|  | //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of the ML eviction advisor and reward injection pass | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AllocationOrder.h" | 
|  | #include "RegAllocGreedy.h" | 
|  | #include "llvm/Analysis/InteractiveModelRunner.h" | 
|  | #include "llvm/Analysis/MLModelRunner.h" | 
|  | #include "llvm/Analysis/TensorSpec.h" | 
|  | #include "llvm/CodeGen/RegAllocEvictionAdvisor.h" | 
|  | #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE) | 
|  | #include "llvm/Analysis/ModelUnderTrainingRunner.h" | 
|  | #include "llvm/Analysis/NoInferenceModelRunner.h" | 
|  | #include "llvm/Analysis/Utils/TrainingLogger.h" | 
|  | #endif | 
|  | #include "MLRegAllocEvictAdvisor.h" | 
|  | #include "llvm/Analysis/ReleaseModeModelRunner.h" | 
|  | #include "llvm/CodeGen/CalcSpillWeights.h" | 
|  | #include "llvm/CodeGen/LiveRegMatrix.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/CodeGen/VirtRegMap.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/PassRegistry.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  |  | 
|  | #include <array> | 
|  | #include <bitset> | 
|  | #include <memory> | 
|  | #include <unordered_map> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ml-regalloc" | 
|  |  | 
|  | // Generated header in release (AOT) mode | 
|  | #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) | 
|  | #include "RegAllocEvictModel.h" | 
|  | using CompiledModelType = RegAllocEvictModel; | 
|  | #else | 
|  | using CompiledModelType = NoopSavedModelImpl; | 
|  | #endif | 
|  |  | 
|  | static cl::opt<std::string> InteractiveChannelBaseName( | 
|  | "regalloc-evict-interactive-channel-base", cl::Hidden, | 
|  | cl::desc( | 
|  | "Base file path for the interactive mode. The incoming filename should " | 
|  | "have the name <regalloc-evict-interactive-channel-base>.in, while the " | 
|  | "outgoing name should be " | 
|  | "<regalloc-evict-interactive-channel-base>.out")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxEvictionCount( | 
|  | "mlregalloc-max-eviction-count", cl::Hidden, | 
|  | cl::desc("The maximum number of times a live range can be " | 
|  | "evicted before preventing it from being evicted"), | 
|  | cl::init(100)); | 
|  |  | 
|  | // Options that only make sense in development mode | 
|  | #ifdef LLVM_HAVE_TFLITE | 
|  | #include "RegAllocScore.h" | 
|  | #include "llvm/Analysis/Utils/TFUtils.h" | 
|  |  | 
|  | static cl::opt<std::string> TrainingLog( | 
|  | "regalloc-training-log", cl::Hidden, | 
|  | cl::desc("Training log for the register allocator eviction model")); | 
|  |  | 
|  | static cl::opt<std::string> ModelUnderTraining( | 
|  | "regalloc-model", cl::Hidden, | 
|  | cl::desc("The model being trained for register allocation eviction")); | 
|  |  | 
|  | static cl::opt<bool> EnableDevelopmentFeatures( | 
|  | "regalloc-enable-development-features", cl::Hidden, | 
|  | cl::desc("Whether or not to enable features under development for the ML " | 
|  | "regalloc advisor")); | 
|  |  | 
|  | #else | 
|  | static const bool EnableDevelopmentFeatures = false; | 
|  | #endif // #ifdef LLVM_HAVE_TFLITE | 
|  |  | 
|  | /// The score injection pass. | 
|  | /// This pass calculates the score for a function and inserts it in the log, but | 
|  | /// this happens only in development mode. It's a no-op otherwise. | 
|  | namespace llvm { | 
|  | extern cl::opt<unsigned> EvictInterferenceCutoff; | 
|  |  | 
|  | class RegAllocScoring : public MachineFunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | RegAllocScoring() : MachineFunctionPass(ID) { | 
|  | initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | ~RegAllocScoring() override = default; | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "Register Allocation Pass Scoring"; | 
|  | } | 
|  |  | 
|  | /// RegAllocReward analysis usage. | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<RegAllocEvictionAdvisorAnalysisLegacy>(); | 
|  | AU.addRequired<RegAllocPriorityAdvisorAnalysisLegacy>(); | 
|  | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// Performs this pass | 
|  | bool runOnMachineFunction(MachineFunction &) override; | 
|  | }; | 
|  |  | 
|  | char RegAllocScoring::ID = 0; | 
|  | FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } | 
|  |  | 
|  | } // namespace llvm | 
|  |  | 
|  | INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass", | 
|  | "Register Allocation Scoring Pass", false, false) | 
|  |  | 
|  | // =================================== | 
|  | // Common ML Advisor declarations | 
|  | // =================================== | 
|  | namespace { | 
|  | // The model can only accept a specified number of opcodes and will error it if | 
|  | // fed an opcode it hasn't seen before. This constant sets the current cutoff. | 
|  | static const int OpcodeValueCutoff = 17716; | 
|  |  | 
|  | // Most features are as described above, so we'll reuse this vector in defining | 
|  | // them. | 
|  | static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; | 
|  |  | 
|  | // -------------- | 
|  | // Features table | 
|  | // -------------- | 
|  | // For each interfering live range (incl. the candidate) we collect a number of | 
|  | // features. However, because the features are of different types (and because | 
|  | // of ML best practices), we organize the tensors per feature, not per | 
|  | // candidate. Each such tensor has a scalar value corresponding to the | 
|  | // interferring live range at that position, in the order in AllocationOrder. | 
|  | // The last position corresponds to the virt reg seeking allocation. | 
|  | // Exception to all that is the progression feature, which is just a scalar (see | 
|  | // its documentation for details). | 
|  | // Note on naming: the "_by_max" are normalized using the largest value of that | 
|  | // tensor, as observed in the current decision making stage (i.e. for the | 
|  | // current call to the advisor's tryFindEvictionCandidate) | 
|  | // | 
|  | // The feature list format: type, name, shape, documentation. | 
|  | // Note: we can really just use int64 and float, hence the modeling of some | 
|  | // bools as int64 values. | 
|  | #define RA_EVICT_FEATURES_LIST(M)                                              \ | 
|  | M(int64_t, mask, PerLiveRangeShape,                                          \ | 
|  | "boolean values, 0 for unavailable candidates (i.e. if a position is 0, "  \ | 
|  | "it "                                                                      \ | 
|  | "can't be evicted)")                                                       \ | 
|  | M(int64_t, is_free, PerLiveRangeShape,                                       \ | 
|  | "boolean values, 1 if this phys reg is actually free (no interferences)")  \ | 
|  | M(float, nr_urgent, PerLiveRangeShape,                                       \ | 
|  | "number of 'urgent' intervals, normalized. Urgent are those that are OK "  \ | 
|  | "to break cascades")                                                       \ | 
