT etc? | 
|  | if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) { | 
|  | extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), | 
|  | Checks, Visited); | 
|  | extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), | 
|  | Checks, Visited); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); | 
|  | if (!ICI) | 
|  | return; | 
|  |  | 
|  | const SCEV *End = nullptr; | 
|  | const SCEVAddRecExpr *IndexAddRec = nullptr; | 
|  | if (!parseRangeCheckICmp(L, ICI, SE, IndexAddRec, End)) | 
|  | return; | 
|  |  | 
|  | assert(IndexAddRec && "IndexAddRec was not computed"); | 
|  | assert(End && "End was not computed"); | 
|  |  | 
|  | if ((IndexAddRec->getLoop() != L) || !IndexAddRec->isAffine()) | 
|  | return; | 
|  |  | 
|  | InductiveRangeCheck IRC; | 
|  | IRC.End = End; | 
|  | IRC.Begin = IndexAddRec->getStart(); | 
|  | IRC.Step = IndexAddRec->getStepRecurrence(SE); | 
|  | IRC.CheckUse = &ConditionUse; | 
|  | Checks.push_back(IRC); | 
|  | } | 
|  |  | 
|  | void InductiveRangeCheck::extractRangeChecksFromBranch( | 
|  | BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI, | 
|  | std::optional<uint64_t> EstimatedTripCount, | 
|  | SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed) { | 
|  | if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) | 
|  | return; | 
|  |  | 
|  | unsigned IndexLoopSucc = L->contains(BI->getSuccessor(0)) ? 0 : 1; | 
|  | assert(L->contains(BI->getSuccessor(IndexLoopSucc)) && | 
|  | "No edges coming to loop?"); | 
|  |  | 
|  | if (!SkipProfitabilityChecks && BPI) { | 
|  | auto SuccessProbability = | 
|  | BPI->getEdgeProbability(BI->getParent(), IndexLoopSucc); | 
|  | if (EstimatedTripCount) { | 
|  | auto EstimatedEliminatedChecks = | 
|  | SuccessProbability.scale(*EstimatedTripCount); | 
|  | if (EstimatedEliminatedChecks < MinEliminatedChecks) { | 
|  | LLVM_DEBUG(dbgs() << "irce: could not prove profitability for branch " | 
|  | << *BI << ": " | 
|  | << "estimated eliminated checks too low " | 
|  | << EstimatedEliminatedChecks << "\n";); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | BranchProbability LikelyTaken(15, 16); | 
|  | if (SuccessProbability < LikelyTaken) { | 
|  | LLVM_DEBUG(dbgs() << "irce: could not prove profitability for branch " | 
|  | << *BI << ": " | 
|  | << "could not estimate trip count " | 
|  | << "and branch success probability too low " | 
|  | << SuccessProbability << "\n";); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // IRCE expects branch's true edge comes to loop. Invert branch for opposite | 
|  | // case. | 
|  | if (IndexLoopSucc != 0) { | 
|  | IRBuilder<> Builder(BI); | 
|  | InvertBranch(BI, Builder); | 
|  | if (BPI) | 
|  | BPI->swapSuccEdgesProbabilities(BI->getParent()); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | SmallPtrSet<Value *, 8> Visited; | 
|  | InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), | 
|  | Checks, Visited); | 
|  | } | 
|  |  | 
|  | /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return | 
|  | /// signed or unsigned extension of \p S to type \p Ty. | 
|  | static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE, | 
|  | bool Signed) { | 
|  | return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty); | 
|  | } | 
|  |  | 
|  | // Compute a safe set of limits for the main loop to run in -- effectively the | 
|  | // intersection of `Range' and the iteration space of the original loop. | 
|  | // Return std::nullopt if unable to compute the set of subranges. | 
|  | static std::optional<LoopConstrainer::SubRanges> | 
|  | calculateSubRanges(ScalarEvolution &SE, const Loop &L, | 
|  | InductiveRangeCheck::Range &Range, | 
|  | const LoopStructure &MainLoopStructure) { | 
