|  | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the TargetLowering class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <cctype> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// NOTE: The TargetMachine owns TLOF. | 
|  | TargetLowering::TargetLowering(const TargetMachine &tm) | 
|  | : TargetLoweringBase(tm) {} | 
|  |  | 
|  | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::isPositionIndependent() const { | 
|  | return getTargetMachine().isPositionIndependent(); | 
|  | } | 
|  |  | 
|  | /// Check whether a given call node is in tail position within its function. If | 
|  | /// so, it sets Chain to the input chain of the tail call. | 
|  | bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, | 
|  | SDValue &Chain) const { | 
|  | const Function &F = DAG.getMachineFunction().getFunction(); | 
|  |  | 
|  | // First, check if tail calls have been disabled in this function. | 
|  | if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") | 
|  | return false; | 
|  |  | 
|  | // Conservatively require the attributes of the call to match those of | 
|  | // the return. Ignore NoAlias and NonNull because they don't affect the | 
|  | // call sequence. | 
|  | AttributeList CallerAttrs = F.getAttributes(); | 
|  | if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) | 
|  | .removeAttribute(Attribute::NoAlias) | 
|  | .removeAttribute(Attribute::NonNull) | 
|  | .hasAttributes()) | 
|  | return false; | 
|  |  | 
|  | // It's not safe to eliminate the sign / zero extension of the return value. | 
|  | if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || | 
|  | CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) | 
|  | return false; | 
|  |  | 
|  | // Check if the only use is a function return node. | 
|  | return isUsedByReturnOnly(Node, Chain); | 
|  | } | 
|  |  | 
|  | bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, | 
|  | const uint32_t *CallerPreservedMask, | 
|  | const SmallVectorImpl<CCValAssign> &ArgLocs, | 
|  | const SmallVectorImpl<SDValue> &OutVals) const { | 
|  | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { | 
|  | const CCValAssign &ArgLoc = ArgLocs[I]; | 
|  | if (!ArgLoc.isRegLoc()) | 
|  | continue; | 
|  | Register Reg = ArgLoc.getLocReg(); | 
|  | // Only look at callee saved registers. | 
|  | if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) | 
|  | continue; | 
|  | // Check that we pass the value used for the caller. | 
|  | // (We look for a CopyFromReg reading a virtual register that is used | 
|  | //  for the function live-in value of register Reg) | 
|  | SDValue Value = OutVals[I]; | 
|  | if (Value->getOpcode() != ISD::CopyFromReg) | 
|  | return false; | 
|  | unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); | 
|  | if (MRI.getLiveInPhysReg(ArgReg) != Reg) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Set CallLoweringInfo attribute flags based on a call instruction | 
|  | /// and called function attributes. | 
|  | void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, | 
|  | unsigned ArgIdx) { | 
|  | IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); | 
|  | IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); | 
|  | IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); | 
|  | IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); | 
|  | IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); | 
|  | IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); | 
|  | IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); | 
|  | IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); | 
|  | IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); | 
|  | IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); | 
|  | Alignment = Call->getParamAlignment(ArgIdx); | 
|  | ByValType = nullptr; | 
|  | if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) | 
|  | ByValType = Call->getParamByValType(ArgIdx); | 
|  | } | 
|  |  | 
|  | /// Generate a libcall taking the given operands as arguments and returning a | 
|  | /// result of type RetVT. | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, | 
|  | ArrayRef<SDValue> Ops, | 
|  | MakeLibCallOptions CallOptions, | 
|  | const SDLoc &dl, | 
|  | SDValue InChain) const { | 
|  | if (!InChain) | 
|  | InChain = DAG.getEntryNode(); | 
|  |  | 
|  | TargetLowering::ArgListTy Args; | 
|  | Args.reserve(Ops.size()); | 
|  |  | 
|  | TargetLowering::ArgListEntry Entry; | 
|  | for (unsigned i = 0; i < Ops.size(); ++i) { | 
|  | SDValue NewOp = Ops[i]; | 
|  | Entry.Node = NewOp; | 
|  | Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); | 
|  | Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), | 
|  | CallOptions.IsSExt); | 
|  | Entry.IsZExt = !Entry.IsSExt; | 
|  |  | 
|  | if (CallOptions.IsSoften && | 
|  | !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { | 
|  | Entry.IsSExt = Entry.IsZExt = false; | 
|  | } | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | if (LC == RTLIB::UNKNOWN_LIBCALL) | 
|  | report_fatal_error("Unsupported library call operation!"); | 
|  | SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), | 
|  | getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); | 
|  | bool zeroExtend = !signExtend; | 
|  |  | 
|  | if (CallOptions.IsSoften && | 
|  | !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { | 
|  | signExtend = zeroExtend = false; | 
|  | } | 
|  |  | 
|  | CLI.setDebugLoc(dl) | 
|  | .setChain(InChain) | 
|  | .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) | 
|  | .setNoReturn(CallOptions.DoesNotReturn) | 
|  | .setDiscardResult(!CallOptions.IsReturnValueUsed) | 
|  | .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) | 
|  | .setSExtResult(signExtend) | 
|  | .setZExtResult(zeroExtend); | 
|  | return LowerCallTo(CLI); | 
|  | } | 
|  |  | 
|  | bool | 
|  | TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, | 
|  | unsigned Limit, uint64_t Size, | 
|  | unsigned DstAlign, unsigned SrcAlign, | 
|  | bool IsMemset, | 
|  | bool ZeroMemset, | 
|  | bool MemcpyStrSrc, | 
|  | bool AllowOverlap, | 
|  | unsigned DstAS, unsigned SrcAS, | 
|  | const AttributeList &FuncAttributes) const { | 
|  | // If 'SrcAlign' is zero, that means the memory operation does not need to | 
|  | // load the value, i.e. memset or memcpy from constant string. Otherwise, | 
|  | // it's the inferred alignment of the source. 'DstAlign', on the other hand, | 
|  | // is the specified alignment of the memory operation. If it is zero, that | 
|  | // means it's possible to change the alignment of the destination. | 
|  | // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does | 
|  | // not need to be loaded. | 
|  | if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) | 
|  | return false; | 
|  |  | 
|  | EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, | 
|  | IsMemset, ZeroMemset, MemcpyStrSrc, | 
|  | FuncAttributes); | 
|  |  | 
|  | if (VT == MVT::Other) { | 
|  | // Use the largest integer type whose alignment constraints are satisfied. | 
|  | // We only need to check DstAlign here as SrcAlign is always greater or | 
|  | // equal to DstAlign (or zero). | 
|  | VT = MVT::i64; | 
|  | while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && | 
|  | !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) | 
|  | VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); | 
|  | assert(VT.isInteger()); | 
|  |  | 
|  | // Find the largest legal integer type. | 
|  | MVT LVT = MVT::i64; | 
|  | while (!isTypeLegal(LVT)) | 
|  | LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); | 
|  | assert(LVT.isInteger()); | 
|  |  | 
|  | // If the type we've chosen is larger than the largest legal integer type | 
|  | // then use that instead. | 
|  | if (VT.bitsGT(LVT)) | 
|  | VT = LVT; | 
|  | } | 
|  |  | 
|  | unsigned NumMemOps = 0; | 
|  | while (Size != 0) { | 
|  | unsigned VTSize = VT.getSizeInBits() / 8; | 
|  | while (VTSize > Size) { | 
|  | // For now, only use non-vector load / store's for the left-over pieces. | 
|  | EVT NewVT = VT; | 
|  | unsigned NewVTSize; | 
|  |  | 
|  | bool Found = false; | 
|  | if (VT.isVector() || VT.isFloatingPoint()) { | 
|  | NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; | 
|  | if (isOperationLegalOrCustom(ISD::STORE, NewVT) && | 
|  | isSafeMemOpType(NewVT.getSimpleVT())) | 
|  | Found = true; | 
|  | else if (NewVT == MVT::i64 && | 
|  | isOperationLegalOrCustom(ISD::STORE, MVT::f64) && | 
|  | isSafeMemOpType(MVT::f64)) { | 
|  | // i64 is usually not legal on 32-bit targets, but f64 may be. | 
|  | NewVT = MVT::f64; | 
|  | Found = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Found) { | 
|  | do { | 
|  | NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); | 
|  | if (NewVT == MVT::i8) | 
|  | break; | 
|  | } while (!isSafeMemOpType(NewVT.getSimpleVT())); | 
|  | } | 
|  | NewVTSize = NewVT.getSizeInBits() / 8; | 
|  |  | 
|  | // If the new VT cannot cover all of the remaining bits, then consider | 
|  | // issuing a (or a pair of) unaligned and overlapping load / store. | 
|  | bool Fast; | 
|  | if (NumMemOps && AllowOverlap && NewVTSize < Size && | 
|  | allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, | 
|  | MachineMemOperand::MONone, &Fast) && | 
|  | Fast) | 
|  | VTSize = Size; | 
|  | else { | 
|  | VT = NewVT; | 
|  | VTSize = NewVTSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (++NumMemOps > Limit) | 
|  | return false; | 
|  |  | 
|  | MemOps.push_back(VT); | 
|  | Size -= VTSize; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Soften the operands of a comparison. This code is shared among BR_CC, | 
|  | /// SELECT_CC, and SETCC handlers. | 
|  | void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, | 
|  | SDValue &NewLHS, SDValue &NewRHS, | 
|  | ISD::CondCode &CCCode, | 
|  | const SDLoc &dl, const SDValue OldLHS, | 
|  | const SDValue OldRHS) const { | 
|  | SDValue Chain; | 
|  | return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, | 
|  | OldRHS, Chain); | 
|  | } | 
|  |  | 
|  | void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, | 
|  | SDValue &NewLHS, SDValue &NewRHS, | 
|  | ISD::CondCode &CCCode, | 
|  | const SDLoc &dl, const SDValue OldLHS, | 
|  | const SDValue OldRHS, | 
|  | SDValue &Chain, | 
|  | bool IsSignaling) const { | 
|  | // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc | 
|  | // not supporting it. We can update this code when libgcc provides such | 
|  | // functions. | 
|  |  | 
|  | assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) | 
|  | && "Unsupported setcc type!"); | 
|  |  | 
|  | // Expand into one or more soft-fp libcall(s). | 
|  | RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; | 
|  | bool ShouldInvertCC = false; | 
|  | switch (CCCode) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETOEQ: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OEQ_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; | 
|  | break; | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUNE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::UNE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOGE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETOLT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; | 
|  | break; | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOLE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETOGT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; | 
|  | break; | 
|  | case ISD::SETUO: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::UO_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; | 
|  | break; | 
|  | case ISD::SETO: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::O_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; | 
|  | break; | 
|  | case ISD::SETONE: | 
|  | // SETONE = SETOLT | SETOGT | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; | 
|  | break; | 
|  | case ISD::SETUEQ: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::UO_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; | 
|  | LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OEQ_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; | 
|  | break; | 
|  | default: | 
|  | // Invert CC for unordered comparisons | 
|  | ShouldInvertCC = true; | 
|  | switch (CCCode) { | 
|  | case ISD::SETULT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; | 
|  | break; | 
|  | case ISD::SETULE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OGT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLE_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; | 
|  | break; | 
|  | case ISD::SETUGE: | 
|  | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : | 
|  | (VT == MVT::f64) ? RTLIB::OLT_F64 : | 
|  | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; | 
|  | break; | 
|  | default: llvm_unreachable("Do not know how to soften this setcc!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the target specific return value for comparions lib calls. | 
|  | EVT RetVT = getCmpLibcallReturnType(); | 
|  | SDValue Ops[2] = {NewLHS, NewRHS}; | 
|  | TargetLowering::MakeLibCallOptions CallOptions; | 
|  | EVT OpsVT[2] = { OldLHS.getValueType(), | 
|  | OldRHS.getValueType() }; | 
|  | CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); | 
|  | auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); | 
|  | NewLHS = Call.first; | 
|  | NewRHS = DAG.getConstant(0, dl, RetVT); | 
|  |  | 
|  | CCCode = getCmpLibcallCC(LC1); | 
|  | if (ShouldInvertCC) { | 
|  | assert(RetVT.isInteger()); | 
|  | CCCode = getSetCCInverse(CCCode, RetVT); | 
|  | } | 
|  |  | 
|  | if (LC2 == RTLIB::UNKNOWN_LIBCALL) { | 
|  | // Update Chain. | 
|  | Chain = Call.second; | 
|  | } else { | 
|  | SDValue Tmp = DAG.getNode( | 
|  | ISD::SETCC, dl, | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), | 
|  | NewLHS, NewRHS, DAG.getCondCode(CCCode)); | 
|  | auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); | 
|  | NewLHS = DAG.getNode( | 
|  | ISD::SETCC, dl, | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), | 
|  | Call2.first, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); | 
|  | if (Chain) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, | 
|  | Call2.second); | 
|  | NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); | 
|  | NewRHS = SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return the entry encoding for a jump table in the current function. The | 
|  | /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. | 
|  | unsigned TargetLowering::getJumpTableEncoding() const { | 
|  | // In non-pic modes, just use the address of a block. | 
|  | if (!isPositionIndependent()) | 
|  | return MachineJumpTableInfo::EK_BlockAddress; | 
|  |  | 
|  | // In PIC mode, if the target supports a GPRel32 directive, use it. | 
|  | if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) | 
|  | return MachineJumpTableInfo::EK_GPRel32BlockAddress; | 
|  |  | 
|  | // Otherwise, use a label difference. | 
|  | return MachineJumpTableInfo::EK_LabelDifference32; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, | 
|  | SelectionDAG &DAG) const { | 
|  | // If our PIC model is GP relative, use the global offset table as the base. | 
|  | unsigned JTEncoding = getJumpTableEncoding(); | 
|  |  | 
|  | if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || | 
|  | (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) | 
|  | return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | return Table; | 
|  | } | 
|  |  | 
|  | /// This returns the relocation base for the given PIC jumptable, the same as | 
|  | /// getPICJumpTableRelocBase, but as an MCExpr. | 
|  | const MCExpr * | 
|  | TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, | 
|  | unsigned JTI,MCContext &Ctx) const{ | 
|  | // The normal PIC reloc base is the label at the start of the jump table. | 
|  | return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); | 
|  | } | 
|  |  | 
|  | bool | 
|  | TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
|  | const TargetMachine &TM = getTargetMachine(); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  |  | 
|  | // If the address is not even local to this DSO we will have to load it from | 
|  | // a got and then add the offset. | 
|  | if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) | 
|  | return false; | 
|  |  | 
|  | // If the code is position independent we will have to add a base register. | 
|  | if (isPositionIndependent()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise we can do it. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Optimization Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// If the specified instruction has a constant integer operand and there are | 
|  | /// bits set in that constant that are not demanded, then clear those bits and | 
|  | /// return true. | 
|  | bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, | 
|  | TargetLoweringOpt &TLO) const { | 
|  | SDLoc DL(Op); | 
|  | unsigned Opcode = Op.getOpcode(); | 
|  |  | 
|  | // Do target-specific constant optimization. | 
|  | if (targetShrinkDemandedConstant(Op, Demanded, TLO)) | 
|  | return TLO.New.getNode(); | 
|  |  | 
|  | // FIXME: ISD::SELECT, ISD::SELECT_CC | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case ISD::XOR: | 
|  | case ISD::AND: | 
|  | case ISD::OR: { | 
|  | auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | if (!Op1C) | 
|  | return false; | 
|  |  | 
|  | // If this is a 'not' op, don't touch it because that's a canonical form. | 
|  | const APInt &C = Op1C->getAPIntValue(); | 
|  | if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) | 
|  | return false; | 
|  |  | 
|  | if (!C.isSubsetOf(Demanded)) { | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); | 
|  | SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. | 
|  | /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be | 
|  | /// generalized for targets with other types of implicit widening casts. | 
|  | bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, | 
|  | const APInt &Demanded, | 
|  | TargetLoweringOpt &TLO) const { | 
|  | assert(Op.getNumOperands() == 2 && | 
|  | "ShrinkDemandedOp only supports binary operators!"); | 
|  | assert(Op.getNode()->getNumValues() == 1 && | 
|  | "ShrinkDemandedOp only supports nodes with one result!"); | 
|  |  | 
|  | SelectionDAG &DAG = TLO.DAG; | 
|  | SDLoc dl(Op); | 
|  |  | 
|  | // Early return, as this function cannot handle vector types. | 
|  | if (Op.getValueType().isVector()) | 
|  | return false; | 
|  |  | 
|  | // Don't do this if the node has another user, which may require the | 
|  | // full value. | 
|  | if (!Op.getNode()->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Search for the smallest integer type with free casts to and from | 
|  | // Op's type. For expedience, just check power-of-2 integer types. | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | unsigned DemandedSize = Demanded.getActiveBits(); | 
|  | unsigned SmallVTBits = DemandedSize; | 
|  | if (!isPowerOf2_32(SmallVTBits)) | 
|  | SmallVTBits = NextPowerOf2(SmallVTBits); | 
|  | for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { | 
|  | EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); | 
|  | if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && | 
|  | TLI.isZExtFree(SmallVT, Op.getValueType())) { | 
|  | // We found a type with free casts. | 
|  | SDValue X = DAG.getNode( | 
|  | Op.getOpcode(), dl, SmallVT, | 
|  | DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), | 
|  | DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); | 
|  | assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); | 
|  | SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); | 
|  | return TLO.CombineTo(Op, Z); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | KnownBits Known; | 
|  |  | 
|  | bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); | 
|  | if (Simplified) { | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, | 
|  | KnownBits &Known, | 
|  | TargetLoweringOpt &TLO, | 
|  | unsigned Depth, | 
|  | bool AssumeSingleUse) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | APInt DemandedElts = VT.isVector() | 
|  | ? APInt::getAllOnesValue(VT.getVectorNumElements()) | 
|  | : APInt(1, 1); | 
|  | return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, | 
|  | AssumeSingleUse); | 
|  | } | 
|  |  | 
|  | // TODO: Can we merge SelectionDAG::GetDemandedBits into this? | 
|  | // TODO: Under what circumstances can we create nodes? Constant folding? | 
|  | SDValue TargetLowering::SimplifyMultipleUseDemandedBits( | 
|  | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, | 
|  | SelectionDAG &DAG, unsigned Depth) const { | 
|  | // Limit search depth. | 
|  | if (Depth >= SelectionDAG::MaxRecursionDepth) | 
|  | return SDValue(); | 
|  |  | 
|  | // Ignore UNDEFs. | 
|  | if (Op.isUndef()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Not demanding any bits/elts from Op. | 
|  | if (DemandedBits == 0 || DemandedElts == 0) | 
|  | return DAG.getUNDEF(Op.getValueType()); | 
|  |  | 
|  | unsigned NumElts = DemandedElts.getBitWidth(); | 
|  | KnownBits LHSKnown, RHSKnown; | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::BITCAST: { | 
|  | SDValue Src = peekThroughBitcasts(Op.getOperand(0)); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | EVT DstVT = Op.getValueType(); | 
|  | unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); | 
|  | unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); | 
|  |  | 
|  | if (NumSrcEltBits == NumDstEltBits) | 
|  | if (SDValue V = SimplifyMultipleUseDemandedBits( | 
|  | Src, DemandedBits, DemandedElts, DAG, Depth + 1)) | 
|  | return DAG.getBitcast(DstVT, V); | 
|  |  | 
|  | // TODO - bigendian once we have test coverage. | 
|  | if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && | 
|  | DAG.getDataLayout().isLittleEndian()) { | 
|  | unsigned Scale = NumDstEltBits / NumSrcEltBits; | 
|  | unsigned NumSrcElts = SrcVT.getVectorNumElements(); | 
|  | APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); | 
|  | APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); | 
|  | for (unsigned i = 0; i != Scale; ++i) { | 
|  | unsigned Offset = i * NumSrcEltBits; | 
|  | APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); | 
|  | if (!Sub.isNullValue()) { | 
|  | DemandedSrcBits |= Sub; | 
|  | for (unsigned j = 0; j != NumElts; ++j) | 
|  | if (DemandedElts[j]) | 
|  | DemandedSrcElts.setBit((j * Scale) + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SDValue V = SimplifyMultipleUseDemandedBits( | 
|  | Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) | 
|  | return DAG.getBitcast(DstVT, V); | 
|  | } | 
|  |  | 
|  | // TODO - bigendian once we have test coverage. | 
|  | if ((NumSrcEltBits % NumDstEltBits) == 0 && | 
|  | DAG.getDataLayout().isLittleEndian()) { | 
|  | unsigned Scale = NumSrcEltBits / NumDstEltBits; | 
|  | unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; | 
|  | APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); | 
|  | APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | if (DemandedElts[i]) { | 
|  | unsigned Offset = (i % Scale) * NumDstEltBits; | 
|  | DemandedSrcBits.insertBits(DemandedBits, Offset); | 
|  | DemandedSrcElts.setBit(i / Scale); | 
|  | } | 
|  |  | 
|  | if (SDValue V = SimplifyMultipleUseDemandedBits( | 
|  | Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) | 
|  | return DAG.getBitcast(DstVT, V); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::AND: { | 
|  | LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); | 
|  | RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); | 
|  |  | 
|  | // If all of the demanded bits are known 1 on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and' in this | 
|  | // context. | 
|  | if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) | 
|  | return Op.getOperand(0); | 
|  | if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) | 
|  | return Op.getOperand(1); | 
|  | break; | 
|  | } | 
|  | case ISD::OR: { | 
|  | LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); | 
|  | RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the | 
|  | // other.  These bits cannot contribute to the result of the 'or' in this | 
|  | // context. | 
|  | if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) | 
|  | return Op.getOperand(0); | 
|  | if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) | 
|  | return Op.getOperand(1); | 
|  | break; | 
|  | } | 
|  | case ISD::XOR: { | 
|  | LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); | 
|  | RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the | 
|  | // other. | 
|  | if (DemandedBits.isSubsetOf(RHSKnown.Zero)) | 
|  | return Op.getOperand(0); | 
|  | if (DemandedBits.isSubsetOf(LHSKnown.Zero)) | 
|  | return Op.getOperand(1); | 
|  | break; | 
|  | } | 
|  | case ISD::SETCC: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | // If (1) we only need the sign-bit, (2) the setcc operands are the same | 
|  | // width as the setcc result, and (3) the result of a setcc conforms to 0 or | 
|  | // -1, we may be able to bypass the setcc. | 
|  | if (DemandedBits.isSignMask() && | 
|  | Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && | 
|  | getBooleanContents(Op0.getValueType()) == | 
|  | BooleanContent::ZeroOrNegativeOneBooleanContent) { | 
|  | // If we're testing X < 0, then this compare isn't needed - just use X! | 
|  | // FIXME: We're limiting to integer types here, but this should also work | 
|  | // if we don't care about FP signed-zero. The use of SETLT with FP means | 
|  | // that we don't care about NaNs. | 
|  | if (CC == ISD::SETLT && Op1.getValueType().isInteger() && | 
|  | (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) | 
|  | return Op0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | // If none of the extended bits are demanded, eliminate the sextinreg. | 
|  | EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) | 
|  | return Op.getOperand(0); | 
|  | break; | 
|  | } | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | // If we don't demand the inserted element, return the base vector. | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | EVT VecVT = Vec.getValueType(); | 
|  | if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && | 
|  | !DemandedElts[CIdx->getZExtValue()]) | 
|  | return Vec; | 
|  | break; | 
|  | } | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); | 
|  |  | 
|  | // If all the demanded elts are from one operand and are inline, | 
|  | // then we can use the operand directly. | 
|  | bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int M = ShuffleMask[i]; | 
|  | if (M < 0 || !DemandedElts[i]) | 
|  | continue; | 
|  | AllUndef = false; | 
|  | IdentityLHS &= (M == (int)i); | 
|  | IdentityRHS &= ((M - NumElts) == i); | 
|  | } | 
|  |  | 
|  | if (AllUndef) | 
|  | return DAG.getUNDEF(Op.getValueType()); | 
|  | if (IdentityLHS) | 
|  | return Op.getOperand(0); | 
|  | if (IdentityRHS) | 
|  | return Op.getOperand(1); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) | 
|  | if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( | 
|  | Op, DemandedBits, DemandedElts, DAG, Depth)) | 
|  | return V; | 
|  | break; | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Look at Op. At this point, we know that only the OriginalDemandedBits of the | 
|  | /// result of Op are ever used downstream. If we can use this information to | 
|  | /// simplify Op, create a new simplified DAG node and return true, returning the | 
|  | /// original and new nodes in Old and New. Otherwise, analyze the expression and | 
|  | /// return a mask of Known bits for the expression (used to simplify the | 
|  | /// caller).  The Known bits may only be accurate for those bits in the | 
|  | /// OriginalDemandedBits and OriginalDemandedElts. | 
|  | bool TargetLowering::SimplifyDemandedBits( | 
|  | SDValue Op, const APInt &OriginalDemandedBits, | 
|  | const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, | 
|  | unsigned Depth, bool AssumeSingleUse) const { | 
|  | unsigned BitWidth = OriginalDemandedBits.getBitWidth(); | 
|  | assert(Op.getScalarValueSizeInBits() == BitWidth && | 
|  | "Mask size mismatches value type size!"); | 
|  |  | 
|  | unsigned NumElts = OriginalDemandedElts.getBitWidth(); | 
|  | assert((!Op.getValueType().isVector() || | 
|  | NumElts == Op.getValueType().getVectorNumElements()) && | 
|  | "Unexpected vector size"); | 
|  |  | 
|  | APInt DemandedBits = OriginalDemandedBits; | 
|  | APInt DemandedElts = OriginalDemandedElts; | 
|  | SDLoc dl(Op); | 
|  | auto &DL = TLO.DAG.getDataLayout(); | 
|  |  | 
|  | // Don't know anything. | 
|  | Known = KnownBits(BitWidth); | 
|  |  | 
|  | // Undef operand. | 
|  | if (Op.isUndef()) | 
|  | return false; | 
|  |  | 
|  | if (Op.getOpcode() == ISD::Constant) { | 
|  | // We know all of the bits for a constant! | 
|  | Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); | 
|  | Known.Zero = ~Known.One; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Other users may use these bits. | 
|  | EVT VT = Op.getValueType(); | 
|  | if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { | 
|  | if (Depth != 0) { | 
|  | // If not at the root, Just compute the Known bits to | 
|  | // simplify things downstream. | 
|  | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); | 
|  | return false; | 
|  | } | 
|  | // If this is the root being simplified, allow it to have multiple uses, | 
|  | // just set the DemandedBits/Elts to all bits. | 
|  | DemandedBits = APInt::getAllOnesValue(BitWidth); | 
|  | DemandedElts = APInt::getAllOnesValue(NumElts); | 
|  | } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { | 
|  | // Not demanding any bits/elts from Op. | 
|  | return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); | 
|  | } else if (Depth >= SelectionDAG::MaxRecursionDepth) { | 
|  | // Limit search depth. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | KnownBits Known2, KnownOut; | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::TargetConstant: | 
|  | llvm_unreachable("Can't simplify this node"); | 
|  | case ISD::SCALAR_TO_VECTOR: { | 
|  | if (!DemandedElts[0]) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); | 
|  |  | 
|  | KnownBits SrcKnown; | 
|  | SDValue Src = Op.getOperand(0); | 
|  | unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); | 
|  | APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); | 
|  | if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) | 
|  | return true; | 
|  | Known = SrcKnown.zextOrTrunc(BitWidth, false); | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_VECTOR: | 
|  | // Collect the known bits that are shared by every demanded element. | 
|  | // TODO: Call SimplifyDemandedBits for non-constant demanded elements. | 
|  | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); | 
|  | return false; // Don't fall through, will infinitely loop. | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
|  | if (getTargetConstantFromLoad(LD)) { | 
|  | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); | 
|  | return false; // Don't fall through, will infinitely loop. | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Scl = Op.getOperand(1); | 
|  | auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | 
|  | EVT VecVT = Vec.getValueType(); | 
|  |  | 
|  | // If index isn't constant, assume we need all vector elements AND the | 
|  | // inserted element. | 
|  | APInt DemandedVecElts(DemandedElts); | 
|  | if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { | 
|  | unsigned Idx = CIdx->getZExtValue(); | 
|  | DemandedVecElts.clearBit(Idx); | 
|  |  | 
|  | // Inserted element is not required. | 
|  | if (!DemandedElts[Idx]) | 
|  | return TLO.CombineTo(Op, Vec); | 
|  | } | 
|  |  | 
|  | KnownBits KnownScl; | 
|  | unsigned NumSclBits = Scl.getScalarValueSizeInBits(); | 
|  | APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); | 
|  | if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | Known = KnownScl.zextOrTrunc(BitWidth, false); | 
|  |  | 
|  | KnownBits KnownVec; | 
|  | if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | if (!!DemandedVecElts) { | 
|  | Known.One &= KnownVec.One; | 
|  | Known.Zero &= KnownVec.Zero; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | case ISD::INSERT_SUBVECTOR: { | 
|  | SDValue Base = Op.getOperand(0); | 
|  | SDValue Sub = Op.getOperand(1); | 
|  | EVT SubVT = Sub.getValueType(); | 
|  | unsigned NumSubElts = SubVT.getVectorNumElements(); | 
|  |  | 
|  | // If index isn't constant, assume we need the original demanded base | 
|  | // elements and ALL the inserted subvector elements. | 
|  | APInt BaseElts = DemandedElts; | 
|  | APInt SubElts = APInt::getAllOnesValue(NumSubElts); | 
|  | if (isa<ConstantSDNode>(Op.getOperand(2))) { | 
|  | const APInt &Idx = Op.getConstantOperandAPInt(2); | 
|  | if (Idx.ule(NumElts - NumSubElts)) { | 
|  | unsigned SubIdx = Idx.getZExtValue(); | 
|  | SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); | 
|  | BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); | 
|  | } | 
|  | } | 
|  |  | 
|  | KnownBits KnownSub, KnownBase; | 
|  | if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | Known.Zero.setAllBits(); | 
|  | Known.One.setAllBits(); | 
|  | if (!!SubElts) { | 
|  | Known.One &= KnownSub.One; | 
|  | Known.Zero &= KnownSub.Zero; | 
|  | } | 
|  | if (!!BaseElts) { | 
|  | Known.One &= KnownBase.One; | 
|  | Known.Zero &= KnownBase.Zero; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_SUBVECTOR: { | 
|  | // If index isn't constant, assume we need all the source vector elements. | 
|  | SDValue Src = Op.getOperand(0); | 
|  | ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); | 
|  | APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); | 
|  | if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { | 
|  | // Offset the demanded elts by the subvector index. | 
|  | uint64_t Idx = SubIdx->getZExtValue(); | 
|  | SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); | 
|  | } | 
|  | if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | Known.Zero.setAllBits(); | 
|  | Known.One.setAllBits(); | 
|  | EVT SubVT = Op.getOperand(0).getValueType(); | 
|  | unsigned NumSubVecs = Op.getNumOperands(); | 
|  | unsigned NumSubElts = SubVT.getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumSubVecs; ++i) { | 
|  | APInt DemandedSubElts = | 
|  | DemandedElts.extractBits(NumSubElts, i * NumSubElts); | 
|  | if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, | 
|  | Known2, TLO, Depth + 1)) | 
|  | return true; | 
|  | // Known bits are shared by every demanded subvector element. | 
|  | if (!!DemandedSubElts) { | 
|  | Known.One &= Known2.One; | 
|  | Known.Zero &= Known2.Zero; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); | 
|  |  | 
|  | // Collect demanded elements from shuffle operands.. | 
|  | APInt DemandedLHS(NumElts, 0); | 
|  | APInt DemandedRHS(NumElts, 0); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (!DemandedElts[i]) | 
|  | continue; | 
|  | int M = ShuffleMask[i]; | 
|  | if (M < 0) { | 
|  | // For UNDEF elements, we don't know anything about the common state of | 
|  | // the shuffle result. | 
|  | DemandedLHS.clearAllBits(); | 
|  | DemandedRHS.clearAllBits(); | 