|  | M(float, nr_broken_hints, PerLiveRangeShape,                                 \ | 
|  | "if this position were evicted, how many broken hints would there be")     \ | 
|  | M(int64_t, is_hint, PerLiveRangeShape,                                       \ | 
|  | "is this a preferred phys reg for the candidate")                          \ | 
|  | M(int64_t, is_local, PerLiveRangeShape,                                      \ | 
|  | "is this live range local to a basic block")                               \ | 
|  | M(float, nr_rematerializable, PerLiveRangeShape,                             \ | 
|  | "nr rematerializable ranges")                                              \ | 
|  | M(float, nr_defs_and_uses, PerLiveRangeShape,                                \ | 
|  | "bb freq - weighed nr defs and uses")                                      \ | 
|  | M(float, weighed_reads_by_max, PerLiveRangeShape,                            \ | 
|  | "bb freq - weighed nr of reads, normalized")                               \ | 
|  | M(float, weighed_writes_by_max, PerLiveRangeShape,                           \ | 
|  | "bb feq - weighed nr of writes, normalized")                               \ | 
|  | M(float, weighed_read_writes_by_max, PerLiveRangeShape,                      \ | 
|  | "bb freq - weighed nr of uses that are both read and writes, normalized")  \ | 
|  | M(float, weighed_indvars_by_max, PerLiveRangeShape,                          \ | 
|  | "bb freq - weighed nr of uses that are indvars, normalized")               \ | 
|  | M(float, hint_weights_by_max, PerLiveRangeShape,                             \ | 
|  | "bb freq - weighed nr of uses that are hints, normalized")                 \ | 
|  | M(float, start_bb_freq_by_max, PerLiveRangeShape,                            \ | 
|  | "the freq in the start block, normalized")                                 \ | 
|  | M(float, end_bb_freq_by_max, PerLiveRangeShape,                              \ | 
|  | "freq of end block, normalized")                                           \ | 
|  | M(float, hottest_bb_freq_by_max, PerLiveRangeShape,                          \ | 
|  | "hottest BB freq, normalized")                                             \ | 
|  | M(float, liverange_size, PerLiveRangeShape,                                  \ | 
|  | "size (instr index diff) of the LR")                                       \ | 
|  | M(float, use_def_density, PerLiveRangeShape,                                 \ | 
|  | "the max weight, as computed by the manual heuristic")                     \ | 
|  | M(int64_t, max_stage, PerLiveRangeShape,                                     \ | 
|  | "largest stage of an interval in this LR")                                 \ | 
|  | M(int64_t, min_stage, PerLiveRangeShape,                                     \ | 
|  | "lowest stage of an interval in this LR")                                  \ | 
|  | M(float, progress, {1}, "ratio of current queue size to initial size") | 
|  |  | 
|  | #ifdef LLVM_HAVE_TFLITE | 
|  | #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M)                                  \ | 
|  | M(int64_t, instructions, InstructionsShape,                                  \ | 
|  | "Opcodes of the instructions covered by the eviction problem") | 
|  |  | 
|  | #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M)                                  \ | 
|  | M(int64_t, instructions_mapping, InstructionsMappingShape,                   \ | 
|  | "A binary matrix mapping LRs to instruction opcodes")                      \ | 
|  | M(float, mbb_frequencies, MBBFrequencyShape,                                 \ | 
|  | "A vector of machine basic block frequencies")                             \ | 
|  | M(int64_t, mbb_mapping, InstructionsShape,                                   \ | 
|  | "A vector of indices mapping instructions to MBBs") | 
|  | #else | 
|  | #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) | 
|  | #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) | 
|  | #endif | 
|  |  | 
|  | // The model learns to pick one of the mask == 1 interferences. This is the | 
|  | // name of the output tensor. The contract with the model is that the output | 
|  | // will be guaranteed to be to a mask == 1 position. Using a macro here to | 
|  | // avoid 'not used' warnings (and keep cond compilation to a minimum) | 
|  | #define DecisionName "index_to_evict" | 
|  | static const TensorSpec DecisionSpec = | 
|  | TensorSpec::createSpec<int64_t>(DecisionName, {1}); | 
|  |  | 
|  | // Named features index. | 
|  | enum FeatureIDs { | 
|  | #define _FEATURE_IDX_SIMPLE(_, name, __, ___) name | 
|  | #define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D), | 
|  | RA_EVICT_FEATURES_LIST(_FEATURE_IDX) FeatureCount, | 
|  | #ifdef LLVM_HAVE_TFLITE | 
|  | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE) = FeatureCount, | 
|  | #else | 
|  | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX) | 
|  | #endif // #ifdef LLVM_HAVE_TFLITE | 
|  | RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount | 
|  | #undef _FEATURE_IDX | 
|  | #undef _FEATURE_IDX_SIMPLE | 
|  | }; | 
|  |  | 
|  | // The ML advisor will typically have a sparse input to the evaluator, because | 
|  | // various phys regs won't be available. It's easier (maintenance-wise) to | 
|  | // bulk-reset the state of the evaluator each time we are about to use it | 
|  | // again. | 
|  | template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { | 
|  | size_t Ret = sizeof(T); | 
|  | for (const auto V : Shape) | 
|  | Ret *= V; | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | void resetInputs(MLModelRunner &Runner) { | 
|  | #define _RESET(TYPE, NAME, SHAPE, __)                                          \ | 
|  | std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0,                    \ | 
|  | getTotalSize<TYPE>(SHAPE)); | 
|  | RA_EVICT_FEATURES_LIST(_RESET) | 
|  | if (EnableDevelopmentFeatures) { | 
|  | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET) | 
|  | RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET) | 
|  | #undef _RESET | 
|  | } | 
|  | } | 
|  |  | 
|  | // Per-live interval components that get aggregated into the feature values | 
|  | // that will be passed to the evaluator. | 
|  | struct LIFeatureComponents { | 
|  | double R = 0; | 
|  | double W = 0; | 
|  | double RW = 0; | 
|  | double IndVarUpdates = 0; | 
|  | double HintWeights = 0.0; | 
|  | int64_t NumDefsAndUses = 0; | 
|  | float HottestBlockFreq = 0.0; | 
|  | bool IsRemat = false; | 
|  | }; | 
|  |  | 
|  | using CandidateRegList = | 
|  | std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; | 
|  | using FeaturesListNormalizer = | 
|  | llvm::SmallVector<float, FeatureIDs::FeatureCount>; | 
|  |  | 
|  | /// The ML evictor (commonalities between release and development mode) | 
|  | class MLEvictAdvisor : public RegAllocEvictionAdvisor { | 
|  | public: | 
|  | MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, | 
|  | MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI, | 
|  | const MachineLoopInfo &Loops); | 
