| //===--- Program.cpp - Bytecode for the constexpr VM ------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Program.h" |
| #include "Context.h" |
| #include "Function.h" |
| #include "Integral.h" |
| #include "PrimType.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| |
| using namespace clang; |
| using namespace clang::interp; |
| |
| unsigned Program::getOrCreateNativePointer(const void *Ptr) { |
| auto [It, Inserted] = |
| NativePointerIndices.try_emplace(Ptr, NativePointers.size()); |
| if (Inserted) |
| NativePointers.push_back(Ptr); |
| |
| return It->second; |
| } |
| |
| const void *Program::getNativePointer(unsigned Idx) { |
| return NativePointers[Idx]; |
| } |
| |
| unsigned Program::createGlobalString(const StringLiteral *S, const Expr *Base) { |
| const size_t CharWidth = S->getCharByteWidth(); |
| const size_t BitWidth = CharWidth * Ctx.getCharBit(); |
| unsigned StringLength = S->getLength(); |
| |
| PrimType CharType; |
| switch (CharWidth) { |
| case 1: |
| CharType = PT_Sint8; |
| break; |
| case 2: |
| CharType = PT_Uint16; |
| break; |
| case 4: |
| CharType = PT_Uint32; |
| break; |
| default: |
| llvm_unreachable("unsupported character width"); |
| } |
| |
| if (!Base) |
| Base = S; |
| |
| // Create a descriptor for the string. |
| Descriptor *Desc = |
| allocateDescriptor(Base, CharType, Descriptor::GlobalMD, StringLength + 1, |
| /*isConst=*/true, |
| /*isTemporary=*/false, |
| /*isMutable=*/false); |
| |
| // Allocate storage for the string. |
| // The byte length does not include the null terminator. |
| unsigned GlobalIndex = Globals.size(); |
| unsigned Sz = Desc->getAllocSize(); |
| auto *G = new (Allocator, Sz) Global(Ctx.getEvalID(), Desc, /*isStatic=*/true, |
| /*isExtern=*/false); |
| G->block()->invokeCtor(); |
| |
| new (G->block()->rawData()) InlineDescriptor(Desc); |
| Globals.push_back(G); |
| |
| // Construct the string in storage. |
| const Pointer Ptr(G->block()); |
| for (unsigned I = 0; I <= StringLength; ++I) { |
| Pointer Field = Ptr.atIndex(I); |
| const uint32_t CodePoint = I == StringLength ? 0 : S->getCodeUnit(I); |
| switch (CharType) { |
| case PT_Sint8: { |
| using T = PrimConv<PT_Sint8>::T; |
| Field.deref<T>() = T::from(CodePoint, BitWidth); |
| break; |
| } |
| case PT_Uint16: { |
| using T = PrimConv<PT_Uint16>::T; |
| Field.deref<T>() = T::from(CodePoint, BitWidth); |
| break; |
| } |
| case PT_Uint32: { |
| using T = PrimConv<PT_Uint32>::T; |
| Field.deref<T>() = T::from(CodePoint, BitWidth); |
| break; |
| } |
| default: |
| llvm_unreachable("unsupported character type"); |
| } |
| } |
| Ptr.initialize(); |
| |
| return GlobalIndex; |
| } |
| |
| Pointer Program::getPtrGlobal(unsigned Idx) const { |
| assert(Idx < Globals.size()); |
| return Pointer(Globals[Idx]->block()); |
| } |
| |
| std::optional<unsigned> Program::getGlobal(const ValueDecl *VD) { |
| if (auto It = GlobalIndices.find(VD); It != GlobalIndices.end()) |
| return It->second; |
| |
| // Find any previous declarations which were already evaluated. |
| std::optional<unsigned> Index; |
| for (const Decl *P = VD->getPreviousDecl(); P; P = P->getPreviousDecl()) { |
| if (auto It = GlobalIndices.find(P); It != GlobalIndices.end()) { |
| Index = It->second; |
| break; |
| } |
| } |
| |
| // Map the decl to the existing index. |
| if (Index) |
| GlobalIndices[VD] = *Index; |
| |
| return std::nullopt; |
| } |
| |
| std::optional<unsigned> Program::getGlobal(const Expr *E) { |
| if (auto It = GlobalIndices.find(E); It != GlobalIndices.end()) |
| return It->second; |
| return std::nullopt; |
| } |
| |
| std::optional<unsigned> Program::getOrCreateGlobal(const ValueDecl *VD, |
| const Expr *Init) { |