|  | break; | 
|  | } | 
|  | assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); | 
|  | if (M < (int)NumElts) | 
|  | DemandedLHS.setBit(M); | 
|  | else | 
|  | DemandedRHS.setBit(M - NumElts); | 
|  | } | 
|  |  | 
|  | if (!!DemandedLHS || !!DemandedRHS) { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | Known.Zero.setAllBits(); | 
|  | Known.One.setAllBits(); | 
|  | if (!!DemandedLHS) { | 
|  | if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | Known.One &= Known2.One; | 
|  | Known.Zero &= Known2.Zero; | 
|  | } | 
|  | if (!!DemandedRHS) { | 
|  | if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | Known.One &= Known2.One; | 
|  | Known.Zero &= Known2.Zero; | 
|  | } | 
|  |  | 
|  | // Attempt to avoid multi-use ops if we don't need anything from them. | 
|  | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( | 
|  | Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); | 
|  | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( | 
|  | Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); | 
|  | if (DemandedOp0 || DemandedOp1) { | 
|  | Op0 = DemandedOp0 ? DemandedOp0 : Op0; | 
|  | Op1 = DemandedOp1 ? DemandedOp1 : Op1; | 
|  | SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::AND: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | // If the RHS is a constant, check to see if the LHS would be zero without | 
|  | // using the bits from the RHS.  Below, we use knowledge about the RHS to | 
|  | // simplify the LHS, here we're using information from the LHS to simplify | 
|  | // the RHS. | 
|  | if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { | 
|  | // Do not increment Depth here; that can cause an infinite loop. | 
|  | KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); | 
|  | // If the LHS already has zeros where RHSC does, this 'and' is dead. | 
|  | if ((LHSKnown.Zero & DemandedBits) == | 
|  | (~RHSC->getAPIntValue() & DemandedBits)) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  |  | 
|  | // If any of the set bits in the RHS are known zero on the LHS, shrink | 
|  | // the constant. | 
|  | if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) | 
|  | return true; | 
|  |  | 
|  | // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its | 
|  | // constant, but if this 'and' is only clearing bits that were just set by | 
|  | // the xor, then this 'and' can be eliminated by shrinking the mask of | 
|  | // the xor. For example, for a 32-bit X: | 
|  | // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 | 
|  | if (isBitwiseNot(Op0) && Op0.hasOneUse() && | 
|  | LHSKnown.One == ~RHSC->getAPIntValue()) { | 
|  | SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); | 
|  | return TLO.CombineTo(Op, Xor); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, | 
|  | Known2, TLO, Depth + 1)) | 
|  | return true; | 
|  | assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Attempt to avoid multi-use ops if we don't need anything from them. | 
|  | if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { | 
|  | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( | 
|  | Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); | 
|  | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( | 
|  | Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); | 
|  | if (DemandedOp0 || DemandedOp1) { | 
|  | Op0 = DemandedOp0 ? DemandedOp0 : Op0; | 
|  | Op1 = DemandedOp1 ? DemandedOp1 : Op1; | 
|  | SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all of the demanded bits are known one on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'and'. | 
|  | if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  | if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) | 
|  | return TLO.CombineTo(Op, Op1); | 
|  | // If all of the demanded bits in the inputs are known zeros, return zero. | 
|  | if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) | 
|  | return true; | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) | 
|  | return true; | 
|  |  | 
|  | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | Known.One &= Known2.One; | 
|  | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | Known.Zero |= Known2.Zero; | 
|  | break; | 
|  | } | 
|  | case ISD::OR: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, | 
|  | Known2, TLO, Depth + 1)) | 
|  | return true; | 
|  | assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Attempt to avoid multi-use ops if we don't need anything from them. | 
|  | if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { | 
|  | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( | 
|  | Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); | 
|  | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( | 
|  | Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); | 
|  | if (DemandedOp0 || DemandedOp1) { | 
|  | Op0 = DemandedOp0 ? DemandedOp0 : Op0; | 
|  | Op1 = DemandedOp1 ? DemandedOp1 : Op1; | 
|  | SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'or'. | 
|  | if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  | if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) | 
|  | return TLO.CombineTo(Op, Op1); | 
|  | // If the RHS is a constant, see if we can simplify it. | 
|  | if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) | 
|  | return true; | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) | 
|  | return true; | 
|  |  | 
|  | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | Known.Zero &= Known2.Zero; | 
|  | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | Known.One |= Known2.One; | 
|  | break; | 
|  | } | 
|  | case ISD::XOR: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // Attempt to avoid multi-use ops if we don't need anything from them. | 
|  | if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { | 
|  | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( | 
|  | Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); | 
|  | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( | 
|  | Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); | 
|  | if (DemandedOp0 || DemandedOp1) { | 
|  | Op0 = DemandedOp0 ? DemandedOp0 : Op0; | 
|  | Op1 = DemandedOp1 ? DemandedOp1 : Op1; | 
|  | SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all of the demanded bits are known zero on one side, return the other. | 
|  | // These bits cannot contribute to the result of the 'xor'. | 
|  | if (DemandedBits.isSubsetOf(Known.Zero)) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  | if (DemandedBits.isSubsetOf(Known2.Zero)) | 
|  | return TLO.CombineTo(Op, Op1); | 
|  | // If the operation can be done in a smaller type, do so. | 
|  | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) | 
|  | return true; | 
|  |  | 
|  | // If all of the unknown bits are known to be zero on one side or the other | 
|  | // (but not both) turn this into an *inclusive* or. | 
|  | //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); | 
|  |  | 
|  | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); | 
|  | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); | 
|  |  | 
|  | if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { | 
|  | // If one side is a constant, and all of the known set bits on the other | 
|  | // side are also set in the constant, turn this into an AND, as we know | 
|  | // the bits will be cleared. | 
|  | //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
|  | // NB: it is okay if more bits are known than are requested | 
|  | if (C->getAPIntValue() == Known2.One) { | 
|  | SDValue ANDC = | 
|  | TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); | 
|  | } | 
|  |  | 
|  | // If the RHS is a constant, see if we can change it. Don't alter a -1 | 
|  | // constant because that's a 'not' op, and that is better for combining | 
|  | // and codegen. | 
|  | if (!C->isAllOnesValue()) { | 
|  | if (DemandedBits.isSubsetOf(C->getAPIntValue())) { | 
|  | // We're flipping all demanded bits. Flip the undemanded bits too. | 
|  | SDValue New = TLO.DAG.getNOT(dl, Op0, VT); | 
|  | return TLO.CombineTo(Op, New); | 
|  | } | 
|  | // If we can't turn this into a 'not', try to shrink the constant. | 
|  | if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | Known = std::move(KnownOut); | 
|  | break; | 
|  | } | 
|  | case ISD::SELECT: | 
|  | if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) | 
|  | return true; | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | Known.One &= Known2.One; | 
|  | Known.Zero &= Known2.Zero; | 
|  | break; | 
|  | case ISD::SELECT_CC: | 
|  | if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the operands are constants, see if we can simplify them. | 
|  | if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) | 
|  | return true; | 
|  |  | 
|  | // Only known if known in both the LHS and RHS. | 
|  | Known.One &= Known2.One; | 
|  | Known.Zero &= Known2.Zero; | 
|  | break; | 
|  | case ISD::SETCC: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | // If (1) we only need the sign-bit, (2) the setcc operands are the same | 
|  | // width as the setcc result, and (3) the result of a setcc conforms to 0 or | 
|  | // -1, we may be able to bypass the setcc. | 
|  | if (DemandedBits.isSignMask() && | 
|  | Op0.getScalarValueSizeInBits() == BitWidth && | 
|  | getBooleanContents(Op0.getValueType()) == | 
|  | BooleanContent::ZeroOrNegativeOneBooleanContent) { | 
|  | // If we're testing X < 0, then this compare isn't needed - just use X! | 
|  | // FIXME: We're limiting to integer types here, but this should also work | 
|  | // if we don't care about FP signed-zero. The use of SETLT with FP means | 
|  | // that we don't care about NaNs. | 
|  | if (CC == ISD::SETLT && Op1.getValueType().isInteger() && | 
|  | (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  |  | 
|  | // TODO: Should we check for other forms of sign-bit comparisons? | 
|  | // Examples: X <= -1, X >= 0 | 
|  | } | 
|  | if (getBooleanContents(Op0.getValueType()) == | 
|  | TargetLowering::ZeroOrOneBooleanContent && | 
|  | BitWidth > 1) | 
|  | Known.Zero.setBitsFrom(1); | 
|  | break; | 
|  | } | 
|  | case ISD::SHL: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (SA->getAPIntValue().uge(BitWidth)) | 
|  | break; | 
|  |  | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  | if (ShAmt == 0) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  |  | 
|  | // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a | 
|  | // single shift.  We can do this if the bottom bits (which are shifted | 
|  | // out) are never demanded. | 
|  | // TODO - support non-uniform vector amounts. | 
|  | if (Op0.getOpcode() == ISD::SRL) { | 
|  | if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { | 
|  | if (ConstantSDNode *SA2 = | 
|  | isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { | 
|  | if (SA2->getAPIntValue().ult(BitWidth)) { | 
|  | unsigned C1 = SA2->getZExtValue(); | 
|  | unsigned Opc = ISD::SHL; | 
|  | int Diff = ShAmt - C1; | 
|  | if (Diff < 0) { | 
|  | Diff = -Diff; | 
|  | Opc = ISD::SRL; | 
|  | } | 
|  |  | 
|  | SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); | 
|  | return TLO.CombineTo( | 
|  | Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, | 
|  | Known, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | // Try shrinking the operation as long as the shift amount will still be | 
|  | // in range. | 
|  | if ((ShAmt < DemandedBits.getActiveBits()) && | 
|  | ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) | 
|  | return true; | 
|  |  | 
|  | // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits | 
|  | // are not demanded. This will likely allow the anyext to be folded away. | 
|  | if (Op0.getOpcode() == ISD::ANY_EXTEND) { | 
|  | SDValue InnerOp = Op0.getOperand(0); | 
|  | EVT InnerVT = InnerOp.getValueType(); | 
|  | unsigned InnerBits = InnerVT.getScalarSizeInBits(); | 
|  | if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && | 
|  | isTypeDesirableForOp(ISD::SHL, InnerVT)) { | 
|  | EVT ShTy = getShiftAmountTy(InnerVT, DL); | 
|  | if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) | 
|  | ShTy = InnerVT; | 
|  | SDValue NarrowShl = | 
|  | TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, | 
|  | TLO.DAG.getConstant(ShAmt, dl, ShTy)); | 
|  | return TLO.CombineTo( | 
|  | Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); | 
|  | } | 
|  | // Repeat the SHL optimization above in cases where an extension | 
|  | // intervenes: (shl (anyext (shr x, c1)), c2) to | 
|  | // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits | 
|  | // aren't demanded (as above) and that the shifted upper c1 bits of | 
|  | // x aren't demanded. | 
|  | if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && | 
|  | InnerOp.hasOneUse()) { | 
|  | if (ConstantSDNode *SA2 = | 
|  | isConstOrConstSplat(InnerOp.getOperand(1))) { | 
|  | unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); | 
|  | if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && | 
|  | DemandedBits.getActiveBits() <= | 
|  | (InnerBits - InnerShAmt + ShAmt) && | 
|  | DemandedBits.countTrailingZeros() >= ShAmt) { | 
|  | SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, | 
|  | Op1.getValueType()); | 
|  | SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, | 
|  | InnerOp.getOperand(0)); | 
|  | return TLO.CombineTo( | 
|  | Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Known.Zero <<= ShAmt; | 
|  | Known.One <<= ShAmt; | 
|  | // low bits known zero. | 
|  | Known.Zero.setLowBits(ShAmt); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SRL: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (SA->getAPIntValue().uge(BitWidth)) | 
|  | break; | 
|  |  | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  | if (ShAmt == 0) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  |  | 
|  | EVT ShiftVT = Op1.getValueType(); | 
|  | APInt InDemandedMask = (DemandedBits << ShAmt); | 
|  |  | 
|  | // If the shift is exact, then it does demand the low bits (and knows that | 
|  | // they are zero). | 
|  | if (Op->getFlags().hasExact()) | 
|  | InDemandedMask.setLowBits(ShAmt); | 
|  |  | 
|  | // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a | 
|  | // single shift.  We can do this if the top bits (which are shifted out) | 
|  | // are never demanded. | 
|  | // TODO - support non-uniform vector amounts. | 
|  | if (Op0.getOpcode() == ISD::SHL) { | 
|  | if (ConstantSDNode *SA2 = | 
|  | isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { | 
|  | if (!DemandedBits.intersects( | 
|  | APInt::getHighBitsSet(BitWidth, ShAmt))) { | 
|  | if (SA2->getAPIntValue().ult(BitWidth)) { | 
|  | unsigned C1 = SA2->getZExtValue(); | 
|  | unsigned Opc = ISD::SRL; | 
|  | int Diff = ShAmt - C1; | 
|  | if (Diff < 0) { | 
|  | Diff = -Diff; | 
|  | Opc = ISD::SHL; | 
|  | } | 
|  |  | 
|  | SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); | 
|  | return TLO.CombineTo( | 
|  | Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the new bits that are at the top now. | 
|  | if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | Known.Zero.lshrInPlace(ShAmt); | 
|  | Known.One.lshrInPlace(ShAmt); | 
|  |  | 
|  | Known.Zero.setHighBits(ShAmt); // High bits known zero. | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::SRA: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  |  | 
|  | // If this is an arithmetic shift right and only the low-bit is set, we can | 
|  | // always convert this into a logical shr, even if the shift amount is | 
|  | // variable.  The low bit of the shift cannot be an input sign bit unless | 
|  | // the shift amount is >= the size of the datatype, which is undefined. | 
|  | if (DemandedBits.isOneValue()) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); | 
|  |  | 
|  | if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { | 
|  | // If the shift count is an invalid immediate, don't do anything. | 
|  | if (SA->getAPIntValue().uge(BitWidth)) | 
|  | break; | 
|  |  | 
|  | unsigned ShAmt = SA->getZExtValue(); | 
|  | if (ShAmt == 0) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  |  | 
|  | APInt InDemandedMask = (DemandedBits << ShAmt); | 
|  |  | 
|  | // If the shift is exact, then it does demand the low bits (and knows that | 
|  | // they are zero). | 
|  | if (Op->getFlags().hasExact()) | 
|  | InDemandedMask.setLowBits(ShAmt); | 
|  |  | 
|  | // If any of the demanded bits are produced by the sign extension, we also | 
|  | // demand the input sign bit. | 
|  | if (DemandedBits.countLeadingZeros() < ShAmt) | 
|  | InDemandedMask.setSignBit(); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | Known.Zero.lshrInPlace(ShAmt); | 
|  | Known.One.lshrInPlace(ShAmt); | 
|  |  | 
|  | // If the input sign bit is known to be zero, or if none of the top bits | 
|  | // are demanded, turn this into an unsigned shift right. | 
|  | if (Known.Zero[BitWidth - ShAmt - 1] || | 
|  | DemandedBits.countLeadingZeros() >= ShAmt) { | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(Op->getFlags().hasExact()); | 
|  | return TLO.CombineTo( | 
|  | Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); | 
|  | } | 
|  |  | 
|  | int Log2 = DemandedBits.exactLogBase2(); | 
|  | if (Log2 >= 0) { | 
|  | // The bit must come from the sign. | 
|  | SDValue NewSA = | 
|  | TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); | 
|  | } | 
|  |  | 
|  | if (Known.One[BitWidth - ShAmt - 1]) | 
|  | // New bits are known one. | 
|  | Known.One.setHighBits(ShAmt); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::FSHL: | 
|  | case ISD::FSHR: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | SDValue Op1 = Op.getOperand(1); | 
|  | SDValue Op2 = Op.getOperand(2); | 
|  | bool IsFSHL = (Op.getOpcode() == ISD::FSHL); | 
|  |  | 
|  | if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { | 
|  | unsigned Amt = SA->getAPIntValue().urem(BitWidth); | 
|  |  | 
|  | // For fshl, 0-shift returns the 1st arg. | 
|  | // For fshr, 0-shift returns the 2nd arg. | 
|  | if (Amt == 0) { | 
|  | if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, | 
|  | Known, TLO, Depth + 1)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) | 
|  | // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) | 
|  | APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); | 
|  | APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); | 
|  | if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); | 
|  | Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); | 
|  | Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); | 
|  | Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); | 
|  | Known.One |= Known2.One; | 
|  | Known.Zero |= Known2.Zero; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::BITREVERSE: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | APInt DemandedSrcBits = DemandedBits.reverseBits(); | 
|  | if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | Known.One = Known2.One.reverseBits(); | 
|  | Known.Zero = Known2.Zero.reverseBits(); | 
|  | break; | 
|  | } | 
|  | case ISD::BSWAP: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | APInt DemandedSrcBits = DemandedBits.byteSwap(); | 
|  | if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | Known.One = Known2.One.byteSwap(); | 
|  | Known.Zero = Known2.Zero.byteSwap(); | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND_INREG: { | 
|  | SDValue Op0 = Op.getOperand(0); | 
|  | EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | unsigned ExVTBits = ExVT.getScalarSizeInBits(); | 
|  |  | 
|  | // If we only care about the highest bit, don't bother shifting right. | 
|  | if (DemandedBits.isSignMask()) { | 
|  | unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); | 
|  | bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; | 
|  | // However if the input is already sign extended we expect the sign | 
|  | // extension to be dropped altogether later and do not simplify. | 
|  | if (!AlreadySignExtended) { | 
|  | // Compute the correct shift amount type, which must be getShiftAmountTy | 
|  | // for scalar types after legalization. | 
|  | EVT ShiftAmtTy = VT; | 
|  | if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) | 
|  | ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); | 
|  |  | 
|  | SDValue ShiftAmt = | 
|  | TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); | 
|  | return TLO.CombineTo(Op, | 
|  | TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If none of the extended bits are demanded, eliminate the sextinreg. | 
|  | if (DemandedBits.getActiveBits() <= ExVTBits) | 
|  | return TLO.CombineTo(Op, Op0); | 
|  |  | 
|  | APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); | 
|  |  | 
|  | // Since the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | InputDemandedBits.setBit(ExVTBits - 1); | 
|  |  | 
|  | if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | // If the sign bit of the input is known set or clear, then we know the | 
|  | // top bits of the result. | 
|  |  | 
|  | // If the input sign bit is known zero, convert this into a zero extension. | 
|  | if (Known.Zero[ExVTBits - 1]) | 
|  | return TLO.CombineTo( | 
|  | Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); | 
|  |  | 
|  | APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); | 
|  | if (Known.One[ExVTBits - 1]) { // Input sign bit known set | 
|  | Known.One.setBitsFrom(ExVTBits); | 
|  | Known.Zero &= Mask; | 
|  | } else { // Input sign bit unknown | 
|  | Known.Zero &= Mask; | 
|  | Known.One &= Mask; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_PAIR: { | 
|  | EVT HalfVT = Op.getOperand(0).getValueType(); | 
|  | unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); | 
|  |  | 
|  | APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); | 
|  | APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); | 
|  |  | 
|  | KnownBits KnownLo, KnownHi; | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | Known.Zero = KnownLo.Zero.zext(BitWidth) | | 
|  | KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); | 
|  |  | 
|  | Known.One = KnownLo.One.zext(BitWidth) | | 
|  | KnownHi.One.zext(BitWidth).shl(HalfBitWidth); | 
|  | break; | 
|  | } | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | unsigned InBits = SrcVT.getScalarSizeInBits(); | 
|  | unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; | 
|  | bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; | 
|  |  | 
|  | // If none of the top bits are demanded, convert this into an any_extend. | 
|  | if (DemandedBits.getActiveBits() <= InBits) { | 
|  | // If we only need the non-extended bits of the bottom element | 
|  | // then we can just bitcast to the result. | 
|  | if (IsVecInReg && DemandedElts == 1 && | 
|  | VT.getSizeInBits() == SrcVT.getSizeInBits() && | 
|  | TLO.DAG.getDataLayout().isLittleEndian()) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); | 
|  |  | 
|  | unsigned Opc = | 
|  | IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; | 
|  | if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); | 
|  | } | 
|  |  | 
|  | APInt InDemandedBits = DemandedBits.trunc(InBits); | 
|  | APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); | 
|  | if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(Known.getBitWidth() == InBits && "Src width has changed?"); | 
|  | Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); | 
|  | break; | 
|  | } | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | unsigned InBits = SrcVT.getScalarSizeInBits(); | 
|  | unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; | 
|  | bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; | 
|  |  | 
|  | // If none of the top bits are demanded, convert this into an any_extend. | 
|  | if (DemandedBits.getActiveBits() <= InBits) { | 
|  | // If we only need the non-extended bits of the bottom element | 
|  | // then we can just bitcast to the result. | 
|  | if (IsVecInReg && DemandedElts == 1 && | 
|  | VT.getSizeInBits() == SrcVT.getSizeInBits() && | 
|  | TLO.DAG.getDataLayout().isLittleEndian()) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); | 
|  |  | 
|  | unsigned Opc = | 
|  | IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; | 
|  | if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); | 
|  | } | 
|  |  | 
|  | APInt InDemandedBits = DemandedBits.trunc(InBits); | 
|  | APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); | 
|  |  | 
|  | // Since some of the sign extended bits are demanded, we know that the sign | 
|  | // bit is demanded. | 
|  | InDemandedBits.setBit(InBits - 1); | 
|  |  | 
|  | if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(Known.getBitWidth() == InBits && "Src width has changed?"); | 
|  |  | 
|  | // If the sign bit is known one, the top bits match. | 
|  | Known = Known.sext(BitWidth); | 
|  |  | 
|  | // If the sign bit is known zero, convert this to a zero extend. | 
|  | if (Known.isNonNegative()) { | 
|  | unsigned Opc = | 
|  | IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; | 
|  | if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | unsigned InBits = SrcVT.getScalarSizeInBits(); | 
|  | unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; | 
|  | bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; | 
|  |  | 
|  | // If we only need the bottom element then we can just bitcast. | 
|  | // TODO: Handle ANY_EXTEND? | 
|  | if (IsVecInReg && DemandedElts == 1 && | 
|  | VT.getSizeInBits() == SrcVT.getSizeInBits() && | 
|  | TLO.DAG.getDataLayout().isLittleEndian()) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); | 
|  |  | 
|  | APInt InDemandedBits = DemandedBits.trunc(InBits); | 
|  | APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); | 
|  | if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | assert(Known.getBitWidth() == InBits && "Src width has changed?"); | 
|  | Known = Known.zext(BitWidth, false /* => any extend */); | 
|  | break; | 
|  | } | 
|  | case ISD::TRUNCATE: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  |  | 
|  | // Simplify the input, using demanded bit information, and compute the known | 
|  | // zero/one bits live out. | 
|  | unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); | 
|  | APInt TruncMask = DemandedBits.zext(OperandBitWidth); | 
|  | if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) | 
|  | return true; | 
|  | Known = Known.trunc(BitWidth); | 
|  |  | 
|  | // Attempt to avoid multi-use ops if we don't need anything from them. | 
|  | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( | 
|  | Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); | 
|  |  | 
|  | // If the input is only used by this truncate, see if we can shrink it based | 
|  | // on the known demanded bits. | 
|  | if (Src.getNode()->hasOneUse()) { | 
|  | switch (Src.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case ISD::SRL: | 
|  | // Shrink SRL by a constant if none of the high bits shifted in are | 
|  | // demanded. | 
|  | if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) | 
|  | // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is | 
|  | // undesirable. | 
|  | break; | 
|  |  | 
|  | SDValue ShAmt = Src.getOperand(1); | 
|  | auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); | 
|  | if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) | 
|  | break; | 
|  | uint64_t ShVal = ShAmtC->getZExtValue(); | 
|  |  | 
|  | APInt HighBits = | 
|  | APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); | 
|  | HighBits.lshrInPlace(ShVal); | 
|  | HighBits = HighBits.trunc(BitWidth); | 
|  |  | 
|  | if (!(HighBits & DemandedBits)) { | 
|  | // None of the shifted in bits are needed.  Add a truncate of the | 
|  | // shift input, then shift it. | 
|  | if (TLO.LegalTypes()) | 
|  | ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); | 
|  | SDValue NewTrunc = | 
|  | TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); | 
|  | return TLO.CombineTo( | 
|  | Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  | break; | 
|  | } | 
|  | case ISD::AssertZext: { | 
|  | // AssertZext demands all of the high bits, plus any of the low bits | 
|  | // demanded by its users. | 
|  | EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); | 
|  | if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, | 
|  | TLO, Depth + 1)) | 
|  | return true; | 
|  | assert(!Known.hasConflict() && "Bits known to be one AND zero?"); | 
|  |  | 
|  | Known.Zero |= ~InMask; | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_VECTOR_ELT: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | SDValue Idx = Op.getOperand(1); | 
|  | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); | 
|  | unsigned EltBitWidth = Src.getScalarValueSizeInBits(); | 
|  |  | 
|  | // Demand the bits from every vector element without a constant index. | 
|  | APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); | 
|  | if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) | 
|  | if (CIdx->getAPIntValue().ult(NumSrcElts)) | 
|  | DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); | 
|  |  | 
|  | // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know | 
|  | // anything about the extended bits. | 
|  | APInt DemandedSrcBits = DemandedBits; | 
|  | if (BitWidth > EltBitWidth) | 
|  | DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); | 
|  |  | 
|  | if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | // Attempt to avoid multi-use ops if we don't need anything from them. | 
|  | if (!DemandedSrcBits.isAllOnesValue() || | 
|  | !DemandedSrcElts.isAllOnesValue()) { | 
|  | if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( | 
|  | Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { | 
|  | SDValue NewOp = | 
|  | TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | Known = Known2; | 
|  | if (BitWidth > EltBitWidth) | 
|  | Known = Known.zext(BitWidth, false /* => any extend */); | 
|  | break; | 
|  | } | 
|  | case ISD::BITCAST: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); | 
|  |  | 
|  | // If this is an FP->Int bitcast and if the sign bit is the only | 
|  | // thing demanded, turn this into a FGETSIGN. | 
|  | if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && | 
|  | DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && | 
|  | SrcVT.isFloatingPoint()) { | 
|  | bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); | 
|  | bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); | 
|  | if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && | 
|  | SrcVT != MVT::f128) { | 
|  | // Cannot eliminate/lower SHL for f128 yet. | 
|  | EVT Ty = OpVTLegal ? VT : MVT::i32; | 
|  | // Make a FGETSIGN + SHL to move the sign bit into the appropriate | 
|  | // place.  We expect the SHL to be eliminated by other optimizations. | 
|  | SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); | 
|  | unsigned OpVTSizeInBits = Op.getValueSizeInBits(); | 
|  | if (!OpVTLegal && OpVTSizeInBits > 32) | 
|  | Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); | 
|  | unsigned ShVal = Op.getValueSizeInBits() - 1; | 
|  | SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); | 
|  | return TLO.CombineTo(Op, | 
|  | TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. | 
|  | // Demand the elt/bit if any of the original elts/bits are demanded. | 
|  | // TODO - bigendian once we have test coverage. | 
|  | if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && | 
|  | TLO.DAG.getDataLayout().isLittleEndian()) { | 
|  | unsigned Scale = BitWidth / NumSrcEltBits; | 
|  | unsigned NumSrcElts = SrcVT.getVectorNumElements(); | 
|  | APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); | 
|  | APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); | 
|  | for (unsigned i = 0; i != Scale; ++i) { | 
|  | unsigned Offset = i * NumSrcEltBits; | 
|  | APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); | 
|  | if (!Sub.isNullValue()) { | 
|  | DemandedSrcBits |= Sub; | 
|  | for (unsigned j = 0; j != NumElts; ++j) | 
|  | if (DemandedElts[j]) | 
|  | DemandedSrcElts.setBit((j * Scale) + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt KnownSrcUndef, KnownSrcZero; | 
|  | if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, | 
|  | KnownSrcZero, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | KnownBits KnownSrcBits; | 
|  | if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, | 
|  | KnownSrcBits, TLO, Depth + 1)) | 
|  | return true; | 
|  | } else if ((NumSrcEltBits % BitWidth) == 0 && | 
|  | TLO.DAG.getDataLayout().isLittleEndian()) { | 
|  | unsigned Scale = NumSrcEltBits / BitWidth; | 
|  | unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; | 
|  | APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); | 
|  | APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | if (DemandedElts[i]) { | 
|  | unsigned Offset = (i % Scale) * BitWidth; | 
|  | DemandedSrcBits.insertBits(DemandedBits, Offset); | 
|  | DemandedSrcElts.setBit(i / Scale); | 
|  | } | 
|  |  | 
|  | if (SrcVT.isVector()) { | 
|  | APInt KnownSrcUndef, KnownSrcZero; | 
|  | if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, | 
|  | KnownSrcZero, TLO, Depth + 1)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | KnownBits KnownSrcBits; | 
|  | if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, | 
|  | KnownSrcBits, TLO, Depth + 1)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this is a bitcast, let computeKnownBits handle it.  Only do this on a | 
|  | // recursive call where Known may be useful to the caller. | 
|  | if (Depth > 0) { | 
|  | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::ADD: | 
|  | case ISD::MUL: | 
|  | case ISD::SUB: { | 
|  | // Add, Sub, and Mul don't demand any bits in positions beyond that | 
|  | // of the highest bit demanded of them. | 
|  | SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); | 
|  | SDNodeFlags Flags = Op.getNode()->getFlags(); | 
|  | unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); | 
|  | APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); | 
|  | if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, | 
|  | Depth + 1) || | 
|  | SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, | 
|  | Depth + 1) || | 
|  | // See if the operation should be performed at a smaller bit width. | 
|  | ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { | 
|  | if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { | 
|  | // Disable the nsw and nuw flags. We can no longer guarantee that we | 
|  | // won't wrap after simplification. | 
|  | Flags.setNoSignedWrap(false); | 
|  | Flags.setNoUnsignedWrap(false); | 
|  | SDValue NewOp = | 
|  | TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Attempt to avoid multi-use ops if we don't need anything from them. | 
|  | if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { | 
|  | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( | 
|  | Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); | 
|  | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( | 
|  | Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); | 
|  | if (DemandedOp0 || DemandedOp1) { | 
|  | Flags.setNoSignedWrap(false); | 
|  | Flags.setNoUnsignedWrap(false); | 
|  | Op0 = DemandedOp0 ? DemandedOp0 : Op0; | 
|  | Op1 = DemandedOp1 ? DemandedOp1 : Op1; | 
|  | SDValue NewOp = | 