|  |  | 
|  | protected: | 
|  | const RegAllocEvictionAdvisor &getDefaultAdvisor() const { | 
|  | return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); | 
|  | } | 
|  |  | 
|  | // The assumption is that if the Runner could not be constructed, we emit-ed | 
|  | // error, and we shouldn't be asking for it here. | 
|  | const MLModelRunner &getRunner() const { return *Runner; } | 
|  |  | 
|  | /// This just calls Evaluate on the Runner, but in the development mode | 
|  | /// case, if we're just capturing the log of the default advisor, it needs | 
|  | /// to call the latter instead, so we need to pass all the necessary | 
|  | /// parameters for it. In the development case, it will also log. | 
|  | virtual int64_t | 
|  | tryFindEvictionCandidatePosition(const LiveInterval &VirtReg, | 
|  | const AllocationOrder &Order, | 
|  | unsigned OrderLimit, uint8_t CostPerUseLimit, | 
|  | const SmallVirtRegSet &FixedRegisters) const; | 
|  |  | 
|  | /// Load the features of the given VirtReg (allocated or not) at column Pos, | 
|  | /// but if  that can't be evicted, return false instead. | 
|  | bool | 
|  | loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg, | 
|  | bool IsHint, const SmallVirtRegSet &FixedRegisters, | 
|  | llvm::SmallVectorImpl<float> &Largest, size_t Pos, | 
|  | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; | 
|  |  | 
|  | private: | 
|  | static float getInitialQueueSize(const MachineFunction &MF); | 
|  |  | 
|  | MCRegister tryFindEvictionCandidate( | 
|  | const LiveInterval &VirtReg, const AllocationOrder &Order, | 
|  | uint8_t CostPerUseLimit, | 
|  | const SmallVirtRegSet &FixedRegisters) const override; | 
|  |  | 
|  | void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals, | 
|  | llvm::SmallVectorImpl<float> &Largest, size_t Pos, | 
|  | int64_t IsHint, int64_t LocalIntfsCount, float NumUrgent, | 
|  | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; | 
|  |  | 
|  | // Point-in-time: we didn't learn this, so we always delegate to the | 
|  | // default. | 
|  | bool canEvictHintInterference( | 
|  | const LiveInterval &VirtReg, MCRegister PhysReg, | 
|  | const SmallVirtRegSet &FixedRegisters) const override { | 
|  | return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, | 
|  | FixedRegisters); | 
|  | } | 
|  |  | 
|  | const LIFeatureComponents & | 
|  | getLIFeatureComponents(const LiveInterval &LI) const; | 
|  |  | 
|  | // Hold on to a default advisor for: | 
|  | // 1) the implementation of canEvictHintInterference, because we didn't | 
|  | // learn that nuance yet; 2) for bootstrapping (logging) in the development | 
|  | // mode case. | 
|  | const DefaultEvictionAdvisor DefaultAdvisor; | 
|  | MLModelRunner *const Runner; | 
|  | const MachineBlockFrequencyInfo &MBFI; | 
|  | const MachineLoopInfo &Loops; | 
|  |  | 
|  | // Indices of those features we don't want to normalize. | 
|  | // This could be static and shared, but its initialization is non-trivial. | 
|  | std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; | 
|  | const float InitialQSize; | 
|  |  | 
|  | using RegID = unsigned; | 
|  | mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures; | 
|  |  | 
|  | mutable std::unordered_map<unsigned, unsigned> VirtRegEvictionCounts; | 
|  |  | 
|  | void onEviction(Register RegBeingEvicted) const { | 
|  | // If we cannot find the virtual register in the map, we just assume it has | 
|  | // not been evicted before and thus has a value of zero (which is what the | 
|  | // subscript operator returns by default). | 
|  | ++VirtRegEvictionCounts[RegBeingEvicted.id()]; | 
|  | } | 
|  |  | 
|  | unsigned getEvictionCount(Register Reg) const { | 
|  | auto EvictionCountIt = VirtRegEvictionCounts.find(Reg.id()); | 
|  | if (EvictionCountIt != VirtRegEvictionCounts.end()) | 
|  | return EvictionCountIt->second; | 
|  | return 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | #define _DECL_FEATURES(type, name, shape, _)                                   \ | 
|  | TensorSpec::createSpec<type>(#name, shape), | 
|  |  | 
|  | // =================================== | 
|  | // Release (AOT) - specifics | 
|  | // =================================== | 
|  | /// Common provider for legacy and new pass managers. | 
|  | class ReleaseModeEvictionAdvisorProvider final | 
|  | : public RegAllocEvictionAdvisorProvider { | 
|  | public: | 
|  | ReleaseModeEvictionAdvisorProvider(LLVMContext &Ctx) | 
|  | : RegAllocEvictionAdvisorProvider(AdvisorMode::Release, Ctx) { | 
|  | if (EnableDevelopmentFeatures) { | 
|  | InputFeatures = {RA_EVICT_FEATURES_LIST( | 
|  | _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) | 
|  | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; | 
|  | } else { | 
|  | InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; | 
|  | } | 
|  | } | 
|  | // support for isa<> and dyn_cast. | 
|  | static bool classof(const RegAllocEvictionAdvisorProvider *R) { | 
|  | return R->getAdvisorMode() == AdvisorMode::Release; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<RegAllocEvictionAdvisor> | 
|  | getAdvisor(const MachineFunction &MF, const RAGreedy &RA, | 
|  | MachineBlockFrequencyInfo *MBFI, MachineLoopInfo *Loops) override { | 
|  | if (!Runner) { | 
|  | if (InteractiveChannelBaseName.empty()) | 
|  | Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( | 
|  | MF.getFunction().getContext(), InputFeatures, DecisionName); | 
|  | else | 
|  | Runner = std::make_unique<InteractiveModelRunner>( | 
|  | MF.getFunction().getContext(), InputFeatures, DecisionSpec, | 
|  | InteractiveChannelBaseName + ".out", | 
|  | InteractiveChannelBaseName + ".in"); | 
|  | } | 
|  | assert(MBFI && Loops && | 
|  | "Invalid provider state: must have analysis available"); | 
|  | return std::make_unique<MLEvictAdvisor>(MF, RA, Runner.get(), *MBFI, | 
|  | *Loops); | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::vector<TensorSpec> InputFeatures; | 
|  | std::unique_ptr<MLModelRunner> Runner; | 
|  | }; | 
|  |  | 
|  | class ReleaseModeEvictionAdvisorAnalysisLegacy final | 
|  | : public RegAllocEvictionAdvisorAnalysisLegacy { | 
|  | public: | 
|  | ReleaseModeEvictionAdvisorAnalysisLegacy() | 
|  | : RegAllocEvictionAdvisorAnalysisLegacy(AdvisorMode::Release) {} | 
|  |  | 
|  | void logRewardIfNeeded(const MachineFunction &MF, | 
|  | llvm::function_ref<float()> GetReward) override { | 
|  | // No-op in release mode | 
|  | } | 
|  |  | 
|  | bool doInitialization(Module &M) override { | 
|  | Provider = | 
|  | std::make_unique<ReleaseModeEvictionAdvisorProvider>(M.getContext()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool classof(const RegAllocEvictionAdvisorAnalysisLegacy *R) { | 
|  | return R->getAdvisorMode() == AdvisorMode::Release; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); | 
|  | AU.addRequired<MachineLoopInfoWrapperPass>(); | 
|  | RegAllocEvictionAdvisorAnalysisLegacy::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // =================================== | 
|  | // Development mode-specifics | 
