blob: c36ccab21a39fb0c971cd29a34475222db74b7e4 [file] [log] [blame]
//===-- Scalar.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/Status.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-types.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include <cinttypes>
#include <cstdio>
using namespace lldb;
using namespace lldb_private;
namespace {
enum class Category { Void, Integral, Float };
}
static Category GetCategory(Scalar::Type type) {
switch (type) {
case Scalar::e_void:
return Category::Void;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
return Category::Float;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
case Scalar::e_sint512:
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
case Scalar::e_uint512:
return Category::Integral;
}
llvm_unreachable("Unhandled type!");
}
static bool IsSigned(Scalar::Type type) {
switch (type) {
case Scalar::e_void:
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
case Scalar::e_uint512:
return false;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
case Scalar::e_sint512:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
return true;
}
llvm_unreachable("Unhandled type!");
}
// Promote to max type currently follows the ANSI C rule for type promotion in
// expressions.
static Scalar::Type PromoteToMaxType(
const Scalar &lhs, // The const left hand side object
const Scalar &rhs, // The const right hand side object
Scalar &temp_value, // A modifiable temp value than can be used to hold
// either the promoted lhs or rhs object
const Scalar *&promoted_lhs_ptr, // Pointer to the resulting possibly
// promoted value of lhs (at most one of
// lhs/rhs will get promoted)
const Scalar *&promoted_rhs_ptr // Pointer to the resulting possibly
// promoted value of rhs (at most one of
// lhs/rhs will get promoted)
) {
Scalar result;
// Initialize the promoted values for both the right and left hand side
// values to be the objects themselves. If no promotion is needed (both right
// and left have the same type), then the temp_value will not get used.
promoted_lhs_ptr = &lhs;
promoted_rhs_ptr = &rhs;
// Extract the types of both the right and left hand side values
Scalar::Type lhs_type = lhs.GetType();
Scalar::Type rhs_type = rhs.GetType();
if (lhs_type > rhs_type) {
// Right hand side need to be promoted
temp_value = rhs; // Copy right hand side into the temp value
if (temp_value.Promote(lhs_type)) // Promote it
promoted_rhs_ptr =
&temp_value; // Update the pointer for the promoted right hand side
} else if (lhs_type < rhs_type) {
// Left hand side need to be promoted
temp_value = lhs; // Copy left hand side value into the temp value
if (temp_value.Promote(rhs_type)) // Promote it
promoted_lhs_ptr =
&temp_value; // Update the pointer for the promoted left hand side
}
// Make sure our type promotion worked as expected
if (promoted_lhs_ptr->GetType() == promoted_rhs_ptr->GetType())
return promoted_lhs_ptr->GetType(); // Return the resulting max type
// Return the void type (zero) if we fail to promote either of the values.
return Scalar::e_void;
}
Scalar::Scalar() : m_type(e_void), m_float(static_cast<float>(0)) {}
bool Scalar::GetData(DataExtractor &data, size_t limit_byte_size) const {
size_t byte_size = GetByteSize();
if (byte_size == 0) {
data.Clear();
return false;
}
auto buffer_up = std::make_unique<DataBufferHeap>(byte_size, 0);
GetBytes(buffer_up->GetData());
lldb::offset_t offset = 0;
if (limit_byte_size < byte_size) {
if (endian::InlHostByteOrder() == eByteOrderLittle) {
// On little endian systems if we want fewer bytes from the current
// type we just specify fewer bytes since the LSByte is first...