|  | TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a constant operand, we may be able to turn it into -1 if we | 
|  | // do not demand the high bits. This can make the constant smaller to | 
|  | // encode, allow more general folding, or match specialized instruction | 
|  | // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that | 
|  | // is probably not useful (and could be detrimental). | 
|  | ConstantSDNode *C = isConstOrConstSplat(Op1); | 
|  | APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); | 
|  | if (C && !C->isAllOnesValue() && !C->isOne() && | 
|  | (C->getAPIntValue() | HighMask).isAllOnesValue()) { | 
|  | SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); | 
|  | // Disable the nsw and nuw flags. We can no longer guarantee that we | 
|  | // won't wrap after simplification. | 
|  | Flags.setNoSignedWrap(false); | 
|  | Flags.setNoUnsignedWrap(false); | 
|  | SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); | 
|  | return TLO.CombineTo(Op, NewOp); | 
|  | } | 
|  |  | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | default: | 
|  | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { | 
|  | if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, | 
|  | Known, TLO, Depth)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Just use computeKnownBits to compute output bits. | 
|  | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we know the value of all of the demanded bits, return this as a | 
|  | // constant. | 
|  | if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { | 
|  | // Avoid folding to a constant if any OpaqueConstant is involved. | 
|  | const SDNode *N = Op.getNode(); | 
|  | for (SDNodeIterator I = SDNodeIterator::begin(N), | 
|  | E = SDNodeIterator::end(N); | 
|  | I != E; ++I) { | 
|  | SDNode *Op = *I; | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) | 
|  | if (C->isOpaque()) | 
|  | return false; | 
|  | } | 
|  | // TODO: Handle float bits as well. | 
|  | if (VT.isInteger()) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, | 
|  | const APInt &DemandedElts, | 
|  | APInt &KnownUndef, | 
|  | APInt &KnownZero, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  |  | 
|  | bool Simplified = | 
|  | SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); | 
|  | if (Simplified) { | 
|  | DCI.AddToWorklist(Op.getNode()); | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  |  | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | /// Given a vector binary operation and known undefined elements for each input | 
|  | /// operand, compute whether each element of the output is undefined. | 
|  | static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, | 
|  | const APInt &UndefOp0, | 
|  | const APInt &UndefOp1) { | 
|  | EVT VT = BO.getValueType(); | 
|  | assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && | 
|  | "Vector binop only"); | 
|  |  | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | assert(UndefOp0.getBitWidth() == NumElts && | 
|  | UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); | 
|  |  | 
|  | auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, | 
|  | const APInt &UndefVals) { | 
|  | if (UndefVals[Index]) | 
|  | return DAG.getUNDEF(EltVT); | 
|  |  | 
|  | if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { | 
|  | // Try hard to make sure that the getNode() call is not creating temporary | 
|  | // nodes. Ignore opaque integers because they do not constant fold. | 
|  | SDValue Elt = BV->getOperand(Index); | 
|  | auto *C = dyn_cast<ConstantSDNode>(Elt); | 
|  | if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) | 
|  | return Elt; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | }; | 
|  |  | 
|  | APInt KnownUndef = APInt::getNullValue(NumElts); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | // If both inputs for this element are either constant or undef and match | 
|  | // the element type, compute the constant/undef result for this element of | 
|  | // the vector. | 
|  | // TODO: Ideally we would use FoldConstantArithmetic() here, but that does | 
|  | // not handle FP constants. The code within getNode() should be refactored | 
|  | // to avoid the danger of creating a bogus temporary node here. | 
|  | SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); | 
|  | SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); | 
|  | if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) | 
|  | if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) | 
|  | KnownUndef.setBit(i); | 
|  | } | 
|  | return KnownUndef; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::SimplifyDemandedVectorElts( | 
|  | SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, | 
|  | APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, | 
|  | bool AssumeSingleUse) const { | 
|  | EVT VT = Op.getValueType(); | 
|  | APInt DemandedElts = OriginalDemandedElts; | 
|  | unsigned NumElts = DemandedElts.getBitWidth(); | 
|  | assert(VT.isVector() && "Expected vector op"); | 
|  | assert(VT.getVectorNumElements() == NumElts && | 
|  | "Mask size mismatches value type element count!"); | 
|  |  | 
|  | KnownUndef = KnownZero = APInt::getNullValue(NumElts); | 
|  |  | 
|  | // Undef operand. | 
|  | if (Op.isUndef()) { | 
|  | KnownUndef.setAllBits(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If Op has other users, assume that all elements are needed. | 
|  | if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) | 
|  | DemandedElts.setAllBits(); | 
|  |  | 
|  | // Not demanding any elements from Op. | 
|  | if (DemandedElts == 0) { | 
|  | KnownUndef.setAllBits(); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); | 
|  | } | 
|  |  | 
|  | // Limit search depth. | 
|  | if (Depth >= SelectionDAG::MaxRecursionDepth) | 
|  | return false; | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::SCALAR_TO_VECTOR: { | 
|  | if (!DemandedElts[0]) { | 
|  | KnownUndef.setAllBits(); | 
|  | return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); | 
|  | } | 
|  | KnownUndef.setHighBits(NumElts - 1); | 
|  | break; | 
|  | } | 
|  | case ISD::BITCAST: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // We only handle vectors here. | 
|  | // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? | 
|  | if (!SrcVT.isVector()) | 
|  | break; | 
|  |  | 
|  | // Fast handling of 'identity' bitcasts. | 
|  | unsigned NumSrcElts = SrcVT.getVectorNumElements(); | 
|  | if (NumSrcElts == NumElts) | 
|  | return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, | 
|  | KnownZero, TLO, Depth + 1); | 
|  |  | 
|  | APInt SrcZero, SrcUndef; | 
|  | APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); | 
|  |  | 
|  | // Bitcast from 'large element' src vector to 'small element' vector, we | 
|  | // must demand a source element if any DemandedElt maps to it. | 
|  | if ((NumElts % NumSrcElts) == 0) { | 
|  | unsigned Scale = NumElts / NumSrcElts; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | if (DemandedElts[i]) | 
|  | SrcDemandedElts.setBit(i / Scale); | 
|  |  | 
|  | if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, | 
|  | TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | // Try calling SimplifyDemandedBits, converting demanded elts to the bits | 
|  | // of the large element. | 
|  | // TODO - bigendian once we have test coverage. | 
|  | if (TLO.DAG.getDataLayout().isLittleEndian()) { | 
|  | unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); | 
|  | APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | if (DemandedElts[i]) { | 
|  | unsigned Ofs = (i % Scale) * EltSizeInBits; | 
|  | SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); | 
|  | } | 
|  |  | 
|  | KnownBits Known; | 
|  | if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the src element is zero/undef then all the output elements will be - | 
|  | // only demanded elements are guaranteed to be correct. | 
|  | for (unsigned i = 0; i != NumSrcElts; ++i) { | 
|  | if (SrcDemandedElts[i]) { | 
|  | if (SrcZero[i]) | 
|  | KnownZero.setBits(i * Scale, (i + 1) * Scale); | 
|  | if (SrcUndef[i]) | 
|  | KnownUndef.setBits(i * Scale, (i + 1) * Scale); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bitcast from 'small element' src vector to 'large element' vector, we | 
|  | // demand all smaller source elements covered by the larger demanded element | 
|  | // of this vector. | 
|  | if ((NumSrcElts % NumElts) == 0) { | 
|  | unsigned Scale = NumSrcElts / NumElts; | 
|  | for (unsigned i = 0; i != NumElts; ++i) | 
|  | if (DemandedElts[i]) | 
|  | SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); | 
|  |  | 
|  | if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, | 
|  | TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | // If all the src elements covering an output element are zero/undef, then | 
|  | // the output element will be as well, assuming it was demanded. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (DemandedElts[i]) { | 
|  | if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) | 
|  | KnownZero.setBit(i); | 
|  | if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) | 
|  | KnownUndef.setBit(i); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::BUILD_VECTOR: { | 
|  | // Check all elements and simplify any unused elements with UNDEF. | 
|  | if (!DemandedElts.isAllOnesValue()) { | 
|  | // Don't simplify BROADCASTS. | 
|  | if (llvm::any_of(Op->op_values(), | 
|  | [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { | 
|  | SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); | 
|  | bool Updated = false; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (!DemandedElts[i] && !Ops[i].isUndef()) { | 
|  | Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); | 
|  | KnownUndef.setBit(i); | 
|  | Updated = true; | 
|  | } | 
|  | } | 
|  | if (Updated) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); | 
|  | } | 
|  | } | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | SDValue SrcOp = Op.getOperand(i); | 
|  | if (SrcOp.isUndef()) { | 
|  | KnownUndef.setBit(i); | 
|  | } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && | 
|  | (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { | 
|  | KnownZero.setBit(i); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::CONCAT_VECTORS: { | 
|  | EVT SubVT = Op.getOperand(0).getValueType(); | 
|  | unsigned NumSubVecs = Op.getNumOperands(); | 
|  | unsigned NumSubElts = SubVT.getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumSubVecs; ++i) { | 
|  | SDValue SubOp = Op.getOperand(i); | 
|  | APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); | 
|  | APInt SubUndef, SubZero; | 
|  | if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | KnownUndef.insertBits(SubUndef, i * NumSubElts); | 
|  | KnownZero.insertBits(SubZero, i * NumSubElts); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::INSERT_SUBVECTOR: { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(2))) | 
|  | break; | 
|  | SDValue Base = Op.getOperand(0); | 
|  | SDValue Sub = Op.getOperand(1); | 
|  | EVT SubVT = Sub.getValueType(); | 
|  | unsigned NumSubElts = SubVT.getVectorNumElements(); | 
|  | const APInt &Idx = Op.getConstantOperandAPInt(2); | 
|  | if (Idx.ugt(NumElts - NumSubElts)) | 
|  | break; | 
|  | unsigned SubIdx = Idx.getZExtValue(); | 
|  | APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); | 
|  | APInt SubUndef, SubZero; | 
|  | if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | APInt BaseElts = DemandedElts; | 
|  | BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); | 
|  |  | 
|  | // If none of the base operand elements are demanded, replace it with undef. | 
|  | if (!BaseElts && !Base.isUndef()) | 
|  | return TLO.CombineTo(Op, | 
|  | TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, | 
|  | TLO.DAG.getUNDEF(VT), | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(2))); | 
|  |  | 
|  | if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | KnownUndef.insertBits(SubUndef, SubIdx); | 
|  | KnownZero.insertBits(SubZero, SubIdx); | 
|  | break; | 
|  | } | 
|  | case ISD::EXTRACT_SUBVECTOR: { | 
|  | SDValue Src = Op.getOperand(0); | 
|  | ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
|  | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); | 
|  | if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { | 
|  | // Offset the demanded elts by the subvector index. | 
|  | uint64_t Idx = SubIdx->getZExtValue(); | 
|  | APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); | 
|  | APInt SrcUndef, SrcZero; | 
|  | if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | KnownUndef = SrcUndef.extractBits(NumElts, Idx); | 
|  | KnownZero = SrcZero.extractBits(NumElts, Idx); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | SDValue Vec = Op.getOperand(0); | 
|  | SDValue Scl = Op.getOperand(1); | 
|  | auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | 
|  |  | 
|  | // For a legal, constant insertion index, if we don't need this insertion | 
|  | // then strip it, else remove it from the demanded elts. | 
|  | if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { | 
|  | unsigned Idx = CIdx->getZExtValue(); | 
|  | if (!DemandedElts[Idx]) | 
|  | return TLO.CombineTo(Op, Vec); | 
|  |  | 
|  | APInt DemandedVecElts(DemandedElts); | 
|  | DemandedVecElts.clearBit(Idx); | 
|  | if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, | 
|  | KnownZero, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | KnownUndef.clearBit(Idx); | 
|  | if (Scl.isUndef()) | 
|  | KnownUndef.setBit(Idx); | 
|  |  | 
|  | KnownZero.clearBit(Idx); | 
|  | if (isNullConstant(Scl) || isNullFPConstant(Scl)) | 
|  | KnownZero.setBit(Idx); | 
|  | break; | 
|  | } | 
|  |  | 
|  | APInt VecUndef, VecZero; | 
|  | if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | // Without knowing the insertion index we can't set KnownUndef/KnownZero. | 
|  | break; | 
|  | } | 
|  | case ISD::VSELECT: { | 
|  | // Try to transform the select condition based on the current demanded | 
|  | // elements. | 
|  | // TODO: If a condition element is undef, we can choose from one arm of the | 
|  | //       select (and if one arm is undef, then we can propagate that to the | 
|  | //       result). | 
|  | // TODO - add support for constant vselect masks (see IR version of this). | 
|  | APInt UnusedUndef, UnusedZero; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, | 
|  | UnusedZero, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | // See if we can simplify either vselect operand. | 
|  | APInt DemandedLHS(DemandedElts); | 
|  | APInt DemandedRHS(DemandedElts); | 
|  | APInt UndefLHS, ZeroLHS; | 
|  | APInt UndefRHS, ZeroRHS; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, | 
|  | ZeroLHS, TLO, Depth + 1)) | 
|  | return true; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, | 
|  | ZeroRHS, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | KnownUndef = UndefLHS & UndefRHS; | 
|  | KnownZero = ZeroLHS & ZeroRHS; | 
|  | break; | 
|  | } | 
|  | case ISD::VECTOR_SHUFFLE: { | 
|  | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); | 
|  |  | 
|  | // Collect demanded elements from shuffle operands.. | 
|  | APInt DemandedLHS(NumElts, 0); | 
|  | APInt DemandedRHS(NumElts, 0); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int M = ShuffleMask[i]; | 
|  | if (M < 0 || !DemandedElts[i]) | 
|  | continue; | 
|  | assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); | 
|  | if (M < (int)NumElts) | 
|  | DemandedLHS.setBit(M); | 
|  | else | 
|  | DemandedRHS.setBit(M - NumElts); | 
|  | } | 
|  |  | 
|  | // See if we can simplify either shuffle operand. | 
|  | APInt UndefLHS, ZeroLHS; | 
|  | APInt UndefRHS, ZeroRHS; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, | 
|  | ZeroLHS, TLO, Depth + 1)) | 
|  | return true; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, | 
|  | ZeroRHS, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | // Simplify mask using undef elements from LHS/RHS. | 
|  | bool Updated = false; | 
|  | bool IdentityLHS = true, IdentityRHS = true; | 
|  | SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int &M = NewMask[i]; | 
|  | if (M < 0) | 
|  | continue; | 
|  | if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || | 
|  | (M >= (int)NumElts && UndefRHS[M - NumElts])) { | 
|  | Updated = true; | 
|  | M = -1; | 
|  | } | 
|  | IdentityLHS &= (M < 0) || (M == (int)i); | 
|  | IdentityRHS &= (M < 0) || ((M - NumElts) == i); | 
|  | } | 
|  |  | 
|  | // Update legal shuffle masks based on demanded elements if it won't reduce | 
|  | // to Identity which can cause premature removal of the shuffle mask. | 
|  | if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { | 
|  | SDValue LegalShuffle = | 
|  | buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), | 
|  | NewMask, TLO.DAG); | 
|  | if (LegalShuffle) | 
|  | return TLO.CombineTo(Op, LegalShuffle); | 
|  | } | 
|  |  | 
|  | // Propagate undef/zero elements from LHS/RHS. | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | int M = ShuffleMask[i]; | 
|  | if (M < 0) { | 
|  | KnownUndef.setBit(i); | 
|  | } else if (M < (int)NumElts) { | 
|  | if (UndefLHS[M]) | 
|  | KnownUndef.setBit(i); | 
|  | if (ZeroLHS[M]) | 
|  | KnownZero.setBit(i); | 
|  | } else { | 
|  | if (UndefRHS[M - NumElts]) | 
|  | KnownUndef.setBit(i); | 
|  | if (ZeroRHS[M - NumElts]) | 
|  | KnownZero.setBit(i); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: { | 
|  | APInt SrcUndef, SrcZero; | 
|  | SDValue Src = Op.getOperand(0); | 
|  | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); | 
|  | APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); | 
|  | if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, | 
|  | Depth + 1)) | 
|  | return true; | 
|  | KnownZero = SrcZero.zextOrTrunc(NumElts); | 
|  | KnownUndef = SrcUndef.zextOrTrunc(NumElts); | 
|  |  | 
|  | if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && | 
|  | Op.getValueSizeInBits() == Src.getValueSizeInBits() && | 
|  | DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { | 
|  | // aext - if we just need the bottom element then we can bitcast. | 
|  | return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); | 
|  | } | 
|  |  | 
|  | if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { | 
|  | // zext(undef) upper bits are guaranteed to be zero. | 
|  | if (DemandedElts.isSubsetOf(KnownUndef)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); | 
|  | KnownUndef.clearAllBits(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TODO: There are more binop opcodes that could be handled here - MUL, MIN, | 
|  | // MAX, saturated math, etc. | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: { | 
|  | APInt UndefRHS, ZeroRHS; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, | 
|  | ZeroRHS, TLO, Depth + 1)) | 
|  | return true; | 
|  | APInt UndefLHS, ZeroLHS; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, | 
|  | ZeroLHS, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | KnownZero = ZeroLHS & ZeroRHS; | 
|  | KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); | 
|  | break; | 
|  | } | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: { | 
|  | APInt UndefRHS, ZeroRHS; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, | 
|  | ZeroRHS, TLO, Depth + 1)) | 
|  | return true; | 
|  | APInt UndefLHS, ZeroLHS; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, | 
|  | ZeroLHS, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | KnownZero = ZeroLHS; | 
|  | KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? | 
|  | break; | 
|  | } | 
|  | case ISD::MUL: | 
|  | case ISD::AND: { | 
|  | APInt SrcUndef, SrcZero; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, | 
|  | SrcZero, TLO, Depth + 1)) | 
|  | return true; | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, | 
|  | KnownZero, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | // If either side has a zero element, then the result element is zero, even | 
|  | // if the other is an UNDEF. | 
|  | // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros | 
|  | // and then handle 'and' nodes with the rest of the binop opcodes. | 
|  | KnownZero |= SrcZero; | 
|  | KnownUndef &= SrcUndef; | 
|  | KnownUndef &= ~KnownZero; | 
|  | break; | 
|  | } | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::ZERO_EXTEND: | 
|  | if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, | 
|  | KnownZero, TLO, Depth + 1)) | 
|  | return true; | 
|  |  | 
|  | if (Op.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | // zext(undef) upper bits are guaranteed to be zero. | 
|  | if (DemandedElts.isSubsetOf(KnownUndef)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); | 
|  | KnownUndef.clearAllBits(); | 
|  | } | 
|  | break; | 
|  | default: { | 
|  | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { | 
|  | if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, | 
|  | KnownZero, TLO, Depth)) | 
|  | return true; | 
|  | } else { | 
|  | KnownBits Known; | 
|  | APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); | 
|  | if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, | 
|  | TLO, Depth, AssumeSingleUse)) | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); | 
|  |  | 
|  | // Constant fold all undef cases. | 
|  | // TODO: Handle zero cases as well. | 
|  | if (DemandedElts.isSubsetOf(KnownUndef)) | 
|  | return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine which of the bits specified in Mask are known to be either zero or | 
|  | /// one and return them in the Known. | 
|  | void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, | 
|  | KnownBits &Known, | 
|  | const APInt &DemandedElts, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | Known.resetAll(); | 
|  | } | 
|  |  | 
|  | void TargetLowering::computeKnownBitsForTargetInstr( | 
|  | GISelKnownBits &Analysis, Register R, KnownBits &Known, | 
|  | const APInt &DemandedElts, const MachineRegisterInfo &MRI, | 
|  | unsigned Depth) const { | 
|  | Known.resetAll(); | 
|  | } | 
|  |  | 
|  | void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, | 
|  | KnownBits &Known, | 
|  | const APInt &DemandedElts, | 
|  | const SelectionDAG &DAG, | 
|  | unsigned Depth) const { | 
|  | assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); | 
|  |  | 
|  | if (unsigned Align = DAG.InferPtrAlignment(Op)) { | 
|  | // The low bits are known zero if the pointer is aligned. | 
|  | Known.Zero.setLowBits(Log2_32(Align)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This method can be implemented by targets that want to expose additional | 
|  | /// information about sign bits to the DAG Combiner. | 
|  | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, | 
|  | const APInt &, | 
|  | const SelectionDAG &, | 
|  | unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use ComputeNumSignBits if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( | 
|  | SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, | 
|  | TargetLoweringOpt &TLO, unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use SimplifyDemandedVectorElts if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::SimplifyDemandedBitsForTargetNode( | 
|  | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, | 
|  | KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use SimplifyDemandedBits if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( | 
|  | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, | 
|  | SelectionDAG &DAG, unsigned Depth) const { | 
|  | assert( | 
|  | (Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, | 
|  | SDValue N1, MutableArrayRef<int> Mask, | 
|  | SelectionDAG &DAG) const { | 
|  | bool LegalMask = isShuffleMaskLegal(Mask, VT); | 
|  | if (!LegalMask) { | 
|  | std::swap(N0, N1); | 
|  | ShuffleVectorSDNode::commuteMask(Mask); | 
|  | LegalMask = isShuffleMaskLegal(Mask, VT); | 
|  | } | 
|  |  | 
|  | if (!LegalMask) | 
|  | return SDValue(); | 
|  |  | 
|  | return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); | 
|  | } | 
|  |  | 
|  | const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, | 
|  | const SelectionDAG &DAG, | 
|  | bool SNaN, | 
|  | unsigned Depth) const { | 
|  | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | "Should use isKnownNeverNaN if you don't know whether Op" | 
|  | " is a target node!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must | 
|  | // work with truncating build vectors and vectors with elements of less than | 
|  | // 8 bits. | 
|  | bool TargetLowering::isConstTrueVal(const SDNode *N) const { | 
|  | if (!N) | 
|  | return false; | 
|  |  | 
|  | APInt CVal; | 
|  | if (auto *CN = dyn_cast<ConstantSDNode>(N)) { | 
|  | CVal = CN->getAPIntValue(); | 
|  | } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { | 
|  | auto *CN = BV->getConstantSplatNode(); | 
|  | if (!CN) | 
|  | return false; | 
|  |  | 
|  | // If this is a truncating build vector, truncate the splat value. | 
|  | // Otherwise, we may fail to match the expected values below. | 
|  | unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); | 
|  | CVal = CN->getAPIntValue(); | 
|  | if (BVEltWidth < CVal.getBitWidth()) | 
|  | CVal = CVal.trunc(BVEltWidth); | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (getBooleanContents(N->getValueType(0))) { | 
|  | case UndefinedBooleanContent: | 
|  | return CVal[0]; | 
|  | case ZeroOrOneBooleanContent: | 
|  | return CVal.isOneValue(); | 
|  | case ZeroOrNegativeOneBooleanContent: | 
|  | return CVal.isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid boolean contents"); | 
|  | } | 
|  |  | 
|  | bool TargetLowering::isConstFalseVal(const SDNode *N) const { | 
|  | if (!N) | 
|  | return false; | 
|  |  | 
|  | const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); | 
|  | if (!CN) { | 
|  | const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); | 
|  | if (!BV) | 
|  | return false; | 
|  |  | 
|  | // Only interested in constant splats, we don't care about undef | 
|  | // elements in identifying boolean constants and getConstantSplatNode | 
|  | // returns NULL if all ops are undef; | 
|  | CN = BV->getConstantSplatNode(); | 
|  | if (!CN) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) | 
|  | return !CN->getAPIntValue()[0]; | 
|  |  | 
|  | return CN->isNullValue(); | 
|  | } | 
|  |  | 
|  | bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, | 
|  | bool SExt) const { | 
|  | if (VT == MVT::i1) | 
|  | return N->isOne(); | 
|  |  | 
|  | TargetLowering::BooleanContent Cnt = getBooleanContents(VT); | 
|  | switch (Cnt) { | 
|  | case TargetLowering::ZeroOrOneBooleanContent: | 
|  | // An extended value of 1 is always true, unless its original type is i1, | 
|  | // in which case it will be sign extended to -1. | 
|  | return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); | 
|  | case TargetLowering::UndefinedBooleanContent: | 
|  | case TargetLowering::ZeroOrNegativeOneBooleanContent: | 
|  | return N->isAllOnesValue() && SExt; | 
|  | } | 
|  | llvm_unreachable("Unexpected enumeration."); | 
|  | } | 
|  |  | 
|  | /// This helper function of SimplifySetCC tries to optimize the comparison when | 
|  | /// either operand of the SetCC node is a bitwise-and instruction. | 
|  | SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, | 
|  | ISD::CondCode Cond, const SDLoc &DL, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | // Match these patterns in any of their permutations: | 
|  | // (X & Y) == Y | 
|  | // (X & Y) != Y | 
|  | if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) | 
|  | std::swap(N0, N1); | 
|  |  | 
|  | EVT OpVT = N0.getValueType(); | 
|  | if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || | 
|  | (Cond != ISD::SETEQ && Cond != ISD::SETNE)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue X, Y; | 
|  | if (N0.getOperand(0) == N1) { | 
|  | X = N0.getOperand(1); | 
|  | Y = N0.getOperand(0); | 
|  | } else if (N0.getOperand(1) == N1) { | 
|  | X = N0.getOperand(0); | 
|  | Y = N0.getOperand(1); | 
|  | } else { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Zero = DAG.getConstant(0, DL, OpVT); | 
|  | if (DAG.isKnownToBeAPowerOfTwo(Y)) { | 
|  | // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. | 
|  | // Note that where Y is variable and is known to have at most one bit set | 
|  | // (for example, if it is Z & 1) we cannot do this; the expressions are not | 
|  | // equivalent when Y == 0. | 
|  | assert(OpVT.isInteger()); | 
|  | Cond = ISD::getSetCCInverse(Cond, OpVT); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(Cond, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(DL, VT, N0, Zero, Cond); | 
|  | } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { | 
|  | // If the target supports an 'and-not' or 'and-complement' logic operation, | 
|  | // try to use that to make a comparison operation more efficient. | 
|  | // But don't do this transform if the mask is a single bit because there are | 
|  | // more efficient ways to deal with that case (for example, 'bt' on x86 or | 
|  | // 'rlwinm' on PPC). | 
|  |  | 
|  | // Bail out if the compare operand that we want to turn into a zero is | 
|  | // already a zero (otherwise, infinite loop). | 
|  | auto *YConst = dyn_cast<ConstantSDNode>(Y); | 
|  | if (YConst && YConst->isNullValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | // Transform this into: ~X & Y == 0. | 
|  | SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); | 
|  | SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); | 
|  | return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// There are multiple IR patterns that could be checking whether certain | 
|  | /// truncation of a signed number would be lossy or not. The pattern which is | 
|  | /// best at IR level, may not lower optimally. Thus, we want to unfold it. | 
|  | /// We are looking for the following pattern: (KeptBits is a constant) | 
|  | ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) | 
|  | /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. | 
|  | /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0 | 
|  | /// We will unfold it into the natural trunc+sext pattern: | 
|  | ///   ((%x << C) a>> C) dstcond %x | 
|  | /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x) | 
|  | SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( | 
|  | EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, | 
|  | const SDLoc &DL) const { | 
|  | // We must be comparing with a constant. | 
|  | ConstantSDNode *C1; | 
|  | if (!(C1 = dyn_cast<ConstantSDNode>(N1))) | 
|  | return SDValue(); | 
|  |  | 
|  | // N0 should be:  add %x, (1 << (KeptBits-1)) | 
|  | if (N0->getOpcode() != ISD::ADD) | 
|  | return SDValue(); | 
|  |  | 
|  | // And we must be 'add'ing a constant. | 
|  | ConstantSDNode *C01; | 
|  | if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue X = N0->getOperand(0); | 
|  | EVT XVT = X.getValueType(); | 
|  |  | 
|  | // Validate constants ... | 
|  |  | 
|  | APInt I1 = C1->getAPIntValue(); | 
|  |  | 
|  | ISD::CondCode NewCond; | 
|  | if (Cond == ISD::CondCode::SETULT) { | 
|  | NewCond = ISD::CondCode::SETEQ; | 
|  | } else if (Cond == ISD::CondCode::SETULE) { | 
|  | NewCond = ISD::CondCode::SETEQ; | 
|  | // But need to 'canonicalize' the constant. | 
|  | I1 += 1; | 
|  | } else if (Cond == ISD::CondCode::SETUGT) { | 
|  | NewCond = ISD::CondCode::SETNE; | 
|  | // But need to 'canonicalize' the constant. | 
|  | I1 += 1; | 
|  | } else if (Cond == ISD::CondCode::SETUGE) { | 
|  | NewCond = ISD::CondCode::SETNE; | 
|  | } else | 
|  | return SDValue(); | 
|  |  | 
|  | APInt I01 = C01->getAPIntValue(); | 
|  |  | 
|  | auto checkConstants = [&I1, &I01]() -> bool { | 
|  | // Both of them must be power-of-two, and the constant from setcc is bigger. | 
|  | return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); | 
|  | }; | 
|  |  | 
|  | if (checkConstants()) { | 
|  | // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256 | 
|  | } else { | 
|  | // What if we invert constants? (and the target predicate) | 
|  | I1.negate(); | 
|  | I01.negate(); | 
|  | assert(XVT.isInteger()); | 
|  | NewCond = getSetCCInverse(NewCond, XVT); | 
|  | if (!checkConstants()) | 
|  | return SDValue(); | 
|  | // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256 | 
|  | } | 
|  |  | 
|  | // They are power-of-two, so which bit is set? | 
|  | const unsigned KeptBits = I1.logBase2(); | 
|  | const unsigned KeptBitsMinusOne = I01.logBase2(); | 
|  |  | 
|  | // Magic! | 
|  | if (KeptBits != (KeptBitsMinusOne + 1)) | 
|  | return SDValue(); | 
|  | assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); | 
|  |  | 
|  | // We don't want to do this in every single case. | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( | 
|  | XVT, KeptBits)) | 
|  | return SDValue(); | 
|  |  | 
|  | const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; | 
|  | assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); | 
|  |  | 
|  | // Unfold into:  ((%x << C) a>> C) cond %x | 
|  | // Where 'cond' will be either 'eq' or 'ne'. | 
|  | SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); | 
|  | SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); | 
|  | SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); | 
|  | SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); | 
|  |  | 
|  | return T2; | 
|  | } | 
|  |  | 
|  | // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0 | 
|  | SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( | 
|  | EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, | 
|  | DAGCombinerInfo &DCI, const SDLoc &DL) const { | 
|  | assert(isConstOrConstSplat(N1C) && | 
|  | isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && | 
|  | "Should be a comparison with 0."); | 
|  | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | "Valid only for [in]equality comparisons."); | 
|  |  | 
|  | unsigned NewShiftOpcode; | 
|  | SDValue X, C, Y; | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | // Look for '(C l>>/<< Y)'. | 
|  | auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { | 
|  | // The shift should be one-use. | 
|  | if (!V.hasOneUse()) | 
|  | return false; | 
|  | unsigned OldShiftOpcode = V.getOpcode(); | 
|  | switch (OldShiftOpcode) { | 
|  | case ISD::SHL: | 
|  | NewShiftOpcode = ISD::SRL; | 
|  | break; | 
|  | case ISD::SRL: | 
|  | NewShiftOpcode = ISD::SHL; | 
|  | break; | 
|  | default: | 
|  | return false; // must be a logical shift. | 
|  | } | 
|  | // We should be shifting a constant. | 
|  | // FIXME: best to use isConstantOrConstantVector(). | 
|  | C = V.getOperand(0); | 
|  | ConstantSDNode *CC = | 
|  | isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); | 
|  | if (!CC) | 
|  | return false; | 
|  | Y = V.getOperand(1); | 
|  |  | 
|  | ConstantSDNode *XC = | 
|  | isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); | 
|  | return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( | 
|  | X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); | 
|  | }; | 
|  |  | 
|  | // LHS of comparison should be an one-use 'and'. | 
|  | if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) | 
|  | return SDValue(); | 
|  |  | 
|  | X = N0.getOperand(0); | 
|  | SDValue Mask = N0.getOperand(1); | 