|  | // =================================== | 
|  | // | 
|  | // Features we log | 
|  | #ifdef LLVM_HAVE_TFLITE | 
|  | static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); | 
|  |  | 
|  | // Features we bind on the model. The tensor names have a prefix, and we also | 
|  | // need to include some tensors that are expected to be present by the | 
|  | // training algo. | 
|  | // TODO: can we just get rid of these? | 
|  | #define _DECL_TRAIN_FEATURES(type, name, shape, _)                             \ | 
|  | TensorSpec::createSpec<type>(std::string("action_") + #name, shape), | 
|  |  | 
|  | class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { | 
|  | public: | 
|  | DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, | 
|  | MLModelRunner *Runner, | 
|  | const MachineBlockFrequencyInfo &MBFI, | 
|  | const MachineLoopInfo &Loops, Logger *Log) | 
|  | : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} | 
|  |  | 
|  | private: | 
|  | int64_t tryFindEvictionCandidatePosition( | 
|  | const LiveInterval &VirtReg, const AllocationOrder &Order, | 
|  | unsigned OrderLimit, uint8_t CostPerUseLimit, | 
|  | const SmallVirtRegSet &FixedRegisters) const override; | 
|  |  | 
|  | Logger *const Log; | 
|  | }; | 
|  |  | 
|  | class DevelopmentModeEvictionAdvisorProvider final | 
|  | : public RegAllocEvictionAdvisorProvider { | 
|  | public: | 
|  | DevelopmentModeEvictionAdvisorProvider(LLVMContext &Ctx) | 
|  | : RegAllocEvictionAdvisorProvider(AdvisorMode::Development, Ctx) { | 
|  | if (EnableDevelopmentFeatures) { | 
|  | InputFeatures = {RA_EVICT_FEATURES_LIST( | 
|  | _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) | 
|  | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; | 
|  | TrainingInputFeatures = { | 
|  | RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) | 
|  | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES) | 
|  | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES) | 
|  | TensorSpec::createSpec<float>("action_discount", {1}), | 
|  | TensorSpec::createSpec<int32_t>("action_step_type", {1}), | 
|  | TensorSpec::createSpec<float>("action_reward", {1})}; | 
|  | } else { | 
|  | InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; | 
|  | TrainingInputFeatures = { | 
|  | RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) | 
|  | TensorSpec::createSpec<float>("action_discount", {1}), | 
|  | TensorSpec::createSpec<int32_t>("action_step_type", {1}), | 
|  | TensorSpec::createSpec<float>("action_reward", {1})}; | 
|  | } | 
|  | if (ModelUnderTraining.empty() && TrainingLog.empty()) { | 
|  | Ctx.emitError("Regalloc development mode should be requested with at " | 
|  | "least logging enabled and/or a training model"); | 
|  | return; | 
|  | } | 
|  | if (ModelUnderTraining.empty()) | 
|  | Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); | 
|  | else | 
|  | Runner = ModelUnderTrainingRunner::createAndEnsureValid( | 
|  | Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); | 
|  | if (!Runner) { | 
|  | Ctx.emitError("Regalloc: could not set up the model runner"); | 
|  | return; | 
|  | } | 
|  | if (TrainingLog.empty()) | 
|  | return; | 
|  | std::error_code EC; | 
|  | auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); | 
|  | if (EC) { | 
|  | Ctx.emitError(EC.message() + ":" + TrainingLog); | 
|  | return; | 
|  | } | 
|  | std::vector<TensorSpec> LFS = InputFeatures; | 
|  | if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) | 
|  | append_range(LFS, MUTR->extraOutputsForLoggingSpecs()); | 
|  | // We always log the output; in particular, if we're not evaluating, we | 
|  | // don't have an output spec json file. That's why we handle the | 
|  | // 'normal' output separately. | 
|  | LFS.push_back(DecisionSpec); | 
|  |  | 
|  | Log = std::make_unique<Logger>(std::move(OS), LFS, Reward, | 
|  | /*IncludeReward*/ true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // support for isa<> and dyn_cast. | 
|  | static bool classof(const RegAllocEvictionAdvisorProvider *R) { | 
|  | return R->getAdvisorMode() == AdvisorMode::Development; | 
|  | } | 
|  |  | 
|  | void logRewardIfNeeded(const MachineFunction &MF, | 
|  | llvm::function_ref<float()> GetReward) override { | 
|  | if (!Log || !Log->hasAnyObservationForContext(MF.getName())) | 
|  | return; | 
|  | // The function pass manager would run all the function passes for a | 
|  | // function, so we assume the last context belongs to this function. If | 
|  | // this invariant ever changes, we can implement at that time switching | 
|  | // contexts. At this point, it'd be an error | 
|  | if (Log->currentContext() != MF.getName()) { | 
|  | MF.getFunction().getContext().emitError( | 
|  | "The training log context shouldn't have had changed."); | 
|  | } | 
|  | if (Log->hasObservationInProgress()) | 
|  | Log->logReward<float>(GetReward()); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<RegAllocEvictionAdvisor> | 
|  | getAdvisor(const MachineFunction &MF, const RAGreedy &RA, | 
|  | MachineBlockFrequencyInfo *MBFI, MachineLoopInfo *Loops) override { | 
|  | if (!Runner) | 
|  | return nullptr; | 
|  | if (Log) | 
|  | Log->switchContext(MF.getName()); | 
|  | assert(MBFI && Loops && | 
|  | "Invalid provider state: must have analysis available"); | 
|  | return std::make_unique<DevelopmentModeEvictAdvisor>( | 
|  | MF, RA, Runner.get(), *MBFI, *Loops, Log.get()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::vector<TensorSpec> InputFeatures; | 
|  | std::vector<TensorSpec> TrainingInputFeatures; | 
|  |  | 
|  | std::unique_ptr<MLModelRunner> Runner; | 
|  | std::unique_ptr<Logger> Log; | 
|  | }; | 
|  |  | 
|  | class DevelopmentModeEvictionAdvisorAnalysisLegacy final | 
|  | : public RegAllocEvictionAdvisorAnalysisLegacy { | 
|  | public: | 
|  | DevelopmentModeEvictionAdvisorAnalysisLegacy() | 
|  | : RegAllocEvictionAdvisorAnalysisLegacy(AdvisorMode::Development) {} | 
|  |  | 
|  | bool doInitialization(Module &M) override { | 
|  | Provider = std::make_unique<DevelopmentModeEvictionAdvisorProvider>( | 
|  | M.getContext()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void logRewardIfNeeded(const MachineFunction &MF, | 
|  | llvm::function_ref<float()> GetReward) override { | 
|  | Provider->logRewardIfNeeded(MF, GetReward); | 
|  | } | 
|  |  | 
|  | // support for isa<> and dyn_cast. | 
|  | static bool classof(const RegAllocEvictionAdvisorAnalysisLegacy *R) { | 
|  | return R->getAdvisorMode() == AdvisorMode::Development; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); | 
|  | AU.addRequired<MachineLoopInfoWrapperPass>(); | 
|  | RegAllocEvictionAdvisorAnalysisLegacy::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #endif // #ifdef LLVM_HAVE_TFLITE | 
|  | } // namespace | 
|  |  | 
|  | float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { | 
|  | auto &MRI = MF.getRegInfo(); | 
|  | unsigned NumUsedRegs = 0; | 
|  | for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { | 
|  | Register Reg = Register::index2VirtReg(I); | 