byte_size = limit_byte_size;
} else if (endian::InlHostByteOrder() == eByteOrderBig) {
// On big endian systems if we want fewer bytes from the current type
// have to advance our initial byte pointer and trim down the number of
// bytes since the MSByte is first
offset = byte_size - limit_byte_size;
byte_size = limit_byte_size;
}
}
data.SetData(std::move(buffer_up), offset, byte_size);
data.SetByteOrder(endian::InlHostByteOrder());
return true;
}
void Scalar::GetBytes(llvm::MutableArrayRef<uint8_t> storage) const {
assert(storage.size() >= GetByteSize());
const auto &store = [&](const llvm::APInt val) {
StoreIntToMemory(val, storage.data(), (val.getBitWidth() + 7) / 8);
};
switch (GetCategory(m_type)) {
case Category::Void:
break;
case Category::Integral:
store(m_integer);
break;
case Category::Float:
store(m_float.bitcastToAPInt());
break;
}
}
size_t Scalar::GetByteSize() const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_sint512:
case e_uint512:
return (m_integer.getBitWidth() / 8);
case e_float:
return sizeof(float_t);
case e_double:
return sizeof(double_t);
case e_long_double:
return sizeof(long_double_t);
}
return 0;
}
bool Scalar::IsZero() const {
switch (GetCategory(m_type)) {
case Category::Void:
break;
case Category::Integral:
return m_integer.isNullValue();
case Category::Float:
return m_float.isZero();
}
return false;
}
void Scalar::GetValue(Stream *s, bool show_type) const {
if (show_type)
s->Printf("(%s) ", GetTypeAsCString());
switch (GetCategory(m_type)) {
case Category::Void:
break;
case Category::Integral:
s->PutCString(m_integer.toString(10, IsSigned(m_type)));
break;
case Category::Float:
llvm::SmallString<24> string;
m_float.toString(string);
s->PutCString(string);
break;
}
}
const char *Scalar::GetTypeAsCString() const {
switch (m_type) {
case e_void:
return "void";
case e_sint:
return "int";
case e_uint:
return "unsigned int";
case e_slong:
return "long";
case e_ulong:
return "unsigned long";
case e_slonglong:
return "long long";
case e_ulonglong:
return "unsigned long long";
case e_sint128:
return "int128_t";
case e_uint128:
return "unsigned int128_t";
case e_sint256:
return "int256_t";
case e_uint256:
return "unsigned int256_t";
case e_sint512:
return "int512_t";
case e_uint512:
return "unsigned int512_t";
case e_float:
return "float";
case e_double:
return "double";
case e_long_double:
return "long double";
}
return "<invalid Scalar type>";
}
Scalar::~Scalar() = default;
Scalar::Type Scalar::GetBestTypeForBitSize(size_t bit_size, bool sign) {
// Scalar types are always host types, hence the sizeof().
if (sign) {
if (bit_size <= sizeof(int)*8) return Scalar::e_sint;
if (bit_size <= sizeof(long)*8) return Scalar::e_slong;
if (bit_size <= sizeof(long long)*8) return Scalar::e_slonglong;
if (bit_size <= 128) return Scalar::e_sint128;
if (bit_size <= 256) return Scalar::e_sint256;
if (bit_size <= 512) return Scalar::e_sint512;
} else {
if (bit_size <= sizeof(unsigned int)*8) return Scalar::e_uint;
if (bit_size <= sizeof(unsigned long)*8) return Scalar::e_ulong;
if (bit_size <= sizeof(unsigned long long)*8) return Scalar::e_ulonglong;
if (bit_size <= 128) return Scalar::e_uint128;
if (bit_size <= 256) return Scalar::e_uint256;
if (bit_size <= 512) return Scalar::e_uint512;
}
return Scalar::e_void;
}
void Scalar::TruncOrExtendTo(uint16_t bits, bool sign) {
m_integer = sign ? m_integer.sextOrTrunc(bits) : m_integer.zextOrTrunc(bits);
m_type = GetBestTypeForBitSize(bits, sign);
}
static size_t GetBitSize(Scalar::Type type) {
switch (type) {
case Scalar::e_void:
return 0;
case Scalar::e_sint:
return 8 * sizeof(int);
case Scalar::e_uint:
return 8 * sizeof(unsigned int);
case Scalar::e_slong:
return 8 * sizeof(long);
case Scalar::e_ulong:
return 8 * sizeof(unsigned long);
case Scalar::e_slonglong:
return 8 * sizeof(long long);
case Scalar::e_ulonglong:
return 8 * sizeof(unsigned long long);
case Scalar::e_sint128:
case Scalar::e_uint128:
return BITWIDTH_INT128;
case Scalar::e_sint256:
case Scalar::e_uint256:
return BITWIDTH_INT256;
case Scalar::e_sint512:
case Scalar::e_uint512:
return BITWIDTH_INT512;
case Scalar::e_float:
return 8 * sizeof(float);
case Scalar::e_double:
return 8 * sizeof(double);
case Scalar::e_long_double:
return 8 * sizeof(long double);
}
llvm_unreachable("Unhandled type!");
}
static const llvm::fltSemantics &GetFltSemantics(Scalar::Type type) {
switch (type) {
case Scalar::e_void:
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
case Scalar::e_sint512:
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
case Scalar::e_uint512:
llvm_unreachable("Only floating point types supported!");
case Scalar::e_float:
return llvm::APFloat::IEEEsingle();
case Scalar::e_double:
return llvm::APFloat::IEEEdouble();
case Scalar::e_long_double:
return llvm::APFloat::x87DoubleExtended();
}
llvm_unreachable("Unhandled type!");
}
bool Scalar::Promote(Scalar::Type type) {
bool success = false;
switch (GetCategory(m_type)) {
case Category::Void:
break;
case Category::Integral:
switch (GetCategory(type)) {
case Category::Void:
break;
case Category::Integral:
if (type < m_type)
break;
success = true;
if (IsSigned(m_type))
m_integer = m_integer.sextOrTrunc(GetBitSize(type));
else
m_integer = m_integer.zextOrTrunc(GetBitSize(type));
break;
case Category::Float:
m_float = llvm::APFloat(GetFltSemantics(type));
m_float.convertFromAPInt(m_integer, IsSigned(m_type),
llvm::APFloat::rmNearestTiesToEven);
success = true;
break;
}
break;
case Category::Float:
switch (GetCategory(type)) {
case Category::Void:
case Category::Integral:
break;
case Category::Float:
if (type < m_type)
break;
bool ignore;
success = true;
m_float.convert(GetFltSemantics(type), llvm::APFloat::rmNearestTiesToEven,
&ignore);
}
}
if (success)
m_type = type;
return success;
}
const char *Scalar::GetValueTypeAsCString(Scalar::Type type) {
switch (type) {
case e_void:
return "void";
case e_sint:
return "int";
case e_uint:
return "unsigned int";
case e_slong:
return "long";
case e_ulong:
return "unsigned long";
case e_slonglong:
return "long long";
case e_ulonglong:
return "unsigned long long";
case e_float:
return "float";
case e_double:
return "double";
case e_long_double:
return "long double";
case e_sint128:
return "int128_t";
case e_uint128:
return "uint128_t";
case e_sint256:
return "int256_t";
case e_uint256:
return "uint256_t";
case e_sint512:
return "int512_t";
case e_uint512:
return "uint512_t";
}
return "???";
}
Scalar::Type
Scalar::GetValueTypeForSignedIntegerWithByteSize(size_t byte_size) {
if (byte_size <= sizeof(sint_t))
return e_sint;
if (byte_size <= sizeof(slong_t))
return e_slong;
if (byte_size <= sizeof(slonglong_t))
return e_slonglong;
return e_void;
}
Scalar::Type
Scalar::GetValueTypeForUnsignedIntegerWithByteSize(size_t byte_size) {
if (byte_size <= sizeof(uint_t))
return e_uint;
if (byte_size <= sizeof(ulong_t))
return e_ulong;
if (byte_size <= sizeof(ulonglong_t))
return e_ulonglong;
return e_void;
}
Scalar::Type Scalar::GetValueTypeForFloatWithByteSize(size_t byte_size) {
if (byte_size == sizeof(float_t))
return e_float;
if (byte_size == sizeof(double_t))
return e_double;
if (byte_size == sizeof(long_double_t))
return e_long_double;
return e_void;
}
bool Scalar::MakeSigned() {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_sint:
success = true;
break;
case e_uint:
m_type = e_sint;
success = true;
break;
case e_slong:
success = true;
break;
case e_ulong:
m_type = e_slong;
success = true;
break;
case e_slonglong:
success = true;
break;
case e_ulonglong:
m_type = e_slonglong;
success = true;
break;
case e_sint128:
success = true;
break;
case e_uint128:
m_type = e_sint128;
success = true;
break;
case e_sint256:
success = true;
break;
case e_uint256:
m_type = e_sint256;
success = true;
break;
case e_sint512:
success = true;
break;
case e_uint512:
m_type = e_sint512;
success = true;
break;
case e_float:
success = true;
break;
case e_double:
success = true;
break;
case e_long_double:
success = true;