|  |  | 
|  | // 'and' is commutative! | 
|  | if (!Match(Mask)) { | 
|  | std::swap(X, Mask); | 
|  | if (!Match(Mask)) | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | EVT VT = X.getValueType(); | 
|  |  | 
|  | // Produce: | 
|  | // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 | 
|  | SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); | 
|  | SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); | 
|  | SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); | 
|  | return T2; | 
|  | } | 
|  |  | 
|  | /// Try to fold an equality comparison with a {add/sub/xor} binary operation as | 
|  | /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to | 
|  | /// handle the commuted versions of these patterns. | 
|  | SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, | 
|  | ISD::CondCode Cond, const SDLoc &DL, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | unsigned BOpcode = N0.getOpcode(); | 
|  | assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && | 
|  | "Unexpected binop"); | 
|  | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); | 
|  |  | 
|  | // (X + Y) == X --> Y == 0 | 
|  | // (X - Y) == X --> Y == 0 | 
|  | // (X ^ Y) == X --> Y == 0 | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | EVT OpVT = N0.getValueType(); | 
|  | SDValue X = N0.getOperand(0); | 
|  | SDValue Y = N0.getOperand(1); | 
|  | if (X == N1) | 
|  | return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); | 
|  |  | 
|  | if (Y != N1) | 
|  | return SDValue(); | 
|  |  | 
|  | // (X + Y) == Y --> X == 0 | 
|  | // (X ^ Y) == Y --> X == 0 | 
|  | if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) | 
|  | return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); | 
|  |  | 
|  | // The shift would not be valid if the operands are boolean (i1). | 
|  | if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) | 
|  | return SDValue(); | 
|  |  | 
|  | // (X - Y) == Y --> X == Y << 1 | 
|  | EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), | 
|  | !DCI.isBeforeLegalize()); | 
|  | SDValue One = DAG.getConstant(1, DL, ShiftVT); | 
|  | SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(YShl1.getNode()); | 
|  | return DAG.getSetCC(DL, VT, X, YShl1, Cond); | 
|  | } | 
|  |  | 
|  | /// Try to simplify a setcc built with the specified operands and cc. If it is | 
|  | /// unable to simplify it, return a null SDValue. | 
|  | SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, | 
|  | ISD::CondCode Cond, bool foldBooleans, | 
|  | DAGCombinerInfo &DCI, | 
|  | const SDLoc &dl) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | const DataLayout &Layout = DAG.getDataLayout(); | 
|  | EVT OpVT = N0.getValueType(); | 
|  |  | 
|  | // Constant fold or commute setcc. | 
|  | if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) | 
|  | return Fold; | 
|  |  | 
|  | // Ensure that the constant occurs on the RHS and fold constant comparisons. | 
|  | // TODO: Handle non-splat vector constants. All undef causes trouble. | 
|  | ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); | 
|  | if (isConstOrConstSplat(N0) && | 
|  | (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) | 
|  | return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); | 
|  |  | 
|  | // If we have a subtract with the same 2 non-constant operands as this setcc | 
|  | // -- but in reverse order -- then try to commute the operands of this setcc | 
|  | // to match. A matching pair of setcc (cmp) and sub may be combined into 1 | 
|  | // instruction on some targets. | 
|  | if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && | 
|  | (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && | 
|  | DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && | 
|  | !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) | 
|  | return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); | 
|  |  | 
|  | if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { | 
|  | const APInt &C1 = N1C->getAPIntValue(); | 
|  |  | 
|  | // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an | 
|  | // equality comparison, then we're just comparing whether X itself is | 
|  | // zero. | 
|  | if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && | 
|  | N0.getOperand(0).getOpcode() == ISD::CTLZ && | 
|  | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | const APInt &ShAmt = N0.getConstantOperandAPInt(1); | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | ShAmt == Log2_32(N0.getValueSizeInBits())) { | 
|  | if ((C1 == 0) == (Cond == ISD::SETEQ)) { | 
|  | // (srl (ctlz x), 5) == 0  -> X != 0 | 
|  | // (srl (ctlz x), 5) != 1  -> X != 0 | 
|  | Cond = ISD::SETNE; | 
|  | } else { | 
|  | // (srl (ctlz x), 5) != 0  -> X == 0 | 
|  | // (srl (ctlz x), 5) == 1  -> X == 0 | 
|  | Cond = ISD::SETEQ; | 
|  | } | 
|  | SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), | 
|  | Zero, Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue CTPOP = N0; | 
|  | // Look through truncs that don't change the value of a ctpop. | 
|  | if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) | 
|  | CTPOP = N0.getOperand(0); | 
|  |  | 
|  | if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && | 
|  | (N0 == CTPOP || | 
|  | N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { | 
|  | EVT CTVT = CTPOP.getValueType(); | 
|  | SDValue CTOp = CTPOP.getOperand(0); | 
|  |  | 
|  | // (ctpop x) u< 2 -> (x & x-1) == 0 | 
|  | // (ctpop x) u> 1 -> (x & x-1) != 0 | 
|  | if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ | 
|  | SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); | 
|  | ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; | 
|  | return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); | 
|  | } | 
|  |  | 
|  | // If ctpop is not supported, expand a power-of-2 comparison based on it. | 
|  | if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) | 
|  | // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) | 
|  | SDValue Zero = DAG.getConstant(0, dl, CTVT); | 
|  | SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); | 
|  | assert(CTVT.isInteger()); | 
|  | ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); | 
|  | SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); | 
|  | SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); | 
|  | unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; | 
|  | return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (zext x) == C --> x == (trunc C) | 
|  | // (sext x) == C --> x == (trunc C) | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | DCI.isBeforeLegalize() && N0->hasOneUse()) { | 
|  | unsigned MinBits = N0.getValueSizeInBits(); | 
|  | SDValue PreExt; | 
|  | bool Signed = false; | 
|  | if (N0->getOpcode() == ISD::ZERO_EXTEND) { | 
|  | // ZExt | 
|  | MinBits = N0->getOperand(0).getValueSizeInBits(); | 
|  | PreExt = N0->getOperand(0); | 
|  | } else if (N0->getOpcode() == ISD::AND) { | 
|  | // DAGCombine turns costly ZExts into ANDs | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) | 
|  | if ((C->getAPIntValue()+1).isPowerOf2()) { | 
|  | MinBits = C->getAPIntValue().countTrailingOnes(); | 
|  | PreExt = N0->getOperand(0); | 
|  | } | 
|  | } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { | 
|  | // SExt | 
|  | MinBits = N0->getOperand(0).getValueSizeInBits(); | 
|  | PreExt = N0->getOperand(0); | 
|  | Signed = true; | 
|  | } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { | 
|  | // ZEXTLOAD / SEXTLOAD | 
|  | if (LN0->getExtensionType() == ISD::ZEXTLOAD) { | 
|  | MinBits = LN0->getMemoryVT().getSizeInBits(); | 
|  | PreExt = N0; | 
|  | } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { | 
|  | Signed = true; | 
|  | MinBits = LN0->getMemoryVT().getSizeInBits(); | 
|  | PreExt = N0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out how many bits we need to preserve this constant. | 
|  | unsigned ReqdBits = Signed ? | 
|  | C1.getBitWidth() - C1.getNumSignBits() + 1 : | 
|  | C1.getActiveBits(); | 
|  |  | 
|  | // Make sure we're not losing bits from the constant. | 
|  | if (MinBits > 0 && | 
|  | MinBits < C1.getBitWidth() && | 
|  | MinBits >= ReqdBits) { | 
|  | EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); | 
|  | if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { | 
|  | // Will get folded away. | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); | 
|  | if (MinBits == 1 && C1 == 1) | 
|  | // Invert the condition. | 
|  | return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); | 
|  | return DAG.getSetCC(dl, VT, Trunc, C, Cond); | 
|  | } | 
|  |  | 
|  | // If truncating the setcc operands is not desirable, we can still | 
|  | // simplify the expression in some cases: | 
|  | // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) | 
|  | // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) | 
|  | // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) | 
|  | // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) | 
|  | // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) | 
|  | // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) | 
|  | SDValue TopSetCC = N0->getOperand(0); | 
|  | unsigned N0Opc = N0->getOpcode(); | 
|  | bool SExt = (N0Opc == ISD::SIGN_EXTEND); | 
|  | if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && | 
|  | TopSetCC.getOpcode() == ISD::SETCC && | 
|  | (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && | 
|  | (isConstFalseVal(N1C) || | 
|  | isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { | 
|  |  | 
|  | bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || | 
|  | (!N1C->isNullValue() && Cond == ISD::SETNE); | 
|  |  | 
|  | if (!Inverse) | 
|  | return TopSetCC; | 
|  |  | 
|  | ISD::CondCode InvCond = ISD::getSetCCInverse( | 
|  | cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), | 
|  | TopSetCC.getOperand(0).getValueType()); | 
|  | return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), | 
|  | TopSetCC.getOperand(1), | 
|  | InvCond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the LHS is '(and load, const)', the RHS is 0, the test is for | 
|  | // equality or unsigned, and all 1 bits of the const are in the same | 
|  | // partial word, see if we can shorten the load. | 
|  | if (DCI.isBeforeLegalize() && | 
|  | !ISD::isSignedIntSetCC(Cond) && | 
|  | N0.getOpcode() == ISD::AND && C1 == 0 && | 
|  | N0.getNode()->hasOneUse() && | 
|  | isa<LoadSDNode>(N0.getOperand(0)) && | 
|  | N0.getOperand(0).getNode()->hasOneUse() && | 
|  | isa<ConstantSDNode>(N0.getOperand(1))) { | 
|  | LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); | 
|  | APInt bestMask; | 
|  | unsigned bestWidth = 0, bestOffset = 0; | 
|  | if (Lod->isSimple() && Lod->isUnindexed()) { | 
|  | unsigned origWidth = N0.getValueSizeInBits(); | 
|  | unsigned maskWidth = origWidth; | 
|  | // We can narrow (e.g.) 16-bit extending loads on 32-bit target to | 
|  | // 8 bits, but have to be careful... | 
|  | if (Lod->getExtensionType() != ISD::NON_EXTLOAD) | 
|  | origWidth = Lod->getMemoryVT().getSizeInBits(); | 
|  | const APInt &Mask = N0.getConstantOperandAPInt(1); | 
|  | for (unsigned width = origWidth / 2; width>=8; width /= 2) { | 
|  | APInt newMask = APInt::getLowBitsSet(maskWidth, width); | 
|  | for (unsigned offset=0; offset<origWidth/width; offset++) { | 
|  | if (Mask.isSubsetOf(newMask)) { | 
|  | if (Layout.isLittleEndian()) | 
|  | bestOffset = (uint64_t)offset * (width/8); | 
|  | else | 
|  | bestOffset = (origWidth/width - offset - 1) * (width/8); | 
|  | bestMask = Mask.lshr(offset * (width/8) * 8); | 
|  | bestWidth = width; | 
|  | break; | 
|  | } | 
|  | newMask <<= width; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (bestWidth) { | 
|  | EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); | 
|  | if (newVT.isRound() && | 
|  | shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { | 
|  | SDValue Ptr = Lod->getBasePtr(); | 
|  | if (bestOffset != 0) | 
|  | Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); | 
|  | unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); | 
|  | SDValue NewLoad = DAG.getLoad( | 
|  | newVT, dl, Lod->getChain(), Ptr, | 
|  | Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); | 
|  | return DAG.getSetCC(dl, VT, | 
|  | DAG.getNode(ISD::AND, dl, newVT, NewLoad, | 
|  | DAG.getConstant(bestMask.trunc(bestWidth), | 
|  | dl, newVT)), | 
|  | DAG.getConstant(0LL, dl, newVT), Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the LHS is a ZERO_EXTEND, perform the comparison on the input. | 
|  | if (N0.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | unsigned InSize = N0.getOperand(0).getValueSizeInBits(); | 
|  |  | 
|  | // If the comparison constant has bits in the upper part, the | 
|  | // zero-extended value could never match. | 
|  | if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), | 
|  | C1.getBitWidth() - InSize))) { | 
|  | switch (Cond) { | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETEQ: | 
|  | return DAG.getConstant(0, dl, VT); | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: | 
|  | case ISD::SETNE: | 
|  | return DAG.getConstant(1, dl, VT); | 
|  | case ISD::SETGT: | 
|  | case ISD::SETGE: | 
|  | // True if the sign bit of C1 is set. | 
|  | return DAG.getConstant(C1.isNegative(), dl, VT); | 
|  | case ISD::SETLT: | 
|  | case ISD::SETLE: | 
|  | // True if the sign bit of C1 isn't set. | 
|  | return DAG.getConstant(C1.isNonNegative(), dl, VT); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, we can perform the comparison with the low bits. | 
|  | switch (Cond) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETULE: { | 
|  | EVT newVT = N0.getOperand(0).getValueType(); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | (isOperationLegal(ISD::SETCC, newVT) && | 
|  | isCondCodeLegal(Cond, newVT.getSimpleVT()))) { | 
|  | EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); | 
|  | SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); | 
|  |  | 
|  | SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), | 
|  | NewConst, Cond); | 
|  | return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; // todo, be more careful with signed comparisons | 
|  | } | 
|  | } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); | 
|  | unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); | 
|  | EVT ExtDstTy = N0.getValueType(); | 
|  | unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); | 
|  |  | 
|  | // If the constant doesn't fit into the number of bits for the source of | 
|  | // the sign extension, it is impossible for both sides to be equal. | 
|  | if (C1.getMinSignedBits() > ExtSrcTyBits) | 
|  | return DAG.getConstant(Cond == ISD::SETNE, dl, VT); | 
|  |  | 
|  | SDValue ZextOp; | 
|  | EVT Op0Ty = N0.getOperand(0).getValueType(); | 
|  | if (Op0Ty == ExtSrcTy) { | 
|  | ZextOp = N0.getOperand(0); | 
|  | } else { | 
|  | APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); | 
|  | ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), | 
|  | DAG.getConstant(Imm, dl, Op0Ty)); | 
|  | } | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(ZextOp.getNode()); | 
|  | // Otherwise, make this a use of a zext. | 
|  | return DAG.getSetCC(dl, VT, ZextOp, | 
|  | DAG.getConstant(C1 & APInt::getLowBitsSet( | 
|  | ExtDstTyBits, | 
|  | ExtSrcTyBits), | 
|  | dl, ExtDstTy), | 
|  | Cond); | 
|  | } else if ((N1C->isNullValue() || N1C->isOne()) && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC | 
|  | if (N0.getOpcode() == ISD::SETCC && | 
|  | isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && | 
|  | (N0.getValueType() == MVT::i1 || | 
|  | getBooleanContents(N0.getOperand(0).getValueType()) == | 
|  | ZeroOrOneBooleanContent)) { | 
|  | bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); | 
|  | if (TrueWhenTrue) | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); | 
|  | // Invert the condition. | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  | CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); | 
|  | } | 
|  |  | 
|  | if ((N0.getOpcode() == ISD::XOR || | 
|  | (N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::XOR && | 
|  | N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && | 
|  | isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { | 
|  | // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We | 
|  | // can only do this if the top bits are known zero. | 
|  | unsigned BitWidth = N0.getValueSizeInBits(); | 
|  | if (DAG.MaskedValueIsZero(N0, | 
|  | APInt::getHighBitsSet(BitWidth, | 
|  | BitWidth-1))) { | 
|  | // Okay, get the un-inverted input value. | 
|  | SDValue Val; | 
|  | if (N0.getOpcode() == ISD::XOR) { | 
|  | Val = N0.getOperand(0); | 
|  | } else { | 
|  | assert(N0.getOpcode() == ISD::AND && | 
|  | N0.getOperand(0).getOpcode() == ISD::XOR); | 
|  | // ((X^1)&1)^1 -> X & 1 | 
|  | Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), | 
|  | N0.getOperand(0).getOperand(0), | 
|  | N0.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return DAG.getSetCC(dl, VT, Val, N1, | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | } | 
|  | } else if (N1C->isOne()) { | 
|  | SDValue Op0 = N0; | 
|  | if (Op0.getOpcode() == ISD::TRUNCATE) | 
|  | Op0 = Op0.getOperand(0); | 
|  |  | 
|  | if ((Op0.getOpcode() == ISD::XOR) && | 
|  | Op0.getOperand(0).getOpcode() == ISD::SETCC && | 
|  | Op0.getOperand(1).getOpcode() == ISD::SETCC) { | 
|  | SDValue XorLHS = Op0.getOperand(0); | 
|  | SDValue XorRHS = Op0.getOperand(1); | 
|  | // Ensure that the input setccs return an i1 type or 0/1 value. | 
|  | if (Op0.getValueType() == MVT::i1 || | 
|  | (getBooleanContents(XorLHS.getOperand(0).getValueType()) == | 
|  | ZeroOrOneBooleanContent && | 
|  | getBooleanContents(XorRHS.getOperand(0).getValueType()) == | 
|  | ZeroOrOneBooleanContent)) { | 
|  | // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) | 
|  | Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; | 
|  | return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); | 
|  | } | 
|  | } | 
|  | if (Op0.getOpcode() == ISD::AND && | 
|  | isa<ConstantSDNode>(Op0.getOperand(1)) && | 
|  | cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { | 
|  | // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. | 
|  | if (Op0.getValueType().bitsGT(VT)) | 
|  | Op0 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), | 
|  | DAG.getConstant(1, dl, VT)); | 
|  | else if (Op0.getValueType().bitsLT(VT)) | 
|  | Op0 = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), | 
|  | DAG.getConstant(1, dl, VT)); | 
|  |  | 
|  | return DAG.getSetCC(dl, VT, Op0, | 
|  | DAG.getConstant(0, dl, Op0.getValueType()), | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | } | 
|  | if (Op0.getOpcode() == ISD::AssertZext && | 
|  | cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) | 
|  | return DAG.getSetCC(dl, VT, Op0, | 
|  | DAG.getConstant(0, dl, Op0.getValueType()), | 
|  | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given: | 
|  | //   icmp eq/ne (urem %x, %y), 0 | 
|  | // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': | 
|  | //   icmp eq/ne %x, 0 | 
|  | if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && | 
|  | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); | 
|  | KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); | 
|  | if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); | 
|  | } | 
|  |  | 
|  | if (SDValue V = | 
|  | optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // These simplifications apply to splat vectors as well. | 
|  | // TODO: Handle more splat vector cases. | 
|  | if (auto *N1C = isConstOrConstSplat(N1)) { | 
|  | const APInt &C1 = N1C->getAPIntValue(); | 
|  |  | 
|  | APInt MinVal, MaxVal; | 
|  | unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); | 
|  | if (ISD::isSignedIntSetCC(Cond)) { | 
|  | MinVal = APInt::getSignedMinValue(OperandBitSize); | 
|  | MaxVal = APInt::getSignedMaxValue(OperandBitSize); | 
|  | } else { | 
|  | MinVal = APInt::getMinValue(OperandBitSize); | 
|  | MaxVal = APInt::getMaxValue(OperandBitSize); | 
|  | } | 
|  |  | 
|  | // Canonicalize GE/LE comparisons to use GT/LT comparisons. | 
|  | if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { | 
|  | // X >= MIN --> true | 
|  | if (C1 == MinVal) | 
|  | return DAG.getBoolConstant(true, dl, VT, OpVT); | 
|  |  | 
|  | if (!VT.isVector()) { // TODO: Support this for vectors. | 
|  | // X >= C0 --> X > (C0 - 1) | 
|  | APInt C = C1 - 1; | 
|  | ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; | 
|  | if ((DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(NewCC, VT.getSimpleVT())) && | 
|  | (!N1C->isOpaque() || (C.getBitWidth() <= 64 && | 
|  | isLegalICmpImmediate(C.getSExtValue())))) { | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(C, dl, N1.getValueType()), | 
|  | NewCC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Cond == ISD::SETLE || Cond == ISD::SETULE) { | 
|  | // X <= MAX --> true | 
|  | if (C1 == MaxVal) | 
|  | return DAG.getBoolConstant(true, dl, VT, OpVT); | 
|  |  | 
|  | // X <= C0 --> X < (C0 + 1) | 
|  | if (!VT.isVector()) { // TODO: Support this for vectors. | 
|  | APInt C = C1 + 1; | 
|  | ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; | 
|  | if ((DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(NewCC, VT.getSimpleVT())) && | 
|  | (!N1C->isOpaque() || (C.getBitWidth() <= 64 && | 
|  | isLegalICmpImmediate(C.getSExtValue())))) { | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(C, dl, N1.getValueType()), | 
|  | NewCC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Cond == ISD::SETLT || Cond == ISD::SETULT) { | 
|  | if (C1 == MinVal) | 
|  | return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false | 
|  |  | 
|  | // TODO: Support this for vectors after legalize ops. | 
|  | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { | 
|  | // Canonicalize setlt X, Max --> setne X, Max | 
|  | if (C1 == MaxVal) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); | 
|  |  | 
|  | // If we have setult X, 1, turn it into seteq X, 0 | 
|  | if (C1 == MinVal+1) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(MinVal, dl, N0.getValueType()), | 
|  | ISD::SETEQ); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { | 
|  | if (C1 == MaxVal) | 
|  | return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false | 
|  |  | 
|  | // TODO: Support this for vectors after legalize ops. | 
|  | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { | 
|  | // Canonicalize setgt X, Min --> setne X, Min | 
|  | if (C1 == MinVal) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); | 
|  |  | 
|  | // If we have setugt X, Max-1, turn it into seteq X, Max | 
|  | if (C1 == MaxVal-1) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(MaxVal, dl, N0.getValueType()), | 
|  | ISD::SETEQ); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { | 
|  | // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0 | 
|  | if (C1.isNullValue()) | 
|  | if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( | 
|  | VT, N0, N1, Cond, DCI, dl)) | 
|  | return CC; | 
|  | } | 
|  |  | 
|  | // If we have "setcc X, C0", check to see if we can shrink the immediate | 
|  | // by changing cc. | 
|  | // TODO: Support this for vectors after legalize ops. | 
|  | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { | 
|  | // SETUGT X, SINTMAX  -> SETLT X, 0 | 
|  | if (Cond == ISD::SETUGT && | 
|  | C1 == APInt::getSignedMaxValue(OperandBitSize)) | 
|  | return DAG.getSetCC(dl, VT, N0, | 
|  | DAG.getConstant(0, dl, N1.getValueType()), | 
|  | ISD::SETLT); | 
|  |  | 
|  | // SETULT X, SINTMIN  -> SETGT X, -1 | 
|  | if (Cond == ISD::SETULT && | 
|  | C1 == APInt::getSignedMinValue(OperandBitSize)) { | 
|  | SDValue ConstMinusOne = | 
|  | DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, | 
|  | N1.getValueType()); | 
|  | return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Back to non-vector simplifications. | 
|  | // TODO: Can we do these for vector splats? | 
|  | if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | const APInt &C1 = N1C->getAPIntValue(); | 
|  | EVT ShValTy = N0.getValueType(); | 
|  |  | 
|  | // Fold bit comparisons when we can. | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && | 
|  | N0.getOpcode() == ISD::AND) { | 
|  | if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | EVT ShiftTy = | 
|  | getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); | 
|  | if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3 | 
|  | // Perform the xform if the AND RHS is a single bit. | 
|  | unsigned ShCt = AndRHS->getAPIntValue().logBase2(); | 
|  | if (AndRHS->getAPIntValue().isPowerOf2() && | 
|  | !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, ShValTy, N0, | 
|  | DAG.getConstant(ShCt, dl, ShiftTy))); | 
|  | } | 
|  | } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { | 
|  | // (X & 8) == 8  -->  (X & 8) >> 3 | 
|  | // Perform the xform if C1 is a single bit. | 
|  | unsigned ShCt = C1.logBase2(); | 
|  | if (C1.isPowerOf2() && | 
|  | !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, ShValTy, N0, | 
|  | DAG.getConstant(ShCt, dl, ShiftTy))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (C1.getMinSignedBits() <= 64 && | 
|  | !isLegalICmpImmediate(C1.getSExtValue())) { | 
|  | EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); | 
|  | // (X & -256) == 256 -> (X >> 8) == 1 | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | N0.getOpcode() == ISD::AND && N0.hasOneUse()) { | 
|  | if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | const APInt &AndRHSC = AndRHS->getAPIntValue(); | 
|  | if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { | 
|  | unsigned ShiftBits = AndRHSC.countTrailingZeros(); | 
|  | if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { | 
|  | SDValue Shift = | 
|  | DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), | 
|  | DAG.getConstant(ShiftBits, dl, ShiftTy)); | 
|  | SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); | 
|  | return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || | 
|  | Cond == ISD::SETULE || Cond == ISD::SETUGT) { | 
|  | bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); | 
|  | // X <  0x100000000 -> (X >> 32) <  1 | 
|  | // X >= 0x100000000 -> (X >> 32) >= 1 | 
|  | // X <= 0x0ffffffff -> (X >> 32) <  1 | 
|  | // X >  0x0ffffffff -> (X >> 32) >= 1 | 
|  | unsigned ShiftBits; | 
|  | APInt NewC = C1; | 
|  | ISD::CondCode NewCond = Cond; | 
|  | if (AdjOne) { | 
|  | ShiftBits = C1.countTrailingOnes(); | 
|  | NewC = NewC + 1; | 
|  | NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; | 
|  | } else { | 
|  | ShiftBits = C1.countTrailingZeros(); | 
|  | } | 
|  | NewC.lshrInPlace(ShiftBits); | 
|  | if (ShiftBits && NewC.getMinSignedBits() <= 64 && | 
|  | isLegalICmpImmediate(NewC.getSExtValue()) && | 
|  | !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { | 
|  | SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, | 
|  | DAG.getConstant(ShiftBits, dl, ShiftTy)); | 
|  | SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); | 
|  | return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { | 
|  | auto *CFP = cast<ConstantFPSDNode>(N1); | 
|  | assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); | 
|  |  | 
|  | // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the | 
|  | // constant if knowing that the operand is non-nan is enough.  We prefer to | 
|  | // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to | 
|  | // materialize 0.0. | 
|  | if (Cond == ISD::SETO || Cond == ISD::SETUO) | 
|  | return DAG.getSetCC(dl, VT, N0, N0, Cond); | 
|  |  | 
|  | // setcc (fneg x), C -> setcc swap(pred) x, -C | 
|  | if (N0.getOpcode() == ISD::FNEG) { | 
|  | ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); | 
|  | if (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { | 
|  | SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the condition is not legal, see if we can find an equivalent one | 
|  | // which is legal. | 
|  | if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { | 
|  | // If the comparison was an awkward floating-point == or != and one of | 
|  | // the comparison operands is infinity or negative infinity, convert the | 
|  | // condition to a less-awkward <= or >=. | 
|  | if (CFP->getValueAPF().isInfinity()) { | 
|  | if (CFP->getValueAPF().isNegative()) { | 
|  | if (Cond == ISD::SETOEQ && | 
|  | isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); | 
|  | if (Cond == ISD::SETUEQ && | 
|  | isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); | 
|  | if (Cond == ISD::SETUNE && | 
|  | isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); | 
|  | if (Cond == ISD::SETONE && | 
|  | isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); | 
|  | } else { | 
|  | if (Cond == ISD::SETOEQ && | 
|  | isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); | 
|  | if (Cond == ISD::SETUEQ && | 
|  | isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); | 
|  | if (Cond == ISD::SETUNE && | 
|  | isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); | 
|  | if (Cond == ISD::SETONE && | 
|  | isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N0 == N1) { | 
|  | // The sext(setcc()) => setcc() optimization relies on the appropriate | 
|  | // constant being emitted. | 
|  | assert(!N0.getValueType().isInteger() && | 
|  | "Integer types should be handled by FoldSetCC"); | 
|  |  | 
|  | bool EqTrue = ISD::isTrueWhenEqual(Cond); | 
|  | unsigned UOF = ISD::getUnorderedFlavor(Cond); | 
|  | if (UOF == 2) // FP operators that are undefined on NaNs. | 
|  | return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); | 
|  | if (UOF == unsigned(EqTrue)) | 
|  | return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); | 
|  | // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO | 
|  | // if it is not already. | 
|  | ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; | 
|  | if (NewCond != Cond && | 
|  | (DCI.isBeforeLegalizeOps() || | 
|  | isCondCodeLegal(NewCond, N0.getSimpleValueType()))) | 
|  | return DAG.getSetCC(dl, VT, N0, N1, NewCond); | 
|  | } | 
|  |  | 
|  | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | N0.getValueType().isInteger()) { | 
|  | if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || | 
|  | N0.getOpcode() == ISD::XOR) { | 
|  | // Simplify (X+Y) == (X+Z) -->  Y == Z | 
|  | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | if (N0.getOperand(0) == N1.getOperand(0)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); | 
|  | if (N0.getOperand(1) == N1.getOperand(1)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); | 
|  | if (isCommutativeBinOp(N0.getOpcode())) { | 
|  | // If X op Y == Y op X, try other combinations. | 
|  | if (N0.getOperand(0) == N1.getOperand(1)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), | 
|  | Cond); | 
|  | if (N0.getOperand(1) == N1.getOperand(0)) | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), | 
|  | Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If RHS is a legal immediate value for a compare instruction, we need | 
|  | // to be careful about increasing register pressure needlessly. | 
|  | bool LegalRHSImm = false; | 
|  |  | 
|  | if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { | 
|  | if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | // Turn (X+C1) == C2 --> X == C2-C1 | 
|  | if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { | 
|  | return DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(RHSC->getAPIntValue()- | 
|  | LHSR->getAPIntValue(), | 
|  | dl, N0.getValueType()), Cond); | 
|  | } | 
|  |  | 
|  | // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. | 
|  | if (N0.getOpcode() == ISD::XOR) | 
|  | // If we know that all of the inverted bits are zero, don't bother | 
|  | // performing the inversion. | 
|  | if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) | 
|  | return | 
|  | DAG.getSetCC(dl, VT, N0.getOperand(0), | 
|  | DAG.getConstant(LHSR->getAPIntValue() ^ | 
|  | RHSC->getAPIntValue(), | 
|  | dl, N0.getValueType()), | 
|  | Cond); | 
|  | } | 
|  |  | 
|  | // Turn (C1-X) == C2 --> X == C1-C2 | 
|  | if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { | 
|  | if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { | 
|  | return | 
|  | DAG.getSetCC(dl, VT, N0.getOperand(1), | 
|  | DAG.getConstant(SUBC->getAPIntValue() - | 
|  | RHSC->getAPIntValue(), | 
|  | dl, N0.getValueType()), | 
|  | Cond); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Could RHSC fold directly into a compare? | 
|  | if (RHSC->getValueType(0).getSizeInBits() <= 64) | 
|  | LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); | 
|  | } | 
|  |  | 
|  | // (X+Y) == X --> Y == 0 and similar folds. | 
|  | // Don't do this if X is an immediate that can fold into a cmp | 
|  | // instruction and X+Y has other uses. It could be an induction variable | 
|  | // chain, and the transform would increase register pressure. | 
|  | if (!LegalRHSImm || N0.hasOneUse()) | 
|  | if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || | 
|  | N1.getOpcode() == ISD::XOR) | 
|  | if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) | 
|  | return V; | 
|  |  | 
|  | if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Fold remainder of division by a constant. | 
|  | if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && | 
|  | N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
|  |  | 
|  | // When division is cheap or optimizing for minimum size, | 
|  | // fall through to DIVREM creation by skipping this fold. | 
|  | if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { | 
|  | if (N0.getOpcode() == ISD::UREM) { | 
|  | if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) | 
|  | return Folded; | 
|  | } else if (N0.getOpcode() == ISD::SREM) { | 
|  | if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) | 
|  | return Folded; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fold away ALL boolean setcc's. | 
|  | if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { | 
|  | SDValue Temp; | 
|  | switch (Cond) { | 
|  | default: llvm_unreachable("Unknown integer setcc!"); | 
|  | case ISD::SETEQ:  // X == Y  -> ~(X^Y) | 
|  | Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); | 
|  | N0 = DAG.getNOT(dl, Temp, OpVT); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETNE:  // X != Y   -->  (X^Y) | 
|  | N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); | 
|  | break; | 
|  | case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y | 
|  | case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y | 
|  | Temp = DAG.getNOT(dl, N0, OpVT); | 
|  | N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X | 
|  | case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X | 
|  | Temp = DAG.getNOT(dl, N1, OpVT); | 
|  | N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y | 
|  | case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y | 
|  | Temp = DAG.getNOT(dl, N0, OpVT); | 
|  | N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(Temp.getNode()); | 
|  | break; | 
|  | case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X | 
|  | case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X | 
|  | Temp = DAG.getNOT(dl, N1, OpVT); | 