|  | auto *RTy = cast<IntegerType>(Range.getType()); | 
|  | // We only support wide range checks and narrow latches. | 
|  | if (!AllowNarrowLatchCondition && RTy != MainLoopStructure.ExitCountTy) | 
|  | return std::nullopt; | 
|  | if (RTy->getBitWidth() < MainLoopStructure.ExitCountTy->getBitWidth()) | 
|  | return std::nullopt; | 
|  |  | 
|  | LoopConstrainer::SubRanges Result; | 
|  |  | 
|  | bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; | 
|  | // I think we can be more aggressive here and make this nuw / nsw if the | 
|  | // addition that feeds into the icmp for the latch's terminating branch is nuw | 
|  | // / nsw.  In any case, a wrapping 2's complement addition is safe. | 
|  | const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart), | 
|  | RTy, SE, IsSignedPredicate); | 
|  | const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy, | 
|  | SE, IsSignedPredicate); | 
|  |  | 
|  | bool Increasing = MainLoopStructure.IndVarIncreasing; | 
|  |  | 
|  | // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or | 
|  | // [Smallest, GreatestSeen] is the range of values the induction variable | 
|  | // takes. | 
|  |  | 
|  | const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; | 
|  |  | 
|  | const SCEV *One = SE.getOne(RTy); | 
|  | if (Increasing) { | 
|  | Smallest = Start; | 
|  | Greatest = End; | 
|  | // No overflow, because the range [Smallest, GreatestSeen] is not empty. | 
|  | GreatestSeen = SE.getMinusSCEV(End, One); | 
|  | } else { | 
|  | // These two computations may sign-overflow.  Here is why that is okay: | 
|  | // | 
|  | // We know that the induction variable does not sign-overflow on any | 
|  | // iteration except the last one, and it starts at `Start` and ends at | 
|  | // `End`, decrementing by one every time. | 
|  | // | 
|  | //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the | 
|  | //    induction variable is decreasing we know that the smallest value | 
|  | //    the loop body is actually executed with is `INT_SMIN` == `Smallest`. | 
|  | // | 
|  | //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In | 
|  | //    that case, `Clamp` will always return `Smallest` and | 
|  | //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) | 
|  | //    will be an empty range.  Returning an empty range is always safe. | 
|  |  | 
|  | Smallest = SE.getAddExpr(End, One); | 
|  | Greatest = SE.getAddExpr(Start, One); | 
|  | GreatestSeen = Start; | 
|  | } | 
|  |  | 
|  | auto Clamp = [&SE, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { | 
|  | return IsSignedPredicate | 
|  | ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) | 
|  | : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); | 
|  | }; | 
|  |  | 
|  | // In some cases we can prove that we don't need a pre or post loop. | 
|  | ICmpInst::Predicate PredLE = | 
|  | IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | 
|  | ICmpInst::Predicate PredLT = | 
|  | IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  |  | 
|  | bool ProvablyNoPreloop = | 
|  | SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); | 
|  | if (!ProvablyNoPreloop) | 
|  | Result.LowLimit = Clamp(Range.getBegin()); | 
|  |  | 
|  | bool ProvablyNoPostLoop = | 
|  | SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); | 
|  | if (!ProvablyNoPostLoop) | 
|  | Result.HighLimit = Clamp(Range.getEnd()); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Computes and returns a range of values for the induction variable (IndVar) | 
|  | /// in which the range check can be safely elided.  If it cannot compute such a | 
|  | /// range, returns std::nullopt. | 
|  | std::optional<InductiveRangeCheck::Range> | 
|  | InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE, | 