break;
}
return success;
}
bool Scalar::MakeUnsigned() {
bool success = false;
switch (m_type) {
case e_void:
break;
case e_sint:
m_type = e_uint;
success = true;
break;
case e_uint:
success = true;
break;
case e_slong:
m_type = e_ulong;
success = true;
break;
case e_ulong:
success = true;
break;
case e_slonglong:
m_type = e_ulonglong;
success = true;
break;
case e_ulonglong:
success = true;
break;
case e_sint128:
m_type = e_uint128;
success = true;
break;
case e_uint128:
success = true;
break;
case e_sint256:
m_type = e_uint256;
success = true;
break;
case e_uint256:
success = true;
break;
case e_sint512:
m_type = e_uint512;
success = true;
break;
case e_uint512:
success = true;
break;
case e_float:
success = true;
break;
case e_double:
success = true;
break;
case e_long_double:
success = true;
break;
}
return success;
}
template <typename T> T Scalar::GetAs(T fail_value) const {
switch (GetCategory(m_type)) {
case Category::Void:
break;
case Category::Integral:
if (IsSigned(m_type))
return m_integer.sextOrTrunc(sizeof(T) * 8).getSExtValue();
return m_integer.zextOrTrunc(sizeof(T) * 8).getZExtValue();
case Category::Float: {
llvm::APSInt result(sizeof(T) * 8, std::is_unsigned<T>::value);
bool isExact;
m_float.convertToInteger(result, llvm::APFloat::rmTowardZero, &isExact);
return result.getSExtValue();
}
}
return fail_value;
}
signed char Scalar::SChar(signed char fail_value) const {
return GetAs<signed char>(fail_value);
}
unsigned char Scalar::UChar(unsigned char fail_value) const {
return GetAs<unsigned char>(fail_value);
}
short Scalar::SShort(short fail_value) const {
return GetAs<short>(fail_value);
}
unsigned short Scalar::UShort(unsigned short fail_value) const {
return GetAs<unsigned short>(fail_value);
}
int Scalar::SInt(int fail_value) const { return GetAs<int>(fail_value); }
unsigned int Scalar::UInt(unsigned int fail_value) const {
return GetAs<unsigned int>(fail_value);
}
long Scalar::SLong(long fail_value) const { return GetAs<long>(fail_value); }
unsigned long Scalar::ULong(unsigned long fail_value) const {
return GetAs<unsigned long>(fail_value);
}
long long Scalar::SLongLong(long long fail_value) const {
return GetAs<long long>(fail_value);
}
unsigned long long Scalar::ULongLong(unsigned long long fail_value) const {
return GetAs<unsigned long long>(fail_value);
}
llvm::APInt Scalar::SInt128(const llvm::APInt &fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_sint512:
case e_uint512:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
llvm::APInt Scalar::UInt128(const llvm::APInt &fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_sint512:
case e_uint512:
return m_integer;
case e_float:
case e_double:
case e_long_double:
return m_float.bitcastToAPInt();
}
return fail_value;
}
float Scalar::Float(float fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_slong:
case e_slonglong:
case e_sint128:
case e_sint256:
case e_sint512:
return llvm::APIntOps::RoundSignedAPIntToFloat(m_integer);
case e_uint:
case e_ulong:
case e_ulonglong:
case e_uint128:
case e_uint256:
case e_uint512:
return llvm::APIntOps::RoundAPIntToFloat(m_integer);
case e_float:
return m_float.convertToFloat();
case e_double:
return static_cast<float_t>(m_float.convertToDouble());
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return ldbl_val.bitsToFloat();
}
return fail_value;
}
double Scalar::Double(double fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_slong:
case e_slonglong:
case e_sint128:
case e_sint256:
case e_sint512:
return llvm::APIntOps::RoundSignedAPIntToDouble(m_integer);
case e_uint:
case e_ulong:
case e_ulonglong:
case e_uint128:
case e_uint256:
case e_uint512:
return llvm::APIntOps::RoundAPIntToDouble(m_integer);
case e_float:
return static_cast<double_t>(m_float.convertToFloat());
case e_double:
return m_float.convertToDouble();
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return ldbl_val.bitsToFloat();
}
return fail_value;
}
