blob: 1d793f91da5fd13641e0e5ad957bc69688edaefa [file] [log] [blame]
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/FunctionSupport.h"
#include "mlir/Rewrite/PatternApplicator.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"
using namespace mlir;
using namespace mlir::detail;
#define DEBUG_TYPE "dialect-conversion"
/// Recursively collect all of the operations to convert from within 'region'.
/// If 'target' is nonnull, operations that are recursively legal have their
/// regions pre-filtered to avoid considering them for legalization.
static LogicalResult
computeConversionSet(iterator_range<Region::iterator> region,
Location regionLoc,
SmallVectorImpl<Operation *> &toConvert,
ConversionTarget *target = nullptr) {
if (llvm::empty(region))
return success();
// Traverse starting from the entry block.
SmallVector<Block *, 16> worklist(1, &*region.begin());
DenseSet<Block *> visitedBlocks;
visitedBlocks.insert(worklist.front());
while (!worklist.empty()) {
Block *block = worklist.pop_back_val();
// Compute the conversion set of each of the nested operations.
for (Operation &op : *block) {
toConvert.emplace_back(&op);
// Don't check this operation's children for conversion if the operation
// is recursively legal.
auto legalityInfo = target ? target->isLegal(&op)
: Optional<ConversionTarget::LegalOpDetails>();
if (legalityInfo && legalityInfo->isRecursivelyLegal)
continue;
for (auto &region : op.getRegions()) {
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
toConvert, target)))
return failure();
}
}
// Recurse to children that haven't been visited.
for (Block *succ : block->getSuccessors())
if (visitedBlocks.insert(succ).second)
worklist.push_back(succ);
}
// Check that all blocks in the region were visited.
if (llvm::any_of(llvm::drop_begin(region, 1),
[&](Block &block) { return !visitedBlocks.count(&block); }))
return emitError(regionLoc, "unreachable blocks were not converted");
return success();
}
/// A utility function to log a successful result for the given reason.
template <typename... Args>
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> SUCCESS";
if (!fmt.empty())
os.getOStream() << " : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
os.getOStream() << "\n";
});
}
/// A utility function to log a failure result for the given reason.
template <typename... Args>
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> FAILURE : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
<< "\n";
});
}
//===----------------------------------------------------------------------===//
// ConversionValueMapping
//===----------------------------------------------------------------------===//
namespace {
/// This class wraps a BlockAndValueMapping to provide recursive lookup
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
struct ConversionValueMapping {
/// Lookup a mapped value within the map. If a mapping for the provided value
/// does not exist then return the provided value. If `desiredType` is
/// non-null, returns the most recently mapped value with that type. If an
/// operand of that type does not exist, defaults to normal behavior.
Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
/// Lookup a mapped value within the map, or return null if a mapping does not
/// exist. If a mapping exists, this follows the same behavior of
/// `lookupOrDefault`.
Value lookupOrNull(Value from, Type desiredType = nullptr) const;
/// Map a value to the one provided.
void map(Value oldVal, Value newVal) {
LLVM_DEBUG({
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
assert(it != oldVal && "inserting cyclic mapping");
});
mapping.map(oldVal, newVal);
}
/// Try to map a value to the one provided. Returns false if a transitive
/// mapping from the new value to the old value already exists, true if the
/// map was updated.
bool tryMap(Value oldVal, Value newVal);
/// Drop the last mapping for the given value.
void erase(Value value) { mapping.erase(value); }
/// Returns the inverse raw value mapping (without recursive query support).
DenseMap<Value, SmallVector<Value>> getInverse() const {
DenseMap<Value, SmallVector<Value>> inverse;
for (auto &it : mapping.getValueMap())
inverse[it.second].push_back(it.first);
return inverse;
}
private:
/// Current value mappings.
BlockAndValueMapping mapping;
};
} // end anonymous namespace
Value ConversionValueMapping::lookupOrDefault(Value from,
Type desiredType) const {
// If there was no desired type, simply find the leaf value.
if (!desiredType) {
// If this value had a valid mapping, unmap that value as well in the case
// that it was also replaced.
while (auto mappedValue = mapping.lookupOrNull(from))
from = mappedValue;
return from;
}
// Otherwise, try to find the deepest value that has the desired type.
Value desiredValue;
do {
if (from.getType() == desiredType)
desiredValue = from;
Value mappedValue = mapping.lookupOrNull(from);
if (!mappedValue)
break;
from = mappedValue;
} while (true);
// If the desired value was found use it, otherwise default to the leaf value.
return desiredValue ? desiredValue : from;
}
Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
Value result = lookupOrDefault(from, desiredType);
if (result == from || (desiredType && result.getType() != desiredType))
return nullptr;
return result;
}
bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
if (it == oldVal)
return false;
map(oldVal, newVal);
return true;
}
//===----------------------------------------------------------------------===//
// Rewriter and Translation State
//===----------------------------------------------------------------------===//
namespace {
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
unsigned numReplacements, unsigned numArgReplacements,
unsigned numBlockActions, unsigned numIgnoredOperations,
unsigned numRootUpdates)
: numCreatedOps(numCreatedOps),
numUnresolvedMaterializations(numUnresolvedMaterializations),
numReplacements(numReplacements),
numArgReplacements(numArgReplacements),
numBlockActions(numBlockActions),
numIgnoredOperations(numIgnoredOperations),
numRootUpdates(numRootUpdates) {}
/// The current number of created operations.
unsigned numCreatedOps;
/// The current number of unresolved materializations.
unsigned numUnresolvedMaterializations;
/// The current number of replacements queued.
unsigned numReplacements;
/// The current number of argument replacements queued.