| if (auto Idx = getGlobal(VD)) |
| return Idx; |
| |
| if (auto Idx = createGlobal(VD, Init)) { |
| GlobalIndices[VD] = *Idx; |
| return Idx; |
| } |
| return std::nullopt; |
| } |
| |
| unsigned Program::getOrCreateDummy(const DeclTy &D) { |
| assert(D); |
| // Dedup blocks since they are immutable and pointers cannot be compared. |
| if (auto It = DummyVariables.find(D.getOpaqueValue()); |
| It != DummyVariables.end()) |
| return It->second; |
| |
| QualType QT; |
| bool IsWeak = false; |
| if (const auto *E = dyn_cast<const Expr *>(D)) { |
| QT = E->getType(); |
| } else { |
| const auto *VD = cast<ValueDecl>(cast<const Decl *>(D)); |
| IsWeak = VD->isWeak(); |
| QT = VD->getType(); |
| if (const auto *RT = QT->getAs<ReferenceType>()) |
| QT = RT->getPointeeType(); |
| } |
| assert(!QT.isNull()); |
| |
| Descriptor *Desc; |
| if (std::optional<PrimType> T = Ctx.classify(QT)) |
| Desc = createDescriptor(D, *T, /*SourceTy=*/nullptr, std::nullopt, |
| /*IsConst=*/QT.isConstQualified()); |
| else |
| Desc = createDescriptor(D, QT.getTypePtr(), std::nullopt, |
| /*IsConst=*/QT.isConstQualified()); |
| if (!Desc) |
| Desc = allocateDescriptor(D); |
| |
| assert(Desc); |
| Desc->makeDummy(); |
| |
| assert(Desc->isDummy()); |
| |
| // Allocate a block for storage. |
| unsigned I = Globals.size(); |
| |
| auto *G = new (Allocator, Desc->getAllocSize()) |
| Global(Ctx.getEvalID(), getCurrentDecl(), Desc, /*IsStatic=*/true, |
| /*IsExtern=*/false, IsWeak); |
| G->block()->invokeCtor(); |
| |
| Globals.push_back(G); |
| DummyVariables[D.getOpaqueValue()] = I; |
| return I; |
| } |
| |
| std::optional<unsigned> Program::createGlobal(const ValueDecl *VD, |
| const Expr *Init) { |
| bool IsStatic, IsExtern; |
| bool IsWeak = VD->isWeak(); |
| if (const auto *Var = dyn_cast<VarDecl>(VD)) { |
| IsStatic = Context::shouldBeGloballyIndexed(VD); |
| IsExtern = Var->hasExternalStorage(); |
| } else if (isa<UnnamedGlobalConstantDecl, MSGuidDecl, |
| TemplateParamObjectDecl>(VD)) { |
| IsStatic = true; |
| IsExtern = false; |
| } else { |
| IsStatic = false; |
| IsExtern = true; |
| } |
| |
| // Register all previous declarations as well. For extern blocks, just replace |
| // the index with the new variable. |
| if (auto Idx = |
| createGlobal(VD, VD->getType(), IsStatic, IsExtern, IsWeak, Init)) { |
| for (const Decl *P = VD; P; P = P->getPreviousDecl()) { |
| unsigned &PIdx = GlobalIndices[P]; |
| if (P != VD) { |
| if (Globals[PIdx]->block()->isExtern()) |
| Globals[PIdx] = Globals[*Idx]; |
| } |
| PIdx = *Idx; |
| } |
| return *Idx; |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<unsigned> Program::createGlobal(const Expr *E) { |
| if (auto Idx = getGlobal(E)) |
| return Idx; |
| if (auto Idx = createGlobal(E, E->getType(), /*isStatic=*/true, |
| /*isExtern=*/false, /*IsWeak=*/false)) { |
| GlobalIndices[E] = *Idx; |
| return *Idx; |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<unsigned> Program::createGlobal(const DeclTy &D, QualType Ty, |
| bool IsStatic, bool IsExtern, |
| bool IsWeak, const Expr *Init) { |
| // Create a descriptor for the global. |
| Descriptor *Desc; |
| const bool IsConst = Ty.isConstQualified(); |
| const bool IsTemporary = D.dyn_cast<const Expr *>(); |
| const bool IsVolatile = Ty.isVolatileQualified(); |
| if (std::optional<PrimType> T = Ctx.classify(Ty)) |
| Desc = createDescriptor(D, *T, nullptr, Descriptor::GlobalMD, IsConst, |
| IsTemporary, /*IsMutable=*/false, IsVolatile); |
| else |
| Desc = createDescriptor(D, Ty.getTypePtr(), Descriptor::GlobalMD, IsConst, |
| IsTemporary, /*IsMutable=*/false, IsVolatile); |
| |
| if (!Desc) |
| return std::nullopt; |
| |
| // Allocate a block for storage. |
| unsigned I = Globals.size(); |