|  | if (!MRI.reg_nodbg_empty(Reg)) | 
|  | ++NumUsedRegs; | 
|  | } | 
|  | return static_cast<float>(NumUsedRegs); | 
|  | } | 
|  |  | 
|  | MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, | 
|  | MLModelRunner *Runner, | 
|  | const MachineBlockFrequencyInfo &MBFI, | 
|  | const MachineLoopInfo &Loops) | 
|  | : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), | 
|  | Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), | 
|  | InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { | 
|  | assert(this->Runner); | 
|  | Runner->switchContext(MF.getName()); | 
|  | DoNotNormalize.set(FeatureIDs::mask); | 
|  | DoNotNormalize.set(FeatureIDs::is_free); | 
|  | DoNotNormalize.set(FeatureIDs::is_hint); | 
|  | DoNotNormalize.set(FeatureIDs::is_local); | 
|  | DoNotNormalize.set(FeatureIDs::min_stage); | 
|  | DoNotNormalize.set(FeatureIDs::max_stage); | 
|  | DoNotNormalize.set(FeatureIDs::progress); | 
|  | } | 
|  |  | 
|  | int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( | 
|  | const LiveInterval &, const AllocationOrder &, unsigned, uint8_t, | 
|  | const SmallVirtRegSet &) const { | 
|  | int64_t Ret = Runner->evaluate<int64_t>(); | 
|  | assert(Ret >= 0); | 
|  | assert(Ret <= CandidateVirtRegPos); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | bool MLEvictAdvisor::loadInterferenceFeatures( | 
|  | const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, | 
|  | const SmallVirtRegSet &FixedRegisters, | 
|  | llvm::SmallVectorImpl<float> &Largest, size_t Pos, | 
|  | llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { | 
|  | // It is only possible to evict virtual register interference. | 
|  | if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { | 
|  | // leave unavailable | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); | 
|  | int64_t LocalIntfs = 0; | 
|  | float NumUrgent = 0.0f; | 
|  |  | 
|  | // The cascade tracking is the same as in the default advisor | 
|  | unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); | 
|  |  | 
|  | SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals; | 
|  | for (MCRegUnit Unit : TRI->regunits(PhysReg)) { | 
|  | LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); | 
|  | // Different from the default heuristic, we don't make any assumptions | 
|  | // about what having more than 10 results in the query may mean. | 
|  | const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff); | 
|  | if (IFIntervals.empty() && InterferingIntervals.empty()) | 
|  | continue; | 
|  | if (IFIntervals.size() >= EvictInterferenceCutoff) | 
|  | return false; | 
|  | InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end()); | 
|  | for (const LiveInterval *Intf : reverse(IFIntervals)) { | 
|  | assert(Intf->reg().isVirtual() && | 
|  | "Only expecting virtual register interference from query"); | 
|  | // This is the same set of legality checks as in the default case: don't | 
|  | // try to evict fixed regs or 'done' ones. Also don't break cascades, | 
|  | // except in the urgent case, with the same nuances used in the default | 
|  | // heuristic. | 
|  | // We could try sharing this between the advisors, but it may end up | 
|  | // more complex than it is right now. | 
|  | if (FixedRegisters.count(Intf->reg())) | 
|  | return false; | 
|  | if (RA.getExtraInfo().getStage(*Intf) == RS_Done) | 
|  | return false; | 
|  | bool Urgent = | 
|  | !VirtReg.isSpillable() && | 
|  | (Intf->isSpillable() || | 
|  | RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < | 
|  | RegClassInfo.getNumAllocatableRegs( | 
|  | MRI->getRegClass(Intf->reg()))); | 
|  |  | 
|  | unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); | 
|  | // There is a potential that the model could be adversarial and | 
|  | // continually evict live ranges over and over again, leading to a | 
|  | // large amount of compile time being spent in regalloc. If we hit the | 
|  | // threshold, prevent the range from being evicted. We still let the | 
|  | // range through if it is urgent as we are required to produce an | 
|  | // eviction if the candidate is not spillable. | 
|  | if (getEvictionCount(Intf->reg()) > MaxEvictionCount && !Urgent) | 
|  | return false; | 
|  |  | 
|  | // Only evict older cascades or live ranges without a cascade. | 
|  | if (Cascade <= IntfCascade) { | 
|  | if (!Urgent) | 
|  | return false; | 
|  | ++NumUrgent; | 
|  | } | 
|  |  | 
|  | LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) && | 
|  | (!EnableLocalReassign || !canReassign(*Intf, PhysReg))); | 
|  | } | 
|  | } | 
|  | // OK, so if we made it this far, this LR is an eviction candidate, load its | 
|  | // features. | 
|  | extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs, | 
|  | NumUrgent, LRPosInfo); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MCRegister MLEvictAdvisor::tryFindEvictionCandidate( | 
|  | const LiveInterval &VirtReg, const AllocationOrder &Order, | 
|  | uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { | 
|  | auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); | 
|  | if (!MaybeOrderLimit) | 
|  | return MCRegister::NoRegister; | 
|  | unsigned OrderLimit = *MaybeOrderLimit; | 
|  |  | 
|  | // The heuristic sets initial costs such as, if CostPerUseLimit is | 
|  | // max<uint8_t>, then any of the costs of the legally-evictable intervals | 
|  | // would be lower. When that happens, one of those will be selected. | 
|  | // Therefore, we allow the candidate be selected, unless the candidate is | 
|  | // unspillable, in which case it would be incorrect to not find a register | 
|  | // for it. | 
|  | const bool MustFindEviction = | 
|  | (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); | 
|  | // Number of available candidates - if 0, no need to continue. | 
|  | size_t Available = 0; | 
|  | // Make sure we don't have leftover partial state from an attempt where we | 
|  | // had no available candidates and bailed out early. | 
|  | resetInputs(*Runner); | 
|  |  | 
|  | // Track the index->register mapping because AllocationOrder doesn't do that | 
|  | // and we'd have to scan it. | 
|  | // Also track their mask, to write asserts/debug. | 
|  | CandidateRegList Regs; | 
|  | Regs.fill({0, false}); | 
|  |  | 
|  | // Track the largest value of features seen during this eviction session. We | 
|  | // only normalize (some of) the float features, but it's just simpler to | 
|  | // dimension 'Largest' to all the features, especially since we have the | 
|  | // 'DoNotNormalize' list. | 
|  | FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0); | 
|  |  | 
|  | // Same overal idea as in the default eviction policy - we visit the values | 
|  | // of AllocationOrder one at a time. If it's not legally available, we mask | 
|  | // off the corresponding feature column (==do nothing because we already | 
|  | // reset all the features to 0) Use Pos to capture the column we load | 
|  | // features at - in AllocationOrder order. | 
|  | size_t Pos = 0; | 
|  | SmallVector<LRStartEndInfo, NumberOfInterferences> LRPosInfo; | 