unsigned numArgReplacements;
/// The current number of block actions performed.
unsigned numBlockActions;
/// The current number of ignored operations.
unsigned numIgnoredOperations;
/// The current number of operations that were updated in place.
unsigned numRootUpdates;
};
//===----------------------------------------------------------------------===//
// OperationTransactionState
/// The state of an operation that was updated by a pattern in-place. This
/// contains all of the necessary information to reconstruct an operation that
/// was updated in place.
class OperationTransactionState {
public:
OperationTransactionState() = default;
OperationTransactionState(Operation *op)
: op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
operands(op->operand_begin(), op->operand_end()),
successors(op->successor_begin(), op->successor_end()) {}
/// Discard the transaction state and reset the state of the original
/// operation.
void resetOperation() const {
op->setLoc(loc);
op->setAttrs(attrs);
op->setOperands(operands);
for (auto it : llvm::enumerate(successors))
op->setSuccessor(it.value(), it.index());
}
/// Return the original operation of this state.
Operation *getOperation() const { return op; }
private:
Operation *op;
LocationAttr loc;
DictionaryAttr attrs;
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
};
//===----------------------------------------------------------------------===//
// OpReplacement
/// This class represents one requested operation replacement via 'replaceOp' or
/// 'eraseOp`.
struct OpReplacement {
OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {}
/// An optional type converter that can be used to materialize conversions
/// between the new and old values if necessary.
TypeConverter *converter;
};
//===----------------------------------------------------------------------===//
// BlockAction
/// The kind of the block action performed during the rewrite. Actions can be
/// undone if the conversion fails.
enum class BlockActionKind {
Create,
Erase,
Merge,
Move,
Split,
TypeConversion
};
/// Original position of the given block in its parent region. During undo
/// actions, the block needs to be placed after `insertAfterBlock`.
struct BlockPosition {
Region *region;
Block *insertAfterBlock;
};
/// Information needed to undo the merge actions.
/// - the source block, and
/// - the Operation that was the last operation in the dest block before the
/// merge (could be null if the dest block was empty).
struct MergeInfo {
Block *sourceBlock;
Operation *destBlockLastInst;
};
/// The storage class for an undoable block action (one of BlockActionKind),
/// contains the information necessary to undo this action.
struct BlockAction {
static BlockAction getCreate(Block *block) {
return {BlockActionKind::Create, block, {}};
}
static BlockAction getErase(Block *block, BlockPosition originalPosition) {
return {BlockActionKind::Erase, block, {originalPosition}};
}
static BlockAction getMerge(Block *block, Block *sourceBlock) {
BlockAction action{BlockActionKind::Merge, block, {}};
action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
return action;
}
static BlockAction getMove(Block *block, BlockPosition originalPosition) {
return {BlockActionKind::Move, block, {originalPosition}};
}
static BlockAction getSplit(Block *block, Block *originalBlock) {
BlockAction action{BlockActionKind::Split, block, {}};
action.originalBlock = originalBlock;
return action;
}
static BlockAction getTypeConversion(Block *block) {
return BlockAction{BlockActionKind::TypeConversion, block, {}};
}
// The action kind.
BlockActionKind kind;
// A pointer to the block that was created by the action.
Block *block;
union {
// In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
// contains a pointer to the region that originally contained the block as
// well as the position of the block in that region.
BlockPosition originalPosition;
// In use if kind == BlockActionKind::Split and contains a pointer to the
// block that was split into two parts.
Block *originalBlock;
// In use if kind == BlockActionKind::Merge, and contains the information
// needed to undo the merge.
MergeInfo mergeInfo;
};
};
//===----------------------------------------------------------------------===//
// UnresolvedMaterialization
/// This class represents an unresolved materialization, i.e. a materialization
/// that was inserted during conversion that needs to be legalized at the end of
/// the conversion process.
class UnresolvedMaterialization {
public:
/// The type of materialization.
enum Kind {
/// This materialization materializes a conversion for an illegal block
/// argument type, to a legal one.
Argument,
/// This materialization materializes a conversion from an illegal type to a
/// legal one.
Target
};
UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
TypeConverter *converter = nullptr,
Kind kind = Target, Type origOutputType = nullptr)
: op(op), converterAndKind(converter, kind),
origOutputType(origOutputType) {}
/// Return the temporary conversion operation inserted for this
/// materialization.
UnrealizedConversionCastOp getOp() const { return op; }
/// Return the type converter of this materialization (which may be null).
TypeConverter *getConverter() const { return converterAndKind.getPointer(); }
/// Return the kind of this materialization.
Kind getKind() const { return converterAndKind.getInt(); }
/// Set the kind of this materialization.
void setKind(Kind kind) { converterAndKind.setInt(kind); }
/// Return the original illegal output type of the input values.
Type getOrigOutputType() const { return origOutputType; }
private:
/// The unresolved materialization operation created during conversion.
UnrealizedConversionCastOp op;
/// The corresponding type converter to use when resolving this
/// materialization, and the kind of this materialization.
llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind;
/// The original output type. This is only used for argument conversions.
Type origOutputType;
};
} // end anonymous namespace
/// Build an unresolved materialization operation given an output type and set
/// of input operands.
static Value buildUnresolvedMaterialization(
UnresolvedMaterialization::Kind kind, Block *insertBlock,
Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
Type origOutputType, TypeConverter *converter,
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
// Avoid materializing an unnecessary cast.
if (inputs.size() == 1 && inputs.front().getType() == outputType)
return inputs.front();
// Create an unresolved materialization. We use a new OpBuilder to avoid
// tracking the materialization like we do for other operations.