| |
| auto *G = new (Allocator, Desc->getAllocSize()) Global( |
| Ctx.getEvalID(), getCurrentDecl(), Desc, IsStatic, IsExtern, IsWeak); |
| G->block()->invokeCtor(); |
| |
| // Initialize InlineDescriptor fields. |
| auto *GD = new (G->block()->rawData()) GlobalInlineDescriptor(); |
| if (!Init) |
| GD->InitState = GlobalInitState::NoInitializer; |
| Globals.push_back(G); |
| |
| return I; |
| } |
| |
| Function *Program::getFunction(const FunctionDecl *F) { |
| F = F->getCanonicalDecl(); |
| assert(F); |
| auto It = Funcs.find(F); |
| return It == Funcs.end() ? nullptr : It->second.get(); |
| } |
| |
| Record *Program::getOrCreateRecord(const RecordDecl *RD) { |
| // Use the actual definition as a key. |
| RD = RD->getDefinition(); |
| if (!RD) |
| return nullptr; |
| |
| if (!RD->isCompleteDefinition()) |
| return nullptr; |
| |
| // Return an existing record if available. Otherwise, we insert nullptr now |
| // and replace that later, so recursive calls to this function with the same |
| // RecordDecl don't run into infinite recursion. |
| auto [It, Inserted] = Records.try_emplace(RD); |
| if (!Inserted) |
| return It->second; |
| |
| // Number of bytes required by fields and base classes. |
| unsigned BaseSize = 0; |
| // Number of bytes required by virtual base. |
| unsigned VirtSize = 0; |
| |
| // Helper to get a base descriptor. |
| auto GetBaseDesc = [this](const RecordDecl *BD, |
| const Record *BR) -> const Descriptor * { |
| if (!BR) |
| return nullptr; |
| return allocateDescriptor(BD, BR, std::nullopt, /*isConst=*/false, |
| /*isTemporary=*/false, |
| /*isMutable=*/false, /*IsVolatile=*/false); |
| }; |
| |
| // Reserve space for base classes. |
| Record::BaseList Bases; |
| Record::VirtualBaseList VirtBases; |
| if (const auto *CD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (const CXXBaseSpecifier &Spec : CD->bases()) { |
| if (Spec.isVirtual()) |
| continue; |
| |
| // In error cases, the base might not be a RecordType. |
| const auto *RT = Spec.getType()->getAs<RecordType>(); |
| if (!RT) |
| return nullptr; |
| const RecordDecl *BD = RT->getDecl(); |
| const Record *BR = getOrCreateRecord(BD); |
| |
| const Descriptor *Desc = GetBaseDesc(BD, BR); |
| if (!Desc) |
| return nullptr; |
| |
| BaseSize += align(sizeof(InlineDescriptor)); |
| Bases.push_back({BD, BaseSize, Desc, BR}); |
| BaseSize += align(BR->getSize()); |
| } |
| |
| for (const CXXBaseSpecifier &Spec : CD->vbases()) { |
| const auto *RT = Spec.getType()->getAs<RecordType>(); |
| if (!RT) |
| return nullptr; |
| |
| const RecordDecl *BD = RT->getDecl(); |
| const Record *BR = getOrCreateRecord(BD); |
| |
| const Descriptor *Desc = GetBaseDesc(BD, BR); |
| if (!Desc) |
| return nullptr; |
| |
| VirtSize += align(sizeof(InlineDescriptor)); |
| VirtBases.push_back({BD, VirtSize, Desc, BR}); |
| VirtSize += align(BR->getSize()); |
| } |
| } |
| |
| // Reserve space for fields. |
| Record::FieldList Fields; |
| for (const FieldDecl *FD : RD->fields()) { |
| FD = FD->getFirstDecl(); |
| // Note that we DO create fields and descriptors |
| // for unnamed bitfields here, even though we later ignore |
| // them everywhere. That's so the FieldDecl's getFieldIndex() matches. |
| |
| // Reserve space for the field's descriptor and the offset. |
| BaseSize += align(sizeof(InlineDescriptor)); |
| |
| // Classify the field and add its metadata. |
| QualType FT = FD->getType(); |
| const bool IsConst = FT.isConstQualified(); |
| const bool IsMutable = FD->isMutable(); |
| const bool IsVolatile = FT.isVolatileQualified(); |
| const Descriptor *Desc; |
| if (std::optional<PrimType> T = Ctx.classify(FT)) { |
| Desc = createDescriptor(FD, *T, nullptr, std::nullopt, IsConst, |
