| //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This class wraps target description classes used by the various code |
| // generation TableGen backends. This makes it easier to access the data and |
| // provides a single place that needs to check it for validity. All of these |
| // classes abort on error conditions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenTarget.h" |
| #include "CodeGenInstruction.h" |
| #include "CodeGenRegisters.h" |
| #include "CodeGenSchedule.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include <iterator> |
| #include <tuple> |
| using namespace llvm; |
| |
| static cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); |
| static cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); |
| |
| static cl::opt<unsigned> |
| AsmParserNum("asmparsernum", cl::init(0), |
| cl::desc("Make -gen-asm-parser emit assembly parser #N"), |
| cl::cat(AsmParserCat)); |
| |
| static cl::opt<unsigned> |
| AsmWriterNum("asmwriternum", cl::init(0), |
| cl::desc("Make -gen-asm-writer emit assembly writer #N"), |
| cl::cat(AsmWriterCat)); |
| |
| /// getValueType - Return the MVT::SimpleValueType that the specified TableGen |
| /// record corresponds to. |
| MVT::SimpleValueType llvm::getValueType(const Record *Rec) { |
| return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); |
| } |
| |
| StringRef llvm::getEnumName(MVT::SimpleValueType T) { |
| // clang-format off |
| switch (T) { |
| #define GET_VT_ATTR(Ty, N, Sz, Any, Int, FP, Vec, Sc, Tup, NF, NElem, EltTy) \ |
| case MVT::Ty: return "MVT::" # Ty; |
| #include "llvm/CodeGen/GenVT.inc" |
| default: llvm_unreachable("ILLEGAL VALUE TYPE!"); |
| } |
| // clang-format on |
| } |
| |
| /// getQualifiedName - Return the name of the specified record, with a |
| /// namespace qualifier if the record contains one. |
| /// |
| std::string llvm::getQualifiedName(const Record *R) { |
| std::string Namespace; |
| if (R->getValue("Namespace")) |
| Namespace = R->getValueAsString("Namespace").str(); |
| if (Namespace.empty()) |
| return R->getName().str(); |
| return Namespace + "::" + R->getName().str(); |
| } |
| |
| /// getTarget - Return the current instance of the Target class. |
| /// |
| CodeGenTarget::CodeGenTarget(const RecordKeeper &records) |
| : Records(records), CGH(records), Intrinsics(records) { |
| ArrayRef<const Record *> Targets = Records.getAllDerivedDefinitions("Target"); |
| if (Targets.size() == 0) |
| PrintFatalError("No 'Target' subclasses defined!"); |
| if (Targets.size() != 1) |
| PrintFatalError("Multiple subclasses of Target defined!"); |
| TargetRec = Targets[0]; |
| MacroFusions = Records.getAllDerivedDefinitions("Fusion"); |
| } |
| |
| CodeGenTarget::~CodeGenTarget() {} |
| |
| StringRef CodeGenTarget::getName() const { return TargetRec->getName(); } |
| |
| /// getInstNamespace - Find and return the target machine's instruction |
| /// namespace. The namespace is cached because it is requested multiple times. |
| StringRef CodeGenTarget::getInstNamespace() const { |
| if (InstNamespace.empty()) { |
| for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { |
| // We are not interested in the "TargetOpcode" namespace. |
| if (Inst->Namespace != "TargetOpcode") { |
| InstNamespace = Inst->Namespace; |
| break; |
| } |
| } |
| } |
| |
| return InstNamespace; |
| } |
| |
| StringRef CodeGenTarget::getRegNamespace() const { |
| auto &RegClasses = RegBank->getRegClasses(); |
| return RegClasses.size() > 0 ? RegClasses.front().Namespace : ""; |
| } |
| |
| const Record *CodeGenTarget::getInstructionSet() const { |
| return TargetRec->getValueAsDef("InstructionSet"); |
| } |
| |
| bool CodeGenTarget::getAllowRegisterRenaming() const { |
| return TargetRec->getValueAsInt("AllowRegisterRenaming"); |
| } |
| |
| /// getAsmParser - Return the AssemblyParser definition for this target. |