long double Scalar::LongDouble(long double fail_value) const {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_slong:
case e_slonglong:
case e_sint128:
case e_sint256:
case e_sint512:
return static_cast<long_double_t>(
llvm::APIntOps::RoundSignedAPIntToDouble(m_integer));
case e_uint:
case e_ulong:
case e_ulonglong:
case e_uint128:
case e_uint256:
case e_uint512:
return static_cast<long_double_t>(
llvm::APIntOps::RoundAPIntToDouble(m_integer));
case e_float:
return static_cast<long_double_t>(m_float.convertToFloat());
case e_double:
return static_cast<long_double_t>(m_float.convertToDouble());
case e_long_double:
llvm::APInt ldbl_val = m_float.bitcastToAPInt();
return static_cast<long_double_t>(ldbl_val.bitsToDouble());
}
return fail_value;
}
Scalar &Scalar::operator+=(const Scalar &rhs) {
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((m_type = PromoteToMaxType(*this, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (GetCategory(m_type)) {
case Category::Void:
break;
case Category::Integral:
m_integer = a->m_integer + b->m_integer;
break;
case Category::Float:
m_float = a->m_float + b->m_float;
break;
}
}
return *this;
}
Scalar &Scalar::operator<<=(const Scalar &rhs) {
if (GetCategory(m_type) == Category::Integral &&
GetCategory(rhs.m_type) == Category::Integral)
m_integer <<= rhs.m_integer;
else
m_type = e_void;
return *this;
}
bool Scalar::ShiftRightLogical(const Scalar &rhs) {
if (GetCategory(m_type) == Category::Integral &&
GetCategory(rhs.m_type) == Category::Integral) {
m_integer = m_integer.lshr(rhs.m_integer);
return true;
}
m_type = e_void;
return false;
}
Scalar &Scalar::operator>>=(const Scalar &rhs) {
switch (m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_sint512:
case e_uint512:
switch (rhs.m_type) {
case e_void:
case e_float:
case e_double:
case e_long_double:
m_type = e_void;
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_sint512:
case e_uint512:
m_integer = m_integer.ashr(rhs.m_integer);
break;
}
break;
}
return *this;
}
Scalar &Scalar::operator&=(const Scalar &rhs) {
if (GetCategory(m_type) == Category::Integral &&
GetCategory(rhs.m_type) == Category::Integral)
m_integer &= rhs.m_integer;
else
m_type = e_void;
return *this;
}
bool Scalar::AbsoluteValue() {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_slong:
case e_slonglong:
case e_sint128:
case e_sint256:
case e_sint512:
if (m_integer.isNegative())
m_integer = -m_integer;
return true;
case e_uint:
case e_ulong:
case e_ulonglong:
return true;
case e_uint128:
case e_uint256:
case e_uint512:
case e_float:
case e_double:
case e_long_double:
m_float.clearSign();
return true;
}
return false;
}
bool Scalar::UnaryNegate() {
switch (GetCategory(m_type)) {
case Category::Void:
break;
case Category::Integral:
m_integer = -m_integer;
return true;
case Category::Float:
m_float.changeSign();
return true;
}
return false;
}
bool Scalar::OnesComplement() {
if (GetCategory(m_type) == Category::Integral) {
m_integer = ~m_integer;
return true;
}
return false;
}
const Scalar lldb_private::operator+(const Scalar &lhs, const Scalar &rhs) {
Scalar result = lhs;
result += rhs;
return result;
}
const Scalar lldb_private::operator-(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (GetCategory(result.m_type)) {
case Category::Void:
break;
case Category::Integral:
result.m_integer = a->m_integer - b->m_integer;
break;
case Category::Float:
result.m_float = a->m_float - b->m_float;
break;
}
}
return result;
}
const Scalar lldb_private::operator/(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void &&
!b->IsZero()) {
switch (GetCategory(result.m_type)) {
case Category::Void:
break;
case Category::Integral:
if (IsSigned(result.m_type))
result.m_integer = a->m_integer.sdiv(b->m_integer);
else
result.m_integer = a->m_integer.udiv(b->m_integer);
return result;
case Category::Float:
result.m_float = a->m_float / b->m_float;
return result;
}
}
// For division only, the only way it should make it here is if a promotion
// failed, or if we are trying to do a divide by zero.