OpBuilder builder(insertBlock, insertPt);
auto convertOp =
builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
unresolvedMaterializations.emplace_back(convertOp, converter, kind,
origOutputType);
return convertOp.getResult(0);
}
static Value buildUnresolvedArgumentMaterialization(
PatternRewriter &rewriter, Location loc, ValueRange inputs,
Type origOutputType, Type outputType, TypeConverter *converter,
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
return buildUnresolvedMaterialization(
UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
converter, unresolvedMaterializations);
}
static Value buildUnresolvedTargetMaterialization(
Location loc, Value input, Type outputType, TypeConverter *converter,
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
Block *insertBlock = input.getParentBlock();
Block::iterator insertPt = insertBlock->begin();
if (OpResult inputRes = input.dyn_cast<OpResult>())
insertPt = ++inputRes.getOwner()->getIterator();
return buildUnresolvedMaterialization(
UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
outputType, outputType, converter, unresolvedMaterializations);
}
//===----------------------------------------------------------------------===//
// ArgConverter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a simple interface for converting the types of block
/// arguments. This is done by creating a new block that contains the new legal
/// types and extracting the block that contains the old illegal types to allow
/// for undoing pending rewrites in the case of failure.
struct ArgConverter {
ArgConverter(
PatternRewriter &rewriter,
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
: rewriter(rewriter),
unresolvedMaterializations(unresolvedMaterializations) {}
/// This structure contains the information pertaining to an argument that has
/// been converted.
struct ConvertedArgInfo {
ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
Value castValue = nullptr)
: newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
/// The start index of in the new argument list that contains arguments that
/// replace the original.
unsigned newArgIdx;
/// The number of arguments that replaced the original argument.
unsigned newArgSize;
/// The cast value that was created to cast from the new arguments to the
/// old. This only used if 'newArgSize' > 1.
Value castValue;
};
/// This structure contains information pertaining to a block that has had its
/// signature converted.
struct ConvertedBlockInfo {
ConvertedBlockInfo(Block *origBlock, TypeConverter *converter)
: origBlock(origBlock), converter(converter) {}
/// The original block that was requested to have its signature converted.
Block *origBlock;
/// The conversion information for each of the arguments. The information is
/// None if the argument was dropped during conversion.
SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
/// The type converter used to convert the arguments.
TypeConverter *converter;
};
/// Return if the signature of the given block has already been converted.
bool hasBeenConverted(Block *block) const {
return conversionInfo.count(block) || convertedBlocks.count(block);
}
/// Set the type converter to use for the given region.
void setConverter(Region *region, TypeConverter *typeConverter) {
assert(typeConverter && "expected valid type converter");
regionToConverter[region] = typeConverter;
}
/// Return the type converter to use for the given region, or null if there
/// isn't one.
TypeConverter *getConverter(Region *region) {
return regionToConverter.lookup(region);
}
//===--------------------------------------------------------------------===//
// Rewrite Application
//===--------------------------------------------------------------------===//
/// Erase any rewrites registered for the blocks within the given operation
/// which is about to be removed. This merely drops the rewrites without
/// undoing them.
void notifyOpRemoved(Operation *op);
/// Cleanup and undo any generated conversions for the arguments of block.
/// This method replaces the new block with the original, reverting the IR to
/// its original state.
void discardRewrites(Block *block);
/// Fully replace uses of the old arguments with the new.
void applyRewrites(ConversionValueMapping &mapping);
/// Materialize any necessary conversions for converted arguments that have
/// live users, using the provided `findLiveUser` to search for a user that
/// survives the conversion process.
LogicalResult
materializeLiveConversions(ConversionValueMapping &mapping,
OpBuilder &builder,
function_ref<Operation *(Value)> findLiveUser);
//===--------------------------------------------------------------------===//
// Conversion
//===--------------------------------------------------------------------===//
/// Attempt to convert the signature of the given block, if successful a new
/// block is returned containing the new arguments. Returns `block` if it did
/// not require conversion.
FailureOr<Block *>
convertSignature(Block *block, TypeConverter *converter,
ConversionValueMapping &mapping,
SmallVectorImpl<BlockArgument> &argReplacements);
/// Apply the given signature conversion on the given block. The new block
/// containing the updated signature is returned. If no conversions were
/// necessary, e.g. if the block has no arguments, `block` is returned.
/// `converter` is used to generate any necessary cast operations that
/// translate between the origin argument types and those specified in the
/// signature conversion.
Block *applySignatureConversion(
Block *block, TypeConverter *converter,
TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping,
SmallVectorImpl<BlockArgument> &argReplacements);
/// Insert a new conversion into the cache.
void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
/// A collection of blocks that have had their arguments converted. This is a
/// map from the new replacement block, back to the original block.
llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
/// The set of original blocks that were converted.
DenseSet<Block *> convertedBlocks;
/// A mapping from valid regions, to those containing the original blocks of a
/// conversion.
DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
/// A mapping of regions to type converters that should be used when
/// converting the arguments of blocks within that region.
DenseMap<Region *, TypeConverter *> regionToConverter;
/// The pattern rewriter to use when materializing conversions.
PatternRewriter &rewriter;
/// An ordered set of unresolved materializations during conversion.
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Rewrite Application
void ArgConverter::notifyOpRemoved(Operation *op) {
if (conversionInfo.empty())
return;
for (Region &region : op->getRegions()) {
for (Block &block : region) {
// Drop any rewrites from within.
for (Operation &nestedOp : block)
if (nestedOp.getNumRegions())
notifyOpRemoved(&nestedOp);
// Check if this block was converted.
auto it = conversionInfo.find(&block);
if (it == conversionInfo.end())
continue;
// Drop all uses of the original arguments and delete the original block.