| /// |
| const Record *CodeGenTarget::getAsmParser() const { |
| std::vector<const Record *> LI = |
| TargetRec->getValueAsListOfDefs("AssemblyParsers"); |
| if (AsmParserNum >= LI.size()) |
| PrintFatalError("Target does not have an AsmParser #" + |
| Twine(AsmParserNum) + "!"); |
| return LI[AsmParserNum]; |
| } |
| |
| /// getAsmParserVariant - Return the AssemblyParserVariant definition for |
| /// this target. |
| /// |
| const Record *CodeGenTarget::getAsmParserVariant(unsigned Idx) const { |
| std::vector<const Record *> LI = |
| TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); |
| if (Idx >= LI.size()) |
| PrintFatalError("Target does not have an AsmParserVariant #" + Twine(Idx) + |
| "!"); |
| return LI[Idx]; |
| } |
| |
| /// getAsmParserVariantCount - Return the AssemblyParserVariant definition |
| /// available for this target. |
| /// |
| unsigned CodeGenTarget::getAsmParserVariantCount() const { |
| return TargetRec->getValueAsListOfDefs("AssemblyParserVariants").size(); |
| } |
| |
| /// getAsmWriter - Return the AssemblyWriter definition for this target. |
| /// |
| const Record *CodeGenTarget::getAsmWriter() const { |
| std::vector<const Record *> LI = |
| TargetRec->getValueAsListOfDefs("AssemblyWriters"); |
| if (AsmWriterNum >= LI.size()) |
| PrintFatalError("Target does not have an AsmWriter #" + |
| Twine(AsmWriterNum) + "!"); |
| return LI[AsmWriterNum]; |
| } |
| |
| CodeGenRegBank &CodeGenTarget::getRegBank() const { |
| if (!RegBank) |
| RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes()); |
| return *RegBank; |
| } |
| |
| const CodeGenRegisterClass *CodeGenTarget::getSuperRegForSubReg( |
| const ValueTypeByHwMode &ValueTy, CodeGenRegBank &RegBank, |
| const CodeGenSubRegIndex *SubIdx, bool MustBeAllocatable) const { |
| std::vector<const CodeGenRegisterClass *> Candidates; |
| auto &RegClasses = RegBank.getRegClasses(); |
| |
| // Try to find a register class which supports ValueTy, and also contains |
| // SubIdx. |
| for (const CodeGenRegisterClass &RC : RegClasses) { |
| // Is there a subclass of this class which contains this subregister index? |
| const CodeGenRegisterClass *SubClassWithSubReg = |
| RC.getSubClassWithSubReg(SubIdx); |
| if (!SubClassWithSubReg) |
| continue; |
| |
| // We have a class. Check if it supports this value type. |
| if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy)) |
| continue; |
| |
| // If necessary, check that it is allocatable. |
| if (MustBeAllocatable && !SubClassWithSubReg->Allocatable) |
| continue; |
| |
| // We have a register class which supports both the value type and |
| // subregister index. Remember it. |
| Candidates.push_back(SubClassWithSubReg); |
| } |
| |
| // If we didn't find anything, we're done. |
| if (Candidates.empty()) |
| return nullptr; |
| |
| // Find and return the largest of our candidate classes. |
| llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A, |
| const CodeGenRegisterClass *B) { |
| if (A->getMembers().size() > B->getMembers().size()) |
| return true; |
| |
| if (A->getMembers().size() < B->getMembers().size()) |
| return false; |
| |
| // Order by name as a tie-breaker. |
| return StringRef(A->getName()) < B->getName(); |
| }); |
| |
| return Candidates[0]; |
| } |
| |
| /// getRegisterByName - If there is a register with the specific AsmName, |
| /// return it. |
| const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { |
| return getRegBank().getRegistersByName().lookup(Name); |
| } |
| |
| const CodeGenRegisterClass & |
| CodeGenTarget::getRegisterClass(const Record *R) const { |
| return *getRegBank().getRegClass(R); |
| } |
| |
| std::vector<ValueTypeByHwMode> |
| CodeGenTarget::getRegisterVTs(const Record *R) const { |
| const CodeGenRegister *Reg = getRegBank().getReg(R); |