|  | const SCEVAddRecExpr *IndVar, | 
|  | bool IsLatchSigned) const { | 
|  | // We can deal when types of latch check and range checks don't match in case | 
|  | // if latch check is more narrow. | 
|  | auto *IVType = dyn_cast<IntegerType>(IndVar->getType()); | 
|  | auto *RCType = dyn_cast<IntegerType>(getBegin()->getType()); | 
|  | auto *EndType = dyn_cast<IntegerType>(getEnd()->getType()); | 
|  | // Do not work with pointer types. | 
|  | if (!IVType || !RCType) | 
|  | return std::nullopt; | 
|  | if (IVType->getBitWidth() > RCType->getBitWidth()) | 
|  | return std::nullopt; | 
|  |  | 
|  | // IndVar is of the form "A + B * I" (where "I" is the canonical induction | 
|  | // variable, that may or may not exist as a real llvm::Value in the loop) and | 
|  | // this inductive range check is a range check on the "C + D * I" ("C" is | 
|  | // getBegin() and "D" is getStep()).  We rewrite the value being range | 
|  | // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". | 
|  | // | 
|  | // The actual inequalities we solve are of the form | 
|  | // | 
|  | //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1) | 
|  | // | 
|  | // Here L stands for upper limit of the safe iteration space. | 
|  | // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid | 
|  | // overflows when calculating (0 - M) and (L - M) we, depending on type of | 
|  | // IV's iteration space, limit the calculations by borders of the iteration | 
|  | // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. | 
|  | // If we figured out that "anything greater than (-M) is safe", we strengthen | 
|  | // this to "everything greater than 0 is safe", assuming that values between | 
|  | // -M and 0 just do not exist in unsigned iteration space, and we don't want | 
|  | // to deal with overflown values. | 
|  |  | 
|  | if (!IndVar->isAffine()) | 
|  | return std::nullopt; | 
|  |  | 
|  | const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned); | 
|  | const SCEVConstant *B = dyn_cast<SCEVConstant>( | 
|  | NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned)); | 
|  | if (!B) | 
|  | return std::nullopt; | 
|  | assert(!B->isZero() && "Recurrence with zero step?"); | 
|  |  | 
|  | const SCEV *C = getBegin(); | 
|  | const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); | 
|  | if (D != B) | 
|  | return std::nullopt; | 
|  |  | 
|  | assert(!D->getValue()->isZero() && "Recurrence with zero step?"); | 
|  | unsigned BitWidth = RCType->getBitWidth(); | 
|  | const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); | 
|  | const SCEV *SIntMin = SE.getConstant(APInt::getSignedMinValue(BitWidth)); | 
|  |  | 
|  | // Subtract Y from X so that it does not go through border of the IV | 
|  | // iteration space. Mathematically, it is equivalent to: | 
|  | // | 
|  | //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1] | 
|  | // | 
|  | // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to | 
|  | // any width of bit grid). But after we take min/max, the result is | 
|  | // guaranteed to be within [INT_MIN, INT_MAX]. | 
|  | // | 
|  | // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min | 
|  | // values, depending on type of latch condition that defines IV iteration | 
|  | // space. | 
|  | auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) { | 
|  | // FIXME: The current implementation assumes that X is in [0, SINT_MAX]. | 
|  | // This is required to ensure that SINT_MAX - X does not overflow signed and | 
|  | // that X - Y does not overflow unsigned if Y is negative. Can we lift this | 
|  | // restriction and make it work for negative X either? | 
|  | if (IsLatchSigned) { | 
|  | // X is a number from signed range, Y is interpreted as signed. | 