|  | for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; | 
|  | ++I, ++Pos) { | 
|  | MCRegister PhysReg = *I; | 
|  | assert(!Regs[Pos].second); | 
|  | assert(PhysReg); | 
|  | if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { | 
|  | continue; | 
|  | } | 
|  | if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters, | 
|  | Largest, Pos, LRPosInfo)) { | 
|  | ++Available; | 
|  | Regs[Pos] = std::make_pair(PhysReg, true); | 
|  | } | 
|  | } | 
|  | if (Available == 0) { | 
|  | // Nothing to decide, nothing to learn. | 
|  | assert(!MustFindEviction); | 
|  | return MCRegister::NoRegister; | 
|  | } | 
|  | const size_t ValidPosLimit = Pos; | 
|  | // If we must find eviction, the candidate should be masked out of the | 
|  | // decision making process. | 
|  | Regs[CandidateVirtRegPos].second = !MustFindEviction; | 
|  | if (!MustFindEviction) | 
|  | extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest, | 
|  | CandidateVirtRegPos, /*IsHint*/ 0, | 
|  | /*LocalIntfsCount*/ 0, | 
|  | /*NumUrgent*/ 0.0, LRPosInfo); | 
|  | assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " | 
|  | "nothing to allocate initially."); | 
|  | #ifdef LLVM_HAVE_TFLITE | 
|  | if (EnableDevelopmentFeatures) { | 
|  | extractInstructionFeatures( | 
|  | LRPosInfo, Runner, | 
|  | [this](SlotIndex InputIndex) -> int { | 
|  | auto *CurrentMachineInstruction = | 
|  | LIS->getInstructionFromIndex(InputIndex); | 
|  | if (!CurrentMachineInstruction) { | 
|  | return -1; | 
|  | } | 
|  | return CurrentMachineInstruction->getOpcode(); | 
|  | }, | 
|  | [this](SlotIndex InputIndex) -> float { | 
|  | auto *CurrentMachineInstruction = | 
|  | LIS->getInstructionFromIndex(InputIndex); | 
|  | return MBFI.getBlockFreqRelativeToEntryBlock( | 
|  | CurrentMachineInstruction->getParent()); | 
|  | }, | 
|  | [this](SlotIndex InputIndex) -> MachineBasicBlock * { | 
|  | auto *CurrentMachineInstruction = | 
|  | LIS->getInstructionFromIndex(InputIndex); | 
|  | return CurrentMachineInstruction->getParent(); | 
|  | }, | 
|  | FeatureIDs::instructions, FeatureIDs::instructions_mapping, | 
|  | FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping, | 
|  | LIS->getSlotIndexes()->getLastIndex()); | 
|  | } | 
|  | #endif // #ifdef LLVM_HAVE_TFLITE | 
|  | // Normalize the features. | 
|  | for (auto &V : Largest) | 
|  | V = V ? V : 1.0; | 
|  | for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; | 
|  | ++FeatureIndex) { | 
|  | if (DoNotNormalize.test(FeatureIndex)) | 
|  | continue; | 
|  | for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { | 
|  | Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex]; | 
|  | } | 
|  | } | 
|  | *Runner->getTensor<float>(FeatureIDs::progress) = | 
|  | static_cast<float>(RA.getQueueSize()) / InitialQSize; | 
|  |  | 
|  | // Get a decision. | 
|  | size_t CandidatePos = tryFindEvictionCandidatePosition( | 
|  | VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); | 
|  | // The contract with the ML side is that CandidatePos is mask == 1 (i.e. | 
|  | // Regs[CandidatePos].second) | 
|  | assert(Regs[CandidatePos].second); | 
|  | if (CandidatePos == CandidateVirtRegPos) { | 
|  | onEviction(VirtReg.reg()); | 
|  | assert(!MustFindEviction); | 
|  | return MCRegister::NoRegister; | 
|  | } | 
|  | assert(CandidatePos < ValidPosLimit); | 
|  | (void)ValidPosLimit; | 
|  |  | 
|  | // Update information about how many times the virtual registers being | 
|  | // evicted have been evicted so that we can prevent the model from evicting | 
|  | // the same ranges continually and eating compile time. | 
|  | for (MCRegUnit Unit : TRI->regunits(Regs[CandidatePos].first)) { | 
|  | LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); | 
|  | const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff); | 
|  | for (const LiveInterval *Intf : reverse(IFIntervals)) { | 
|  | onEviction(Intf->reg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Regs[CandidatePos].first; | 
|  | } | 
|  |  | 
|  | const LIFeatureComponents & | 
|  | MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { | 
|  | RegID ID = LI.reg().id(); | 
|  | LIFeatureComponents Empty; | 
|  | auto I = CachedFeatures.insert(std::make_pair(ID, Empty)); | 
|  | LIFeatureComponents &Ret = I.first->getSecond(); | 
|  | if (!I.second) | 
|  | return Ret; | 
|  |  | 
|  | SmallPtrSet<MachineInstr *, 8> Visited; | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  |  | 
|  | for (MachineRegisterInfo::reg_instr_nodbg_iterator | 
|  | I = MRI->reg_instr_nodbg_begin(LI.reg()), | 
|  | E = MRI->reg_instr_nodbg_end(); | 
|  | I != E;) { | 
|  | MachineInstr *MI = &*(I++); | 
|  |  | 
|  | ++Ret.NumDefsAndUses; | 
|  | if (!Visited.insert(MI).second) | 
|  | continue; | 
|  |  | 
|  | if (MI->isIdentityCopy() || MI->isImplicitDef()) | 
|  | continue; | 
|  |  | 
|  | bool Reads, Writes; | 
|  | std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); | 
|  |  | 
|  | float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent()); | 
|  | Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq); | 
|  |  | 
|  | Ret.R += (Reads && !Writes) * Freq; | 
|  | Ret.W += (!Reads && Writes) * Freq; | 
|  | Ret.RW += (Reads && Writes) * Freq; | 
|  |  | 
|  | auto *MBB = MI->getParent(); | 
|  | auto *Loop = Loops.getLoopFor(MBB); | 
|  | bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; | 
|  |  | 
|  | if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB)) | 
|  | Ret.IndVarUpdates += Freq; | 
|  |  | 
|  | if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI)) | 
|  | Ret.HintWeights += Freq; | 
|  | } | 
|  | Ret.IsRemat = VirtRegAuxInfo::isRematerializable( | 
|  | LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo()); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | // Overall, this currently mimics what we do for weight calculation, but instead | 
|  | // of accummulating the various features, we keep them separate. | 
|  | void MLEvictAdvisor::extractFeatures( | 
|  | const SmallVectorImpl<const LiveInterval *> &Intervals, | 
|  | llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint, | 
|  | int64_t LocalIntfsCount, float NumUrgent, | 
|  | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { | 
|  | int64_t NumDefsAndUses = 0; | 
|  | int64_t NumBrokenHints = 0; | 
|  | double R = 0.0; | 
|  | double W = 0.0; | 
|  | double RW = 0.0; | 
|  | double IndVarUpdates = 0.0; | 
|  | double HintWeights = 0.0; | 
|  | float StartBBFreq = 0.0; | 
|  | float EndBBFreq = 0.0; | 
|  | float HottestBlockFreq = 0.0; | 
|  | int32_t NumRematerializable = 0; | 
|  | float TotalWeight = 0.0; | 
|  |  | 
|  | SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); | 
|  | SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); | 
|  | int64_t MaxStage = 0; | 
|  | int64_t MinStage = | 
|  | Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); | 
|  |  | 
|  | for (const auto *L : Intervals) { | 
|  | const LiveInterval &LI = *L; | 
|  | MaxStage = std::max<int64_t>( | 
|  | MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); | 
