blob: 35b8c9b38686085c58773c6067136e6d8b2742ec [file] [log] [blame]
//===- SPIRVModuleAnalysis.h - analysis of global instrs & regs -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis collects instructions that should be output at the module level
// and performs the global register numbering.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H
#define LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
namespace llvm {
class SPIRVSubtarget;
class MachineFunction;
class MachineModuleInfo;
namespace SPIRV {
// The enum contains logical module sections for the instruction collection.
enum ModuleSectionType {
// MB_Capabilities, MB_Extensions, MB_ExtInstImports, MB_MemoryModel,
MB_EntryPoints, // All OpEntryPoint instructions (if any).
// MB_ExecutionModes, MB_DebugSourceAndStrings,
MB_DebugNames, // All OpName and OpMemberName intrs.
MB_DebugStrings, // All OpString intrs.
MB_DebugModuleProcessed, // All OpModuleProcessed instructions.
MB_Annotations, // OpDecorate, OpMemberDecorate etc.
MB_TypeConstVars, // OpTypeXXX, OpConstantXXX, and global OpVariables.
MB_NonSemanticGlobalDI, // OpExtInst with e.g. DebugSource, DebugTypeBasic.
MB_ExtFuncDecls, // OpFunction etc. to declare for external funcs.
NUM_MODULE_SECTIONS // Total number of sections requiring basic blocks.
};
struct Requirements {
const bool IsSatisfiable;
const std::optional<Capability::Capability> Cap;
const ExtensionList Exts;
const VersionTuple MinVer; // 0 if no min version is required.
const VersionTuple MaxVer; // 0 if no max version is required.
Requirements(bool IsSatisfiable = false,
std::optional<Capability::Capability> Cap = {},
ExtensionList Exts = {}, VersionTuple MinVer = VersionTuple(),
VersionTuple MaxVer = VersionTuple())
: IsSatisfiable(IsSatisfiable), Cap(Cap), Exts(Exts), MinVer(MinVer),
MaxVer(MaxVer) {}
Requirements(Capability::Capability Cap) : Requirements(true, {Cap}) {}
};
struct RequirementHandler {
private:
CapabilityList MinimalCaps;
// AllCaps and AvailableCaps are related but different. AllCaps is a subset of
// AvailableCaps. AvailableCaps is the complete set of capabilities that are
// available to the current target. AllCaps is the set of capabilities that
// are required by the current module.
SmallSet<Capability::Capability, 8> AllCaps;
DenseSet<unsigned> AvailableCaps;
SmallSet<Extension::Extension, 4> AllExtensions;
VersionTuple MinVersion; // 0 if no min version is defined.
VersionTuple MaxVersion; // 0 if no max version is defined.
// Add capabilities to AllCaps, recursing through their implicitly declared
// capabilities too.
void recursiveAddCapabilities(const CapabilityList &ToPrune);
void initAvailableCapabilitiesForOpenCL(const SPIRVSubtarget &ST);
void initAvailableCapabilitiesForVulkan(const SPIRVSubtarget &ST);
public:
RequirementHandler() {}
void clear() {
MinimalCaps.clear();
AllCaps.clear();
AvailableCaps.clear();
AllExtensions.clear();
MinVersion = VersionTuple();
MaxVersion = VersionTuple();
}
const CapabilityList &getMinimalCapabilities() const { return MinimalCaps; }
const SmallSet<Extension::Extension, 4> &getExtensions() const {
return AllExtensions;
}
// Add a list of capabilities, ensuring AllCaps captures all the implicitly
// declared capabilities, and MinimalCaps has the minimal set of required
// capabilities (so all implicitly declared ones are removed).
void addCapabilities(const CapabilityList &ToAdd);
void addCapability(Capability::Capability ToAdd) { addCapabilities({ToAdd}); }
void addExtensions(const ExtensionList &ToAdd) {
AllExtensions.insert(ToAdd.begin(), ToAdd.end());
}
void addExtension(Extension::Extension ToAdd) { AllExtensions.insert(ToAdd); }
// Add the given requirements to the lists. If constraints conflict, or these
// requirements cannot be satisfied, then abort the compilation.
void addRequirements(const Requirements &Req);
// Get requirement and add it to the list.
void getAndAddRequirements(SPIRV::OperandCategory::OperandCategory Category,
uint32_t i, const SPIRVSubtarget &ST);
// Check if all the requirements can be satisfied for the given subtarget, and
// if not abort compilation.
void checkSatisfiable(const SPIRVSubtarget &ST) const;
void initAvailableCapabilities(const SPIRVSubtarget &ST);
// Add the given capabilities to available and all their implicitly defined
// capabilities too.
void addAvailableCaps(const CapabilityList &ToAdd);
bool isCapabilityAvailable(Capability::Capability Cap) const {
return AvailableCaps.contains(Cap);
}
// Remove capability ToRemove, but only if IfPresent is present.
void removeCapabilityIf(const Capability::Capability ToRemove,
const Capability::Capability IfPresent);
};
using InstrList = SmallVector<const MachineInstr *>;
// Maps a local register to the corresponding global alias.
using LocalToGlobalRegTable = std::map<Register, MCRegister>;
using RegisterAliasMapTy =
std::map<const MachineFunction *, LocalToGlobalRegTable>;
// The struct contains results of the module analysis and methods
// to access them.
struct ModuleAnalysisInfo {
RequirementHandler Reqs;
MemoryModel::MemoryModel Mem;
AddressingModel::AddressingModel Addr;
SourceLanguage::SourceLanguage SrcLang;
unsigned SrcLangVersion;
StringSet<> SrcExt;
// Maps ExtInstSet to corresponding ID register.