|  | N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); | 
|  | break; | 
|  | } | 
|  | if (VT.getScalarType() != MVT::i1) { | 
|  | if (!DCI.isCalledByLegalizer()) | 
|  | DCI.AddToWorklist(N0.getNode()); | 
|  | // FIXME: If running after legalize, we probably can't do this. | 
|  | ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); | 
|  | N0 = DAG.getNode(ExtendCode, dl, VT, N0); | 
|  | } | 
|  | return N0; | 
|  | } | 
|  |  | 
|  | // Could not fold it. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Returns true (and the GlobalValue and the offset) if the node is a | 
|  | /// GlobalAddress + offset. | 
|  | bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, | 
|  | int64_t &Offset) const { | 
|  |  | 
|  | SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); | 
|  |  | 
|  | if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { | 
|  | GA = GASD->getGlobal(); | 
|  | Offset += GASD->getOffset(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (N->getOpcode() == ISD::ADD) { | 
|  | SDValue N1 = N->getOperand(0); | 
|  | SDValue N2 = N->getOperand(1); | 
|  | if (isGAPlusOffset(N1.getNode(), GA, Offset)) { | 
|  | if (auto *V = dyn_cast<ConstantSDNode>(N2)) { | 
|  | Offset += V->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  | } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { | 
|  | if (auto *V = dyn_cast<ConstantSDNode>(N1)) { | 
|  | Offset += V->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | // Default implementation: no optimization. | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Inline Assembler Implementation Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | TargetLowering::ConstraintType | 
|  | TargetLowering::getConstraintType(StringRef Constraint) const { | 
|  | unsigned S = Constraint.size(); | 
|  |  | 
|  | if (S == 1) { | 
|  | switch (Constraint[0]) { | 
|  | default: break; | 
|  | case 'r': | 
|  | return C_RegisterClass; | 
|  | case 'm': // memory | 
|  | case 'o': // offsetable | 
|  | case 'V': // not offsetable | 
|  | return C_Memory; | 
|  | case 'n': // Simple Integer | 
|  | case 'E': // Floating Point Constant | 
|  | case 'F': // Floating Point Constant | 
|  | return C_Immediate; | 
|  | case 'i': // Simple Integer or Relocatable Constant | 
|  | case 's': // Relocatable Constant | 
|  | case 'p': // Address. | 
|  | case 'X': // Allow ANY value. | 
|  | case 'I': // Target registers. | 
|  | case 'J': | 
|  | case 'K': | 
|  | case 'L': | 
|  | case 'M': | 
|  | case 'N': | 
|  | case 'O': | 
|  | case 'P': | 
|  | case '<': | 
|  | case '>': | 
|  | return C_Other; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { | 
|  | if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" | 
|  | return C_Memory; | 
|  | return C_Register; | 
|  | } | 
|  | return C_Unknown; | 
|  | } | 
|  |  | 
|  | /// Try to replace an X constraint, which matches anything, with another that | 
|  | /// has more specific requirements based on the type of the corresponding | 
|  | /// operand. | 
|  | const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { | 
|  | if (ConstraintVT.isInteger()) | 
|  | return "r"; | 
|  | if (ConstraintVT.isFloatingPoint()) | 
|  | return "f"; // works for many targets | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::LowerAsmOutputForConstraint( | 
|  | SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, | 
|  | SelectionDAG &DAG) const { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Lower the specified operand into the Ops vector. | 
|  | /// If it is invalid, don't add anything to Ops. | 
|  | void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
|  | std::string &Constraint, | 
|  | std::vector<SDValue> &Ops, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | if (Constraint.length() > 1) return; | 
|  |  | 
|  | char ConstraintLetter = Constraint[0]; | 
|  | switch (ConstraintLetter) { | 
|  | default: break; | 
|  | case 'X':     // Allows any operand; labels (basic block) use this. | 
|  | if (Op.getOpcode() == ISD::BasicBlock || | 
|  | Op.getOpcode() == ISD::TargetBlockAddress) { | 
|  | Ops.push_back(Op); | 
|  | return; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case 'i':    // Simple Integer or Relocatable Constant | 
|  | case 'n':    // Simple Integer | 
|  | case 's': {  // Relocatable Constant | 
|  |  | 
|  | GlobalAddressSDNode *GA; | 
|  | ConstantSDNode *C; | 
|  | BlockAddressSDNode *BA; | 
|  | uint64_t Offset = 0; | 
|  |  | 
|  | // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), | 
|  | // etc., since getelementpointer is variadic. We can't use | 
|  | // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible | 
|  | // while in this case the GA may be furthest from the root node which is | 
|  | // likely an ISD::ADD. | 
|  | while (1) { | 
|  | if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { | 
|  | Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), | 
|  | GA->getValueType(0), | 
|  | Offset + GA->getOffset())); | 
|  | return; | 
|  | } else if ((C = dyn_cast<ConstantSDNode>(Op)) && | 
|  | ConstraintLetter != 's') { | 
|  | // gcc prints these as sign extended.  Sign extend value to 64 bits | 
|  | // now; without this it would get ZExt'd later in | 
|  | // ScheduleDAGSDNodes::EmitNode, which is very generic. | 
|  | bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; | 
|  | BooleanContent BCont = getBooleanContents(MVT::i64); | 
|  | ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) | 
|  | : ISD::SIGN_EXTEND; | 
|  | int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() | 
|  | : C->getSExtValue(); | 
|  | Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, | 
|  | SDLoc(C), MVT::i64)); | 
|  | return; | 
|  | } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && | 
|  | ConstraintLetter != 'n') { | 
|  | Ops.push_back(DAG.getTargetBlockAddress( | 
|  | BA->getBlockAddress(), BA->getValueType(0), | 
|  | Offset + BA->getOffset(), BA->getTargetFlags())); | 
|  | return; | 
|  | } else { | 
|  | const unsigned OpCode = Op.getOpcode(); | 
|  | if (OpCode == ISD::ADD || OpCode == ISD::SUB) { | 
|  | if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) | 
|  | Op = Op.getOperand(1); | 
|  | // Subtraction is not commutative. | 
|  | else if (OpCode == ISD::ADD && | 
|  | (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) | 
|  | Op = Op.getOperand(0); | 
|  | else | 
|  | return; | 
|  | Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, | 
|  | StringRef Constraint, | 
|  | MVT VT) const { | 
|  | if (Constraint.empty() || Constraint[0] != '{') | 
|  | return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); | 
|  | assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); | 
|  |  | 
|  | // Remove the braces from around the name. | 
|  | StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> R = | 
|  | std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); | 
|  |  | 
|  | // Figure out which register class contains this reg. | 
|  | for (const TargetRegisterClass *RC : RI->regclasses()) { | 
|  | // If none of the value types for this register class are valid, we | 
|  | // can't use it.  For example, 64-bit reg classes on 32-bit targets. | 
|  | if (!isLegalRC(*RI, *RC)) | 
|  | continue; | 
|  |  | 
|  | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); | 
|  | I != E; ++I) { | 
|  | if (RegName.equals_lower(RI->getRegAsmName(*I))) { | 
|  | std::pair<unsigned, const TargetRegisterClass *> S = | 
|  | std::make_pair(*I, RC); | 
|  |  | 
|  | // If this register class has the requested value type, return it, | 
|  | // otherwise keep searching and return the first class found | 
|  | // if no other is found which explicitly has the requested type. | 
|  | if (RI->isTypeLegalForClass(*RC, VT)) | 
|  | return S; | 
|  | if (!R.second) | 
|  | R = S; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return R; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Constraint Selection. | 
|  |  | 
|  | /// Return true of this is an input operand that is a matching constraint like | 
|  | /// "4". | 
|  | bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { | 
|  | assert(!ConstraintCode.empty() && "No known constraint!"); | 
|  | return isdigit(static_cast<unsigned char>(ConstraintCode[0])); | 
|  | } | 
|  |  | 
|  | /// If this is an input matching constraint, this method returns the output | 
|  | /// operand it matches. | 
|  | unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { | 
|  | assert(!ConstraintCode.empty() && "No known constraint!"); | 
|  | return atoi(ConstraintCode.c_str()); | 
|  | } | 
|  |  | 
|  | /// Split up the constraint string from the inline assembly value into the | 
|  | /// specific constraints and their prefixes, and also tie in the associated | 
|  | /// operand values. | 
|  | /// If this returns an empty vector, and if the constraint string itself | 
|  | /// isn't empty, there was an error parsing. | 
|  | TargetLowering::AsmOperandInfoVector | 
|  | TargetLowering::ParseConstraints(const DataLayout &DL, | 
|  | const TargetRegisterInfo *TRI, | 
|  | ImmutableCallSite CS) const { | 
|  | /// Information about all of the constraints. | 
|  | AsmOperandInfoVector ConstraintOperands; | 
|  | const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); | 
|  | unsigned maCount = 0; // Largest number of multiple alternative constraints. | 
|  |  | 
|  | // Do a prepass over the constraints, canonicalizing them, and building up the | 
|  | // ConstraintOperands list. | 
|  | unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. | 
|  | unsigned ResNo = 0; // ResNo - The result number of the next output. | 
|  |  | 
|  | for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { | 
|  | ConstraintOperands.emplace_back(std::move(CI)); | 
|  | AsmOperandInfo &OpInfo = ConstraintOperands.back(); | 
|  |  | 
|  | // Update multiple alternative constraint count. | 
|  | if (OpInfo.multipleAlternatives.size() > maCount) | 
|  | maCount = OpInfo.multipleAlternatives.size(); | 
|  |  | 
|  | OpInfo.ConstraintVT = MVT::Other; | 
|  |  | 
|  | // Compute the value type for each operand. | 
|  | switch (OpInfo.Type) { | 
|  | case InlineAsm::isOutput: | 
|  | // Indirect outputs just consume an argument. | 
|  | if (OpInfo.isIndirect) { | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The return value of the call is this value.  As such, there is no | 
|  | // corresponding argument. | 
|  | assert(!CS.getType()->isVoidTy() && | 
|  | "Bad inline asm!"); | 
|  | if (StructType *STy = dyn_cast<StructType>(CS.getType())) { | 
|  | OpInfo.ConstraintVT = | 
|  | getSimpleValueType(DL, STy->getElementType(ResNo)); | 
|  | } else { | 
|  | assert(ResNo == 0 && "Asm only has one result!"); | 
|  | OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); | 
|  | } | 
|  | ++ResNo; | 
|  | break; | 
|  | case InlineAsm::isInput: | 
|  | OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); | 
|  | break; | 
|  | case InlineAsm::isClobber: | 
|  | // Nothing to do. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (OpInfo.CallOperandVal) { | 
|  | llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); | 
|  | if (OpInfo.isIndirect) { | 
|  | llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); | 
|  | if (!PtrTy) | 
|  | report_fatal_error("Indirect operand for inline asm not a pointer!"); | 
|  | OpTy = PtrTy->getElementType(); | 
|  | } | 
|  |  | 
|  | // Look for vector wrapped in a struct. e.g. { <16 x i8> }. | 
|  | if (StructType *STy = dyn_cast<StructType>(OpTy)) | 
|  | if (STy->getNumElements() == 1) | 
|  | OpTy = STy->getElementType(0); | 
|  |  | 
|  | // If OpTy is not a single value, it may be a struct/union that we | 
|  | // can tile with integers. | 
|  | if (!OpTy->isSingleValueType() && OpTy->isSized()) { | 
|  | unsigned BitSize = DL.getTypeSizeInBits(OpTy); | 
|  | switch (BitSize) { | 
|  | default: break; | 
|  | case 1: | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | case 128: | 
|  | OpInfo.ConstraintVT = | 
|  | MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); | 
|  | break; | 
|  | } | 
|  | } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { | 
|  | unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); | 
|  | OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); | 
|  | } else { | 
|  | OpInfo.ConstraintVT = MVT::getVT(OpTy, true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have multiple alternative constraints, select the best alternative. | 
|  | if (!ConstraintOperands.empty()) { | 
|  | if (maCount) { | 
|  | unsigned bestMAIndex = 0; | 
|  | int bestWeight = -1; | 
|  | // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match. | 
|  | int weight = -1; | 
|  | unsigned maIndex; | 
|  | // Compute the sums of the weights for each alternative, keeping track | 
|  | // of the best (highest weight) one so far. | 
|  | for (maIndex = 0; maIndex < maCount; ++maIndex) { | 
|  | int weightSum = 0; | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; | 
|  | if (OpInfo.Type == InlineAsm::isClobber) | 
|  | continue; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, | 
|  | // look up the matching input. If their types mismatch, e.g. one | 
|  | // is an integer, the other is floating point, or their sizes are | 
|  | // different, flag it as an maCantMatch. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | Input.ConstraintVT.isInteger()) || | 
|  | (OpInfo.ConstraintVT.getSizeInBits() != | 
|  | Input.ConstraintVT.getSizeInBits())) { | 
|  | weightSum = -1; // Can't match. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); | 
|  | if (weight == -1) { | 
|  | weightSum = -1; | 
|  | break; | 
|  | } | 
|  | weightSum += weight; | 
|  | } | 
|  | // Update best. | 
|  | if (weightSum > bestWeight) { | 
|  | bestWeight = weightSum; | 
|  | bestMAIndex = maIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now select chosen alternative in each constraint. | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; | 
|  | if (cInfo.Type == InlineAsm::isClobber) | 
|  | continue; | 
|  | cInfo.selectAlternative(bestMAIndex); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check and hook up tied operands, choose constraint code to use. | 
|  | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); | 
|  | cIndex != eIndex; ++cIndex) { | 
|  | AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; | 
|  |  | 
|  | // If this is an output operand with a matching input operand, look up the | 
|  | // matching input. If their types mismatch, e.g. one is an integer, the | 
|  | // other is floating point, or their sizes are different, flag it as an | 
|  | // error. | 
|  | if (OpInfo.hasMatchingInput()) { | 
|  | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; | 
|  |  | 
|  | if (OpInfo.ConstraintVT != Input.ConstraintVT) { | 
|  | std::pair<unsigned, const TargetRegisterClass *> MatchRC = | 
|  | getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, | 
|  | OpInfo.ConstraintVT); | 
|  | std::pair<unsigned, const TargetRegisterClass *> InputRC = | 
|  | getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, | 
|  | Input.ConstraintVT); | 
|  | if ((OpInfo.ConstraintVT.isInteger() != | 
|  | Input.ConstraintVT.isInteger()) || | 
|  | (MatchRC.second != InputRC.second)) { | 
|  | report_fatal_error("Unsupported asm: input constraint" | 
|  | " with a matching output constraint of" | 
|  | " incompatible type!"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ConstraintOperands; | 
|  | } | 
|  |  | 
|  | /// Return an integer indicating how general CT is. | 
|  | static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { | 
|  | switch (CT) { | 
|  | case TargetLowering::C_Immediate: | 
|  | case TargetLowering::C_Other: | 
|  | case TargetLowering::C_Unknown: | 
|  | return 0; | 
|  | case TargetLowering::C_Register: | 
|  | return 1; | 
|  | case TargetLowering::C_RegisterClass: | 
|  | return 2; | 
|  | case TargetLowering::C_Memory: | 
|  | return 3; | 
|  | } | 
|  | llvm_unreachable("Invalid constraint type"); | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | TargetLowering::getMultipleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, int maIndex) const { | 
|  | InlineAsm::ConstraintCodeVector *rCodes; | 
|  | if (maIndex >= (int)info.multipleAlternatives.size()) | 
|  | rCodes = &info.Codes; | 
|  | else | 
|  | rCodes = &info.multipleAlternatives[maIndex].Codes; | 
|  | ConstraintWeight BestWeight = CW_Invalid; | 
|  |  | 
|  | // Loop over the options, keeping track of the most general one. | 
|  | for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { | 
|  | ConstraintWeight weight = | 
|  | getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); | 
|  | if (weight > BestWeight) | 
|  | BestWeight = weight; | 
|  | } | 
|  |  | 
|  | return BestWeight; | 
|  | } | 
|  |  | 
|  | /// Examine constraint type and operand type and determine a weight value. | 
|  | /// This object must already have been set up with the operand type | 
|  | /// and the current alternative constraint selected. | 
|  | TargetLowering::ConstraintWeight | 
|  | TargetLowering::getSingleConstraintMatchWeight( | 
|  | AsmOperandInfo &info, const char *constraint) const { | 
|  | ConstraintWeight weight = CW_Invalid; | 
|  | Value *CallOperandVal = info.CallOperandVal; | 
|  | // If we don't have a value, we can't do a match, | 
|  | // but allow it at the lowest weight. | 
|  | if (!CallOperandVal) | 
|  | return CW_Default; | 
|  | // Look at the constraint type. | 
|  | switch (*constraint) { | 
|  | case 'i': // immediate integer. | 
|  | case 'n': // immediate integer with a known value. | 
|  | if (isa<ConstantInt>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case 's': // non-explicit intregal immediate. | 
|  | if (isa<GlobalValue>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case 'E': // immediate float if host format. | 
|  | case 'F': // immediate float. | 
|  | if (isa<ConstantFP>(CallOperandVal)) | 
|  | weight = CW_Constant; | 
|  | break; | 
|  | case '<': // memory operand with autodecrement. | 
|  | case '>': // memory operand with autoincrement. | 
|  | case 'm': // memory operand. | 
|  | case 'o': // offsettable memory operand | 
|  | case 'V': // non-offsettable memory operand | 
|  | weight = CW_Memory; | 
|  | break; | 
|  | case 'r': // general register. | 
|  | case 'g': // general register, memory operand or immediate integer. | 
|  | // note: Clang converts "g" to "imr". | 
|  | if (CallOperandVal->getType()->isIntegerTy()) | 
|  | weight = CW_Register; | 
|  | break; | 
|  | case 'X': // any operand. | 
|  | default: | 
|  | weight = CW_Default; | 
|  | break; | 
|  | } | 
|  | return weight; | 
|  | } | 
|  |  | 
|  | /// If there are multiple different constraints that we could pick for this | 
|  | /// operand (e.g. "imr") try to pick the 'best' one. | 
|  | /// This is somewhat tricky: constraints fall into four classes: | 
|  | ///    Other         -> immediates and magic values | 
|  | ///    Register      -> one specific register | 
|  | ///    RegisterClass -> a group of regs | 
|  | ///    Memory        -> memory | 
|  | /// Ideally, we would pick the most specific constraint possible: if we have | 
|  | /// something that fits into a register, we would pick it.  The problem here | 
|  | /// is that if we have something that could either be in a register or in | 
|  | /// memory that use of the register could cause selection of *other* | 
|  | /// operands to fail: they might only succeed if we pick memory.  Because of | 
|  | /// this the heuristic we use is: | 
|  | /// | 
|  | ///  1) If there is an 'other' constraint, and if the operand is valid for | 
|  | ///     that constraint, use it.  This makes us take advantage of 'i' | 
|  | ///     constraints when available. | 
|  | ///  2) Otherwise, pick the most general constraint present.  This prefers | 
|  | ///     'm' over 'r', for example. | 
|  | /// | 
|  | static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, | 
|  | const TargetLowering &TLI, | 
|  | SDValue Op, SelectionDAG *DAG) { | 
|  | assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); | 
|  | unsigned BestIdx = 0; | 
|  | TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; | 
|  | int BestGenerality = -1; | 
|  |  | 
|  | // Loop over the options, keeping track of the most general one. | 
|  | for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { | 
|  | TargetLowering::ConstraintType CType = | 
|  | TLI.getConstraintType(OpInfo.Codes[i]); | 
|  |  | 
|  | // Indirect 'other' or 'immediate' constraints are not allowed. | 
|  | if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || | 
|  | CType == TargetLowering::C_Register || | 
|  | CType == TargetLowering::C_RegisterClass)) | 
|  | continue; | 
|  |  | 
|  | // If this is an 'other' or 'immediate' constraint, see if the operand is | 
|  | // valid for it. For example, on X86 we might have an 'rI' constraint. If | 
|  | // the operand is an integer in the range [0..31] we want to use I (saving a | 
|  | // load of a register), otherwise we must use 'r'. | 
|  | if ((CType == TargetLowering::C_Other || | 
|  | CType == TargetLowering::C_Immediate) && Op.getNode()) { | 
|  | assert(OpInfo.Codes[i].size() == 1 && | 
|  | "Unhandled multi-letter 'other' constraint"); | 
|  | std::vector<SDValue> ResultOps; | 
|  | TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], | 
|  | ResultOps, *DAG); | 
|  | if (!ResultOps.empty()) { | 
|  | BestType = CType; | 
|  | BestIdx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Things with matching constraints can only be registers, per gcc | 
|  | // documentation.  This mainly affects "g" constraints. | 
|  | if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) | 
|  | continue; | 
|  |  | 
|  | // This constraint letter is more general than the previous one, use it. | 
|  | int Generality = getConstraintGenerality(CType); | 
|  | if (Generality > BestGenerality) { | 
|  | BestType = CType; | 
|  | BestIdx = i; | 
|  | BestGenerality = Generality; | 
|  | } | 
|  | } | 
|  |  | 
|  | OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; | 
|  | OpInfo.ConstraintType = BestType; | 
|  | } | 
|  |  | 
|  | /// Determines the constraint code and constraint type to use for the specific | 
|  | /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. | 
|  | void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, | 
|  | SDValue Op, | 
|  | SelectionDAG *DAG) const { | 
|  | assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); | 
|  |  | 
|  | // Single-letter constraints ('r') are very common. | 
|  | if (OpInfo.Codes.size() == 1) { | 
|  | OpInfo.ConstraintCode = OpInfo.Codes[0]; | 
|  | OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); | 
|  | } else { | 
|  | ChooseConstraint(OpInfo, *this, Op, DAG); | 
|  | } | 
|  |  | 
|  | // 'X' matches anything. | 
|  | if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { | 
|  | // Labels and constants are handled elsewhere ('X' is the only thing | 
|  | // that matches labels).  For Functions, the type here is the type of | 
|  | // the result, which is not what we want to look at; leave them alone. | 
|  | Value *v = OpInfo.CallOperandVal; | 
|  | if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { | 
|  | OpInfo.CallOperandVal = v; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) | 
|  | return; | 
|  |  | 
|  | // Otherwise, try to resolve it to something we know about by looking at | 
|  | // the actual operand type. | 
|  | if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { | 
|  | OpInfo.ConstraintCode = Repl; | 
|  | OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given an exact SDIV by a constant, create a multiplication | 
|  | /// with the multiplicative inverse of the constant. | 
|  | static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, | 
|  | const SDLoc &dl, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDNode *> &Created) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT SVT = VT.getScalarType(); | 
|  | EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | EVT ShSVT = ShVT.getScalarType(); | 
|  |  | 
|  | bool UseSRA = false; | 
|  | SmallVector<SDValue, 16> Shifts, Factors; | 
|  |  | 
|  | auto BuildSDIVPattern = [&](ConstantSDNode *C) { | 
|  | if (C->isNullValue()) | 
|  | return false; | 
|  | APInt Divisor = C->getAPIntValue(); | 
|  | unsigned Shift = Divisor.countTrailingZeros(); | 
|  | if (Shift) { | 
|  | Divisor.ashrInPlace(Shift); | 
|  | UseSRA = true; | 
|  | } | 
|  | // Calculate the multiplicative inverse, using Newton's method. | 
|  | APInt t; | 
|  | APInt Factor = Divisor; | 
|  | while ((t = Divisor * Factor) != 1) | 
|  | Factor *= APInt(Divisor.getBitWidth(), 2) - t; | 
|  | Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); | 
|  | Factors.push_back(DAG.getConstant(Factor, dl, SVT)); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Collect all magic values from the build vector. | 
|  | if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue Shift, Factor; | 
|  | if (VT.isVector()) { | 
|  | Shift = DAG.getBuildVector(ShVT, dl, Shifts); | 
|  | Factor = DAG.getBuildVector(VT, dl, Factors); | 
|  | } else { | 
|  | Shift = Shifts[0]; | 
|  | Factor = Factors[0]; | 
|  | } | 
|  |  | 
|  | SDValue Res = Op0; | 
|  |  | 
|  | // Shift the value upfront if it is even, so the LSB is one. | 
|  | if (UseSRA) { | 
|  | // TODO: For UDIV use SRL instead of SRA. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(true); | 
|  | Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); | 
|  | Created.push_back(Res.getNode()); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, | 
|  | SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDNode *> &Created) const { | 
|  | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLI.isIntDivCheap(N->getValueType(0), Attr)) | 
|  | return SDValue(N, 0); // Lower SDIV as SDIV | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// Given an ISD::SDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number. | 
|  | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
|  | SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, | 
|  | bool IsAfterLegalization, | 
|  | SmallVectorImpl<SDNode *> &Created) const { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT SVT = VT.getScalarType(); | 
|  | EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | EVT ShSVT = ShVT.getScalarType(); | 
|  | unsigned EltBits = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // Check to see if we can do this. | 
|  | // FIXME: We should be more aggressive here. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the sdiv has an 'exact' bit we can use a simpler lowering. | 
|  | if (N->getFlags().hasExact()) | 
|  | return BuildExactSDIV(*this, N, dl, DAG, Created); | 
|  |  | 
|  | SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; | 
|  |  | 
|  | auto BuildSDIVPattern = [&](ConstantSDNode *C) { | 
|  | if (C->isNullValue()) | 
|  | return false; | 
|  |  | 
|  | const APInt &Divisor = C->getAPIntValue(); | 
|  | APInt::ms magics = Divisor.magic(); | 
|  | int NumeratorFactor = 0; | 
|  | int ShiftMask = -1; | 
|  |  | 
|  | if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { | 
|  | // If d is +1/-1, we just multiply the numerator by +1/-1. | 
|  | NumeratorFactor = Divisor.getSExtValue(); | 
|  | magics.m = 0; | 
|  | magics.s = 0; | 
|  | ShiftMask = 0; | 
|  | } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { | 
|  | // If d > 0 and m < 0, add the numerator. | 
|  | NumeratorFactor = 1; | 
|  | } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { | 
|  | // If d < 0 and m > 0, subtract the numerator. | 
|  | NumeratorFactor = -1; | 
|  | } | 
|  |  | 
|  | MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); | 
|  | Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); | 
|  | Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); | 
|  | ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // Collect the shifts / magic values from each element. | 
|  | if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue MagicFactor, Factor, Shift, ShiftMask; | 
|  | if (VT.isVector()) { | 
|  | MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); | 
|  | Factor = DAG.getBuildVector(VT, dl, Factors); | 
|  | Shift = DAG.getBuildVector(ShVT, dl, Shifts); | 
|  | ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); | 
|  | } else { | 
|  | MagicFactor = MagicFactors[0]; | 
|  | Factor = Factors[0]; | 
|  | Shift = Shifts[0]; | 
|  | ShiftMask = ShiftMasks[0]; | 
|  | } | 
|  |  | 
|  | // Multiply the numerator (operand 0) by the magic value. | 
|  | // FIXME: We should support doing a MUL in a wider type. | 
|  | SDValue Q; | 
|  | if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) | 
|  | : isOperationLegalOrCustom(ISD::MULHS, VT)) | 
|  | Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); | 
|  | else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) | 
|  | : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { | 
|  | SDValue LoHi = | 
|  | DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); | 
|  | Q = SDValue(LoHi.getNode(), 1); | 
|  | } else | 
|  | return SDValue(); // No mulhs or equivalent. | 
|  | Created.push_back(Q.getNode()); | 
|  |  | 
|  | // (Optionally) Add/subtract the numerator using Factor. | 
|  | Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); | 
|  | Created.push_back(Factor.getNode()); | 
|  | Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); | 
|  | Created.push_back(Q.getNode()); | 
|  |  | 
|  | // Shift right algebraic by shift value. | 
|  | Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); | 
|  | Created.push_back(Q.getNode()); | 
|  |  | 
|  | // Extract the sign bit, mask it and add it to the quotient. | 
|  | SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); | 
|  | SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); | 
|  | Created.push_back(T.getNode()); | 
|  | T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); | 
|  | Created.push_back(T.getNode()); | 
|  | return DAG.getNode(ISD::ADD, dl, VT, Q, T); | 
|  | } | 
|  |  | 
|  | /// Given an ISD::UDIV node expressing a divide by constant, | 
|  | /// return a DAG expression to select that will generate the same value by | 
|  | /// multiplying by a magic number. | 
|  | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". | 
|  | SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, | 
|  | bool IsAfterLegalization, | 
|  | SmallVectorImpl<SDNode *> &Created) const { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT SVT = VT.getScalarType(); | 
|  | EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | EVT ShSVT = ShVT.getScalarType(); | 
|  | unsigned EltBits = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // Check to see if we can do this. | 
|  | // FIXME: We should be more aggressive here. | 
|  | if (!isTypeLegal(VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | bool UseNPQ = false; | 
|  | SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; | 
|  |  | 
|  | auto BuildUDIVPattern = [&](ConstantSDNode *C) { | 
|  | if (C->isNullValue()) | 
|  | return false; | 
|  | // FIXME: We should use a narrower constant when the upper | 
|  | // bits are known to be zero. | 
|  | APInt Divisor = C->getAPIntValue(); | 
|  | APInt::mu magics = Divisor.magicu(); | 
|  | unsigned PreShift = 0, PostShift = 0; | 
|  |  | 
|  | // If the divisor is even, we can avoid using the expensive fixup by | 
|  | // shifting the divided value upfront. | 
|  | if (magics.a != 0 && !Divisor[0]) { | 
|  | PreShift = Divisor.countTrailingZeros(); | 
|  | // Get magic number for the shifted divisor. | 
|  | magics = Divisor.lshr(PreShift).magicu(PreShift); | 
|  | assert(magics.a == 0 && "Should use cheap fixup now"); | 
|  | } | 
|  |  | 
|  | APInt Magic = magics.m; | 
|  |  | 
|  | unsigned SelNPQ; | 
|  | if (magics.a == 0 || Divisor.isOneValue()) { | 
|  | assert(magics.s < Divisor.getBitWidth() && | 
|  | "We shouldn't generate an undefined shift!"); | 
|  | PostShift = magics.s; | 
|  | SelNPQ = false; | 
|  | } else { | 
|  | PostShift = magics.s - 1; | 
|  | SelNPQ = true; | 
|  | } | 
|  |  | 
|  | PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); | 
|  | MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); | 
|  | NPQFactors.push_back( | 
|  | DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) | 
|  | : APInt::getNullValue(EltBits), | 
|  | dl, SVT)); | 
|  | PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); | 
|  | UseNPQ |= SelNPQ; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | // Collect the shifts/magic values from each element. | 
|  | if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue PreShift, PostShift, MagicFactor, NPQFactor; | 
|  | if (VT.isVector()) { | 
|  | PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); | 
|  | MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); | 
|  | NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); | 
|  | PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); | 
|  | } else { | 
|  | PreShift = PreShifts[0]; | 
|  | MagicFactor = MagicFactors[0]; | 
|  | PostShift = PostShifts[0]; | 
|  | } | 
|  |  | 
|  | SDValue Q = N0; | 
|  | Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); | 
|  | Created.push_back(Q.getNode()); | 
|  |  | 
|  | // FIXME: We should support doing a MUL in a wider type. | 
|  | auto GetMULHU = [&](SDValue X, SDValue Y) { | 
|  | if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) | 
|  | : isOperationLegalOrCustom(ISD::MULHU, VT)) | 
|  | return DAG.getNode(ISD::MULHU, dl, VT, X, Y); | 
|  | if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) | 
|  | : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { | 
|  | SDValue LoHi = | 
|  | DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); | 
|  | return SDValue(LoHi.getNode(), 1); | 
|  | } | 
|  | return SDValue(); // No mulhu or equivalent | 
|  | }; | 
|  |  | 
|  | // Multiply the numerator (operand 0) by the magic value. | 
|  | Q = GetMULHU(Q, MagicFactor); | 
|  | if (!Q) | 
|  | return SDValue(); | 
|  |  | 
|  | Created.push_back(Q.getNode()); | 
|  |  | 
|  | if (UseNPQ) { | 
|  | SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); | 
|  | Created.push_back(NPQ.getNode()); | 
|  |  | 
|  | // For vectors we might have a mix of non-NPQ/NPQ paths, so use | 
|  | // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. | 
|  | if (VT.isVector()) | 
|  | NPQ = GetMULHU(NPQ, NPQFactor); | 
|  | else | 
|  | NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); | 
|  |  | 
|  | Created.push_back(NPQ.getNode()); | 
|  |  | 
|  | Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); | 
|  | Created.push_back(Q.getNode()); | 
|  | } | 
|  |  | 
|  | Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); | 
|  | Created.push_back(Q.getNode()); | 
|  |  | 
|  | SDValue One = DAG.getConstant(1, dl, VT); | 
|  | SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); | 
|  | return DAG.getSelect(dl, VT, IsOne, N0, Q); | 
|  | } | 
|  |  | 
|  | /// If all values in Values that *don't* match the predicate are same 'splat' | 
|  | /// value, then replace all values with that splat value. | 
|  | /// Else, if AlternativeReplacement was provided, then replace all values that | 