| /*isTemporary=*/false, IsMutable, IsVolatile); |
| } else { |
| Desc = createDescriptor(FD, FT.getTypePtr(), std::nullopt, IsConst, |
| /*isTemporary=*/false, IsMutable, IsVolatile); |
| } |
| if (!Desc) |
| return nullptr; |
| Fields.push_back({FD, BaseSize, Desc}); |
| BaseSize += align(Desc->getAllocSize()); |
| } |
| |
| Record *R = new (Allocator) Record(RD, std::move(Bases), std::move(Fields), |
| std::move(VirtBases), VirtSize, BaseSize); |
| Records[RD] = R; |
| return R; |
| } |
| |
| Descriptor *Program::createDescriptor(const DeclTy &D, const Type *Ty, |
| Descriptor::MetadataSize MDSize, |
| bool IsConst, bool IsTemporary, |
| bool IsMutable, bool IsVolatile, |
| const Expr *Init) { |
| |
| // Classes and structures. |
| if (const auto *RT = Ty->getAs<RecordType>()) { |
| if (const auto *Record = getOrCreateRecord(RT->getDecl())) |
| return allocateDescriptor(D, Record, MDSize, IsConst, IsTemporary, |
| IsMutable, IsVolatile); |
| return allocateDescriptor(D, MDSize); |
| } |
| |
| // Arrays. |
| if (const auto *ArrayType = Ty->getAsArrayTypeUnsafe()) { |
| QualType ElemTy = ArrayType->getElementType(); |
| // Array of well-known bounds. |
| if (const auto *CAT = dyn_cast<ConstantArrayType>(ArrayType)) { |
| size_t NumElems = CAT->getZExtSize(); |
| if (std::optional<PrimType> T = Ctx.classify(ElemTy)) { |
| // Arrays of primitives. |
| unsigned ElemSize = primSize(*T); |
| if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) { |
| return {}; |
| } |
| return allocateDescriptor(D, *T, MDSize, NumElems, IsConst, IsTemporary, |
| IsMutable); |
| } else { |
| // Arrays of composites. In this case, the array is a list of pointers, |
| // followed by the actual elements. |
| const Descriptor *ElemDesc = createDescriptor( |
| D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary); |
| if (!ElemDesc) |
| return nullptr; |
| unsigned ElemSize = ElemDesc->getAllocSize() + sizeof(InlineDescriptor); |
| if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) |
| return {}; |
| return allocateDescriptor(D, Ty, ElemDesc, MDSize, NumElems, IsConst, |
| IsTemporary, IsMutable); |
| } |
| } |
| |
| // Array of unknown bounds - cannot be accessed and pointer arithmetic |
| // is forbidden on pointers to such objects. |
| if (isa<IncompleteArrayType>(ArrayType) || |
| isa<VariableArrayType>(ArrayType)) { |
| if (std::optional<PrimType> T = Ctx.classify(ElemTy)) { |
| return allocateDescriptor(D, *T, MDSize, IsConst, IsTemporary, |
| Descriptor::UnknownSize{}); |
| } else { |
| const Descriptor *Desc = createDescriptor( |
| D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary); |
| if (!Desc) |
| return nullptr; |
| return allocateDescriptor(D, Desc, MDSize, IsTemporary, |
| Descriptor::UnknownSize{}); |
| } |
| } |
| } |
| |
| // Atomic types. |
| if (const auto *AT = Ty->getAs<AtomicType>()) { |
| const Type *InnerTy = AT->getValueType().getTypePtr(); |
| return createDescriptor(D, InnerTy, MDSize, IsConst, IsTemporary, |
| IsMutable); |
| } |
| |
| // Complex types - represented as arrays of elements. |
| if (const auto *CT = Ty->getAs<ComplexType>()) { |
| std::optional<PrimType> ElemTy = Ctx.classify(CT->getElementType()); |
| if (!ElemTy) |
| return nullptr; |
| |
| return allocateDescriptor(D, *ElemTy, MDSize, 2, IsConst, IsTemporary, |
| IsMutable); |
| } |
| |
| // Same with vector types. |
| if (const auto *VT = Ty->getAs<VectorType>()) { |
| std::optional<PrimType> ElemTy = Ctx.classify(VT->getElementType()); |
| if (!ElemTy) |
| return nullptr; |
| |
| return allocateDescriptor(D, *ElemTy, MDSize, VT->getNumElements(), IsConst, |
| IsTemporary, IsMutable); |
| } |
| |
| return nullptr; |
| } |