result.m_type = Scalar::e_void;
return result;
}
const Scalar lldb_private::operator*(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
switch (GetCategory(result.m_type)) {
case Category::Void:
break;
case Category::Integral:
result.m_integer = a->m_integer * b->m_integer;
break;
case Category::Float:
result.m_float = a->m_float * b->m_float;
break;
}
}
return result;
}
const Scalar lldb_private::operator&(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
if (GetCategory(result.m_type) == Category::Integral)
result.m_integer = a->m_integer & b->m_integer;
else
result.m_type = Scalar::e_void;
}
return result;
}
const Scalar lldb_private::operator|(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
if (GetCategory(result.m_type) == Category::Integral)
result.m_integer = a->m_integer | b->m_integer;
else
result.m_type = Scalar::e_void;
}
return result;
}
const Scalar lldb_private::operator%(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
if (!b->IsZero() && GetCategory(result.m_type) == Category::Integral) {
if (IsSigned(result.m_type))
result.m_integer = a->m_integer.srem(b->m_integer);
else
result.m_integer = a->m_integer.urem(b->m_integer);
return result;
}
}
result.m_type = Scalar::e_void;
return result;
}
const Scalar lldb_private::operator^(const Scalar &lhs, const Scalar &rhs) {
Scalar result;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
Scalar::e_void) {
if (GetCategory(result.m_type) == Category::Integral)
result.m_integer = a->m_integer ^ b->m_integer;
else
result.m_type = Scalar::e_void;
}
return result;
}
const Scalar lldb_private::operator<<(const Scalar &lhs, const Scalar &rhs) {
Scalar result = lhs;
result <<= rhs;
return result;
}
const Scalar lldb_private::operator>>(const Scalar &lhs, const Scalar &rhs) {
Scalar result = lhs;
result >>= rhs;
return result;
}
Status Scalar::SetValueFromCString(const char *value_str, Encoding encoding,
size_t byte_size) {
Status error;
if (value_str == nullptr || value_str[0] == '\0') {
error.SetErrorString("Invalid c-string value string.");
return error;
}
switch (encoding) {
case eEncodingInvalid:
error.SetErrorString("Invalid encoding.");
break;
case eEncodingUint:
if (byte_size <= sizeof(uint64_t)) {
uint64_t uval64;
if (!llvm::to_integer(value_str, uval64))
error.SetErrorStringWithFormat(
"'%s' is not a valid unsigned integer string value", value_str);
else if (!UIntValueIsValidForSize(uval64, byte_size))
error.SetErrorStringWithFormat(
"value 0x%" PRIx64 " is too large to fit in a %" PRIu64
" byte unsigned integer value",
uval64, static_cast<uint64_t>(byte_size));
else {
m_type = Scalar::GetValueTypeForUnsignedIntegerWithByteSize(byte_size);
switch (m_type) {
case e_uint:
m_integer = llvm::APInt(sizeof(uint_t) * 8, uval64, false);
break;
case e_ulong:
m_integer = llvm::APInt(sizeof(ulong_t) * 8, uval64, false);
break;
case e_ulonglong:
m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, uval64, false);
break;
default:
error.SetErrorStringWithFormat(
"unsupported unsigned integer byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
break;
}
}
} else {
error.SetErrorStringWithFormat(
"unsupported unsigned integer byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
return error;
}
break;
case eEncodingSint:
if (byte_size <= sizeof(int64_t)) {
int64_t sval64;
if (!llvm::to_integer(value_str, sval64))
error.SetErrorStringWithFormat(
"'%s' is not a valid signed integer string value", value_str);
else if (!SIntValueIsValidForSize(sval64, byte_size))
error.SetErrorStringWithFormat(
"value 0x%" PRIx64 " is too large to fit in a %" PRIu64
" byte signed integer value",
sval64, static_cast<uint64_t>(byte_size));
else {
m_type = Scalar::GetValueTypeForSignedIntegerWithByteSize(byte_size);
switch (m_type) {
case e_sint:
m_integer = llvm::APInt(sizeof(sint_t) * 8, sval64, true);
break;
case e_slong:
m_integer = llvm::APInt(sizeof(slong_t) * 8, sval64, true);
break;
case e_slonglong:
m_integer = llvm::APInt(sizeof(slonglong_t) * 8, sval64, true);
break;
default:
error.SetErrorStringWithFormat(
"unsupported signed integer byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
break;
}
}
} else {
error.SetErrorStringWithFormat(
"unsupported signed integer byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
return error;
}
break;
case eEncodingIEEE754:
static float f_val;