|  | // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only | 
|  | // thing we should care about is that we didn't cross SINT_MAX. | 
|  | // So, if Y is positive, we subtract Y safely. | 
|  | //   Rule 1: Y > 0 ---> Y. | 
|  | // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely. | 
|  | //   Rule 2: Y >=s (X - SINT_MAX) ---> Y. | 
|  | // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX). | 
|  | //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). | 
|  | // It gives us smax(Y, X - SINT_MAX) to subtract in all cases. | 
|  | const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); | 
|  | return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), | 
|  | SCEV::FlagNSW); | 
|  | } else | 
|  | // X is a number from unsigned range, Y is interpreted as signed. | 
|  | // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only | 
|  | // thing we should care about is that we didn't cross zero. | 
|  | // So, if Y is negative, we subtract Y safely. | 
|  | //   Rule 1: Y <s 0 ---> Y. | 
|  | // If 0 <= Y <= X, we subtract Y safely. | 
|  | //   Rule 2: Y <=s X ---> Y. | 
|  | // If 0 <= X < Y, we should stop at 0 and can only subtract X. | 
|  | //   Rule 3: Y >s X ---> X. | 
|  | // It gives us smin(X, Y) to subtract in all cases. | 
|  | return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); | 
|  | }; | 
|  | const SCEV *M = SE.getMinusSCEV(C, A); | 
|  | const SCEV *Zero = SE.getZero(M->getType()); | 
|  |  | 
|  | // This function returns SCEV equal to 1 if X is non-negative 0 otherwise. | 
|  | auto SCEVCheckNonNegative = [&](const SCEV *X) { | 
|  | const Loop *L = IndVar->getLoop(); | 
|  | const SCEV *Zero = SE.getZero(X->getType()); | 
|  | const SCEV *One = SE.getOne(X->getType()); | 
|  | // Can we trivially prove that X is a non-negative or negative value? | 
|  | if (isKnownNonNegativeInLoop(X, L, SE)) | 
|  | return One; | 
|  | else if (isKnownNegativeInLoop(X, L, SE)) | 
|  | return Zero; | 
|  | // If not, we will have to figure it out during the execution. | 
|  | // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0. | 
|  | const SCEV *NegOne = SE.getNegativeSCEV(One); | 
|  | return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One); | 
|  | }; | 
|  |  | 
|  | // This function returns SCEV equal to 1 if X will not overflow in terms of | 
|  | // range check type, 0 otherwise. | 
|  | auto SCEVCheckWillNotOverflow = [&](const SCEV *X) { | 
|  | // X doesn't overflow if SINT_MAX >= X. | 
|  | // Then if (SINT_MAX - X) >= 0, X doesn't overflow | 
|  | const SCEV *SIntMaxExt = SE.getSignExtendExpr(SIntMax, X->getType()); | 
|  | const SCEV *OverflowCheck = | 
|  | SCEVCheckNonNegative(SE.getMinusSCEV(SIntMaxExt, X)); | 
|  |  | 
|  | // X doesn't underflow if X >= SINT_MIN. | 
|  | // Then if (X - SINT_MIN) >= 0, X doesn't underflow | 
|  | const SCEV *SIntMinExt = SE.getSignExtendExpr(SIntMin, X->getType()); | 
|  | const SCEV *UnderflowCheck = | 
|  | SCEVCheckNonNegative(SE.getMinusSCEV(X, SIntMinExt)); | 
|  |  | 
|  | return SE.getMulExpr(OverflowCheck, UnderflowCheck); | 
|  | }; | 
|  |  | 
|  | // FIXME: Current implementation of ClampedSubtract implicitly assumes that | 
|  | // X is non-negative (in sense of a signed value). We need to re-implement | 
|  | // this function in a way that it will correctly handle negative X as well. | 
|  | // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can | 
|  | // end up with a negative X and produce wrong results. So currently we ensure | 
|  | // that if getEnd() is negative then both ends of the safe range are zero. | 
|  | // Note that this may pessimize elimination of unsigned range checks against | 
|  | // negative values. | 