| std::vector<ValueTypeByHwMode> Result; |
| for (const auto &RC : getRegBank().getRegClasses()) { |
| if (RC.contains(Reg)) { |
| ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); |
| llvm::append_range(Result, InVTs); |
| } |
| } |
| |
| // Remove duplicates. |
| llvm::sort(Result); |
| Result.erase(llvm::unique(Result), Result.end()); |
| return Result; |
| } |
| |
| void CodeGenTarget::ReadLegalValueTypes() const { |
| for (const auto &RC : getRegBank().getRegClasses()) |
| llvm::append_range(LegalValueTypes, RC.VTs); |
| |
| // Remove duplicates. |
| llvm::sort(LegalValueTypes); |
| LegalValueTypes.erase(llvm::unique(LegalValueTypes), LegalValueTypes.end()); |
| } |
| |
| CodeGenSchedModels &CodeGenTarget::getSchedModels() const { |
| if (!SchedModels) |
| SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this); |
| return *SchedModels; |
| } |
| |
| void CodeGenTarget::ReadInstructions() const { |
| ArrayRef<const Record *> Insts = |
| Records.getAllDerivedDefinitions("Instruction"); |
| if (Insts.size() <= 2) |
| PrintFatalError("No 'Instruction' subclasses defined!"); |
| |
| // Parse the instructions defined in the .td file. |
| for (const Record *R : Insts) { |
| auto &Inst = Instructions[R]; |
| Inst = std::make_unique<CodeGenInstruction>(R); |
| if (Inst->isVariableLengthEncoding()) |
| HasVariableLengthEncodings = true; |
| } |
| } |
| |
| static const CodeGenInstruction *GetInstByName( |
| StringRef Name, |
| const DenseMap<const Record *, std::unique_ptr<CodeGenInstruction>> &Insts, |
| const RecordKeeper &Records) { |
| const Record *Rec = Records.getDef(Name); |
| |
| const auto I = Insts.find(Rec); |
| if (!Rec || I == Insts.end()) |
| PrintFatalError("Could not find '" + Name + "' instruction!"); |
| return I->second.get(); |
| } |
| |
| static const char *FixedInstrs[] = { |
| #define HANDLE_TARGET_OPCODE(OPC) #OPC, |
| #include "llvm/Support/TargetOpcodes.def" |
| }; |
| |
| unsigned CodeGenTarget::getNumFixedInstructions() { |
| return std::size(FixedInstrs); |
| } |
| |
| /// Return all of the instructions defined by the target, ordered by |
| /// their enum value. |
| void CodeGenTarget::ComputeInstrsByEnum() const { |
| const auto &Insts = getInstructions(); |
| for (const char *Name : FixedInstrs) { |
| const CodeGenInstruction *Instr = GetInstByName(Name, Insts, Records); |
| assert(Instr && "Missing target independent instruction"); |
| assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); |
| InstrsByEnum.push_back(Instr); |
| } |
| unsigned EndOfPredefines = InstrsByEnum.size(); |
| assert(EndOfPredefines == getNumFixedInstructions() && |
| "Missing generic opcode"); |
| |
| for (const auto &I : Insts) { |
| const CodeGenInstruction *CGI = I.second.get(); |
| if (CGI->Namespace != "TargetOpcode") { |
| InstrsByEnum.push_back(CGI); |
| if (CGI->TheDef->getValueAsBit("isPseudo")) |
| ++NumPseudoInstructions; |
| } |
| } |
| |
| assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); |
| |
| // All of the instructions are now in random order based on the map iteration. |
| llvm::sort( |
| InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), |
| [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { |
| const auto &D1 = *Rec1->TheDef; |
| const auto &D2 = *Rec2->TheDef; |
| return std::tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < |
| std::tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); |
| }); |
| |
| // Assign an enum value to each instruction according to the sorted order. |
| for (const auto &[Idx, Inst] : enumerate(InstrsByEnum)) |
| Inst->EnumVal = Idx; |
| } |
| |
| /// isLittleEndianEncoding - Return whether this target encodes its instruction |
| /// in little-endian format, i.e. bits laid out in the order [0..n] |
| /// |
| bool CodeGenTarget::isLittleEndianEncoding() const { |