static double d_val;
static long double l_val;
if (byte_size == sizeof(float)) {
if (::sscanf(value_str, "%f", &f_val) == 1) {
m_float = llvm::APFloat(f_val);
m_type = e_float;
} else
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_str);
} else if (byte_size == sizeof(double)) {
if (::sscanf(value_str, "%lf", &d_val) == 1) {
m_float = llvm::APFloat(d_val);
m_type = e_double;
} else
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_str);
} else if (byte_size == sizeof(long double)) {
if (::sscanf(value_str, "%Lf", &l_val) == 1) {
m_float = llvm::APFloat(
llvm::APFloat::x87DoubleExtended(),
llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128,
(reinterpret_cast<type128 *>(&l_val))->x));
m_type = e_long_double;
} else
error.SetErrorStringWithFormat("'%s' is not a valid float string value",
value_str);
} else {
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
return error;
}
break;
case eEncodingVector:
error.SetErrorString("vector encoding unsupported.");
break;
}
if (error.Fail())
m_type = e_void;
return error;
}
Status Scalar::SetValueFromData(DataExtractor &data, lldb::Encoding encoding,
size_t byte_size) {
Status error;
type128 int128;
type256 int256;
switch (encoding) {
case lldb::eEncodingInvalid:
error.SetErrorString("invalid encoding");
break;
case lldb::eEncodingVector:
error.SetErrorString("vector encoding unsupported");
break;
case lldb::eEncodingUint: {
lldb::offset_t offset = 0;
switch (byte_size) {
case 1:
operator=(data.GetU8(&offset));
break;
case 2:
operator=(data.GetU16(&offset));
break;
case 4:
operator=(data.GetU32(&offset));
break;
case 8:
operator=(data.GetU64(&offset));
break;
case 16:
if (data.GetByteOrder() == eByteOrderBig) {
int128.x[1] = data.GetU64(&offset);
int128.x[0] = data.GetU64(&offset);
} else {
int128.x[0] = data.GetU64(&offset);
int128.x[1] = data.GetU64(&offset);
}
operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x));
break;
case 32:
if (data.GetByteOrder() == eByteOrderBig) {
int256.x[3] = data.GetU64(&offset);
int256.x[2] = data.GetU64(&offset);
int256.x[1] = data.GetU64(&offset);
int256.x[0] = data.GetU64(&offset);
} else {
int256.x[0] = data.GetU64(&offset);
int256.x[1] = data.GetU64(&offset);
int256.x[2] = data.GetU64(&offset);
int256.x[3] = data.GetU64(&offset);
}
operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x));
break;
default:
error.SetErrorStringWithFormat(
"unsupported unsigned integer byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
break;
}
} break;
case lldb::eEncodingSint: {
lldb::offset_t offset = 0;
switch (byte_size) {
case 1:
operator=(static_cast<int8_t>(data.GetU8(&offset)));
break;
case 2:
operator=(static_cast<int16_t>(data.GetU16(&offset)));
break;
case 4:
operator=(static_cast<int32_t>(data.GetU32(&offset)));
break;
case 8:
operator=(static_cast<int64_t>(data.GetU64(&offset)));
break;
case 16:
if (data.GetByteOrder() == eByteOrderBig) {
int128.x[1] = data.GetU64(&offset);
int128.x[0] = data.GetU64(&offset);
} else {
int128.x[0] = data.GetU64(&offset);
int128.x[1] = data.GetU64(&offset);
}
operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x));
break;
case 32:
if (data.GetByteOrder() == eByteOrderBig) {
int256.x[3] = data.GetU64(&offset);
int256.x[2] = data.GetU64(&offset);
int256.x[1] = data.GetU64(&offset);
int256.x[0] = data.GetU64(&offset);
} else {
int256.x[0] = data.GetU64(&offset);
int256.x[1] = data.GetU64(&offset);
int256.x[2] = data.GetU64(&offset);
int256.x[3] = data.GetU64(&offset);
}
operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x));
break;
default:
error.SetErrorStringWithFormat(
"unsupported signed integer byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
break;
}
} break;
case lldb::eEncodingIEEE754: {
lldb::offset_t offset = 0;
if (byte_size == sizeof(float))
operator=(data.GetFloat(&offset));
else if (byte_size == sizeof(double))
operator=(data.GetDouble(&offset));
else if (byte_size == sizeof(long double))
operator=(data.GetLongDouble(&offset));
else
error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "",
static_cast<uint64_t>(byte_size));
} break;
}
return error;
}
bool Scalar::SignExtend(uint32_t sign_bit_pos) {
const uint32_t max_bit_pos = GetByteSize() * 8;
if (sign_bit_pos < max_bit_pos) {
switch (m_type) {
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
return false;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