|  | const SCEV *REnd = getEnd(); | 
|  | const SCEV *EndWillNotOverflow = SE.getOne(RCType); | 
|  |  | 
|  | auto PrintRangeCheck = [&](raw_ostream &OS) { | 
|  | auto L = IndVar->getLoop(); | 
|  | OS << "irce: in function "; | 
|  | OS << L->getHeader()->getParent()->getName(); | 
|  | OS << ", in "; | 
|  | L->print(OS); | 
|  | OS << "there is range check with scaled boundary:\n"; | 
|  | print(OS); | 
|  | }; | 
|  |  | 
|  | if (EndType->getBitWidth() > RCType->getBitWidth()) { | 
|  | assert(EndType->getBitWidth() == RCType->getBitWidth() * 2); | 
|  | if (PrintScaledBoundaryRangeChecks) | 
|  | PrintRangeCheck(errs()); | 
|  | // End is computed with extended type but will be truncated to a narrow one | 
|  | // type of range check. Therefore we need a check that the result will not | 
|  | // overflow in terms of narrow type. | 
|  | EndWillNotOverflow = | 
|  | SE.getTruncateExpr(SCEVCheckWillNotOverflow(REnd), RCType); | 
|  | REnd = SE.getTruncateExpr(REnd, RCType); | 
|  | } | 
|  |  | 
|  | const SCEV *RuntimeChecks = | 
|  | SE.getMulExpr(SCEVCheckNonNegative(REnd), EndWillNotOverflow); | 
|  | const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), RuntimeChecks); | 
|  | const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), RuntimeChecks); | 
|  |  | 
|  | return InductiveRangeCheck::Range(Begin, End); | 
|  | } | 
|  |  | 
|  | static std::optional<InductiveRangeCheck::Range> | 
|  | IntersectSignedRange(ScalarEvolution &SE, | 
|  | const std::optional<InductiveRangeCheck::Range> &R1, | 
|  | const InductiveRangeCheck::Range &R2) { | 
|  | if (R2.isEmpty(SE, /* IsSigned */ true)) | 
|  | return std::nullopt; | 
|  | if (!R1) | 
|  | return R2; | 
|  | auto &R1Value = *R1; | 
|  | // We never return empty ranges from this function, and R1 is supposed to be | 
|  | // a result of intersection. Thus, R1 is never empty. | 
|  | assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && | 
|  | "We should never have empty R1!"); | 
|  |  | 
|  | // TODO: we could widen the smaller range and have this work; but for now we | 
|  | // bail out to keep things simple. | 
|  | if (R1Value.getType() != R2.getType()) | 
|  | return std::nullopt; | 
|  |  | 
|  | const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); | 
|  | const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); | 
|  |  | 
|  | // If the resulting range is empty, just return std::nullopt. | 
|  | auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); | 
|  | if (Ret.isEmpty(SE, /* IsSigned */ true)) | 
|  | return std::nullopt; | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static std::optional<InductiveRangeCheck::Range> | 
|  | IntersectUnsignedRange(ScalarEvolution &SE, | 
|  | const std::optional<InductiveRangeCheck::Range> &R1, | 
|  | const InductiveRangeCheck::Range &R2) { | 
|  | if (R2.isEmpty(SE, /* IsSigned */ false)) | 
|  | return std::nullopt; | 
|  | if (!R1) | 
|  | return R2; | 
|  | auto &R1Value = *R1; | 
|  | // We never return empty ranges from this function, and R1 is supposed to be | 
|  | // a result of intersection. Thus, R1 is never empty. | 
|  | assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && | 
|  | "We should never have empty R1!"); | 
|  |  | 
|  | // TODO: we could widen the smaller range and have this work; but for now we | 
|  | // bail out to keep things simple. | 
|  | if (R1Value.getType() != R2.getType()) | 
|  | return std::nullopt; | 
|  |  | 
|  | const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); | 
|  | const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); | 
|  |  | 
|  | // If the resulting range is empty, just return std::nullopt. | 
|  | auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); | 