Block *origBlock = it->second.origBlock;
for (BlockArgument arg : origBlock->getArguments())
arg.dropAllUses();
conversionInfo.erase(it);
}
}
}
void ArgConverter::discardRewrites(Block *block) {
auto it = conversionInfo.find(block);
if (it == conversionInfo.end())
return;
Block *origBlock = it->second.origBlock;
// Drop all uses of the new block arguments and replace uses of the new block.
for (int i = block->getNumArguments() - 1; i >= 0; --i)
block->getArgument(i).dropAllUses();
block->replaceAllUsesWith(origBlock);
// Move the operations back the original block and the delete the new block.
origBlock->getOperations().splice(origBlock->end(), block->getOperations());
origBlock->moveBefore(block);
block->erase();
convertedBlocks.erase(origBlock);
conversionInfo.erase(it);
}
void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
for (auto &info : conversionInfo) {
ConvertedBlockInfo &blockInfo = info.second;
Block *origBlock = blockInfo.origBlock;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
BlockArgument origArg = origBlock->getArgument(i);
// Handle the case of a 1->0 value mapping.
if (!argInfo) {
if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
origArg.replaceAllUsesWith(newArg);
continue;
}
// Otherwise this is a 1->1+ value mapping.
Value castValue = argInfo->castValue;
assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
// If the argument is still used, replace it with the generated cast.
if (!origArg.use_empty()) {
origArg.replaceAllUsesWith(
mapping.lookupOrDefault(castValue, origArg.getType()));
}
}
}
}
LogicalResult ArgConverter::materializeLiveConversions(
ConversionValueMapping &mapping, OpBuilder &builder,
function_ref<Operation *(Value)> findLiveUser) {
for (auto &info : conversionInfo) {
Block *newBlock = info.first;
ConvertedBlockInfo &blockInfo = info.second;
Block *origBlock = blockInfo.origBlock;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
// If the type of this argument changed and the argument is still live, we
// need to materialize a conversion.
BlockArgument origArg = origBlock->getArgument(i);
if (mapping.lookupOrNull(origArg, origArg.getType()))
continue;
Operation *liveUser = findLiveUser(origArg);
if (!liveUser)
continue;
Value replacementValue = mapping.lookupOrDefault(origArg);
bool isDroppedArg = replacementValue == origArg;
if (isDroppedArg)
rewriter.setInsertionPointToStart(newBlock);
else
rewriter.setInsertionPointAfterValue(replacementValue);
Value newArg;
if (blockInfo.converter) {
newArg = blockInfo.converter->materializeSourceConversion(
rewriter, origArg.getLoc(), origArg.getType(),
isDroppedArg ? ValueRange() : ValueRange(replacementValue));
assert((!newArg || newArg.getType() == origArg.getType()) &&
"materialization hook did not provide a value of the expected "
"type");
}
if (!newArg) {
InFlightDiagnostic diag =
emitError(origArg.getLoc())
<< "failed to materialize conversion for block argument #" << i
<< " that remained live after conversion, type was "
<< origArg.getType();
if (!isDroppedArg)
diag << ", with target type " << replacementValue.getType();
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
return failure();
}
mapping.map(origArg, newArg);
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Conversion
FailureOr<Block *> ArgConverter::convertSignature(
Block *block, TypeConverter *converter, ConversionValueMapping &mapping,
SmallVectorImpl<BlockArgument> &argReplacements) {
// Check if the block was already converted. If the block is detached,
// conservatively assume it is going to be deleted.
if (hasBeenConverted(block) || !block->getParent())
return block;
// If a converter wasn't provided, and the block wasn't already converted,
// there is nothing we can do.
if (!converter)
return failure();
// Try to convert the signature for the block with the provided converter.
if (auto conversion = converter->convertBlockSignature(block))
return applySignatureConversion(block, converter, *conversion, mapping,
argReplacements);
return failure();
}
Block *ArgConverter::applySignatureConversion(
Block *block, TypeConverter *converter,
TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping,
SmallVectorImpl<BlockArgument> &argReplacements) {
// If no arguments are being changed or added, there is nothing to do.
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedTypes();
if (origArgCount == 0 && convertedTypes.empty())
return block;
// Split the block at the beginning to get a new block to use for the updated
// signature.
Block *newBlock = block->splitBlock(block->begin());
block->replaceAllUsesWith(newBlock);
SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
ArrayRef<Value> newArgs(newArgRange);
// Remap each of the original arguments as determined by the signature
// conversion.
ConvertedBlockInfo info(block, converter);
info.argInfo.resize(origArgCount);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(newBlock);
for (unsigned i = 0; i != origArgCount; ++i) {
auto inputMap = signatureConversion.getInputMapping(i);
if (!inputMap)
continue;
BlockArgument origArg = block->getArgument(i);
// If inputMap->replacementValue is not nullptr, then the argument is
// dropped and a replacement value is provided to be the remappedValue.
if (inputMap->replacementValue) {
assert(inputMap->size == 0 &&
"invalid to provide a replacement value when the argument isn't "
"dropped");
mapping.map(origArg, inputMap->replacementValue);
argReplacements.push_back(origArg);
continue;
}
// Otherwise, this is a 1->1+ mapping.
auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
Value newArg;
// If this is a 1->1 mapping and the types of new and replacement arguments
// match (i.e. it's an identity map), then the argument is mapped to its
// original type.