case Scalar::e_sint512:
case Scalar::e_uint512:
if (max_bit_pos == sign_bit_pos)
return true;
else if (sign_bit_pos < (max_bit_pos - 1)) {
llvm::APInt sign_bit = llvm::APInt::getSignMask(sign_bit_pos + 1);
llvm::APInt bitwize_and = m_integer & sign_bit;
if (bitwize_and.getBoolValue()) {
const llvm::APInt mask =
~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1);
m_integer |= mask;
}
return true;
}
break;
}
}
return false;
}
size_t Scalar::GetAsMemoryData(void *dst, size_t dst_len,
lldb::ByteOrder dst_byte_order,
Status &error) const {
// Get a data extractor that points to the native scalar data
DataExtractor data;
if (!GetData(data)) {
error.SetErrorString("invalid scalar value");
return 0;
}
const size_t src_len = data.GetByteSize();
// Prepare a memory buffer that contains some or all of the register value
const size_t bytes_copied =
data.CopyByteOrderedData(0, // src offset
src_len, // src length
dst, // dst buffer
dst_len, // dst length
dst_byte_order); // dst byte order
if (bytes_copied == 0)
error.SetErrorString("failed to copy data");
return bytes_copied;
}
bool Scalar::ExtractBitfield(uint32_t bit_size, uint32_t bit_offset) {
if (bit_size == 0)
return true;
switch (m_type) {
case Scalar::e_void:
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
case Scalar::e_sint512:
m_integer = m_integer.ashr(bit_offset)
.sextOrTrunc(bit_size)
.sextOrSelf(8 * GetByteSize());
return true;
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
case Scalar::e_uint512:
m_integer = m_integer.lshr(bit_offset)
.zextOrTrunc(bit_size)
.zextOrSelf(8 * GetByteSize());
return true;
}
return false;
}
bool lldb_private::operator==(const Scalar &lhs, const Scalar &rhs) {
// If either entry is void then we can just compare the types
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return lhs.m_type == rhs.m_type;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_uint:
case Scalar::e_slong:
case Scalar::e_ulong:
case Scalar::e_slonglong:
case Scalar::e_ulonglong:
case Scalar::e_sint128:
case Scalar::e_uint128:
case Scalar::e_sint256:
case Scalar::e_uint256:
case Scalar::e_sint512:
case Scalar::e_uint512:
return a->m_integer == b->m_integer;
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if (result == llvm::APFloat::cmpEqual)
return true;
}
return false;
}
bool lldb_private::operator!=(const Scalar &lhs, const Scalar &rhs) {
return !(lhs == rhs);
}
bool lldb_private::operator<(const Scalar &lhs, const Scalar &rhs) {
if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
return false;
Scalar temp_value;
const Scalar *a;
const Scalar *b;
llvm::APFloat::cmpResult result;
switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
case Scalar::e_void:
break;
case Scalar::e_sint:
case Scalar::e_slong:
case Scalar::e_slonglong:
case Scalar::e_sint128:
case Scalar::e_sint256:
case Scalar::e_sint512:
case Scalar::e_uint512:
return a->m_integer.slt(b->m_integer);
case Scalar::e_uint:
case Scalar::e_ulong:
case Scalar::e_ulonglong:
case Scalar::e_uint128:
case Scalar::e_uint256:
return a->m_integer.ult(b->m_integer);
case Scalar::e_float:
case Scalar::e_double:
case Scalar::e_long_double:
result = a->m_float.compare(b->m_float);
if (result == llvm::APFloat::cmpLessThan)
return true;
}
return false;
}
bool lldb_private::operator<=(const Scalar &lhs, const Scalar &rhs) {
return !(rhs < lhs);
}
bool lldb_private::operator>(const Scalar &lhs, const Scalar &rhs) {
return rhs < lhs;
}
bool lldb_private::operator>=(const Scalar &lhs, const Scalar &rhs) {
return !(lhs < rhs);
}
bool Scalar::ClearBit(uint32_t bit) {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_sint512:
case e_uint512:
m_integer.clearBit(bit);
return true;
case e_float:
case e_double:
case e_long_double:
break;
}
return false;
}
bool Scalar::SetBit(uint32_t bit) {
switch (m_type) {
case e_void:
break;
case e_sint:
case e_uint:
case e_slong:
case e_ulong:
case e_slonglong:
case e_ulonglong:
case e_sint128:
case e_uint128:
case e_sint256:
case e_uint256:
case e_sint512:
case e_uint512:
m_integer.setBit(bit);
return true;
case e_float:
case e_double:
case e_long_double:
break;
}
return false;
}
llvm::raw_ostream &lldb_private::operator<<(llvm::raw_ostream &os, const Scalar &scalar) {
StreamString s;
scalar.GetValue(&s, /*show_type*/ true);
return os << s.GetString();
}