| return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); |
| } |
| |
| /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit |
| /// encodings, reverse the bit order of all instructions. |
| void CodeGenTarget::reverseBitsForLittleEndianEncoding() { |
| if (!isLittleEndianEncoding()) |
| return; |
| |
| for (const Record *R : |
| Records.getAllDerivedDefinitions("InstructionEncoding")) { |
| if (R->getValueAsString("Namespace") == "TargetOpcode" || |
| R->getValueAsBit("isPseudo")) |
| continue; |
| |
| const BitsInit *BI = R->getValueAsBitsInit("Inst"); |
| |
| unsigned numBits = BI->getNumBits(); |
| |
| SmallVector<const Init *, 16> NewBits(numBits); |
| |
| for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { |
| unsigned bitSwapIdx = numBits - bit - 1; |
| const Init *OrigBit = BI->getBit(bit); |
| const Init *BitSwap = BI->getBit(bitSwapIdx); |
| NewBits[bit] = BitSwap; |
| NewBits[bitSwapIdx] = OrigBit; |
| } |
| if (numBits % 2) { |
| unsigned middle = (numBits + 1) / 2; |
| NewBits[middle] = BI->getBit(middle); |
| } |
| |
| RecordKeeper &MutableRC = const_cast<RecordKeeper &>(Records); |
| const BitsInit *NewBI = BitsInit::get(MutableRC, NewBits); |
| |
| // Update the bits in reversed order so that emitters will get the correct |
| // endianness. |
| // FIXME: Eliminate mutation of TG records by creating a helper function |
| // to reverse bits and maintain a cache instead of mutating records. |
| Record *MutableR = const_cast<Record *>(R); |
| MutableR->getValue("Inst")->setValue(NewBI); |
| } |
| } |
| |
| /// guessInstructionProperties - Return true if it's OK to guess instruction |
| /// properties instead of raising an error. |
| /// |
| /// This is configurable as a temporary migration aid. It will eventually be |
| /// permanently false. |
| bool CodeGenTarget::guessInstructionProperties() const { |
| return getInstructionSet()->getValueAsBit("guessInstructionProperties"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ComplexPattern implementation |
| // |
| ComplexPattern::ComplexPattern(const Record *R) { |
| Ty = R->getValueAsDef("Ty"); |
| NumOperands = R->getValueAsInt("NumOperands"); |
| SelectFunc = R->getValueAsString("SelectFunc").str(); |
| RootNodes = R->getValueAsListOfDefs("RootNodes"); |
| |
| // FIXME: This is a hack to statically increase the priority of patterns which |
| // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best |
| // possible pattern match we'll need to dynamically calculate the complexity |
| // of all patterns a dag can potentially map to. |
| int64_t RawComplexity = R->getValueAsInt("Complexity"); |
| if (RawComplexity == -1) |
| Complexity = NumOperands * 3; |
| else |
| Complexity = RawComplexity; |
| |
| // FIXME: Why is this different from parseSDPatternOperatorProperties? |
| // Parse the properties. |
| Properties = 0; |
| for (const Record *Prop : R->getValueAsListOfDefs("Properties")) { |
| if (Prop->getName() == "SDNPHasChain") { |
| Properties |= 1 << SDNPHasChain; |
| } else if (Prop->getName() == "SDNPOptInGlue") { |
| Properties |= 1 << SDNPOptInGlue; |
| } else if (Prop->getName() == "SDNPMayStore") { |
| Properties |= 1 << SDNPMayStore; |
| } else if (Prop->getName() == "SDNPMayLoad") { |
| Properties |= 1 << SDNPMayLoad; |
| } else if (Prop->getName() == "SDNPSideEffect") { |
| Properties |= 1 << SDNPSideEffect; |
| } else if (Prop->getName() == "SDNPMemOperand") { |
| Properties |= 1 << SDNPMemOperand; |
| } else if (Prop->getName() == "SDNPVariadic") { |
| Properties |= 1 << SDNPVariadic; |
| } else { |
| PrintFatalError(R->getLoc(), |
| "Unsupported SD Node property '" + Prop->getName() + |
| "' on ComplexPattern '" + R->getName() + "'!"); |
| } |
| } |
| |
| WantsRoot = R->getValueAsBit("WantsRoot"); |
| WantsParent = R->getValueAsBit("WantsParent"); |
| } |