|  | /// do match predicate with AlternativeReplacement value. | 
|  | static void | 
|  | turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, | 
|  | std::function<bool(SDValue)> Predicate, | 
|  | SDValue AlternativeReplacement = SDValue()) { | 
|  | SDValue Replacement; | 
|  | // Is there a value for which the Predicate does *NOT* match? What is it? | 
|  | auto SplatValue = llvm::find_if_not(Values, Predicate); | 
|  | if (SplatValue != Values.end()) { | 
|  | // Does Values consist only of SplatValue's and values matching Predicate? | 
|  | if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { | 
|  | return Value == *SplatValue || Predicate(Value); | 
|  | })) // Then we shall replace values matching predicate with SplatValue. | 
|  | Replacement = *SplatValue; | 
|  | } | 
|  | if (!Replacement) { | 
|  | // Oops, we did not find the "baseline" splat value. | 
|  | if (!AlternativeReplacement) | 
|  | return; // Nothing to do. | 
|  | // Let's replace with provided value then. | 
|  | Replacement = AlternativeReplacement; | 
|  | } | 
|  | std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); | 
|  | } | 
|  |  | 
|  | /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE | 
|  | /// where the divisor is constant and the comparison target is zero, | 
|  | /// return a DAG expression that will generate the same comparison result | 
|  | /// using only multiplications, additions and shifts/rotations. | 
|  | /// Ref: "Hacker's Delight" 10-17. | 
|  | SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, | 
|  | SDValue CompTargetNode, | 
|  | ISD::CondCode Cond, | 
|  | DAGCombinerInfo &DCI, | 
|  | const SDLoc &DL) const { | 
|  | SmallVector<SDNode *, 5> Built; | 
|  | if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, | 
|  | DCI, DL, Built)) { | 
|  | for (SDNode *N : Built) | 
|  | DCI.AddToWorklist(N); | 
|  | return Folded; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, | 
|  | SDValue CompTargetNode, ISD::CondCode Cond, | 
|  | DAGCombinerInfo &DCI, const SDLoc &DL, | 
|  | SmallVectorImpl<SDNode *> &Created) const { | 
|  | // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) | 
|  | // - D must be constant, with D = D0 * 2^K where D0 is odd | 
|  | // - P is the multiplicative inverse of D0 modulo 2^W | 
|  | // - Q = floor(((2^W) - 1) / D) | 
|  | // where W is the width of the common type of N and D. | 
|  | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | "Only applicable for (in)equality comparisons."); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | EVT VT = REMNode.getValueType(); | 
|  | EVT SVT = VT.getScalarType(); | 
|  | EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | EVT ShSVT = ShVT.getScalarType(); | 
|  |  | 
|  | // If MUL is unavailable, we cannot proceed in any case. | 
|  | if (!isOperationLegalOrCustom(ISD::MUL, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | bool ComparingWithAllZeros = true; | 
|  | bool AllComparisonsWithNonZerosAreTautological = true; | 
|  | bool HadTautologicalLanes = false; | 
|  | bool AllLanesAreTautological = true; | 
|  | bool HadEvenDivisor = false; | 
|  | bool AllDivisorsArePowerOfTwo = true; | 
|  | bool HadTautologicalInvertedLanes = false; | 
|  | SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; | 
|  |  | 
|  | auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { | 
|  | // Division by 0 is UB. Leave it to be constant-folded elsewhere. | 
|  | if (CDiv->isNullValue()) | 
|  | return false; | 
|  |  | 
|  | const APInt &D = CDiv->getAPIntValue(); | 
|  | const APInt &Cmp = CCmp->getAPIntValue(); | 
|  |  | 
|  | ComparingWithAllZeros &= Cmp.isNullValue(); | 
|  |  | 
|  | // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, | 
|  | // if C2 is not less than C1, the comparison is always false. | 
|  | // But we will only be able to produce the comparison that will give the | 
|  | // opposive tautological answer. So this lane would need to be fixed up. | 
|  | bool TautologicalInvertedLane = D.ule(Cmp); | 
|  | HadTautologicalInvertedLanes |= TautologicalInvertedLane; | 
|  |  | 
|  | // If all lanes are tautological (either all divisors are ones, or divisor | 
|  | // is not greater than the constant we are comparing with), | 
|  | // we will prefer to avoid the fold. | 
|  | bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; | 
|  | HadTautologicalLanes |= TautologicalLane; | 
|  | AllLanesAreTautological &= TautologicalLane; | 
|  |  | 
|  | // If we are comparing with non-zero, we need'll need  to subtract said | 
|  | // comparison value from the LHS. But there is no point in doing that if | 
|  | // every lane where we are comparing with non-zero is tautological.. | 
|  | if (!Cmp.isNullValue()) | 
|  | AllComparisonsWithNonZerosAreTautological &= TautologicalLane; | 
|  |  | 
|  | // Decompose D into D0 * 2^K | 
|  | unsigned K = D.countTrailingZeros(); | 
|  | assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); | 
|  | APInt D0 = D.lshr(K); | 
|  |  | 
|  | // D is even if it has trailing zeros. | 
|  | HadEvenDivisor |= (K != 0); | 
|  | // D is a power-of-two if D0 is one. | 
|  | // If all divisors are power-of-two, we will prefer to avoid the fold. | 
|  | AllDivisorsArePowerOfTwo &= D0.isOneValue(); | 
|  |  | 
|  | // P = inv(D0, 2^W) | 
|  | // 2^W requires W + 1 bits, so we have to extend and then truncate. | 
|  | unsigned W = D.getBitWidth(); | 
|  | APInt P = D0.zext(W + 1) | 
|  | .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) | 
|  | .trunc(W); | 
|  | assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable | 
|  | assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); | 
|  |  | 
|  | // Q = floor((2^W - 1) u/ D) | 
|  | // R = ((2^W - 1) u% D) | 
|  | APInt Q, R; | 
|  | APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); | 
|  |  | 
|  | // If we are comparing with zero, then that comparison constant is okay, | 
|  | // else it may need to be one less than that. | 
|  | if (Cmp.ugt(R)) | 
|  | Q -= 1; | 
|  |  | 
|  | assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && | 
|  | "We are expecting that K is always less than all-ones for ShSVT"); | 
|  |  | 
|  | // If the lane is tautological the result can be constant-folded. | 
|  | if (TautologicalLane) { | 
|  | // Set P and K amount to a bogus values so we can try to splat them. | 
|  | P = 0; | 
|  | K = -1; | 
|  | // And ensure that comparison constant is tautological, | 
|  | // it will always compare true/false. | 
|  | Q = -1; | 
|  | } | 
|  |  | 
|  | PAmts.push_back(DAG.getConstant(P, DL, SVT)); | 
|  | KAmts.push_back( | 
|  | DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); | 
|  | QAmts.push_back(DAG.getConstant(Q, DL, SVT)); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | SDValue N = REMNode.getOperand(0); | 
|  | SDValue D = REMNode.getOperand(1); | 
|  |  | 
|  | // Collect the values from each element. | 
|  | if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If all lanes are tautological, the result can be constant-folded. | 
|  | if (AllLanesAreTautological) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is a urem by a powers-of-two, avoid the fold since it can be | 
|  | // best implemented as a bit test. | 
|  | if (AllDivisorsArePowerOfTwo) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue PVal, KVal, QVal; | 
|  | if (VT.isVector()) { | 
|  | if (HadTautologicalLanes) { | 
|  | // Try to turn PAmts into a splat, since we don't care about the values | 
|  | // that are currently '0'. If we can't, just keep '0'`s. | 
|  | turnVectorIntoSplatVector(PAmts, isNullConstant); | 
|  | // Try to turn KAmts into a splat, since we don't care about the values | 
|  | // that are currently '-1'. If we can't, change them to '0'`s. | 
|  | turnVectorIntoSplatVector(KAmts, isAllOnesConstant, | 
|  | DAG.getConstant(0, DL, ShSVT)); | 
|  | } | 
|  |  | 
|  | PVal = DAG.getBuildVector(VT, DL, PAmts); | 
|  | KVal = DAG.getBuildVector(ShVT, DL, KAmts); | 
|  | QVal = DAG.getBuildVector(VT, DL, QAmts); | 
|  | } else { | 
|  | PVal = PAmts[0]; | 
|  | KVal = KAmts[0]; | 
|  | QVal = QAmts[0]; | 
|  | } | 
|  |  | 
|  | if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { | 
|  | if (!isOperationLegalOrCustom(ISD::SUB, VT)) | 
|  | return SDValue(); // FIXME: Could/should use `ISD::ADD`? | 
|  | assert(CompTargetNode.getValueType() == N.getValueType() && | 
|  | "Expecting that the types on LHS and RHS of comparisons match."); | 
|  | N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); | 
|  | } | 
|  |  | 
|  | // (mul N, P) | 
|  | SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); | 
|  | Created.push_back(Op0.getNode()); | 
|  |  | 
|  | // Rotate right only if any divisor was even. We avoid rotates for all-odd | 
|  | // divisors as a performance improvement, since rotating by 0 is a no-op. | 
|  | if (HadEvenDivisor) { | 
|  | // We need ROTR to do this. | 
|  | if (!isOperationLegalOrCustom(ISD::ROTR, VT)) | 
|  | return SDValue(); | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(true); | 
|  | // UREM: (rotr (mul N, P), K) | 
|  | Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); | 
|  | Created.push_back(Op0.getNode()); | 
|  | } | 
|  |  | 
|  | // UREM: (setule/setugt (rotr (mul N, P), K), Q) | 
|  | SDValue NewCC = | 
|  | DAG.getSetCC(DL, SETCCVT, Op0, QVal, | 
|  | ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); | 
|  | if (!HadTautologicalInvertedLanes) | 
|  | return NewCC; | 
|  |  | 
|  | // If any lanes previously compared always-false, the NewCC will give | 
|  | // always-true result for them, so we need to fixup those lanes. | 
|  | // Or the other way around for inequality predicate. | 
|  | assert(VT.isVector() && "Can/should only get here for vectors."); | 
|  | Created.push_back(NewCC.getNode()); | 
|  |  | 
|  | // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, | 
|  | // if C2 is not less than C1, the comparison is always false. | 
|  | // But we have produced the comparison that will give the | 
|  | // opposive tautological answer. So these lanes would need to be fixed up. | 
|  | SDValue TautologicalInvertedChannels = | 
|  | DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); | 
|  | Created.push_back(TautologicalInvertedChannels.getNode()); | 
|  |  | 
|  | if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { | 
|  | // If we have a vector select, let's replace the comparison results in the | 
|  | // affected lanes with the correct tautological result. | 
|  | SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, | 
|  | DL, SETCCVT, SETCCVT); | 
|  | return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, | 
|  | Replacement, NewCC); | 
|  | } | 
|  |  | 
|  | // Else, we can just invert the comparison result in the appropriate lanes. | 
|  | if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) | 
|  | return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, | 
|  | TautologicalInvertedChannels); | 
|  |  | 
|  | return SDValue(); // Don't know how to lower. | 
|  | } | 
|  |  | 
|  | /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE | 
|  | /// where the divisor is constant and the comparison target is zero, | 
|  | /// return a DAG expression that will generate the same comparison result | 
|  | /// using only multiplications, additions and shifts/rotations. | 
|  | /// Ref: "Hacker's Delight" 10-17. | 
|  | SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, | 
|  | SDValue CompTargetNode, | 
|  | ISD::CondCode Cond, | 
|  | DAGCombinerInfo &DCI, | 
|  | const SDLoc &DL) const { | 
|  | SmallVector<SDNode *, 7> Built; | 
|  | if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, | 
|  | DCI, DL, Built)) { | 
|  | assert(Built.size() <= 7 && "Max size prediction failed."); | 
|  | for (SDNode *N : Built) | 
|  | DCI.AddToWorklist(N); | 
|  | return Folded; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, | 
|  | SDValue CompTargetNode, ISD::CondCode Cond, | 
|  | DAGCombinerInfo &DCI, const SDLoc &DL, | 
|  | SmallVectorImpl<SDNode *> &Created) const { | 
|  | // Fold: | 
|  | //   (seteq/ne (srem N, D), 0) | 
|  | // To: | 
|  | //   (setule/ugt (rotr (add (mul N, P), A), K), Q) | 
|  | // | 
|  | // - D must be constant, with D = D0 * 2^K where D0 is odd | 
|  | // - P is the multiplicative inverse of D0 modulo 2^W | 
|  | // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) | 
|  | // - Q = floor((2 * A) / (2^K)) | 
|  | // where W is the width of the common type of N and D. | 
|  | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | "Only applicable for (in)equality comparisons."); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | EVT VT = REMNode.getValueType(); | 
|  | EVT SVT = VT.getScalarType(); | 
|  | EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | EVT ShSVT = ShVT.getScalarType(); | 
|  |  | 
|  | // If MUL is unavailable, we cannot proceed in any case. | 
|  | if (!isOperationLegalOrCustom(ISD::MUL, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // TODO: Could support comparing with non-zero too. | 
|  | ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); | 
|  | if (!CompTarget || !CompTarget->isNullValue()) | 
|  | return SDValue(); | 
|  |  | 
|  | bool HadIntMinDivisor = false; | 
|  | bool HadOneDivisor = false; | 
|  | bool AllDivisorsAreOnes = true; | 
|  | bool HadEvenDivisor = false; | 
|  | bool NeedToApplyOffset = false; | 
|  | bool AllDivisorsArePowerOfTwo = true; | 
|  | SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; | 
|  |  | 
|  | auto BuildSREMPattern = [&](ConstantSDNode *C) { | 
|  | // Division by 0 is UB. Leave it to be constant-folded elsewhere. | 
|  | if (C->isNullValue()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. | 
|  |  | 
|  | // WARNING: this fold is only valid for positive divisors! | 
|  | APInt D = C->getAPIntValue(); | 
|  | if (D.isNegative()) | 
|  | D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C` | 
|  |  | 
|  | HadIntMinDivisor |= D.isMinSignedValue(); | 
|  |  | 
|  | // If all divisors are ones, we will prefer to avoid the fold. | 
|  | HadOneDivisor |= D.isOneValue(); | 
|  | AllDivisorsAreOnes &= D.isOneValue(); | 
|  |  | 
|  | // Decompose D into D0 * 2^K | 
|  | unsigned K = D.countTrailingZeros(); | 
|  | assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); | 
|  | APInt D0 = D.lshr(K); | 
|  |  | 
|  | if (!D.isMinSignedValue()) { | 
|  | // D is even if it has trailing zeros; unless it's INT_MIN, in which case | 
|  | // we don't care about this lane in this fold, we'll special-handle it. | 
|  | HadEvenDivisor |= (K != 0); | 
|  | } | 
|  |  | 
|  | // D is a power-of-two if D0 is one. This includes INT_MIN. | 
|  | // If all divisors are power-of-two, we will prefer to avoid the fold. | 
|  | AllDivisorsArePowerOfTwo &= D0.isOneValue(); | 
|  |  | 
|  | // P = inv(D0, 2^W) | 
|  | // 2^W requires W + 1 bits, so we have to extend and then truncate. | 
|  | unsigned W = D.getBitWidth(); | 
|  | APInt P = D0.zext(W + 1) | 
|  | .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) | 
|  | .trunc(W); | 
|  | assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable | 
|  | assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); | 
|  |  | 
|  | // A = floor((2^(W - 1) - 1) / D0) & -2^K | 
|  | APInt A = APInt::getSignedMaxValue(W).udiv(D0); | 
|  | A.clearLowBits(K); | 
|  |  | 
|  | if (!D.isMinSignedValue()) { | 
|  | // If divisor INT_MIN, then we don't care about this lane in this fold, | 
|  | // we'll special-handle it. | 
|  | NeedToApplyOffset |= A != 0; | 
|  | } | 
|  |  | 
|  | // Q = floor((2 * A) / (2^K)) | 
|  | APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); | 
|  |  | 
|  | assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && | 
|  | "We are expecting that A is always less than all-ones for SVT"); | 
|  | assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && | 
|  | "We are expecting that K is always less than all-ones for ShSVT"); | 
|  |  | 
|  | // If the divisor is 1 the result can be constant-folded. Likewise, we | 
|  | // don't care about INT_MIN lanes, those can be set to undef if appropriate. | 
|  | if (D.isOneValue()) { | 
|  | // Set P, A and K to a bogus values so we can try to splat them. | 
|  | P = 0; | 
|  | A = -1; | 
|  | K = -1; | 
|  |  | 
|  | // x ?% 1 == 0  <-->  true  <-->  x u<= -1 | 
|  | Q = -1; | 
|  | } | 
|  |  | 
|  | PAmts.push_back(DAG.getConstant(P, DL, SVT)); | 
|  | AAmts.push_back(DAG.getConstant(A, DL, SVT)); | 
|  | KAmts.push_back( | 
|  | DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); | 
|  | QAmts.push_back(DAG.getConstant(Q, DL, SVT)); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | SDValue N = REMNode.getOperand(0); | 
|  | SDValue D = REMNode.getOperand(1); | 
|  |  | 
|  | // Collect the values from each element. | 
|  | if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is a srem by a one, avoid the fold since it can be constant-folded. | 
|  | if (AllDivisorsAreOnes) | 
|  | return SDValue(); | 
|  |  | 
|  | // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold | 
|  | // since it can be best implemented as a bit test. | 
|  | if (AllDivisorsArePowerOfTwo) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue PVal, AVal, KVal, QVal; | 
|  | if (VT.isVector()) { | 
|  | if (HadOneDivisor) { | 
|  | // Try to turn PAmts into a splat, since we don't care about the values | 
|  | // that are currently '0'. If we can't, just keep '0'`s. | 
|  | turnVectorIntoSplatVector(PAmts, isNullConstant); | 
|  | // Try to turn AAmts into a splat, since we don't care about the | 
|  | // values that are currently '-1'. If we can't, change them to '0'`s. | 
|  | turnVectorIntoSplatVector(AAmts, isAllOnesConstant, | 
|  | DAG.getConstant(0, DL, SVT)); | 
|  | // Try to turn KAmts into a splat, since we don't care about the values | 
|  | // that are currently '-1'. If we can't, change them to '0'`s. | 
|  | turnVectorIntoSplatVector(KAmts, isAllOnesConstant, | 
|  | DAG.getConstant(0, DL, ShSVT)); | 
|  | } | 
|  |  | 
|  | PVal = DAG.getBuildVector(VT, DL, PAmts); | 
|  | AVal = DAG.getBuildVector(VT, DL, AAmts); | 
|  | KVal = DAG.getBuildVector(ShVT, DL, KAmts); | 
|  | QVal = DAG.getBuildVector(VT, DL, QAmts); | 
|  | } else { | 
|  | PVal = PAmts[0]; | 
|  | AVal = AAmts[0]; | 
|  | KVal = KAmts[0]; | 
|  | QVal = QAmts[0]; | 
|  | } | 
|  |  | 
|  | // (mul N, P) | 
|  | SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); | 
|  | Created.push_back(Op0.getNode()); | 
|  |  | 
|  | if (NeedToApplyOffset) { | 
|  | // We need ADD to do this. | 
|  | if (!isOperationLegalOrCustom(ISD::ADD, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | // (add (mul N, P), A) | 
|  | Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); | 
|  | Created.push_back(Op0.getNode()); | 
|  | } | 
|  |  | 
|  | // Rotate right only if any divisor was even. We avoid rotates for all-odd | 
|  | // divisors as a performance improvement, since rotating by 0 is a no-op. | 
|  | if (HadEvenDivisor) { | 
|  | // We need ROTR to do this. | 
|  | if (!isOperationLegalOrCustom(ISD::ROTR, VT)) | 
|  | return SDValue(); | 
|  | SDNodeFlags Flags; | 
|  | Flags.setExact(true); | 
|  | // SREM: (rotr (add (mul N, P), A), K) | 
|  | Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); | 
|  | Created.push_back(Op0.getNode()); | 
|  | } | 
|  |  | 
|  | // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) | 
|  | SDValue Fold = | 
|  | DAG.getSetCC(DL, SETCCVT, Op0, QVal, | 
|  | ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); | 
|  |  | 
|  | // If we didn't have lanes with INT_MIN divisor, then we're done. | 
|  | if (!HadIntMinDivisor) | 
|  | return Fold; | 
|  |  | 
|  | // That fold is only valid for positive divisors. Which effectively means, | 
|  | // it is invalid for INT_MIN divisors. So if we have such a lane, | 
|  | // we must fix-up results for said lanes. | 
|  | assert(VT.isVector() && "Can/should only get here for vectors."); | 
|  |  | 
|  | if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || | 
|  | !isOperationLegalOrCustom(ISD::AND, VT) || | 
|  | !isOperationLegalOrCustom(Cond, VT) || | 
|  | !isOperationLegalOrCustom(ISD::VSELECT, VT)) | 
|  | return SDValue(); | 
|  |  | 
|  | Created.push_back(Fold.getNode()); | 
|  |  | 
|  | SDValue IntMin = DAG.getConstant( | 
|  | APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); | 
|  | SDValue IntMax = DAG.getConstant( | 
|  | APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); | 
|  | SDValue Zero = | 
|  | DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); | 
|  |  | 
|  | // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. | 
|  | SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); | 
|  | Created.push_back(DivisorIsIntMin.getNode()); | 
|  |  | 
|  | // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0 | 
|  | SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); | 
|  | Created.push_back(Masked.getNode()); | 
|  | SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); | 
|  | Created.push_back(MaskedIsZero.getNode()); | 
|  |  | 
|  | // To produce final result we need to blend 2 vectors: 'SetCC' and | 
|  | // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick | 
|  | // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is | 
|  | // constant-folded, select can get lowered to a shuffle with constant mask. | 
|  | SDValue Blended = | 
|  | DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); | 
|  |  | 
|  | return Blended; | 
|  | } | 
|  |  | 
|  | bool TargetLowering:: | 
|  | verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(0))) { | 
|  | DAG.getContext()->emitError("argument to '__builtin_return_address' must " | 
|  | "be a constant integer"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, | 
|  | bool LegalOperations, bool ForCodeSize, | 
|  | unsigned Depth) const { | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) | 
|  | return 2; | 
|  |  | 
|  | // Don't allow anything with multiple uses unless we know it is free. | 
|  | EVT VT = Op.getValueType(); | 
|  | const SDNodeFlags Flags = Op->getFlags(); | 
|  | const TargetOptions &Options = DAG.getTarget().Options; | 
|  | if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && | 
|  | isFPExtFree(VT, Op.getOperand(0).getValueType()))) | 
|  | return 0; | 
|  |  | 
|  | // Don't recurse exponentially. | 
|  | if (Depth > SelectionDAG::MaxRecursionDepth) | 
|  | return 0; | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::ConstantFP: { | 
|  | if (!LegalOperations) | 
|  | return 1; | 
|  |  | 
|  | // Don't invert constant FP values after legalization unless the target says | 
|  | // the negated constant is legal. | 
|  | return isOperationLegal(ISD::ConstantFP, VT) || | 
|  | isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, | 
|  | ForCodeSize); | 
|  | } | 
|  | case ISD::BUILD_VECTOR: { | 
|  | // Only permit BUILD_VECTOR of constants. | 
|  | if (llvm::any_of(Op->op_values(), [&](SDValue N) { | 
|  | return !N.isUndef() && !isa<ConstantFPSDNode>(N); | 
|  | })) | 
|  | return 0; | 
|  | if (!LegalOperations) | 
|  | return 1; | 
|  | if (isOperationLegal(ISD::ConstantFP, VT) && | 
|  | isOperationLegal(ISD::BUILD_VECTOR, VT)) | 
|  | return 1; | 
|  | return llvm::all_of(Op->op_values(), [&](SDValue N) { | 
|  | return N.isUndef() || | 
|  | isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, | 
|  | ForCodeSize); | 
|  | }); | 
|  | } | 
|  | case ISD::FADD: | 
|  | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) | 
|  | return 0; | 
|  |  | 
|  | // After operation legalization, it might not be legal to create new FSUBs. | 
|  | if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) | 
|  | return 0; | 
|  |  | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1)) | 
|  | return V; | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | 
|  | return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  | case ISD::FSUB: | 
|  | // We can't turn -(A-B) into B-A when we honor signed zeros. | 
|  | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) | 
|  | return 0; | 
|  |  | 
|  | // fold (fneg (fsub A, B)) -> (fsub B, A) | 
|  | return 1; | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) | 
|  | if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1)) | 
|  | return V; | 
|  |  | 
|  | // Ignore X * 2.0 because that is expected to be canonicalized to X + X. | 
|  | if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) | 
|  | if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) | 
|  | return 0; | 
|  |  | 
|  | return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  |  | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: { | 
|  | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) | 
|  | return 0; | 
|  |  | 
|  | // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) | 
|  | // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) | 
|  | char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  | if (!V2) | 
|  | return 0; | 
|  |  | 
|  | // One of Op0/Op1 must be cheaply negatible, then select the cheapest. | 
|  | char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  | char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  | char V01 = std::max(V0, V1); | 
|  | return V01 ? std::max(V01, V2) : 0; | 
|  | } | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FSIN: | 
|  | return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, | 
|  | bool LegalOperations, | 
|  | bool ForCodeSize, | 
|  | unsigned Depth) const { | 
|  | // fneg is removable even if it has multiple uses. | 
|  | if (Op.getOpcode() == ISD::FNEG) | 
|  | return Op.getOperand(0); | 
|  |  | 
|  | assert(Depth <= SelectionDAG::MaxRecursionDepth && | 
|  | "getNegatedExpression doesn't match isNegatibleForFree"); | 
|  | const SDNodeFlags Flags = Op->getFlags(); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::ConstantFP: { | 
|  | APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); | 
|  | V.changeSign(); | 
|  | return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); | 
|  | } | 
|  | case ISD::BUILD_VECTOR: { | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (SDValue C : Op->op_values()) { | 
|  | if (C.isUndef()) { | 
|  | Ops.push_back(C); | 
|  | continue; | 
|  | } | 
|  | APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); | 
|  | V.changeSign(); | 
|  | Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); | 
|  | } | 
|  | return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); | 
|  | } | 
|  | case ISD::FADD: | 
|  | assert((DAG.getTarget().Options.NoSignedZerosFPMath || | 
|  | Flags.hasNoSignedZeros()) && | 
|  | "Expected NSZ fp-flag"); | 
|  |  | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) | 
|  | if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, | 
|  | Depth + 1)) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | getNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), | 
|  | Op.getOperand(1), Flags); | 
|  | // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | getNegatedExpression(Op.getOperand(1), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), | 
|  | Op.getOperand(0), Flags); | 
|  | case ISD::FSUB: | 
|  | // fold (fneg (fsub 0, B)) -> B | 
|  | if (ConstantFPSDNode *N0CFP = | 
|  | isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) | 
|  | if (N0CFP->isZero()) | 
|  | return Op.getOperand(1); | 
|  |  | 
|  | // fold (fneg (fsub A, B)) -> (fsub B, A) | 
|  | return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(1), Op.getOperand(0), Flags); | 
|  |  | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) | 
|  | if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, | 
|  | Depth + 1)) | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | getNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), | 
|  | Op.getOperand(1), Flags); | 
|  |  | 
|  | // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) | 
|  | return DAG.getNode( | 
|  | Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), | 
|  | getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1), | 
|  | Flags); | 
|  |  | 
|  | case ISD::FMA: | 
|  | case ISD::FMAD: { | 
|  | assert((DAG.getTarget().Options.NoSignedZerosFPMath || | 
|  | Flags.hasNoSignedZeros()) && | 
|  | "Expected NSZ fp-flag"); | 
|  |  | 
|  | SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  |  | 
|  | char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  | char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  | // TODO: This is a hack. It is possible that costs have changed between now | 
|  | //       and the initial calls to isNegatibleForFree(). That is because we | 
|  | //       are rewriting the expression, and that may change the number of | 
|  | //       uses (and therefore the cost) of values. If the negation costs are | 
|  | //       equal, only negate this value if it is a constant. Otherwise, try | 
|  | //       operand 1. A better fix would eliminate uses as a cost factor or | 
|  | //       track the change in uses as we rewrite the expression. | 
|  | if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) { | 
|  | // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) | 
|  | SDValue Neg0 = getNegatedExpression( | 
|  | Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, | 
|  | Op.getOperand(1), Neg2, Flags); | 
|  | } | 
|  |  | 
|  | // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) | 
|  | SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, | 
|  | ForCodeSize, Depth + 1); | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | Op.getOperand(0), Neg1, Neg2, Flags); | 
|  | } | 
|  |  | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FSIN: | 
|  | return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), | 
|  | getNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1)); | 
|  | case ISD::FP_ROUND: | 
|  | return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), | 
|  | getNegatedExpression(Op.getOperand(0), DAG, | 
|  | LegalOperations, ForCodeSize, | 
|  | Depth + 1), | 
|  | Op.getOperand(1)); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unknown code"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Legalization Utilities | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, | 
|  | SDValue LHS, SDValue RHS, | 
|  | SmallVectorImpl<SDValue> &Result, | 
|  | EVT HiLoVT, SelectionDAG &DAG, | 
|  | MulExpansionKind Kind, SDValue LL, | 
|  | SDValue LH, SDValue RL, SDValue RH) const { | 
|  | assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || | 
|  | Opcode == ISD::SMUL_LOHI); | 
|  |  | 
|  | bool HasMULHS = (Kind == MulExpansionKind::Always) || | 
|  | isOperationLegalOrCustom(ISD::MULHS, HiLoVT); | 
|  | bool HasMULHU = (Kind == MulExpansionKind::Always) || | 
|  | isOperationLegalOrCustom(ISD::MULHU, HiLoVT); | 
|  | bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || | 
|  | isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); | 
|  | bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || | 
|  | isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); | 
|  |  | 
|  | if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) | 
|  | return false; | 
|  |  | 
|  | unsigned OuterBitSize = VT.getScalarSizeInBits(); | 
|  | unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); | 
|  | unsigned LHSSB = DAG.ComputeNumSignBits(LHS); | 
|  | unsigned RHSSB = DAG.ComputeNumSignBits(RHS); | 
|  |  | 
|  | // LL, LH, RL, and RH must be either all NULL or all set to a value. | 
|  | assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || | 
|  | (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); | 
|  |  | 
|  | SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); | 
|  | auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, | 
|  | bool Signed) -> bool { | 
|  | if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { | 
|  | Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); | 
|  | Hi = SDValue(Lo.getNode(), 1); | 
|  | return true; | 
|  | } | 
|  | if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { | 
|  | Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); | 
|  | Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | SDValue Lo, Hi; | 
|  |  | 
|  | if (!LL.getNode() && !RL.getNode() && | 
|  | isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { | 
|  | LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); | 
|  | RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); | 
|  | } | 
|  |  | 
|  | if (!LL.getNode()) | 
|  | return false; | 
|  |  | 
|  | APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); | 
|  | if (DAG.MaskedValueIsZero(LHS, HighMask) && | 
|  | DAG.MaskedValueIsZero(RHS, HighMask)) { | 
|  | // The inputs are both zero-extended. | 
|  | if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { | 
|  | Result.push_back(Lo); | 
|  | Result.push_back(Hi); | 
|  | if (Opcode != ISD::MUL) { | 
|  | SDValue Zero = DAG.getConstant(0, dl, HiLoVT); | 
|  | Result.push_back(Zero); | 
|  | Result.push_back(Zero); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && | 
|  | RHSSB > InnerBitSize) { | 
|  | // The input values are both sign-extended. | 
|  | // TODO non-MUL case? | 
|  | if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { | 
|  | Result.push_back(Lo); | 
|  | Result.push_back(Hi); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ShiftAmount = OuterBitSize - InnerBitSize; | 
|  | EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { | 
|  | // FIXME getShiftAmountTy does not always return a sensible result when VT | 
|  | // is an illegal type, and so the type may be too small to fit the shift | 
|  | // amount. Override it with i32. The shift will have to be legalized. | 
|  | ShiftAmountTy = MVT::i32; | 
|  | } | 
|  | SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); | 
|  |  | 
|  | if (!LH.getNode() && !RH.getNode() && | 
|  | isOperationLegalOrCustom(ISD::SRL, VT) && | 
|  | isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { | 
|  | LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); | 
|  | LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); | 
|  | RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); | 
|  | RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); | 
|  | } | 
|  |  | 
|  | if (!LH.getNode()) | 
|  | return false; | 
|  |  | 
|  | if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) | 
|  | return false; | 
|  |  | 
|  | Result.push_back(Lo); | 
|  |  | 
|  | if (Opcode == ISD::MUL) { | 
|  | RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); | 
|  | LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); | 
|  | Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); | 
|  | Result.push_back(Hi); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Compute the full width result. | 
|  | auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { | 
|  | Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); | 
|  | Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); | 
|  | Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); | 
|  | return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); | 
|  | }; | 
|  |  | 
|  | SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); | 
|  | if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) | 
|  | return false; | 
|  |  | 