DenseMap<unsigned, MCRegister> ExtInstSetMap;
// Contains the list of all global OpVariables in the module.
SmallVector<const MachineInstr *, 4> GlobalVarList;
// Maps functions to corresponding function ID registers.
DenseMap<const Function *, MCRegister> FuncMap;
// The set contains machine instructions which are necessary
// for correct MIR but will not be emitted in function bodies.
DenseSet<const MachineInstr *> InstrsToDelete;
// The table contains global aliases of local registers for each machine
// function. The aliases are used to substitute local registers during
// code emission.
RegisterAliasMapTy RegisterAliasTable;
// The counter holds the maximum ID we have in the module.
unsigned MaxID;
// The array contains lists of MIs for each module section.
InstrList MS[NUM_MODULE_SECTIONS];
// The table maps MBB number to SPIR-V unique ID register.
DenseMap<std::pair<const MachineFunction *, int>, MCRegister> BBNumToRegMap;
MCRegister getFuncReg(const Function *F) {
assert(F && "Function is null");
auto FuncPtrRegPair = FuncMap.find(F);
return FuncPtrRegPair == FuncMap.end() ? MCRegister()
: FuncPtrRegPair->second;
}
MCRegister getExtInstSetReg(unsigned SetNum) { return ExtInstSetMap[SetNum]; }
InstrList &getMSInstrs(unsigned MSType) { return MS[MSType]; }
void setSkipEmission(const MachineInstr *MI) { InstrsToDelete.insert(MI); }
bool getSkipEmission(const MachineInstr *MI) {
return InstrsToDelete.contains(MI);
}
void setRegisterAlias(const MachineFunction *MF, Register Reg,
MCRegister AliasReg) {
RegisterAliasTable[MF][Reg] = AliasReg;
}
MCRegister getRegisterAlias(const MachineFunction *MF, Register Reg) {
auto &RegTable = RegisterAliasTable[MF];
auto RI = RegTable.find(Reg);
if (RI == RegTable.end()) {
return MCRegister();
}
return RI->second;
}
bool hasRegisterAlias(const MachineFunction *MF, Register Reg) {
auto RI = RegisterAliasTable.find(MF);
if (RI == RegisterAliasTable.end())
return false;
return RI->second.find(Reg) != RI->second.end();
}
unsigned getNextID() { return MaxID++; }
MCRegister getNextIDRegister() {
return MCRegister((1U << 31) | getNextID());
}
bool hasMBBRegister(const MachineBasicBlock &MBB) {
auto Key = std::make_pair(MBB.getParent(), MBB.getNumber());
return BBNumToRegMap.contains(Key);
}
// Convert MBB's number to corresponding ID register.
MCRegister getOrCreateMBBRegister(const MachineBasicBlock &MBB) {
auto Key = std::make_pair(MBB.getParent(), MBB.getNumber());
auto [It, Inserted] = BBNumToRegMap.try_emplace(Key);
if (Inserted)
It->second = getNextIDRegister();
return It->second;
}
};
} // namespace SPIRV
using InstrSignature = SmallVector<size_t>;
using InstrTraces = std::set<InstrSignature>;
using InstrGRegsMap = std::map<SmallVector<size_t>, unsigned>;
struct SPIRVModuleAnalysis : public ModulePass {
static char ID;
public:
SPIRVModuleAnalysis() : ModulePass(ID) {}
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
static struct SPIRV::ModuleAnalysisInfo MAI;
private:
void setBaseInfo(const Module &M);
void collectFuncNames(MachineInstr &MI, const Function *F);
void processOtherInstrs(const Module &M);
void numberRegistersGlobally(const Module &M);
// analyze dependencies to collect module scope definitions
void collectDeclarations(const Module &M);
void visitDecl(const MachineRegisterInfo &MRI, InstrGRegsMap &SignatureToGReg,
std::map<const Value *, unsigned> &GlobalToGReg,
const MachineFunction *MF, const MachineInstr &MI);
MCRegister handleVariable(const MachineFunction *MF, const MachineInstr &MI,
std::map<const Value *, unsigned> &GlobalToGReg);
MCRegister handleTypeDeclOrConstant(const MachineInstr &MI,
InstrGRegsMap &SignatureToGReg);
MCRegister
handleFunctionOrParameter(const MachineFunction *MF, const MachineInstr &MI,
std::map<const Value *, unsigned> &GlobalToGReg,
bool &IsFunDef);
void visitFunPtrUse(Register OpReg, InstrGRegsMap &SignatureToGReg,
std::map<const Value *, unsigned> &GlobalToGReg,
const MachineFunction *MF, const MachineInstr &MI);
bool isDeclSection(const MachineRegisterInfo &MRI, const MachineInstr &MI);
const SPIRVSubtarget *ST;
SPIRVGlobalRegistry *GR;
const SPIRVInstrInfo *TII;
MachineModuleInfo *MMI;
};
} // namespace llvm
#endif // LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H