// FIXME: We simply pass through the replacement argument if there wasn't a
// converter, which isn't great as it allows implicit type conversions to
// appear. We should properly restructure this code to handle cases where a
// converter isn't provided and also to properly handle the case where an
// argument materialization is actually a temporary source materialization
// (e.g. in the case of 1->N).
if (replArgs.size() == 1 &&
(!converter || replArgs[0].getType() == origArg.getType())) {
newArg = replArgs.front();
} else {
Type origOutputType = origArg.getType();
// Legalize the argument output type.
Type outputType = origOutputType;
if (Type legalOutputType = converter->convertType(outputType))
outputType = legalOutputType;
newArg = buildUnresolvedArgumentMaterialization(
rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
converter, unresolvedMaterializations);
}
mapping.map(origArg, newArg);
argReplacements.push_back(origArg);
info.argInfo[i] =
ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
}
// Remove the original block from the region and return the new one.
insertConversion(newBlock, std::move(info));
return newBlock;
}
void ArgConverter::insertConversion(Block *newBlock,
ConvertedBlockInfo &&info) {
// Get a region to insert the old block.
Region *region = newBlock->getParent();
std::unique_ptr<Region> &mappedRegion = regionMapping[region];
if (!mappedRegion)
mappedRegion = std::make_unique<Region>(region->getParentOp());
// Move the original block to the mapped region and emplace the conversion.
mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
info.origBlock->getIterator());
convertedBlocks.insert(info.origBlock);
conversionInfo.insert({newBlock, std::move(info)});
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriterImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct ConversionPatternRewriterImpl {
ConversionPatternRewriterImpl(PatternRewriter &rewriter)
: argConverter(rewriter, unresolvedMaterializations) {}
/// Cleanup and destroy any generated rewrite operations. This method is
/// invoked when the conversion process fails.
void discardRewrites();
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
void applyRewrites();
//===--------------------------------------------------------------------===//
// State Management
//===--------------------------------------------------------------------===//
/// Return the current state of the rewriter.
RewriterState getCurrentState();
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state);
/// Erase any blocks that were unlinked from their regions and stored in block
/// actions.
void eraseDanglingBlocks();
/// Undo the block actions (motions, splits) one by one in reverse order until
/// "numActionsToKeep" actions remains.
void undoBlockActions(unsigned numActionsToKeep = 0);
/// Remap the given values to those with potentially different types. Returns
/// success if the values could be remapped, failure otherwise. `valueDiagTag`
/// is the tag used when describing a value within a diagnostic, e.g.
/// "operand".
LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc,
PatternRewriter &rewriter, ValueRange values,
SmallVectorImpl<Value> &remapped);
/// Returns true if the given operation is ignored, and does not need to be
/// converted.
bool isOpIgnored(Operation *op) const;
/// Recursively marks the nested operations under 'op' as ignored. This
/// removes them from being considered for legalization.
void markNestedOpsIgnored(Operation *op);
//===--------------------------------------------------------------------===//
// Type Conversion
//===--------------------------------------------------------------------===//
/// Convert the signature of the given block.
FailureOr<Block *> convertBlockSignature(
Block *block, TypeConverter *converter,
TypeConverter::SignatureConversion *conversion = nullptr);
/// Apply a signature conversion on the given region, using `converter` for
/// materializations if not null.
Block *
applySignatureConversion(Region *region,
TypeConverter::SignatureConversion &conversion,
TypeConverter *converter);
/// Convert the types of block arguments within the given region.
FailureOr<Block *>
convertRegionTypes(Region *region, TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion);
/// Convert the types of non-entry block arguments within the given region.
LogicalResult convertNonEntryRegionTypes(
Region *region, TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
//===--------------------------------------------------------------------===//
// Rewriter Notification Hooks
//===--------------------------------------------------------------------===//
/// PatternRewriter hook for replacing the results of an operation.
void notifyOpReplaced(Operation *op, ValueRange newValues);
/// Notifies that a block is about to be erased.
void notifyBlockIsBeingErased(Block *block);
/// Notifies that a block was created.
void notifyCreatedBlock(Block *block);
/// Notifies that a block was split.
void notifySplitBlock(Block *block, Block *continuation);
/// Notifies that `block` is being merged with `srcBlock`.
void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
/// Notifies that the blocks of a region are about to be moved.
void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
Region::iterator before);
/// Notifies that the blocks of a region were cloned into another.
void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
Location origRegionLoc);
/// Notifies that a pattern match failed for the given reason.
LogicalResult
notifyMatchFailure(Location loc,
function_ref<void(Diagnostic &)> reasonCallback);
//===--------------------------------------------------------------------===//
// State
//===--------------------------------------------------------------------===//
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
ConversionValueMapping mapping;
/// Utility used to convert block arguments.
ArgConverter argConverter;
/// Ordered vector of all of the newly created operations during conversion.
SmallVector<Operation *> createdOps;
/// Ordered vector of all unresolved type conversion materializations during
/// conversion.
SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
/// Ordered map of requested operation replacements.
llvm::MapVector<Operation *, OpReplacement> replacements;
/// Ordered vector of any requested block argument replacements.
SmallVector<BlockArgument, 4> argReplacements;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<BlockAction, 4> blockActions;
/// A set of operations that should no longer be considered for legalization,
/// but were not directly replace/erased/etc. by a pattern. These are
/// generally child operations of other operations who were
/// replaced/erased/etc. This is not meant to be an exhaustive list of all
/// operations, but the minimal set that can be used to detect if a given
/// operation should be `ignored`. For example, we may add the operations that
/// define non-empty regions to the set, but not any of the others. This
/// simplifies the amount of memory needed as we can query if the parent
/// operation was ignored.
SetVector<Operation *> ignoredOps;
/// A transaction state for each of operations that were updated in-place.