|  | MinStage = std::min<int64_t>( | 
|  | MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); | 
|  |  | 
|  | TotalWeight = std::max(TotalWeight, LI.weight()); | 
|  |  | 
|  | if (LI.beginIndex() < StartSI) | 
|  | StartSI = LI.beginIndex(); | 
|  |  | 
|  | if (LI.endIndex() > EndSI) | 
|  | EndSI = LI.endIndex(); | 
|  | const LIFeatureComponents &LIFC = getLIFeatureComponents(LI); | 
|  | NumBrokenHints += VRM->hasPreferredPhys(LI.reg()); | 
|  |  | 
|  | NumDefsAndUses += LIFC.NumDefsAndUses; | 
|  | HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq); | 
|  | R += LIFC.R; | 
|  | W += LIFC.W; | 
|  | RW += LIFC.RW; | 
|  |  | 
|  | IndVarUpdates += LIFC.IndVarUpdates; | 
|  |  | 
|  | HintWeights += LIFC.HintWeights; | 
|  | NumRematerializable += LIFC.IsRemat; | 
|  |  | 
|  | if (EnableDevelopmentFeatures) { | 
|  | for (auto CurrentSegment : LI) { | 
|  | LRPosInfo.push_back( | 
|  | LRStartEndInfo{CurrentSegment.start, CurrentSegment.end, Pos}); | 
|  | } | 
|  | } | 
|  | } | 
|  | size_t Size = 0; | 
|  | if (!Intervals.empty()) { | 
|  | StartBBFreq = | 
|  | MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI)); | 
|  | if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) | 
|  | EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); | 
|  | EndBBFreq = | 
|  | MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI)); | 
|  | Size = StartSI.distance(EndSI); | 
|  | } | 
|  | // Set the features at the column 'Pos'. | 
|  | #define SET(ID, TYPE, VAL)                                                     \ | 
|  | do {                                                                         \ | 
|  | Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL);     \ | 
|  | if (!DoNotNormalize.test(FeatureIDs::ID))                                  \ | 
|  | Largest[FeatureIDs::ID] =                                                \ | 
|  | std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL));          \ | 
|  | } while (false) | 
|  | SET(mask, int64_t, 1); | 
|  | SET(is_free, int64_t, Intervals.empty()); | 
|  | SET(nr_urgent, float, NumUrgent); | 
|  | SET(nr_broken_hints, float, NumBrokenHints); | 
|  | SET(is_hint, int64_t, IsHint); | 
|  | SET(is_local, int64_t, LocalIntfsCount); | 
|  | SET(nr_rematerializable, float, NumRematerializable); | 
|  | SET(nr_defs_and_uses, float, NumDefsAndUses); | 
|  | SET(weighed_reads_by_max, float, R); | 
|  | SET(weighed_writes_by_max, float, W); | 
|  | SET(weighed_read_writes_by_max, float, RW); | 
|  | SET(weighed_indvars_by_max, float, IndVarUpdates); | 
|  | SET(hint_weights_by_max, float, HintWeights); | 
|  | SET(start_bb_freq_by_max, float, StartBBFreq); | 
|  | SET(end_bb_freq_by_max, float, EndBBFreq); | 
|  | SET(hottest_bb_freq_by_max, float, HottestBlockFreq); | 
|  | SET(liverange_size, float, Size); | 
|  | SET(use_def_density, float, TotalWeight); | 
|  | SET(max_stage, int64_t, MaxStage); | 
|  | SET(min_stage, int64_t, MinStage); | 
|  | #undef SET | 
|  | } | 
|  |  | 
|  | void llvm::extractInstructionFeatures( | 
|  | SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner, | 
|  | function_ref<int(SlotIndex)> GetOpcode, | 
|  | function_ref<float(SlotIndex)> GetMBBFreq, | 
|  | function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference, | 
|  | const int InstructionsIndex, const int InstructionsMappingIndex, | 
|  | const int MBBFreqIndex, const int MBBMappingIndex, | 
|  | const SlotIndex LastIndex) { | 
|  | // This function extracts instruction based features relevant to the eviction | 
|  | // problem currently being solved. This function ends up extracting two | 
|  | // tensors. | 
|  | // 1 - A vector of size max instruction count. It contains the opcodes of the | 
|  | // instructions spanned by all the intervals in the current instance of the | 
|  | // eviction problem. | 
|  | // 2 - A binary mapping matrix of size (LR count * max | 
|  | // instruction count) which maps where the LRs are live to the actual opcodes | 
|  | // for which they are live. | 
|  | // 3 - A vector of size max supported MBB count storing MBB frequencies, | 
|  | // encompassing all of the MBBs covered by the eviction problem. | 
|  | // 4 - A vector of size max instruction count of indices to members of the MBB | 
|  | // frequency vector, mapping each instruction to its associated MBB. | 
|  |  | 
|  | // Start off by sorting the segments based on the beginning slot index. | 
|  | std::sort( | 
|  | LRPosInfo.begin(), LRPosInfo.end(), | 
|  | [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; }); | 
|  | size_t InstructionIndex = 0; | 
|  | size_t CurrentSegmentIndex = 0; | 
|  | SlotIndex CurrentIndex = LRPosInfo[0].Begin; | 
|  | std::map<MachineBasicBlock *, size_t> VisitedMBBs; | 
|  | size_t CurrentMBBIndex = 0; | 
|  | // This loop processes all the segments sequentially by starting at the | 
|  | // beginning slot index of the first segment, iterating through all the slot | 
|  | // indices before the end slot index of that segment (while checking for | 
|  | // overlaps with segments that start at greater slot indices). After hitting | 
|  | // that end index, the current segment being processed gets bumped until they | 
|  | // are all processed or the max instruction count is hit, where everything is | 
|  | // just truncated. | 
|  | while (true) { | 
|  | // If the index that we are currently at is within the current segment and | 
|  | // we haven't hit the max instruction count, continue processing the current | 
|  | // segment. | 
|  | while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End && | 
|  | InstructionIndex < ModelMaxSupportedInstructionCount) { | 
|  | int CurrentOpcode = GetOpcode(CurrentIndex); | 
|  | // If the current machine instruction is null, skip it | 
|  | if (CurrentOpcode == -1) { | 
|  | // If we're currently at the last index in the SlotIndex analysis, | 
|  | // we can't go any further, so return from the function | 
|  | if (CurrentIndex >= LastIndex) { | 
|  | return; | 
|  | } | 
|  | CurrentIndex = CurrentIndex.getNextIndex(); | 
|  | continue; | 
|  | } | 
|  | MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex); | 
|  | if (VisitedMBBs.count(CurrentMBBReference) == 0) { | 
|  | VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex; | 
|  | ++CurrentMBBIndex; | 
|  | } | 
|  | extractMBBFrequency(CurrentIndex, InstructionIndex, VisitedMBBs, | 
|  | GetMBBFreq, CurrentMBBReference, RegallocRunner, | 
|  | MBBFreqIndex, MBBMappingIndex); | 
|  | // Current code assumes we're not going to get any disjointed segments | 
|  | assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex); | 
|  | RegallocRunner->getTensor<int64_t>(InstructionsIndex)[InstructionIndex] = | 
|  | CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0; | 
|  | // set value in the binary mapping matrix for the current instruction | 
|  | auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos; | 
|  | RegallocRunner->getTensor<int64_t>( | 
|  | InstructionsMappingIndex)[CurrentSegmentPosition * | 
|  | ModelMaxSupportedInstructionCount + | 