|  | // This is effectively the add part of a multiply-add of half-sized operands, | 
|  | // so it cannot overflow. | 
|  | Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); | 
|  |  | 
|  | if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) | 
|  | return false; | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, dl, HiLoVT); | 
|  | EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  |  | 
|  | bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && | 
|  | isOperationLegalOrCustom(ISD::ADDE, VT)); | 
|  | if (UseGlue) | 
|  | Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, | 
|  | Merge(Lo, Hi)); | 
|  | else | 
|  | Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, | 
|  | Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); | 
|  |  | 
|  | SDValue Carry = Next.getValue(1); | 
|  | Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); | 
|  | Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); | 
|  |  | 
|  | if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) | 
|  | return false; | 
|  |  | 
|  | if (UseGlue) | 
|  | Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, | 
|  | Carry); | 
|  | else | 
|  | Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, | 
|  | Zero, Carry); | 
|  |  | 
|  | Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); | 
|  |  | 
|  | if (Opcode == ISD::SMUL_LOHI) { | 
|  | SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); | 
|  | Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); | 
|  |  | 
|  | NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, | 
|  | DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); | 
|  | Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); | 
|  | } | 
|  |  | 
|  | Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); | 
|  | Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); | 
|  | Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, | 
|  | SelectionDAG &DAG, MulExpansionKind Kind, | 
|  | SDValue LL, SDValue LH, SDValue RL, | 
|  | SDValue RH) const { | 
|  | SmallVector<SDValue, 2> Result; | 
|  | bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, | 
|  | N->getOperand(0), N->getOperand(1), Result, HiLoVT, | 
|  | DAG, Kind, LL, LH, RL, RH); | 
|  | if (Ok) { | 
|  | assert(Result.size() == 2); | 
|  | Lo = Result[0]; | 
|  | Hi = Result[1]; | 
|  | } | 
|  | return Ok; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Node->getValueType(0); | 
|  |  | 
|  | if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || | 
|  | !isOperationLegalOrCustom(ISD::SRL, VT) || | 
|  | !isOperationLegalOrCustom(ISD::SUB, VT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) | 
|  | return false; | 
|  |  | 
|  | // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) | 
|  | // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) | 
|  | SDValue X = Node->getOperand(0); | 
|  | SDValue Y = Node->getOperand(1); | 
|  | SDValue Z = Node->getOperand(2); | 
|  |  | 
|  | unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
|  | bool IsFSHL = Node->getOpcode() == ISD::FSHL; | 
|  | SDLoc DL(SDValue(Node, 0)); | 
|  |  | 
|  | EVT ShVT = Z.getValueType(); | 
|  | SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); | 
|  | SDValue Zero = DAG.getConstant(0, DL, ShVT); | 
|  |  | 
|  | SDValue ShAmt; | 
|  | if (isPowerOf2_32(EltSizeInBits)) { | 
|  | SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); | 
|  | ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); | 
|  | } else { | 
|  | ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); | 
|  | } | 
|  |  | 
|  | SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); | 
|  | SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); | 
|  | SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); | 
|  | SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); | 
|  |  | 
|  | // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, | 
|  | // and that is undefined. We must compare and select to avoid UB. | 
|  | EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); | 
|  |  | 
|  | // For fshl, 0-shift returns the 1st arg (X). | 
|  | // For fshr, 0-shift returns the 2nd arg (Y). | 
|  | SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); | 
|  | Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO: Merge with expandFunnelShift. | 
|  | bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, | 
|  | SelectionDAG &DAG) const { | 
|  | EVT VT = Node->getValueType(0); | 
|  | unsigned EltSizeInBits = VT.getScalarSizeInBits(); | 
|  | bool IsLeft = Node->getOpcode() == ISD::ROTL; | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | SDLoc DL(SDValue(Node, 0)); | 
|  |  | 
|  | EVT ShVT = Op1.getValueType(); | 
|  | SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); | 
|  |  | 
|  | // If a rotate in the other direction is legal, use it. | 
|  | unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; | 
|  | if (isOperationLegal(RevRot, VT)) { | 
|  | SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); | 
|  | Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || | 
|  | !isOperationLegalOrCustom(ISD::SRL, VT) || | 
|  | !isOperationLegalOrCustom(ISD::SUB, VT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, | 
|  | //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) | 
|  | //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) | 
|  | // | 
|  | assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && | 
|  | "Expecting the type bitwidth to be a power of 2"); | 
|  | unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; | 
|  | unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; | 
|  | SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); | 
|  | SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); | 
|  | SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); | 
|  | SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); | 
|  | Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), | 
|  | DAG.getNode(HsOpc, DL, VT, Op0, And1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; | 
|  | SDValue Src = Node->getOperand(OpNo); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | EVT DstVT = Node->getValueType(0); | 
|  | SDLoc dl(SDValue(Node, 0)); | 
|  |  | 
|  | // FIXME: Only f32 to i64 conversions are supported. | 
|  | if (SrcVT != MVT::f32 || DstVT != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | if (Node->isStrictFPOpcode()) | 
|  | // When a NaN is converted to an integer a trap is allowed. We can't | 
|  | // use this expansion here because it would eliminate that trap. Other | 
|  | // traps are also allowed and cannot be eliminated. See | 
|  | // IEEE 754-2008 sec 5.8. | 
|  | return false; | 
|  |  | 
|  | // Expand f32 -> i64 conversion | 
|  | // This algorithm comes from compiler-rt's implementation of fixsfdi: | 
|  | // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c | 
|  | unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); | 
|  | EVT IntVT = SrcVT.changeTypeToInteger(); | 
|  | EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); | 
|  |  | 
|  | SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); | 
|  | SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); | 
|  | SDValue Bias = DAG.getConstant(127, dl, IntVT); | 
|  | SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); | 
|  | SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); | 
|  | SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); | 
|  |  | 
|  | SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); | 
|  |  | 
|  | SDValue ExponentBits = DAG.getNode( | 
|  | ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), | 
|  | DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); | 
|  | SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); | 
|  |  | 
|  | SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, | 
|  | DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), | 
|  | DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); | 
|  | Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); | 
|  |  | 
|  | SDValue R = DAG.getNode(ISD::OR, dl, IntVT, | 
|  | DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), | 
|  | DAG.getConstant(0x00800000, dl, IntVT)); | 
|  |  | 
|  | R = DAG.getZExtOrTrunc(R, dl, DstVT); | 
|  |  | 
|  | R = DAG.getSelectCC( | 
|  | dl, Exponent, ExponentLoBit, | 
|  | DAG.getNode(ISD::SHL, dl, DstVT, R, | 
|  | DAG.getZExtOrTrunc( | 
|  | DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), | 
|  | dl, IntShVT)), | 
|  | DAG.getNode(ISD::SRL, dl, DstVT, R, | 
|  | DAG.getZExtOrTrunc( | 
|  | DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), | 
|  | dl, IntShVT)), | 
|  | ISD::SETGT); | 
|  |  | 
|  | SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, | 
|  | DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); | 
|  |  | 
|  | Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), | 
|  | DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, | 
|  | SDValue &Chain, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(SDValue(Node, 0)); | 
|  | unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; | 
|  | SDValue Src = Node->getOperand(OpNo); | 
|  |  | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | EVT DstVT = Node->getValueType(0); | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); | 
|  | EVT DstSetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); | 
|  |  | 
|  | // Only expand vector types if we have the appropriate vector bit operations. | 
|  | unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : | 
|  | ISD::FP_TO_SINT; | 
|  | if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) | 
|  | return false; | 
|  |  | 
|  | // If the maximum float value is smaller then the signed integer range, | 
|  | // the destination signmask can't be represented by the float, so we can | 
|  | // just use FP_TO_SINT directly. | 
|  | const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); | 
|  | APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); | 
|  | APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); | 
|  | if (APFloat::opOverflow & | 
|  | APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { | 
|  | if (Node->isStrictFPOpcode()) { | 
|  | Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, | 
|  | { Node->getOperand(0), Src }); | 
|  | Chain = Result.getValue(1); | 
|  | } else | 
|  | Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); | 
|  | SDValue Sel; | 
|  |  | 
|  | if (Node->isStrictFPOpcode()) | 
|  | Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, | 
|  | Node->getOperand(0), /*IsSignaling*/ true); | 
|  | else | 
|  | Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); | 
|  |  | 
|  | bool Strict = Node->isStrictFPOpcode() || | 
|  | shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); | 
|  |  | 
|  | if (Strict) { | 
|  | // Expand based on maximum range of FP_TO_SINT, if the value exceeds the | 
|  | // signmask then offset (the result of which should be fully representable). | 
|  | // Sel = Src < 0x8000000000000000 | 
|  | // FltOfs = select Sel, 0, 0x8000000000000000 | 
|  | // IntOfs = select Sel, 0, 0x8000000000000000 | 
|  | // Result = fp_to_sint(Src - FltOfs) ^ IntOfs | 
|  |  | 
|  | // TODO: Should any fast-math-flags be set for the FSUB? | 
|  | SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, | 
|  | DAG.getConstantFP(0.0, dl, SrcVT), Cst); | 
|  | Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); | 
|  | SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, | 
|  | DAG.getConstant(0, dl, DstVT), | 
|  | DAG.getConstant(SignMask, dl, DstVT)); | 
|  | SDValue SInt; | 
|  | if (Node->isStrictFPOpcode()) { | 
|  | SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, | 
|  | { Node->getOperand(0), Src, FltOfs }); | 
|  | SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, | 
|  | { Val.getValue(1), Val }); | 
|  | Chain = SInt.getValue(1); | 
|  | } else { | 
|  | SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); | 
|  | SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); | 
|  | } | 
|  | Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); | 
|  | } else { | 
|  | // Expand based on maximum range of FP_TO_SINT: | 
|  | // True = fp_to_sint(Src) | 
|  | // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) | 
|  | // Result = select (Src < 0x8000000000000000), True, False | 
|  |  | 
|  | SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); | 
|  | // TODO: Should any fast-math-flags be set for the FSUB? | 
|  | SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, | 
|  | DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); | 
|  | False = DAG.getNode(ISD::XOR, dl, DstVT, False, | 
|  | DAG.getConstant(SignMask, dl, DstVT)); | 
|  | Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); | 
|  | Result = DAG.getSelect(dl, DstVT, Sel, True, False); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, | 
|  | SDValue &Chain, | 
|  | SelectionDAG &DAG) const { | 
|  | unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; | 
|  | SDValue Src = Node->getOperand(OpNo); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | EVT DstVT = Node->getValueType(0); | 
|  |  | 
|  | if (SrcVT.getScalarType() != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | SDLoc dl(SDValue(Node, 0)); | 
|  | EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); | 
|  |  | 
|  | if (DstVT.getScalarType() == MVT::f32) { | 
|  | // Only expand vector types if we have the appropriate vector bit | 
|  | // operations. | 
|  | if (SrcVT.isVector() && | 
|  | (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || | 
|  | !isOperationLegalOrCustom(ISD::FADD, DstVT) || | 
|  | !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) | 
|  | return false; | 
|  |  | 
|  | // For unsigned conversions, convert them to signed conversions using the | 
|  | // algorithm from the x86_64 __floatundisf in compiler_rt. | 
|  |  | 
|  | // TODO: This really should be implemented using a branch rather than a | 
|  | // select.  We happen to get lucky and machinesink does the right | 
|  | // thing most of the time.  This would be a good candidate for a | 
|  | // pseudo-op, or, even better, for whole-function isel. | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); | 
|  |  | 
|  | SDValue SignBitTest = DAG.getSetCC( | 
|  | dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); | 
|  |  | 
|  | SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); | 
|  | SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); | 
|  | SDValue AndConst = DAG.getConstant(1, dl, SrcVT); | 
|  | SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); | 
|  | SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); | 
|  |  | 
|  | SDValue Slow, Fast; | 
|  | if (Node->isStrictFPOpcode()) { | 
|  | // In strict mode, we must avoid spurious exceptions, and therefore | 
|  | // must make sure to only emit a single STRICT_SINT_TO_FP. | 
|  | SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Src); | 
|  | Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DstVT, MVT::Other }, | 
|  | { Node->getOperand(0), InCvt }); | 
|  | Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other }, | 
|  | { Fast.getValue(1), Fast, Fast }); | 
|  | Chain = Slow.getValue(1); | 
|  | // The STRICT_SINT_TO_FP inherits the exception mode from the | 
|  | // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can | 
|  | // never raise any exception. | 
|  | SDNodeFlags Flags; | 
|  | Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); | 
|  | Fast->setFlags(Flags); | 
|  | Flags.setNoFPExcept(true); | 
|  | Slow->setFlags(Flags); | 
|  | } else { | 
|  | SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); | 
|  | Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); | 
|  | Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); | 
|  | } | 
|  |  | 
|  | Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (DstVT.getScalarType() == MVT::f64) { | 
|  | // Only expand vector types if we have the appropriate vector bit | 
|  | // operations. | 
|  | if (SrcVT.isVector() && | 
|  | (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || | 
|  | !isOperationLegalOrCustom(ISD::FADD, DstVT) || | 
|  | !isOperationLegalOrCustom(ISD::FSUB, DstVT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) | 
|  | return false; | 
|  |  | 
|  | // Implementation of unsigned i64 to f64 following the algorithm in | 
|  | // __floatundidf in compiler_rt. This implementation has the advantage | 
|  | // of performing rounding correctly, both in the default rounding mode | 
|  | // and in all alternate rounding modes. | 
|  | SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); | 
|  | SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( | 
|  | BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); | 
|  | SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); | 
|  | SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); | 
|  | SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); | 
|  |  | 
|  | SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); | 
|  | SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); | 
|  | SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); | 
|  | SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); | 
|  | SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); | 
|  | SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); | 
|  | if (Node->isStrictFPOpcode()) { | 
|  | SDValue HiSub = | 
|  | DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, | 
|  | {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); | 
|  | Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, | 
|  | {HiSub.getValue(1), LoFlt, HiSub}); | 
|  | Chain = Result.getValue(1); | 
|  | } else { | 
|  | SDValue HiSub = | 
|  | DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); | 
|  | Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Node); | 
|  | unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? | 
|  | ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (isOperationLegalOrCustom(NewOp, VT)) { | 
|  | SDValue Quiet0 = Node->getOperand(0); | 
|  | SDValue Quiet1 = Node->getOperand(1); | 
|  |  | 
|  | if (!Node->getFlags().hasNoNaNs()) { | 
|  | // Insert canonicalizes if it's possible we need to quiet to get correct | 
|  | // sNaN behavior. | 
|  | if (!DAG.isKnownNeverSNaN(Quiet0)) { | 
|  | Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, | 
|  | Node->getFlags()); | 
|  | } | 
|  | if (!DAG.isKnownNeverSNaN(Quiet1)) { | 
|  | Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, | 
|  | Node->getFlags()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); | 
|  | } | 
|  |  | 
|  | // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that | 
|  | // instead if there are no NaNs. | 
|  | if (Node->getFlags().hasNoNaNs()) { | 
|  | unsigned IEEE2018Op = | 
|  | Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; | 
|  | if (isOperationLegalOrCustom(IEEE2018Op, VT)) { | 
|  | return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), | 
|  | Node->getOperand(1), Node->getFlags()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If none of the above worked, but there are no NaNs, then expand to | 
|  | // a compare/select sequence.  This is required for correctness since | 
|  | // InstCombine might have canonicalized a fcmp+select sequence to a | 
|  | // FMINNUM/FMAXNUM node.  If we were to fall through to the default | 
|  | // expansion to libcall, we might introduce a link-time dependency | 
|  | // on libm into a file that originally did not have one. | 
|  | if (Node->getFlags().hasNoNaNs()) { | 
|  | ISD::CondCode Pred = | 
|  | Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; | 
|  | SDValue Op1 = Node->getOperand(0); | 
|  | SDValue Op2 = Node->getOperand(1); | 
|  | SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); | 
|  | // Copy FMF flags, but always set the no-signed-zeros flag | 
|  | // as this is implied by the FMINNUM/FMAXNUM semantics. | 
|  | SDNodeFlags Flags = Node->getFlags(); | 
|  | Flags.setNoSignedZeros(true); | 
|  | SelCC->setFlags(Flags); | 
|  | return SelCC; | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | SDValue Op = Node->getOperand(0); | 
|  | unsigned Len = VT.getScalarSizeInBits(); | 
|  | assert(VT.isInteger() && "CTPOP not implemented for this type."); | 
|  |  | 
|  | // TODO: Add support for irregular type lengths. | 
|  | if (!(Len <= 128 && Len % 8 == 0)) | 
|  | return false; | 
|  |  | 
|  | // Only expand vector types if we have the appropriate vector bit operations. | 
|  | if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || | 
|  | !isOperationLegalOrCustom(ISD::SUB, VT) || | 
|  | !isOperationLegalOrCustom(ISD::SRL, VT) || | 
|  | (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) | 
|  | return false; | 
|  |  | 
|  | // This is the "best" algorithm from | 
|  | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel | 
|  | SDValue Mask55 = | 
|  | DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); | 
|  | SDValue Mask33 = | 
|  | DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); | 
|  | SDValue Mask0F = | 
|  | DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); | 
|  | SDValue Mask01 = | 
|  | DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); | 
|  |  | 
|  | // v = v - ((v >> 1) & 0x55555555...) | 
|  | Op = DAG.getNode(ISD::SUB, dl, VT, Op, | 
|  | DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(1, dl, ShVT)), | 
|  | Mask55)); | 
|  | // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) | 
|  | Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), | 
|  | DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(2, dl, ShVT)), | 
|  | Mask33)); | 
|  | // v = (v + (v >> 4)) & 0x0F0F0F0F... | 
|  | Op = DAG.getNode(ISD::AND, dl, VT, | 
|  | DAG.getNode(ISD::ADD, dl, VT, Op, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, | 
|  | DAG.getConstant(4, dl, ShVT))), | 
|  | Mask0F); | 
|  | // v = (v * 0x01010101...) >> (Len - 8) | 
|  | if (Len > 8) | 
|  | Op = | 
|  | DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), | 
|  | DAG.getConstant(Len - 8, dl, ShVT)); | 
|  |  | 
|  | Result = Op; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | SDValue Op = Node->getOperand(0); | 
|  | unsigned NumBitsPerElt = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // If the non-ZERO_UNDEF version is supported we can use that instead. | 
|  | if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && | 
|  | isOperationLegalOrCustom(ISD::CTLZ, VT)) { | 
|  | Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the ZERO_UNDEF version is supported use that and handle the zero case. | 
|  | if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  | SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  | SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); | 
|  | Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, | 
|  | DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Only expand vector types if we have the appropriate vector bit operations. | 
|  | if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || | 
|  | !isOperationLegalOrCustom(ISD::CTPOP, VT) || | 
|  | !isOperationLegalOrCustom(ISD::SRL, VT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) | 
|  | return false; | 
|  |  | 
|  | // for now, we do this: | 
|  | // x = x | (x >> 1); | 
|  | // x = x | (x >> 2); | 
|  | // ... | 
|  | // x = x | (x >>16); | 
|  | // x = x | (x >>32); // for 64-bit input | 
|  | // return popcount(~x); | 
|  | // | 
|  | // Ref: "Hacker's Delight" by Henry Warren | 
|  | for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { | 
|  | SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); | 
|  | Op = DAG.getNode(ISD::OR, dl, VT, Op, | 
|  | DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); | 
|  | } | 
|  | Op = DAG.getNOT(dl, Op, VT); | 
|  | Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDValue Op = Node->getOperand(0); | 
|  | unsigned NumBitsPerElt = VT.getScalarSizeInBits(); | 
|  |  | 
|  | // If the non-ZERO_UNDEF version is supported we can use that instead. | 
|  | if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && | 
|  | isOperationLegalOrCustom(ISD::CTTZ, VT)) { | 
|  | Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the ZERO_UNDEF version is supported use that and handle the zero case. | 
|  | if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  | SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  | SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); | 
|  | Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, | 
|  | DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Only expand vector types if we have the appropriate vector bit operations. | 
|  | if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || | 
|  | (!isOperationLegalOrCustom(ISD::CTPOP, VT) && | 
|  | !isOperationLegalOrCustom(ISD::CTLZ, VT)) || | 
|  | !isOperationLegalOrCustom(ISD::SUB, VT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) | 
|  | return false; | 
|  |  | 
|  | // for now, we use: { return popcount(~x & (x - 1)); } | 
|  | // unless the target has ctlz but not ctpop, in which case we use: | 
|  | // { return 32 - nlz(~x & (x-1)); } | 
|  | // Ref: "Hacker's Delight" by Henry Warren | 
|  | SDValue Tmp = DAG.getNode( | 
|  | ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), | 
|  | DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); | 
|  |  | 
|  | // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. | 
|  | if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { | 
|  | Result = | 
|  | DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), | 
|  | DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandABS(SDNode *N, SDValue &Result, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | SDValue Op = N->getOperand(0); | 
|  |  | 
|  | // Only expand vector types if we have the appropriate vector operations. | 
|  | if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || | 
|  | !isOperationLegalOrCustom(ISD::ADD, VT) || | 
|  | !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) | 
|  | return false; | 
|  |  | 
|  | SDValue Shift = | 
|  | DAG.getNode(ISD::SRA, dl, VT, Op, | 
|  | DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); | 
|  | SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); | 
|  | Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(LD); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue BasePTR = LD->getBasePtr(); | 
|  | EVT SrcVT = LD->getMemoryVT(); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  |  | 
|  | unsigned NumElem = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | EVT SrcEltVT = SrcVT.getScalarType(); | 
|  | EVT DstEltVT = LD->getValueType(0).getScalarType(); | 
|  |  | 
|  | unsigned Stride = SrcEltVT.getSizeInBits() / 8; | 
|  | assert(SrcEltVT.isByteSized()); | 
|  |  | 
|  | SmallVector<SDValue, 8> Vals; | 
|  | SmallVector<SDValue, 8> LoadChains; | 
|  |  | 
|  | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { | 
|  | SDValue ScalarLoad = | 
|  | DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, | 
|  | LD->getPointerInfo().getWithOffset(Idx * Stride), | 
|  | SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  |  | 
|  | BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); | 
|  |  | 
|  | Vals.push_back(ScalarLoad.getValue(0)); | 
|  | LoadChains.push_back(ScalarLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); | 
|  | SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); | 
|  |  | 
|  | return std::make_pair(Value, NewChain); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, | 
|  | SelectionDAG &DAG) const { | 
|  | SDLoc SL(ST); | 
|  |  | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue BasePtr = ST->getBasePtr(); | 
|  | SDValue Value = ST->getValue(); | 
|  | EVT StVT = ST->getMemoryVT(); | 
|  |  | 
|  | // The type of the data we want to save | 
|  | EVT RegVT = Value.getValueType(); | 
|  | EVT RegSclVT = RegVT.getScalarType(); | 
|  |  | 
|  | // The type of data as saved in memory. | 
|  | EVT MemSclVT = StVT.getScalarType(); | 
|  |  | 
|  | EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); | 
|  | unsigned NumElem = StVT.getVectorNumElements(); | 
|  |  | 
|  | // A vector must always be stored in memory as-is, i.e. without any padding | 
|  | // between the elements, since various code depend on it, e.g. in the | 
|  | // handling of a bitcast of a vector type to int, which may be done with a | 
|  | // vector store followed by an integer load. A vector that does not have | 
|  | // elements that are byte-sized must therefore be stored as an integer | 
|  | // built out of the extracted vector elements. | 
|  | if (!MemSclVT.isByteSized()) { | 
|  | unsigned NumBits = StVT.getSizeInBits(); | 
|  | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); | 
|  |  | 
|  | SDValue CurrVal = DAG.getConstant(0, SL, IntVT); | 
|  |  | 
|  | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, | 
|  | DAG.getConstant(Idx, SL, IdxVT)); | 
|  | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); | 
|  | SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); | 
|  | unsigned ShiftIntoIdx = | 
|  | (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); | 
|  | SDValue ShiftAmount = | 
|  | DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); | 
|  | SDValue ShiftedElt = | 
|  | DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); | 
|  | CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); | 
|  | } | 
|  |  | 
|  | return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), | 
|  | ST->getAlignment(), ST->getMemOperand()->getFlags(), | 
|  | ST->getAAInfo()); | 
|  | } | 
|  |  | 
|  | // Store Stride in bytes | 
|  | unsigned Stride = MemSclVT.getSizeInBits() / 8; | 
|  | assert(Stride && "Zero stride!"); | 
|  | // Extract each of the elements from the original vector and save them into | 
|  | // memory individually. | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { | 
|  | SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, | 
|  | DAG.getConstant(Idx, SL, IdxVT)); | 
|  |  | 
|  | SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); | 
|  |  | 
|  | // This scalar TruncStore may be illegal, but we legalize it later. | 
|  | SDValue Store = DAG.getTruncStore( | 
|  | Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), | 
|  | MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), | 
|  | ST->getMemOperand()->getFlags(), ST->getAAInfo()); | 
|  |  | 
|  | Stores.push_back(Store); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, SDValue> | 
|  | TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { | 
|  | assert(LD->getAddressingMode() == ISD::UNINDEXED && | 
|  | "unaligned indexed loads not implemented!"); | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ptr = LD->getBasePtr(); | 
|  | EVT VT = LD->getValueType(0); | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  | SDLoc dl(LD); | 
|  | auto &MF = DAG.getMachineFunction(); | 
|  |  | 
|  | if (VT.isFloatingPoint() || VT.isVector()) { | 
|  | EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); | 
|  | if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { | 
|  | if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && | 
|  | LoadedVT.isVector()) { | 
|  | // Scalarize the load and let the individual components be handled. | 
|  | return scalarizeVectorLoad(LD, DAG); | 
|  | } | 
|  |  | 
|  | // Expand to a (misaligned) integer load of the same size, | 
|  | // then bitconvert to floating point or vector. | 
|  | SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, | 
|  | LD->getMemOperand()); | 
|  | SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); | 
|  | if (LoadedVT != VT) | 
|  | Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : | 
|  | ISD::ANY_EXTEND, dl, VT, Result); | 
|  |  | 
|  | return std::make_pair(Result, newLoad.getValue(1)); | 
|  | } | 
|  |  | 
|  | // Copy the value to a (aligned) stack slot using (unaligned) integer | 
|  | // loads and stores, then do a (aligned) load from the stack slot. | 
|  | MVT RegVT = getRegisterType(*DAG.getContext(), intVT); | 
|  | unsigned LoadedBytes = LoadedVT.getStoreSize(); | 
|  | unsigned RegBytes = RegVT.getSizeInBits() / 8; | 
|  | unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; | 
|  |  | 
|  | // Make sure the stack slot is also aligned for the register type. | 
|  | SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); | 
|  | auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | SDValue StackPtr = StackBase; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | EVT StackPtrVT = StackPtr.getValueType(); | 
|  |  | 
|  | SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); | 
|  | SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); | 
|  |  | 
|  | // Do all but one copies using the full register width. | 
|  | for (unsigned i = 1; i < NumRegs; i++) { | 
|  | // Load one integer register's worth from the original location. | 
|  | SDValue Load = DAG.getLoad( | 
|  | RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), | 
|  | MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), | 
|  | LD->getAAInfo()); | 
|  | // Follow the load with a store to the stack slot.  Remember the store. | 
|  | Stores.push_back(DAG.getStore( | 
|  | Load.getValue(1), dl, Load, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); | 
|  | // Increment the pointers. | 
|  | Offset += RegBytes; | 
|  |  | 
|  | Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); | 
|  | StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); | 
|  | } | 
|  |  | 
|  | // The last copy may be partial.  Do an extending load. | 
|  | EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), | 
|  | 8 * (LoadedBytes - Offset)); | 
|  | SDValue Load = | 
|  | DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(Offset), MemVT, | 
|  | MinAlign(LD->getAlignment(), Offset), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | // Follow the load with a store to the stack slot.  Remember the store. | 
|  | // On big-endian machines this requires a truncating store to ensure | 
|  | // that the bits end up in the right place. | 
|  | Stores.push_back(DAG.getTruncStore( | 
|  | Load.getValue(1), dl, Load, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); | 
|  |  | 
|  | // The order of the stores doesn't matter - say it with a TokenFactor. | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); | 
|  |  | 
|  | // Finally, perform the original load only redirected to the stack slot. | 
|  | Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), | 
|  | LoadedVT); | 
|  |  | 
|  | // Callers expect a MERGE_VALUES node. | 
|  | return std::make_pair(Load, TF); | 
|  | } | 
|  |  | 
|  | assert(LoadedVT.isInteger() && !LoadedVT.isVector() && | 
|  | "Unaligned load of unsupported type."); | 
|  |  | 
|  | // Compute the new VT that is half the size of the old one.  This is an | 
|  | // integer MVT. | 
|  | unsigned NumBits = LoadedVT.getSizeInBits(); | 
|  | EVT NewLoadedVT; | 
|  | NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); | 
|  | NumBits >>= 1; | 
|  |  | 
|  | unsigned Alignment = LD->getAlignment(); | 
|  | unsigned IncrementSize = NumBits / 8; | 
|  | ISD::LoadExtType HiExtType = LD->getExtensionType(); | 
|  |  | 
|  | // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. | 