|  | if (Ret.isEmpty(SE, /* IsSigned */ false)) | 
|  | return std::nullopt; | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | LoopInfo &LI = AM.getResult<LoopAnalysis>(F); | 
|  | // There are no loops in the function. Return before computing other expensive | 
|  | // analyses. | 
|  | if (LI.empty()) | 
|  | return PreservedAnalyses::all(); | 
|  | auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); | 
|  | auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F); | 
|  |  | 
|  | // Get BFI analysis result on demand. Please note that modification of | 
|  | // CFG invalidates this analysis and we should handle it. | 
|  | auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & { | 
|  | return AM.getResult<BlockFrequencyAnalysis>(F); | 
|  | }; | 
|  | InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI }); | 
|  |  | 
|  | bool Changed = false; | 
|  | { | 
|  | bool CFGChanged = false; | 
|  | for (const auto &L : LI) { | 
|  | CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, | 
|  | /*PreserveLCSSA=*/false); | 
|  | Changed |= formLCSSARecursively(*L, DT, &LI, &SE); | 
|  | } | 
|  | Changed |= CFGChanged; | 
|  |  | 
|  | if (CFGChanged && !SkipProfitabilityChecks) { | 
|  | PreservedAnalyses PA = PreservedAnalyses::all(); | 
|  | PA.abandon<BlockFrequencyAnalysis>(); | 
|  | AM.invalidate(F, PA); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallPriorityWorklist<Loop *, 4> Worklist; | 
|  | appendLoopsToWorklist(LI, Worklist); | 
|  | auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) { | 
|  | if (!IsSubloop) | 
|  | appendLoopsToWorklist(*NL, Worklist); | 
|  | }; | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | Loop *L = Worklist.pop_back_val(); | 
|  | if (IRCE.run(L, LPMAddNewLoop)) { | 
|  | Changed = true; | 
|  | if (!SkipProfitabilityChecks) { | 
|  | PreservedAnalyses PA = PreservedAnalyses::all(); | 
|  | PA.abandon<BlockFrequencyAnalysis>(); | 
|  | AM.invalidate(F, PA); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  | return getLoopPassPreservedAnalyses(); | 
|  | } | 
|  |  | 
|  | std::optional<uint64_t> | 
|  | InductiveRangeCheckElimination::estimatedTripCount(const Loop &L) { | 
|  | if (GetBFI) { | 
|  | BlockFrequencyInfo &BFI = GetBFI(); | 
|  | uint64_t hFreq = BFI.getBlockFreq(L.getHeader()).getFrequency(); | 
|  | uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency(); | 
|  | if (phFreq == 0 || hFreq == 0) | 
|  | return std::nullopt; | 
|  | return {hFreq / phFreq}; | 
|  | } | 
|  |  | 
|  | if (!BPI) | 
|  | return std::nullopt; | 
|  |  | 
|  | auto *Latch = L.getLoopLatch(); | 
|  | if (!Latch) | 
|  | return std::nullopt; | 
|  | auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); | 
|  | if (!LatchBr) | 
|  | return std::nullopt; | 
|  |  | 
|  | auto LatchBrExitIdx = LatchBr->getSuccessor(0) == L.getHeader() ? 1 : 0; | 
|  | BranchProbability ExitProbability = | 
|  | BPI->getEdgeProbability(Latch, LatchBrExitIdx); | 
|  | if (ExitProbability.isUnknown() || ExitProbability.isZero()) | 
|  | return std::nullopt; | 
|  |  | 
|  | return {ExitProbability.scaleByInverse(1)}; | 
|  | } | 
|  |  | 
|  | bool InductiveRangeCheckElimination::run( | 
|  | Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) { | 
|  | if (L->getBlocks().size() >= LoopSizeCutoff) { | 
|  | LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) { | 
|  | LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto EstimatedTripCount = estimatedTripCount(*L); | 
|  | if (!SkipProfitabilityChecks && EstimatedTripCount && | 
|  | *EstimatedTripCount < MinEliminatedChecks) { | 
|  | LLVM_DEBUG(dbgs() << "irce: could not prove profitability: " | 
|  | << "the estimated number of iterations is " | 