SmallVector<OperationTransactionState, 4> rootUpdates;
/// A vector of indices into `replacements` of operations that were replaced
/// with values with different result types than the original operation, e.g.
/// 1->N conversion of some kind.
SmallVector<unsigned, 4> operationsWithChangedResults;
/// The current type converter, or nullptr if no type converter is currently
/// active.
TypeConverter *currentTypeConverter = nullptr;
#ifndef NDEBUG
/// A set of operations that have pending updates. This tracking isn't
/// strictly necessary, and is thus only active during debug builds for extra
/// verification.
SmallPtrSet<Operation *, 1> pendingRootUpdates;
/// A logger used to emit diagnostics during the conversion process.
llvm::ScopedPrinter logger{llvm::dbgs()};
#endif
};
} // end namespace detail
} // end namespace mlir
/// Detach any operations nested in the given operation from their parent
/// blocks, and erase the given operation. This can be used when the nested
/// operations are scheduled for erasure themselves, so deleting the regions of
/// the given operation together with their content would result in double-free.
/// This happens, for example, when rolling back op creation in the reverse
/// order and if the nested ops were created before the parent op. This function
/// does not need to collect nested ops recursively because it is expected to
/// also be called for each nested op when it is about to be deleted.
static void detachNestedAndErase(Operation *op) {
for (Region &region : op->getRegions()) {
for (Block &block : region.getBlocks()) {
while (!block.getOperations().empty())
block.getOperations().remove(block.getOperations().begin());
block.dropAllDefinedValueUses();
}
}
op->dropAllUses();
op->erase();
}
void ConversionPatternRewriterImpl::discardRewrites() {
// Reset any operations that were updated in place.
for (auto &state : rootUpdates)
state.resetOperation();
undoBlockActions();
// Remove any newly created ops.
for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
detachNestedAndErase(materialization.getOp());
for (auto *op : llvm::reverse(createdOps))
detachNestedAndErase(op);
}
void ConversionPatternRewriterImpl::applyRewrites() {
// Apply all of the rewrites replacements requested during conversion.
for (auto &repl : replacements) {
for (OpResult result : repl.first->getResults())
if (Value newValue = mapping.lookupOrNull(result, result.getType()))
result.replaceAllUsesWith(newValue);
// If this operation defines any regions, drop any pending argument
// rewrites.
if (repl.first->getNumRegions())
argConverter.notifyOpRemoved(repl.first);
}
// Apply all of the requested argument replacements.
for (BlockArgument arg : argReplacements) {
Value repl = mapping.lookupOrNull(arg, arg.getType());
if (!repl)
continue;
if (repl.isa<BlockArgument>()) {
arg.replaceAllUsesWith(repl);
continue;
}
// If the replacement value is an operation, we check to make sure that we
// don't replace uses that are within the parent operation of the
// replacement value.
Operation *replOp = repl.cast<OpResult>().getOwner();
Block *replBlock = replOp->getBlock();
arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
Operation *user = operand.getOwner();
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
});
}
// Drop all of the unresolved materialization operations created during
// conversion.
for (auto &mat : unresolvedMaterializations) {
mat.getOp()->dropAllUses();
mat.getOp()->erase();
}
// In a second pass, erase all of the replaced operations in reverse. This
// allows processing nested operations before their parent region is
// destroyed. Because we process in reverse order, producers may be deleted
// before their users (a pattern deleting a producer and then the consumer)
// so we first drop all uses explicitly.
for (auto &repl : llvm::reverse(replacements)) {
repl.first->dropAllUses();
repl.first->erase();
}
argConverter.applyRewrites(mapping);
// Now that the ops have been erased, also erase dangling blocks.
eraseDanglingBlocks();
}
//===----------------------------------------------------------------------===//
// State Management
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
replacements.size(), argReplacements.size(),
blockActions.size(), ignoredOps.size(),
rootUpdates.size());
}
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
// Reset any operations that were updated in place.
for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
rootUpdates[i].resetOperation();
rootUpdates.resize(state.numRootUpdates);
// Reset any replaced arguments.
for (BlockArgument replacedArg :
llvm::drop_begin(argReplacements, state.numArgReplacements))
mapping.erase(replacedArg);
argReplacements.resize(state.numArgReplacements);
// Undo any block actions.
undoBlockActions(state.numBlockActions);
// Reset any replaced operations and undo any saved mappings.
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
for (auto result : repl.first->getResults())
mapping.erase(result);
while (replacements.size() != state.numReplacements)
replacements.pop_back();
// Pop all of the newly inserted materializations.
while (unresolvedMaterializations.size() !=
state.numUnresolvedMaterializations) {
UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
UnrealizedConversionCastOp op = mat.getOp();
// If this was a target materialization, drop the mapping that was inserted.
if (mat.getKind() == UnresolvedMaterialization::Target) {
for (Value input : op->getOperands())
mapping.erase(input);
}
detachNestedAndErase(op);
}
// Pop all of the newly created operations.
while (createdOps.size() != state.numCreatedOps) {
detachNestedAndErase(createdOps.back());
createdOps.pop_back();
}
// Pop all of the recorded ignored operations that are no longer valid.
while (ignoredOps.size() != state.numIgnoredOperations)
ignoredOps.pop_back();
// Reset operations with changed results.
while (!operationsWithChangedResults.empty() &&
operationsWithChangedResults.back() >= state.numReplacements)
operationsWithChangedResults.pop_back();
}
void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
for (auto &action : blockActions)
if (action.kind == BlockActionKind::Erase)
delete action.block;
}
void ConversionPatternRewriterImpl::undoBlockActions(
unsigned numActionsToKeep) {
for (auto &action :
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
switch (action.kind) {
// Delete the created block.