|  | if (HiExtType == ISD::NON_EXTLOAD) | 
|  | HiExtType = ISD::ZEXTLOAD; | 
|  |  | 
|  | // Load the value in two parts | 
|  | SDValue Lo, Hi; | 
|  | if (DAG.getDataLayout().isLittleEndian()) { | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), | 
|  | NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), | 
|  | LD->getAAInfo()); | 
|  |  | 
|  | Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); | 
|  | Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | NewLoadedVT, MinAlign(Alignment, IncrementSize), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | } else { | 
|  | Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), | 
|  | NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), | 
|  | LD->getAAInfo()); | 
|  |  | 
|  | Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); | 
|  | Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, | 
|  | LD->getPointerInfo().getWithOffset(IncrementSize), | 
|  | NewLoadedVT, MinAlign(Alignment, IncrementSize), | 
|  | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | 
|  | } | 
|  |  | 
|  | // aggregate the two parts | 
|  | SDValue ShiftAmount = | 
|  | DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), | 
|  | DAG.getDataLayout())); | 
|  | SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); | 
|  | Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); | 
|  |  | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), | 
|  | Hi.getValue(1)); | 
|  |  | 
|  | return std::make_pair(Result, TF); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, | 
|  | SelectionDAG &DAG) const { | 
|  | assert(ST->getAddressingMode() == ISD::UNINDEXED && | 
|  | "unaligned indexed stores not implemented!"); | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDValue Ptr = ST->getBasePtr(); | 
|  | SDValue Val = ST->getValue(); | 
|  | EVT VT = Val.getValueType(); | 
|  | int Alignment = ST->getAlignment(); | 
|  | auto &MF = DAG.getMachineFunction(); | 
|  | EVT StoreMemVT = ST->getMemoryVT(); | 
|  |  | 
|  | SDLoc dl(ST); | 
|  | if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { | 
|  | EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); | 
|  | if (isTypeLegal(intVT)) { | 
|  | if (!isOperationLegalOrCustom(ISD::STORE, intVT) && | 
|  | StoreMemVT.isVector()) { | 
|  | // Scalarize the store and let the individual components be handled. | 
|  | SDValue Result = scalarizeVectorStore(ST, DAG); | 
|  | return Result; | 
|  | } | 
|  | // Expand to a bitconvert of the value to the integer type of the | 
|  | // same size, then a (misaligned) int store. | 
|  | // FIXME: Does not handle truncating floating point stores! | 
|  | SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); | 
|  | Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), | 
|  | Alignment, ST->getMemOperand()->getFlags()); | 
|  | return Result; | 
|  | } | 
|  | // Do a (aligned) store to a stack slot, then copy from the stack slot | 
|  | // to the final destination using (unaligned) integer loads and stores. | 
|  | MVT RegVT = getRegisterType( | 
|  | *DAG.getContext(), | 
|  | EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); | 
|  | EVT PtrVT = Ptr.getValueType(); | 
|  | unsigned StoredBytes = StoreMemVT.getStoreSize(); | 
|  | unsigned RegBytes = RegVT.getSizeInBits() / 8; | 
|  | unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; | 
|  |  | 
|  | // Make sure the stack slot is also aligned for the register type. | 
|  | SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); | 
|  | auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); | 
|  |  | 
|  | // Perform the original store, only redirected to the stack slot. | 
|  | SDValue Store = DAG.getTruncStore( | 
|  | Chain, dl, Val, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); | 
|  |  | 
|  | EVT StackPtrVT = StackPtr.getValueType(); | 
|  |  | 
|  | SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); | 
|  | SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); | 
|  | SmallVector<SDValue, 8> Stores; | 
|  | unsigned Offset = 0; | 
|  |  | 
|  | // Do all but one copies using the full register width. | 
|  | for (unsigned i = 1; i < NumRegs; i++) { | 
|  | // Load one integer register's worth from the stack slot. | 
|  | SDValue Load = DAG.getLoad( | 
|  | RegVT, dl, Store, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); | 
|  | // Store it to the final location.  Remember the store. | 
|  | Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(Offset), | 
|  | MinAlign(ST->getAlignment(), Offset), | 
|  | ST->getMemOperand()->getFlags())); | 
|  | // Increment the pointers. | 
|  | Offset += RegBytes; | 
|  | StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); | 
|  | Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); | 
|  | } | 
|  |  | 
|  | // The last store may be partial.  Do a truncating store.  On big-endian | 
|  | // machines this requires an extending load from the stack slot to ensure | 
|  | // that the bits are in the right place. | 
|  | EVT LoadMemVT = | 
|  | EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); | 
|  |  | 
|  | // Load from the stack slot. | 
|  | SDValue Load = DAG.getExtLoad( | 
|  | ISD::EXTLOAD, dl, RegVT, Store, StackPtr, | 
|  | MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); | 
|  |  | 
|  | Stores.push_back( | 
|  | DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, | 
|  | MinAlign(ST->getAlignment(), Offset), | 
|  | ST->getMemOperand()->getFlags(), ST->getAAInfo())); | 
|  | // The order of the stores doesn't matter - say it with a TokenFactor. | 
|  | SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && | 
|  | "Unaligned store of unknown type."); | 
|  | // Get the half-size VT | 
|  | EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); | 
|  | int NumBits = NewStoredVT.getSizeInBits(); | 
|  | int IncrementSize = NumBits / 8; | 
|  |  | 
|  | // Divide the stored value in two parts. | 
|  | SDValue ShiftAmount = DAG.getConstant( | 
|  | NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); | 
|  | SDValue Lo = Val; | 
|  | SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); | 
|  |  | 
|  | // Store the two parts | 
|  | SDValue Store1, Store2; | 
|  | Store1 = DAG.getTruncStore(Chain, dl, | 
|  | DAG.getDataLayout().isLittleEndian() ? Lo : Hi, | 
|  | Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, | 
|  | ST->getMemOperand()->getFlags()); | 
|  |  | 
|  | Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); | 
|  | Alignment = MinAlign(Alignment, IncrementSize); | 
|  | Store2 = DAG.getTruncStore( | 
|  | Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, | 
|  | ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, | 
|  | ST->getMemOperand()->getFlags(), ST->getAAInfo()); | 
|  |  | 
|  | SDValue Result = | 
|  | DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, | 
|  | const SDLoc &DL, EVT DataVT, | 
|  | SelectionDAG &DAG, | 
|  | bool IsCompressedMemory) const { | 
|  | SDValue Increment; | 
|  | EVT AddrVT = Addr.getValueType(); | 
|  | EVT MaskVT = Mask.getValueType(); | 
|  | assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && | 
|  | "Incompatible types of Data and Mask"); | 
|  | if (IsCompressedMemory) { | 
|  | // Incrementing the pointer according to number of '1's in the mask. | 
|  | EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); | 
|  | SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); | 
|  | if (MaskIntVT.getSizeInBits() < 32) { | 
|  | MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); | 
|  | MaskIntVT = MVT::i32; | 
|  | } | 
|  |  | 
|  | // Count '1's with POPCNT. | 
|  | Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); | 
|  | Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); | 
|  | // Scale is an element size in bytes. | 
|  | SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, | 
|  | AddrVT); | 
|  | Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); | 
|  | } else | 
|  | Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); | 
|  |  | 
|  | return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); | 
|  | } | 
|  |  | 
|  | static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, | 
|  | SDValue Idx, | 
|  | EVT VecVT, | 
|  | const SDLoc &dl) { | 
|  | if (isa<ConstantSDNode>(Idx)) | 
|  | return Idx; | 
|  |  | 
|  | EVT IdxVT = Idx.getValueType(); | 
|  | unsigned NElts = VecVT.getVectorNumElements(); | 
|  | if (isPowerOf2_32(NElts)) { | 
|  | APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), | 
|  | Log2_32(NElts)); | 
|  | return DAG.getNode(ISD::AND, dl, IdxVT, Idx, | 
|  | DAG.getConstant(Imm, dl, IdxVT)); | 
|  | } | 
|  |  | 
|  | return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, | 
|  | DAG.getConstant(NElts - 1, dl, IdxVT)); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, | 
|  | SDValue VecPtr, EVT VecVT, | 
|  | SDValue Index) const { | 
|  | SDLoc dl(Index); | 
|  | // Make sure the index type is big enough to compute in. | 
|  | Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); | 
|  |  | 
|  | EVT EltVT = VecVT.getVectorElementType(); | 
|  |  | 
|  | // Calculate the element offset and add it to the pointer. | 
|  | unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. | 
|  | assert(EltSize * 8 == EltVT.getSizeInBits() && | 
|  | "Converting bits to bytes lost precision"); | 
|  |  | 
|  | Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); | 
|  |  | 
|  | EVT IdxVT = Index.getValueType(); | 
|  |  | 
|  | Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, | 
|  | DAG.getConstant(EltSize, dl, IdxVT)); | 
|  | return DAG.getMemBasePlusOffset(VecPtr, Index, dl); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Implementation of Emulated TLS Model | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, | 
|  | SelectionDAG &DAG) const { | 
|  | // Access to address of TLS varialbe xyz is lowered to a function call: | 
|  | //   __emutls_get_address( address of global variable named "__emutls_v.xyz" ) | 
|  | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | 
|  | PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); | 
|  | SDLoc dl(GA); | 
|  |  | 
|  | ArgListTy Args; | 
|  | ArgListEntry Entry; | 
|  | std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); | 
|  | Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); | 
|  | StringRef EmuTlsVarName(NameString); | 
|  | GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); | 
|  | assert(EmuTlsVar && "Cannot find EmuTlsVar "); | 
|  | Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); | 
|  | Entry.Ty = VoidPtrType; | 
|  | Args.push_back(Entry); | 
|  |  | 
|  | SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); | 
|  |  | 
|  | TargetLowering::CallLoweringInfo CLI(DAG); | 
|  | CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); | 
|  | CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); | 
|  | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); | 
|  |  | 
|  | // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. | 
|  | // At last for X86 targets, maybe good for other targets too? | 
|  | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
|  | MFI.setAdjustsStack(true); // Is this only for X86 target? | 
|  | MFI.setHasCalls(true); | 
|  |  | 
|  | assert((GA->getOffset() == 0) && | 
|  | "Emulated TLS must have zero offset in GlobalAddressSDNode"); | 
|  | return CallResult.first; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); | 
|  | if (!isCtlzFast()) | 
|  | return SDValue(); | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | 
|  | SDLoc dl(Op); | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | if (C->isNullValue() && CC == ISD::SETEQ) { | 
|  | EVT VT = Op.getOperand(0).getValueType(); | 
|  | SDValue Zext = Op.getOperand(0); | 
|  | if (VT.bitsLT(MVT::i32)) { | 
|  | VT = MVT::i32; | 
|  | Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); | 
|  | } | 
|  | unsigned Log2b = Log2_32(VT.getSizeInBits()); | 
|  | SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); | 
|  | SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, | 
|  | DAG.getConstant(Log2b, dl, MVT::i32)); | 
|  | return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); | 
|  | } | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | EVT VT = LHS.getValueType(); | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | assert(VT == RHS.getValueType() && "Expected operands to be the same type"); | 
|  | assert(VT.isInteger() && "Expected operands to be integers"); | 
|  |  | 
|  | // usub.sat(a, b) -> umax(a, b) - b | 
|  | if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { | 
|  | SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); | 
|  | return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); | 
|  | } | 
|  |  | 
|  | if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { | 
|  | SDValue InvRHS = DAG.getNOT(dl, RHS, VT); | 
|  | SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); | 
|  | return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); | 
|  | } | 
|  |  | 
|  | unsigned OverflowOp; | 
|  | switch (Opcode) { | 
|  | case ISD::SADDSAT: | 
|  | OverflowOp = ISD::SADDO; | 
|  | break; | 
|  | case ISD::UADDSAT: | 
|  | OverflowOp = ISD::UADDO; | 
|  | break; | 
|  | case ISD::SSUBSAT: | 
|  | OverflowOp = ISD::SSUBO; | 
|  | break; | 
|  | case ISD::USUBSAT: | 
|  | OverflowOp = ISD::USUBO; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Expected method to receive signed or unsigned saturation " | 
|  | "addition or subtraction node."); | 
|  | } | 
|  |  | 
|  | unsigned BitWidth = LHS.getScalarValueSizeInBits(); | 
|  | EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  | SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), | 
|  | LHS, RHS); | 
|  | SDValue SumDiff = Result.getValue(0); | 
|  | SDValue Overflow = Result.getValue(1); | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  | SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); | 
|  |  | 
|  | if (Opcode == ISD::UADDSAT) { | 
|  | if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { | 
|  | // (LHS + RHS) | OverflowMask | 
|  | SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); | 
|  | return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); | 
|  | } | 
|  | // Overflow ? 0xffff.... : (LHS + RHS) | 
|  | return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); | 
|  | } else if (Opcode == ISD::USUBSAT) { | 
|  | if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { | 
|  | // (LHS - RHS) & ~OverflowMask | 
|  | SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); | 
|  | SDValue Not = DAG.getNOT(dl, OverflowMask, VT); | 
|  | return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); | 
|  | } | 
|  | // Overflow ? 0 : (LHS - RHS) | 
|  | return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); | 
|  | } else { | 
|  | // SatMax -> Overflow && SumDiff < 0 | 
|  | // SatMin -> Overflow && SumDiff >= 0 | 
|  | APInt MinVal = APInt::getSignedMinValue(BitWidth); | 
|  | APInt MaxVal = APInt::getSignedMaxValue(BitWidth); | 
|  | SDValue SatMin = DAG.getConstant(MinVal, dl, VT); | 
|  | SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); | 
|  | SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); | 
|  | Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); | 
|  | return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { | 
|  | assert((Node->getOpcode() == ISD::SMULFIX || | 
|  | Node->getOpcode() == ISD::UMULFIX || | 
|  | Node->getOpcode() == ISD::SMULFIXSAT || | 
|  | Node->getOpcode() == ISD::UMULFIXSAT) && | 
|  | "Expected a fixed point multiplication opcode"); | 
|  |  | 
|  | SDLoc dl(Node); | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | EVT VT = LHS.getValueType(); | 
|  | unsigned Scale = Node->getConstantOperandVal(2); | 
|  | bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || | 
|  | Node->getOpcode() == ISD::UMULFIXSAT); | 
|  | bool Signed = (Node->getOpcode() == ISD::SMULFIX || | 
|  | Node->getOpcode() == ISD::SMULFIXSAT); | 
|  | EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  | unsigned VTSize = VT.getScalarSizeInBits(); | 
|  |  | 
|  | if (!Scale) { | 
|  | // [us]mul.fix(a, b, 0) -> mul(a, b) | 
|  | if (!Saturating) { | 
|  | if (isOperationLegalOrCustom(ISD::MUL, VT)) | 
|  | return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); | 
|  | } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { | 
|  | SDValue Result = | 
|  | DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); | 
|  | SDValue Product = Result.getValue(0); | 
|  | SDValue Overflow = Result.getValue(1); | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  |  | 
|  | APInt MinVal = APInt::getSignedMinValue(VTSize); | 
|  | APInt MaxVal = APInt::getSignedMaxValue(VTSize); | 
|  | SDValue SatMin = DAG.getConstant(MinVal, dl, VT); | 
|  | SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); | 
|  | SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); | 
|  | Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); | 
|  | return DAG.getSelect(dl, VT, Overflow, Result, Product); | 
|  | } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { | 
|  | SDValue Result = | 
|  | DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); | 
|  | SDValue Product = Result.getValue(0); | 
|  | SDValue Overflow = Result.getValue(1); | 
|  |  | 
|  | APInt MaxVal = APInt::getMaxValue(VTSize); | 
|  | SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); | 
|  | return DAG.getSelect(dl, VT, Overflow, SatMax, Product); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && | 
|  | "Expected scale to be less than the number of bits if signed or at " | 
|  | "most the number of bits if unsigned."); | 
|  | assert(LHS.getValueType() == RHS.getValueType() && | 
|  | "Expected both operands to be the same type"); | 
|  |  | 
|  | // Get the upper and lower bits of the result. | 
|  | SDValue Lo, Hi; | 
|  | unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; | 
|  | unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; | 
|  | if (isOperationLegalOrCustom(LoHiOp, VT)) { | 
|  | SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); | 
|  | Lo = Result.getValue(0); | 
|  | Hi = Result.getValue(1); | 
|  | } else if (isOperationLegalOrCustom(HiOp, VT)) { | 
|  | Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); | 
|  | Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); | 
|  | } else if (VT.isVector()) { | 
|  | return SDValue(); | 
|  | } else { | 
|  | report_fatal_error("Unable to expand fixed point multiplication."); | 
|  | } | 
|  |  | 
|  | if (Scale == VTSize) | 
|  | // Result is just the top half since we'd be shifting by the width of the | 
|  | // operand. Overflow impossible so this works for both UMULFIX and | 
|  | // UMULFIXSAT. | 
|  | return Hi; | 
|  |  | 
|  | // The result will need to be shifted right by the scale since both operands | 
|  | // are scaled. The result is given to us in 2 halves, so we only want part of | 
|  | // both in the result. | 
|  | EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, | 
|  | DAG.getConstant(Scale, dl, ShiftTy)); | 
|  | if (!Saturating) | 
|  | return Result; | 
|  |  | 
|  | if (!Signed) { | 
|  | // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the | 
|  | // widened multiplication) aren't all zeroes. | 
|  |  | 
|  | // Saturate to max if ((Hi >> Scale) != 0), | 
|  | // which is the same as if (Hi > ((1 << Scale) - 1)) | 
|  | APInt MaxVal = APInt::getMaxValue(VTSize); | 
|  | SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), | 
|  | dl, VT); | 
|  | Result = DAG.getSelectCC(dl, Hi, LowMask, | 
|  | DAG.getConstant(MaxVal, dl, VT), Result, | 
|  | ISD::SETUGT); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the | 
|  | // widened multiplication) aren't all ones or all zeroes. | 
|  |  | 
|  | SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); | 
|  | SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); | 
|  |  | 
|  | if (Scale == 0) { | 
|  | SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, | 
|  | DAG.getConstant(VTSize - 1, dl, ShiftTy)); | 
|  | SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); | 
|  | // Saturated to SatMin if wide product is negative, and SatMax if wide | 
|  | // product is positive ... | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  | SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, | 
|  | ISD::SETLT); | 
|  | // ... but only if we overflowed. | 
|  | return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); | 
|  | } | 
|  |  | 
|  | //  We handled Scale==0 above so all the bits to examine is in Hi. | 
|  |  | 
|  | // Saturate to max if ((Hi >> (Scale - 1)) > 0), | 
|  | // which is the same as if (Hi > (1 << (Scale - 1)) - 1) | 
|  | SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), | 
|  | dl, VT); | 
|  | Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); | 
|  | // Saturate to min if (Hi >> (Scale - 1)) < -1), | 
|  | // which is the same as if (HI < (-1 << (Scale - 1)) | 
|  | SDValue HighMask = | 
|  | DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), | 
|  | dl, VT); | 
|  | Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, | 
|  | SDValue LHS, SDValue RHS, | 
|  | unsigned Scale, SelectionDAG &DAG) const { | 
|  | assert((Opcode == ISD::SDIVFIX || | 
|  | Opcode == ISD::UDIVFIX) && | 
|  | "Expected a fixed point division opcode"); | 
|  |  | 
|  | EVT VT = LHS.getValueType(); | 
|  | bool Signed = Opcode == ISD::SDIVFIX; | 
|  | EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  |  | 
|  | // If there is enough room in the type to upscale the LHS or downscale the | 
|  | // RHS before the division, we can perform it in this type without having to | 
|  | // resize. For signed operations, the LHS headroom is the number of | 
|  | // redundant sign bits, and for unsigned ones it is the number of zeroes. | 
|  | // The headroom for the RHS is the number of trailing zeroes. | 
|  | unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 | 
|  | : DAG.computeKnownBits(LHS).countMinLeadingZeros(); | 
|  | unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); | 
|  |  | 
|  | if (LHSLead + RHSTrail < Scale) | 
|  | return SDValue(); | 
|  |  | 
|  | unsigned LHSShift = std::min(LHSLead, Scale); | 
|  | unsigned RHSShift = Scale - LHSShift; | 
|  |  | 
|  | // At this point, we know that if we shift the LHS up by LHSShift and the | 
|  | // RHS down by RHSShift, we can emit a regular division with a final scaling | 
|  | // factor of Scale. | 
|  |  | 
|  | EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | if (LHSShift) | 
|  | LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, | 
|  | DAG.getConstant(LHSShift, dl, ShiftTy)); | 
|  | if (RHSShift) | 
|  | RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, | 
|  | DAG.getConstant(RHSShift, dl, ShiftTy)); | 
|  |  | 
|  | SDValue Quot; | 
|  | if (Signed) { | 
|  | // For signed operations, if the resulting quotient is negative and the | 
|  | // remainder is nonzero, subtract 1 from the quotient to round towards | 
|  | // negative infinity. | 
|  | SDValue Rem; | 
|  | // FIXME: Ideally we would always produce an SDIVREM here, but if the | 
|  | // type isn't legal, SDIVREM cannot be expanded. There is no reason why | 
|  | // we couldn't just form a libcall, but the type legalizer doesn't do it. | 
|  | if (isTypeLegal(VT) && | 
|  | isOperationLegalOrCustom(ISD::SDIVREM, VT)) { | 
|  | Quot = DAG.getNode(ISD::SDIVREM, dl, | 
|  | DAG.getVTList(VT, VT), | 
|  | LHS, RHS); | 
|  | Rem = Quot.getValue(1); | 
|  | Quot = Quot.getValue(0); | 
|  | } else { | 
|  | Quot = DAG.getNode(ISD::SDIV, dl, VT, | 
|  | LHS, RHS); | 
|  | Rem = DAG.getNode(ISD::SREM, dl, VT, | 
|  | LHS, RHS); | 
|  | } | 
|  | SDValue Zero = DAG.getConstant(0, dl, VT); | 
|  | SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); | 
|  | SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); | 
|  | SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); | 
|  | SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); | 
|  | SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, | 
|  | DAG.getConstant(1, dl, VT)); | 
|  | Quot = DAG.getSelect(dl, VT, | 
|  | DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), | 
|  | Sub1, Quot); | 
|  | } else | 
|  | Quot = DAG.getNode(ISD::UDIV, dl, VT, | 
|  | LHS, RHS); | 
|  |  | 
|  | // TODO: Saturation. | 
|  |  | 
|  | return Quot; | 
|  | } | 
|  |  | 
|  | void TargetLowering::expandUADDSUBO( | 
|  | SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Node); | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | bool IsAdd = Node->getOpcode() == ISD::UADDO; | 
|  |  | 
|  | // If ADD/SUBCARRY is legal, use that instead. | 
|  | unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; | 
|  | if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { | 
|  | SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); | 
|  | SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), | 
|  | { LHS, RHS, CarryIn }); | 
|  | Result = SDValue(NodeCarry.getNode(), 0); | 
|  | Overflow = SDValue(NodeCarry.getNode(), 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, | 
|  | LHS.getValueType(), LHS, RHS); | 
|  |  | 
|  | EVT ResultType = Node->getValueType(1); | 
|  | EVT SetCCType = getSetCCResultType( | 
|  | DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); | 
|  | ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; | 
|  | SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); | 
|  | Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); | 
|  | } | 
|  |  | 
|  | void TargetLowering::expandSADDSUBO( | 
|  | SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Node); | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | bool IsAdd = Node->getOpcode() == ISD::SADDO; | 
|  |  | 
|  | Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, | 
|  | LHS.getValueType(), LHS, RHS); | 
|  |  | 
|  | EVT ResultType = Node->getValueType(1); | 
|  | EVT OType = getSetCCResultType( | 
|  | DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); | 
|  |  | 
|  | // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. | 
|  | unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; | 
|  | if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { | 
|  | SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); | 
|  | SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); | 
|  | Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); | 
|  |  | 
|  | // For an addition, the result should be less than one of the operands (LHS) | 
|  | // if and only if the other operand (RHS) is negative, otherwise there will | 
|  | // be overflow. | 
|  | // For a subtraction, the result should be less than one of the operands | 
|  | // (LHS) if and only if the other operand (RHS) is (non-zero) positive, | 
|  | // otherwise there will be overflow. | 
|  | SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); | 
|  | SDValue ConditionRHS = | 
|  | DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); | 
|  |  | 
|  | Overflow = DAG.getBoolExtOrTrunc( | 
|  | DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, | 
|  | ResultType, ResultType); | 
|  | } | 
|  |  | 
|  | bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, | 
|  | SDValue &Overflow, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | bool isSigned = Node->getOpcode() == ISD::SMULO; | 
|  |  | 
|  | // For power-of-two multiplications we can use a simpler shift expansion. | 
|  | if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { | 
|  | const APInt &C = RHSC->getAPIntValue(); | 
|  | // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } | 
|  | if (C.isPowerOf2()) { | 
|  | // smulo(x, signed_min) is same as umulo(x, signed_min). | 
|  | bool UseArithShift = isSigned && !C.isMinSignedValue(); | 
|  | EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); | 
|  | SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); | 
|  | Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); | 
|  | Overflow = DAG.getSetCC(dl, SetCCVT, | 
|  | DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, | 
|  | dl, VT, Result, ShiftAmt), | 
|  | LHS, ISD::SETNE); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); | 
|  | if (VT.isVector()) | 
|  | WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, | 
|  | VT.getVectorNumElements()); | 
|  |  | 
|  | SDValue BottomHalf; | 
|  | SDValue TopHalf; | 
|  | static const unsigned Ops[2][3] = | 
|  | { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, | 
|  | { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; | 
|  | if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { | 
|  | BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); | 
|  | TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); | 
|  | } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { | 
|  | BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, | 
|  | RHS); | 
|  | TopHalf = BottomHalf.getValue(1); | 
|  | } else if (isTypeLegal(WideVT)) { | 
|  | LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); | 
|  | RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); | 
|  | SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); | 
|  | BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); | 
|  | SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, | 
|  | getShiftAmountTy(WideVT, DAG.getDataLayout())); | 
|  | TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, | 
|  | DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); | 
|  | } else { | 
|  | if (VT.isVector()) | 
|  | return false; | 
|  |  | 
|  | // We can fall back to a libcall with an illegal type for the MUL if we | 
|  | // have a libcall big enough. | 
|  | // Also, we can fall back to a division in some cases, but that's a big | 
|  | // performance hit in the general case. | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | if (WideVT == MVT::i16) | 
|  | LC = RTLIB::MUL_I16; | 
|  | else if (WideVT == MVT::i32) | 
|  | LC = RTLIB::MUL_I32; | 
|  | else if (WideVT == MVT::i64) | 
|  | LC = RTLIB::MUL_I64; | 
|  | else if (WideVT == MVT::i128) | 
|  | LC = RTLIB::MUL_I128; | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); | 
|  |  | 
|  | SDValue HiLHS; | 
|  | SDValue HiRHS; | 
|  | if (isSigned) { | 
|  | // The high part is obtained by SRA'ing all but one of the bits of low | 
|  | // part. | 
|  | unsigned LoSize = VT.getSizeInBits(); | 
|  | HiLHS = | 
|  | DAG.getNode(ISD::SRA, dl, VT, LHS, | 
|  | DAG.getConstant(LoSize - 1, dl, | 
|  | getPointerTy(DAG.getDataLayout()))); | 
|  | HiRHS = | 
|  | DAG.getNode(ISD::SRA, dl, VT, RHS, | 
|  | DAG.getConstant(LoSize - 1, dl, | 
|  | getPointerTy(DAG.getDataLayout()))); | 
|  | } else { | 
|  | HiLHS = DAG.getConstant(0, dl, VT); | 
|  | HiRHS = DAG.getConstant(0, dl, VT); | 
|  | } | 
|  |  | 
|  | // Here we're passing the 2 arguments explicitly as 4 arguments that are | 
|  | // pre-lowered to the correct types. This all depends upon WideVT not | 
|  | // being a legal type for the architecture and thus has to be split to | 
|  | // two arguments. | 
|  | SDValue Ret; | 
|  | TargetLowering::MakeLibCallOptions CallOptions; | 
|  | CallOptions.setSExt(isSigned); | 
|  | CallOptions.setIsPostTypeLegalization(true); | 
|  | if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { | 
|  | // Halves of WideVT are packed into registers in different order | 
|  | // depending on platform endianness. This is usually handled by | 
|  | // the C calling convention, but we can't defer to it in | 
|  | // the legalizer. | 
|  | SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; | 
|  | Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; | 
|  | } else { | 
|  | SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; | 
|  | Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; | 
|  | } | 
|  | assert(Ret.getOpcode() == ISD::MERGE_VALUES && | 
|  | "Ret value is a collection of constituent nodes holding result."); | 
|  | if (DAG.getDataLayout().isLittleEndian()) { | 
|  | // Same as above. | 
|  | BottomHalf = Ret.getOperand(0); | 
|  | TopHalf = Ret.getOperand(1); | 
|  | } else { | 
|  | BottomHalf = Ret.getOperand(1); | 
|  | TopHalf = Ret.getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | Result = BottomHalf; | 
|  | if (isSigned) { | 
|  | SDValue ShiftAmt = DAG.getConstant( | 
|  | VT.getScalarSizeInBits() - 1, dl, | 
|  | getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); | 
|  | SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); | 
|  | Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); | 
|  | } else { | 
|  | Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, | 
|  | DAG.getConstant(0, dl, VT), ISD::SETNE); | 
|  | } | 
|  |  | 
|  | // Truncate the result if SetCC returns a larger type than needed. | 
|  | EVT RType = Node->getValueType(1); | 
|  | if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) | 
|  | Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); | 
|  |  | 
|  | assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && | 
|  | "Unexpected result type for S/UMULO legalization"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { | 
|  | SDLoc dl(Node); | 
|  | bool NoNaN = Node->getFlags().hasNoNaNs(); | 
|  | unsigned BaseOpcode = 0; | 
|  | switch (Node->getOpcode()) { | 
|  | default: llvm_unreachable("Expected VECREDUCE opcode"); | 
|  | case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; | 
|  | case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; | 
|  | case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break; | 
|  | case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break; | 
|  | case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break; | 
|  | case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break; | 
|  | case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break; | 
|  | case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; | 
|  | case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; | 
|  | case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; | 
|  | case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; | 
|  | case ISD::VECREDUCE_FMAX: | 
|  | BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; | 
|  | break; | 
|  | case ISD::VECREDUCE_FMIN: | 
|  | BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Op = Node->getOperand(0); | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | // Try to use a shuffle reduction for power of two vectors. | 
|  | if (VT.isPow2VectorType()) { | 
|  | while (VT.getVectorNumElements() > 1) { | 
|  | EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); | 
|  | if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) | 
|  | break; | 
|  |  | 
|  | SDValue Lo, Hi; | 
|  | std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); | 
|  | Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); | 
|  | VT = HalfVT; | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | DAG.ExtractVectorElements(Op, Ops, 0, NumElts); | 
|  |  | 
|  | SDValue Res = Ops[0]; | 
|  | for (unsigned i = 1; i < NumElts; i++) | 
|  | Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); | 
|  |  | 
|  | // Result type may be wider than element type. | 
|  | if (EltVT != Node->getValueType(0)) | 
|  | Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); | 
|  | return Res; | 
|  | } |