|  | << *EstimatedTripCount << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVMContext &Context = Preheader->getContext(); | 
|  | SmallVector<InductiveRangeCheck, 16> RangeChecks; | 
|  | bool Changed = false; | 
|  |  | 
|  | for (auto *BBI : L->getBlocks()) | 
|  | if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) | 
|  | InductiveRangeCheck::extractRangeChecksFromBranch( | 
|  | TBI, L, SE, BPI, EstimatedTripCount, RangeChecks, Changed); | 
|  |  | 
|  | if (RangeChecks.empty()) | 
|  | return Changed; | 
|  |  | 
|  | auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { | 
|  | OS << "irce: looking at loop "; L->print(OS); | 
|  | OS << "irce: loop has " << RangeChecks.size() | 
|  | << " inductive range checks: \n"; | 
|  | for (InductiveRangeCheck &IRC : RangeChecks) | 
|  | IRC.print(OS); | 
|  | }; | 
|  |  | 
|  | LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs())); | 
|  |  | 
|  | if (PrintRangeChecks) | 
|  | PrintRecognizedRangeChecks(errs()); | 
|  |  | 
|  | const char *FailureReason = nullptr; | 
|  | std::optional<LoopStructure> MaybeLoopStructure = | 
|  | LoopStructure::parseLoopStructure(SE, *L, AllowUnsignedLatchCondition, | 
|  | FailureReason); | 
|  | if (!MaybeLoopStructure) { | 
|  | LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: " | 
|  | << FailureReason << "\n";); | 
|  | return Changed; | 
|  | } | 
|  | LoopStructure LS = *MaybeLoopStructure; | 
|  | const SCEVAddRecExpr *IndVar = | 
|  | cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); | 
|  |  | 
|  | std::optional<InductiveRangeCheck::Range> SafeIterRange; | 
|  |  | 
|  | SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; | 
|  | // Basing on the type of latch predicate, we interpret the IV iteration range | 
|  | // as signed or unsigned range. We use different min/max functions (signed or | 
|  | // unsigned) when intersecting this range with safe iteration ranges implied | 
|  | // by range checks. | 
|  | auto IntersectRange = | 
|  | LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; | 
|  |  | 
|  | for (InductiveRangeCheck &IRC : RangeChecks) { | 
|  | auto Result = IRC.computeSafeIterationSpace(SE, IndVar, | 
|  | LS.IsSignedPredicate); | 
|  | if (Result) { | 
|  | auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result); | 
|  | if (MaybeSafeIterRange) { | 
|  | assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) && | 
|  | "We should never return empty ranges!"); | 
|  | RangeChecksToEliminate.push_back(IRC); | 
|  | SafeIterRange = *MaybeSafeIterRange; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!SafeIterRange) | 
|  | return Changed; | 
|  |  | 
|  | std::optional<LoopConstrainer::SubRanges> MaybeSR = | 
|  | calculateSubRanges(SE, *L, *SafeIterRange, LS); | 
|  | if (!MaybeSR) { | 
|  | LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT, | 
|  | SafeIterRange->getBegin()->getType(), *MaybeSR); | 
|  |  | 
|  | if (LC.run()) { | 
|  | Changed = true; | 
|  |  | 
|  | auto PrintConstrainedLoopInfo = [L]() { | 
|  | dbgs() << "irce: in function "; | 
|  | dbgs() << L->getHeader()->getParent()->getName() << ": "; | 
|  | dbgs() << "constrained "; | 
|  | L->print(dbgs()); | 
|  | }; | 
|  |  | 
|  | LLVM_DEBUG(PrintConstrainedLoopInfo()); | 
|  |  | 
|  | if (PrintChangedLoops) | 
|  | PrintConstrainedLoopInfo(); | 
|  |  | 
|  | // Optimize away the now-redundant range checks. | 
|  |  | 
|  | for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { | 
|  | ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() | 
|  | ? ConstantInt::getTrue(Context) | 
|  | : ConstantInt::getFalse(Context); | 
|  | IRC.getCheckUse()->set(FoldedRangeCheck); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } |