blob: 198936abc2f26ba448e7a90295be09ee78892c03 [file] [log] [blame]
// RUN: mlir-opt -linalg-bufferize -canonicalize -cse -split-input-file %s | FileCheck %s
#map0 = affine_map<(d0) -> (d0)>
// In-depth checking of a basic case, this is testing
// - memref.buffer_cast / memref.tensor_load materializations are properly inserted
// - payload is correctly carried over
// - affine maps are correctly carried over
// Later tests will not check all these details.
// CHECK: #map = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @basic(
// CHECK-SAME: %[[TENSOR:.*]]: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[TENSOR]] : memref<4xf32>
// CHECK: %[[RESULT_MEMREF:.*]] = memref.alloc() : memref<4xf32>
// CHECK: linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]}
// CHECK-SAME: ins(%[[MEMREF]] : memref<4xf32>)
// CHECK-SAME: outs(%[[RESULT_MEMREF]] : memref<4xf32>) {
// CHECK: ^bb0(%[[RESULT1:.*]]: f32, %[[UNUSED:.*]]: f32):
// CHECK: %[[DIM1:.*]] = math.exp %[[RESULT1]] : f32
// CHECK: linalg.yield %[[DIM1]] : f32
// CHECK: }
// CHECK: %[[RESULT:.*]] = memref.tensor_load %[[RESULT_MEMREF]] : memref<4xf32>
// CHECK: return %[[RESULT]] : tensor<4xf32>
func @basic(%arg0: tensor<4xf32>) -> tensor<4xf32> {
%0 = linalg.generic {
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]
} ins(%arg0 : tensor<4xf32>)
outs(%arg0 : tensor<4xf32>) {
^bb0(%gen_arg1: f32, %out: f32):
%tmp1 = math.exp %gen_arg1 : f32
linalg.yield %tmp1 : f32
} -> tensor<4xf32>
return %0 : tensor<4xf32>
}
// -----
#map0 = affine_map<(d0) -> (d0)>
// Same as above but with linalg.init_tensor op.
// CHECK: #map = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @init_tensor(
// CHECK-SAME: %[[IN:.*]]: tensor<?xf32>, %[[SIZE:.*]]: index)
// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[IN]] : memref<?xf32>
// CHECK: %[[OUT_BUF:.*]] = memref.alloc(%[[SIZE]]) : memref<?xf32>
// CHECK: linalg.generic
// CHECK-SAME: ins(%[[MEMREF]] : memref<?xf32>)
// CHECK-SAME: outs(%[[OUT_BUF]] : memref<?xf32>) {
func @init_tensor(%in : tensor<?xf32>, %size: index) -> tensor<?xf32> {
%init = linalg.init_tensor [%size] : tensor<?xf32>
%0 = linalg.generic {
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]
} ins(%in : tensor<?xf32>)
outs(%init : tensor<?xf32>) {
^bb0(%gen_arg1: f32, %out: f32):
%tmp1 = math.exp %gen_arg1 : f32
linalg.yield %tmp1 : f32
} -> tensor<?xf32>
return %0 : tensor<?xf32>
}
// -----
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @multiple_results
// CHECK: %[[RESULT0:.*]] = memref.alloc() : memref<4xf32>
// CHECK: %[[RESULT1:.*]] = memref.alloc() : memref<4xf32>
// CHECK: linalg.generic
// CHECK-SAME: ins(%{{.*}} : memref<4xf32>)
// CHECK-SAME: outs(%[[RESULT0]], %[[RESULT1]] : memref<4xf32>, memref<4xf32>)
// CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: f32):
func @multiple_results(%arg0: tensor<4xf32>) -> (tensor<4xf32>, tensor<4xf32>) {
%0, %1 = linalg.generic {
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel"]
} ins(%arg0 : tensor<4xf32>)
outs (%arg0, %arg0 : tensor<4xf32>, tensor<4xf32>) {
^bb0(%gen_arg1: f32, %out1: f32, %out2: f32):
%tmp1 = math.exp %gen_arg1 : f32
linalg.yield %tmp1, %tmp1 : f32, f32
} -> tensor<4xf32>, tensor<4xf32>
return %0, %1 : tensor<4xf32>, tensor<4xf32>
}
// -----
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @multiple_results_indexed
// CHECK: %[[RESULT0:.*]] = memref.alloc() : memref<4xi32>
// CHECK: %[[RESULT1:.*]] = memref.alloc() : memref<4xi32>
// CHECK: linalg.generic
// CHECK-SAME: ins(%{{.*}} : memref<4xi32>)
// CHECK-SAME: outs(%[[RESULT0]], %[[RESULT1]] : memref<4xi32>, memref<4xi32>)
// CHECK-NEXT: ^bb0(%{{.*}}: i32, %{{.*}}: i32, %{{.*}}: i32):
func @multiple_results_indexed(%arg0: tensor<4xi32>)
-> (tensor<4xi32>, tensor<4xi32>) {
%0, %1 = linalg.indexed_generic {
indexing_maps = [#map0, #map0, #map0],
iterator_types = ["parallel"]
} ins(%arg0 : tensor<4xi32>)
outs (%arg0, %arg0 : tensor<4xi32>, tensor<4xi32>) {
^bb0(%i: index, %gen_arg1: i32, %out1: i32, %out2: i32):
%i_i32 = index_cast %i : index to i32
%tmp1 = addi %gen_arg1, %i_i32 : i32
linalg.yield %tmp1, %tmp1 : i32, i32
} -> tensor<4xi32>, tensor<4xi32>
return %0, %1 : tensor<4xi32>, tensor<4xi32>
}
// -----
#map_2d = affine_map<(d0, d1) -> (d0, d1)>
// Check that the allocs properly consider the different shapes of the output
// operands. The permuted indexing maps translate to different output shapes.
// CHECK-LABEL: func @dynamic_results(
// CHECK-SAME: %[[ARG:.*]]: tensor<?x?xf32>
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[MEMREF_ARG:.*]] = memref.buffer_cast %[[ARG]] : memref<?x?xf32>
// CHECK: %[[DIM0:.*]] = memref.dim %[[ARG]], %[[C0]] : tensor<?x?xf32>
// CHECK: %[[DIM1:.*]] = memref.dim %[[ARG]], %[[C1]] : tensor<?x?xf32>
// CHECK: %[[RESULT0:.*]] = memref.alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
// CHECK: %[[RESULT1:.*]] = memref.alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
// CHECK: linalg.generic
// CHECK-SAME: ins(%[[MEMREF_ARG]] : memref<?x?xf32>)
// CHECK-SAME: outs(%[[RESULT0]], %[[RESULT1]] : memref<?x?xf32>, memref<?x?xf32>)
func @dynamic_results(%arg0: tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0, %1 = linalg.generic {
indexing_maps = [#map_2d, #map_2d, #map_2d],
iterator_types = ["parallel", "parallel"]
} ins(%arg0 : tensor<?x?xf32>)
outs (%arg0, %arg0 : tensor<?x?xf32>, tensor<?x?xf32>) {
^bb0(%gen_arg1: f32, %out1: f32, %out2: f32):
%tmp1 = math.exp %gen_arg1 : f32
linalg.yield %tmp1, %tmp1 : f32, f32
} -> tensor<?x?xf32>, tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// -----
#accesses = [
affine_map<(i, j, k) -> (j, i, k)>,
affine_map<(i, j, k) -> (i, j)>
]
#trait = {
indexing_maps = #accesses,
iterator_types = ["parallel", "parallel", "reduction"]
}
// Check the bufferization of init tensors.
// CHECK-LABEL: func @generic_with_init_tensor(
// CHECK-SAME: %[[ARG0_TENSOR:.*]]: tensor<2x3x4xvector<3x4xi4>>,
// CHECK-SAME: %[[ARG1_TENSOR:.*]]: tensor<3x2xf32>) -> tensor<3x2xf32> {
// CHECK: %[[ARG0_MEMREF:.*]] = memref.buffer_cast %[[ARG0_TENSOR]] : memref<2x3x4xvector<3x4xi4>>
// CHECK: %[[ARG1_MEMREF:.*]] = memref.buffer_cast %[[ARG1_TENSOR]] : memref<3x2xf32>
// CHECK: %[[INIT_BUFFER:.*]] = memref.alloc() : memref<3x2xf32>
// CHECK: linalg.copy(%[[ARG1_MEMREF]], %[[INIT_BUFFER]]) : memref<3x2xf32>, memref<3x2xf32>
// CHECK: linalg.generic
// CHECK-SAME: ins(%[[ARG0_MEMREF]] : memref<2x3x4xvector<3x4xi4>>)
// CHECK-SAME: outs(%[[INIT_BUFFER]] : memref<3x2xf32>) {
func @generic_with_init_tensor(%arg0: tensor<2x3x4xvector<3x4xi4>>,
%arg1: tensor<3x2xf32>) -> (tensor<3x2xf32>) {
%0 = linalg.generic #trait
ins(%arg0 : tensor<2x3x4xvector<3x4xi4>>)
outs(%arg1 : tensor<3x2xf32>) {
^bb(%v0: vector<3x4xi4>, %v1: f32) :
linalg.yield %v1 : f32
} -> tensor<3x2xf32>
return %0 : tensor<3x2xf32>
}
// -----
// CHECK-DAG: #[[$MAP0:[0-9a-z]*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)>
// CHECK-DAG: #[[$MAP1:[0-9a-z]*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1 * 2)>
func private @make_index() -> index
// CHECK-LABEL: func @bufferize_subtensor(
// CHECK-SAME: %[[T:[0-9a-z]*]]: tensor<?x?xf32>
func @bufferize_subtensor(%t : tensor<?x?xf32>) -> (tensor<2x3xf32>, tensor<2x?xf32>) {
// CHECK: %[[IDX:.*]] = call @make_index() : () -> index
%i0 = call @make_index() : () -> index
// CHECK: %[[M0:.*]] = memref.buffer_cast %[[T]] : memref<?x?xf32>
// CHECK-NEXT: %[[A0:.*]] = memref.alloc() : memref<2x3xf32>
// CHECK-NEXT: %[[SM0:.*]] = memref.subview %[[M0]][0, 0] [2, 3] [1, 1]
// CHECK-SAME: memref<?x?xf32> to memref<2x3xf32, #[[$MAP0]]>
// CHECK-NEXT: linalg.copy(%[[SM0]], %[[A0]]) : memref<2x3xf32, #[[$MAP0]]>, memref<2x3xf32>
// CHECK-NEXT: %[[RT0:.*]] = memref.tensor_load %[[A0]] : memref<2x3xf32>
%st0 = subtensor %t[0, 0][2, 3][1, 1] : tensor<?x?xf32> to tensor<2x3xf32>
// CHECK: %[[M1:.*]] = memref.buffer_cast %[[T]] : memref<?x?xf32>
// CHECK-NEXT: %[[A1:.*]] = memref.alloc(%[[IDX]]) : memref<2x?xf32>
// CHECK-NEXT: %[[SM1:.*]] = memref.subview %[[M1]][0, %[[IDX]]] [2, %[[IDX]]] [1, 2]
// CHECK-SAME: memref<?x?xf32> to memref<2x?xf32, #[[$MAP1]]>
// CHECK-NEXT: linalg.copy(%[[SM1]], %[[A1]]) : memref<2x?xf32, #[[$MAP1]]>, memref<2x?xf32>
// CHECK-NEXT: %[[RT1:.*]] = memref.tensor_load %[[A1]] : memref<2x?xf32>
%st1 = subtensor %t[0, %i0][2, %i0][1, 2] : tensor<?x?xf32> to tensor<2x?xf32>
// CHECK-NEXT: return %[[RT0]], %[[RT1]]
return %st0, %st1 : tensor<2x3xf32>, tensor<2x?xf32>
}
// -----
// CHECK-DAG: #[[$MAP0:[0-9a-z]*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)>
// CHECK-DAG: #[[$MAP1:[0-9a-z]*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1 * 2)>