case BlockActionKind::Create: {
// Unlink all of the operations within this block, they will be deleted
// separately.
auto &blockOps = action.block->getOperations();
while (!blockOps.empty())
blockOps.remove(blockOps.begin());
action.block->dropAllDefinedValueUses();
action.block->erase();
break;
}
// Put the block (owned by action) back into its original position.
case BlockActionKind::Erase: {
auto &blockList = action.originalPosition.region->getBlocks();
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
blockList.insert((insertAfterBlock
? std::next(Region::iterator(insertAfterBlock))
: blockList.begin()),
action.block);
break;
}
// Split the block at the position which was originally the end of the
// destination block (owned by action), and put the instructions back into
// the block used before the merge.
case BlockActionKind::Merge: {
Block *sourceBlock = action.mergeInfo.sourceBlock;
Block::iterator splitPoint =
(action.mergeInfo.destBlockLastInst
? ++Block::iterator(action.mergeInfo.destBlockLastInst)
: action.block->begin());
sourceBlock->getOperations().splice(sourceBlock->begin(),
action.block->getOperations(),
splitPoint, action.block->end());
break;
}
// Move the block back to its original position.
case BlockActionKind::Move: {
Region *originalRegion = action.originalPosition.region;
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
originalRegion->getBlocks().splice(
(insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
: originalRegion->end()),
action.block->getParent()->getBlocks(), action.block);
break;
}
// Merge back the block that was split out.
case BlockActionKind::Split: {
action.originalBlock->getOperations().splice(
action.originalBlock->end(), action.block->getOperations());
action.block->dropAllDefinedValueUses();
action.block->erase();
break;
}
// Undo the type conversion.
case BlockActionKind::TypeConversion: {
argConverter.discardRewrites(action.block);
break;
}
}
}
blockActions.resize(numActionsToKeep);
}
LogicalResult ConversionPatternRewriterImpl::remapValues(
StringRef valueDiagTag, Optional<Location> inputLoc,
PatternRewriter &rewriter, ValueRange values,
SmallVectorImpl<Value> &remapped) {
remapped.reserve(llvm::size(values));
SmallVector<Type, 1> legalTypes;
for (auto it : llvm::enumerate(values)) {
Value operand = it.value();
Type origType = operand.getType();
// If a converter was provided, get the desired legal types for this
// operand.
Type desiredType;
if (currentTypeConverter) {
// If there is no legal conversion, fail to match this pattern.
legalTypes.clear();
if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
diag << "unable to convert type for " << valueDiagTag << " #"
<< it.index() << ", type was " << origType;
});
}
// TODO: There currently isn't any mechanism to do 1->N type conversion
// via the PatternRewriter replacement API, so for now we just ignore it.
if (legalTypes.size() == 1)
desiredType = legalTypes.front();
} else {
// TODO: What we should do here is just set `desiredType` to `origType`
// and then handle the necessary type conversions after the conversion
// process has finished. Unfortunately a lot of patterns currently rely on
// receiving the new operands even if the types change, so we keep the
// original behavior here for now until all of the patterns relying on
// this get updated.
}
Value newOperand = mapping.lookupOrDefault(operand, desiredType);
// Handle the case where the conversion was 1->1 and the new operand type
// isn't legal.
Type newOperandType = newOperand.getType();
if (currentTypeConverter && desiredType && newOperandType != desiredType) {
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
Value castValue = buildUnresolvedTargetMaterialization(
operandLoc, newOperand, desiredType, currentTypeConverter,
unresolvedMaterializations);
mapping.map(mapping.lookupOrDefault(newOperand), castValue);
newOperand = castValue;
}
remapped.push_back(newOperand);
}
return success();
}
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
// Check to see if this operation was replaced or its parent ignored.
return replacements.count(op) || ignoredOps.count(op->getParentOp());
}
void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
// Walk this operation and collect nested operations that define non-empty
// regions. We mark such operations as 'ignored' so that we know we don't have
// to convert them, or their nested ops.
if (op->getNumRegions() == 0)
return;
op->walk([&](Operation *op) {
if (llvm::any_of(op->getRegions(),
[](Region &region) { return !region.empty(); }))
ignoredOps.insert(op);
});
}
//===----------------------------------------------------------------------===//
// Type Conversion
FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
Block *block, TypeConverter *converter,
TypeConverter::SignatureConversion *conversion) {
FailureOr<Block *> result =
conversion ? argConverter.applySignatureConversion(
block, converter, *conversion, mapping, argReplacements)
: argConverter.convertSignature(block, converter, mapping,
argReplacements);
if (failed(result))
return failure();
if (Block *newBlock = result.getValue()) {
if (newBlock != block)
blockActions.push_back(BlockAction::getTypeConversion(newBlock));
}
return result;
}
Block *ConversionPatternRewriterImpl::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion,
TypeConverter *converter) {
if (!region->empty())
return *convertBlockSignature(&region->front(), converter, &conversion);
return nullptr;
}
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
Region *region, TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
argConverter.setConverter(region, &converter);
if (region->empty())
return nullptr;
if (failed(convertNonEntryRegionTypes(region, converter)))
return failure();
FailureOr<Block *> newEntry =
convertBlockSignature(&region->front(), &converter, entryConversion);
return newEntry;
}
LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
Region *region, TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
argConverter.setConverter(region, &converter);
if (region->empty())
return success();
// Convert the arguments of each block within the region.
int blockIdx = 0;
assert((blockConversions.empty() ||
blockConversions.size() == region->getBlocks().size() - 1) &&
"expected either to provide no SignatureConversions at all or to "
"provide a SignatureConversion for each non-entry block");
for (Block &block :
llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
TypeConverter::SignatureConversion *blockConversion =
blockConversions.empty()
? nullptr
: const_cast<TypeConverter::SignatureConversion *>(
&blockConversions[blockIdx++]);
if (failed(convertBlockSignature(&block, &converter, blockConversion)))
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// Rewriter Notification Hooks
void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
ValueRange newValues) {
assert(newValues.size() == op->getNumResults());
assert(!replacements.count(op) && "operation was already replaced");
// Track if any of the results changed, e.g. erased and replaced with null.
bool resultChanged = false;
// Create mappings for each of the new result values.