|  | InstructionIndex] = 1; | 
|  | // All of the segments are sorted based on the beginning slot index, but | 
|  | // this doesn't mean that the beginning slot index of the next segment is | 
|  | // after the end segment of the one being currently processed. This while | 
|  | // loop checks for overlapping segments and modifies the portion of the | 
|  | // column in the mapping matrix for the currently processed instruction | 
|  | // for the LR it is checking. Also make sure that the beginning of the | 
|  | // current segment we're checking for overlap in is less than the current | 
|  | // index, otherwise we're done checking overlaps. | 
|  | size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1; | 
|  | while (OverlapCheckCurrentSegment < LRPosInfo.size() && | 
|  | LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) { | 
|  | auto OverlapCurrentSegmentPosition = | 
|  | LRPosInfo[OverlapCheckCurrentSegment].Pos; | 
|  | if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) { | 
|  | RegallocRunner->getTensor<int64_t>( | 
|  | InstructionsMappingIndex)[OverlapCurrentSegmentPosition * | 
|  | ModelMaxSupportedInstructionCount + | 
|  | InstructionIndex] = 1; | 
|  | } | 
|  | ++OverlapCheckCurrentSegment; | 
|  | } | 
|  | ++InstructionIndex; | 
|  | if (CurrentIndex >= LastIndex) { | 
|  | return; | 
|  | } | 
|  | CurrentIndex = CurrentIndex.getNextIndex(); | 
|  | } | 
|  | // if we've just finished processing through the last segment or if we've | 
|  | // hit the maximum number of instructions, break out of the loop. | 
|  | if (CurrentSegmentIndex == LRPosInfo.size() - 1 || | 
|  | InstructionIndex >= ModelMaxSupportedInstructionCount) { | 
|  | break; | 
|  | } | 
|  | // If the segments are not overlapping, we need to move to the beginning | 
|  | // index of the next segment to avoid having instructions not attached to | 
|  | // any register. | 
|  | if (LRPosInfo[CurrentSegmentIndex + 1].Begin > | 
|  | LRPosInfo[CurrentSegmentIndex].End) { | 
|  | CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin; | 
|  | } | 
|  | ++CurrentSegmentIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | void llvm::extractMBBFrequency( | 
|  | const SlotIndex CurrentIndex, const size_t CurrentInstructionIndex, | 
|  | std::map<MachineBasicBlock *, size_t> &VisitedMBBs, | 
|  | function_ref<float(SlotIndex)> GetMBBFreq, | 
|  | MachineBasicBlock *CurrentMBBReference, MLModelRunner *RegallocRunner, | 
|  | const int MBBFreqIndex, const int MBBMappingIndex) { | 
|  | size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference]; | 
|  | float CurrentMBBFreq = GetMBBFreq(CurrentIndex); | 
|  | if (CurrentMBBIndex < ModelMaxSupportedMBBCount) { | 
|  | RegallocRunner->getTensor<float>(MBBFreqIndex)[CurrentMBBIndex] = | 
|  | CurrentMBBFreq; | 
|  | RegallocRunner->getTensor<int64_t>( | 
|  | MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Development mode-specific implementations | 
|  | #ifdef LLVM_HAVE_TFLITE | 
|  |  | 
|  | RegAllocEvictionAdvisorAnalysisLegacy * | 
|  | llvm::createDevelopmentModeAdvisorAnalysisLegacy() { | 
|  | return new DevelopmentModeEvictionAdvisorAnalysisLegacy(); | 
|  | } | 
|  |  | 
|  | int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( | 
|  | const LiveInterval &VirtReg, const AllocationOrder &Order, | 
|  | unsigned OrderLimit, uint8_t CostPerUseLimit, | 
|  | const SmallVirtRegSet &FixedRegisters) const { | 
|  | int64_t Ret = 0; | 
|  | if (isa<ModelUnderTrainingRunner>(getRunner())) { | 
|  | Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( | 
|  | VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); | 
|  | } else { | 
|  | MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( | 
|  | VirtReg, Order, CostPerUseLimit, FixedRegisters); | 
|  | // Find the index of the selected PhysReg. We need it for logging, | 
|  | // otherwise this is wasted cycles (but so would starting development mode | 
|  | // without a model nor logging) | 
|  | if (!PhysReg) | 
|  | Ret = CandidateVirtRegPos; | 
|  | else | 
|  | for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); | 
|  | I != E; ++I, ++Ret) | 
|  | if (*I == PhysReg) | 
|  | break; | 
|  | } | 
|  | if (TrainingLog.empty()) | 
|  | return Ret; | 
|  | // TODO(mtrofin): when we support optional rewards, this can go away. In the | 
|  | // meantime, we log the "pretend" reward (0) for the previous observation | 
|  | // before starting a new one. | 
|  | if (Log->hasObservationInProgress()) | 
|  | Log->logReward<float>(0.0); | 
|  |  | 
|  | Log->startObservation(); | 
|  | size_t CurrentFeature = 0; | 
|  | size_t FeatureCount = EnableDevelopmentFeatures | 
|  | ? FeatureIDs::FeaturesWithDevelopmentCount | 
|  | : FeatureIDs::FeatureCount; | 
|  | for (; CurrentFeature < FeatureCount; ++CurrentFeature) { | 
|  | Log->logTensorValue(CurrentFeature, | 
|  | reinterpret_cast<const char *>( | 
|  | getRunner().getTensorUntyped(CurrentFeature))); | 
|  | } | 
|  | if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) | 
|  | for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); | 
|  | ++I, ++CurrentFeature) | 
|  | Log->logTensorValue( | 
|  | CurrentFeature, | 
|  | reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I))); | 
|  | // The output is right after the features and the extra outputs | 
|  | Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret)); | 
|  | Log->endObservation(); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { | 
|  | std::optional<float> CachedReward; | 
|  | auto GetReward = [&]() { | 
|  | if (!CachedReward) | 
|  | CachedReward = static_cast<float>( | 
|  | calculateRegAllocScore( | 
|  | MF, getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()) | 
|  | .getScore()); | 
|  | return *CachedReward; | 
|  | }; | 
|  |  | 
|  | getAnalysis<RegAllocEvictionAdvisorAnalysisLegacy>().logRewardIfNeeded( | 
|  | MF, GetReward); | 
|  | getAnalysis<RegAllocPriorityAdvisorAnalysisLegacy>().logRewardIfNeeded( | 
|  | MF, GetReward); | 
|  | return false; | 
|  | } | 
|  | #endif // #ifdef LLVM_HAVE_TFLITE | 
|  |  | 
|  | RegAllocEvictionAdvisorProvider * | 
|  | llvm::createReleaseModeAdvisorProvider(LLVMContext &Ctx) { | 
|  | return new ReleaseModeEvictionAdvisorProvider(Ctx); | 
|  | } | 
|  |  | 
|  | RegAllocEvictionAdvisorProvider * | 
|  | llvm::createDevelopmentModeAdvisorProvider(LLVMContext &Ctx) { | 
|  | #if defined(LLVM_HAVE_TFLITE) | 
|  | return new DevelopmentModeEvictionAdvisorProvider(Ctx); | 
|  | #endif | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | RegAllocEvictionAdvisorAnalysisLegacy * | 
|  | llvm::createReleaseModeAdvisorAnalysisLegacy() { | 
|  | return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() || | 
|  | !InteractiveChannelBaseName.empty() | 
|  | ? new ReleaseModeEvictionAdvisorAnalysisLegacy() | 
|  | : nullptr; | 
|  | } | 
|  |  | 
|  | // In all cases except development mode, we don't need scoring. | 
|  | #if !defined(LLVM_HAVE_TFLITE) | 
|  | bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } | 
|  | #endif |