func private @make_index() -> index
// CHECK-LABEL: func @bufferize_subtensor_insert(
// CHECK-SAME: %[[T:[0-9a-z]*]]: tensor<?x?xf32>
// CHECK-SAME: %[[ST0:[0-9a-z]*]]: tensor<2x3xf32>
// CHECK-SAME: %[[ST1:[0-9a-z]*]]: tensor<2x?xf32>
func @bufferize_subtensor_insert(%t : tensor<?x?xf32>, %st0 : tensor<2x3xf32>, %st1 : tensor<2x?xf32>) ->
(tensor<?x?xf32>, tensor<?x?xf32>) {
%c0 = constant 0 : index
%c1 = constant 1 : index
// CHECK-NEXT: %[[C0:.*]] = constant 0 : index
// CHECK-NEXT: %[[C1:.*]] = constant 1 : index
%i0 = call @make_index() : () -> index
// CHECK: %[[IDX:.*]] = call @make_index() : () -> index
// CHECK-DAG: %[[M0:.*]] = memref.buffer_cast %[[T]] : memref<?x?xf32>
// CHECK-DAG: %[[SM0:.*]] = memref.buffer_cast %[[ST0]] : memref<2x3xf32>
// CHECK-NEXT: %[[DIM0:.*]] = memref.dim %[[T]], %[[C0]] : tensor<?x?xf32>
// CHECK-NEXT: %[[DIM1:.*]] = memref.dim %[[T]], %[[C1]] : tensor<?x?xf32>
// CHECK-NEXT: %[[M0_COPY:.*]] = memref.alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
// CHECK-NEXT: linalg.copy(%[[M0]], %[[M0_COPY]]) : memref<?x?xf32>, memref<?x?xf32>
// CHECK-NEXT: %[[SUBVIEW0:.*]] = memref.subview %[[M0_COPY]][0, 0] [2, 3] [1, 1]
// CHECK-SAME: memref<?x?xf32> to memref<2x3xf32, #[[$MAP0]]>
// CHECK-NEXT: linalg.copy(%[[SM0]], %[[SUBVIEW0]]) : memref<2x3xf32>, memref<2x3xf32, #[[$MAP0]]>
// CHECK-NEXT: %[[RT0:.*]] = memref.tensor_load %[[M0_COPY]] : memref<?x?xf32>
%t0 = subtensor_insert %st0 into %t[0, 0][2, 3][1, 1] : tensor<2x3xf32> into tensor<?x?xf32>
// CHECK-DAG: %[[M1:.*]] = memref.buffer_cast %[[T]] : memref<?x?xf32>
// CHECK-DAG: %[[SM1:.*]] = memref.buffer_cast %[[ST1]] : memref<2x?xf32>
// CHECK-NEXT: %[[M1_COPY:.*]] = memref.alloc(%[[DIM0]], %[[DIM1]]) : memref<?x?xf32>
// CHECK-NEXT: linalg.copy(%[[M1]], %[[M1_COPY]]) : memref<?x?xf32>, memref<?x?xf32>
// CHECK-NEXT: %[[SUBVIEW1:.*]] = memref.subview %[[M1_COPY]][0, %[[IDX]]] [2, %[[IDX]]] [1, 2]
// CHECK-SAME: memref<?x?xf32> to memref<2x?xf32, #[[$MAP1]]>
// CHECK-NEXT: linalg.copy(%[[SM1]], %[[SUBVIEW1]]) : memref<2x?xf32>, memref<2x?xf32, #[[$MAP1]]>
// CHECK-NEXT: %[[RT1:.*]] = memref.tensor_load %[[M1_COPY]] : memref<?x?xf32>
%t1 = subtensor_insert %st1 into %t[0, %i0][2, %i0][1, 2] : tensor<2x?xf32> into tensor<?x?xf32>
// CHECK: return %[[RT0]], %[[RT1]]
return %t0, %t1: tensor<?x?xf32>, tensor<?x?xf32>
}
// -----
// CHECK-LABEL: func @bufferize_fill(
// CHECK-SAME: %[[IN:.*]]: tensor<?xf32>
func @bufferize_fill(%arg0: tensor<?xf32>) -> tensor<?xf32> {
%c0 = constant 0.0 : f32
// CHECK: %[[MEMREF:.*]] = memref.buffer_cast %[[IN]] : memref<?xf32>
// CHECK: linalg.fill(%[[MEMREF]], %cst) : memref<?xf32>, f32
// CHECK: %[[TENSOR:.*]] = memref.tensor_load %[[MEMREF]] : memref<?xf32>
// CHECK: return %[[TENSOR]]
%0 = linalg.fill(%arg0, %c0) : tensor<?xf32>, f32 -> tensor<?xf32>
return %0 : tensor<?xf32>
}