Value newValue, result;
for (auto it : llvm::zip(newValues, op->getResults())) {
std::tie(newValue, result) = it;
if (!newValue) {
resultChanged = true;
continue;
}
// Remap, and check for any result type changes.
mapping.map(result, newValue);
resultChanged |= (newValue.getType() != result.getType());
}
if (resultChanged)
operationsWithChangedResults.push_back(replacements.size());
// Record the requested operation replacement.
replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
// Mark this operation as recursively ignored so that we don't need to
// convert any nested operations.
markNestedOpsIgnored(op);
}
void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
Region *region = block->getParent();
Block *origPrevBlock = block->getPrevNode();
blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
}
void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
blockActions.push_back(BlockAction::getCreate(block));
}
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
Block *continuation) {
blockActions.push_back(BlockAction::getSplit(continuation, block));
}
void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
Block *srcBlock) {
blockActions.push_back(BlockAction::getMerge(block, srcBlock));
}
void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
Region &region, Region &parent, Region::iterator before) {
if (region.empty())
return;
Block *laterBlock = &region.back();
for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
blockActions.push_back(
BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
laterBlock = &earlierBlock;
}
blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
}
void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
for (Block &block : blocks)
blockActions.push_back(BlockAction::getCreate(&block));
// Compute the conversion set for the inlined region.
auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
// This original region has already had its conversion set computed, so there
// shouldn't be any new failures.
(void)result;
assert(succeeded(result) && "expected region to have no unreachable blocks");
}
LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
LLVM_DEBUG({
Diagnostic diag(loc, DiagnosticSeverity::Remark);
reasonCallback(diag);
logger.startLine() << "** Failure : " << diag.str() << "\n";
});
return failure();
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter
//===----------------------------------------------------------------------===//
ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
: PatternRewriter(ctx),
impl(new detail::ConversionPatternRewriterImpl(*this)) {}
ConversionPatternRewriter::~ConversionPatternRewriter() {}
void ConversionPatternRewriter::replaceOpWithIf(
Operation *op, ValueRange newValues, bool *allUsesReplaced,
llvm::unique_function<bool(OpOperand &) const> functor) {
// TODO: To support this we will need to rework a bit of how replacements are
// tracked, given that this isn't guranteed to replace all of the uses of an
// operation. The main change is that now an operation can be replaced
// multiple times, in parts. The current "set" based tracking is mainly useful
// for tracking if a replaced operation should be ignored, i.e. if all of the
// uses will be replaced.
llvm_unreachable(
"replaceOpWithIf is currently not supported by DialectConversion");
}
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
});
impl->notifyOpReplaced(op, newValues);
}
void ConversionPatternRewriter::eraseOp(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
});
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
impl->notifyOpReplaced(op, nullRepls);
}
void ConversionPatternRewriter::eraseBlock(Block *block) {
impl->notifyBlockIsBeingErased(block);
// Mark all ops for erasure.
for (Operation &op : *block)
eraseOp(&op);
// Unlink the block from its parent region. The block is kept in the block
// action and will be actually destroyed when rewrites are applied. This
// allows us to keep the operations in the block live and undo the removal by
// re-inserting the block.
block->getParent()->getBlocks().remove(block);
}
Block *ConversionPatternRewriter::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion,
TypeConverter *converter) {
return impl->applySignatureConversion(region, conversion, converter);
}
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
Region *region, TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
return impl->convertRegionTypes(region, converter, entryConversion);
}
LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
Region *region, TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
}
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
Value to) {
LLVM_DEBUG({
Operation *parentOp = from.getOwner()->getParentOp();
impl->logger.startLine() << "** Replace Argument : '" << from
<< "'(in region of '" << parentOp->getName()
<< "'(" << from.getOwner()->getParentOp() << ")\n";
});
impl->argReplacements.push_back(from);
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
}
Value ConversionPatternRewriter::getRemappedValue(Value key) {
SmallVector<Value> remappedValues;
if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key,
remappedValues)))
return nullptr;
return remappedValues.front();
}
LogicalResult
ConversionPatternRewriter::getRemappedValues(ValueRange keys,
SmallVectorImpl<Value> &results) {
if (keys.empty())
return success();
return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys,
results);
}
void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
impl->notifyCreatedBlock(block);
}
Block *ConversionPatternRewriter::splitBlock(Block *block,
Block::iterator before) {
auto *continuation = PatternRewriter::splitBlock(block, before);
impl->notifySplitBlock(block, continuation);
return continuation;
}
void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
ValueRange argValues) {
impl->notifyBlocksBeingMerged(dest, source);
assert(llvm::all_of(source->getPredecessors(),
[dest](Block *succ) { return succ == dest; }) &&
"expected 'source' to have no predecessors or only 'dest'");
assert(argValues.size() == source->getNumArguments() &&
"incorrect # of argument replacement values");
for (auto it : llvm::zip(source->getArguments(), argValues))
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
dest->getOperations().splice(dest->end(), source->getOperations());
eraseBlock(source);
}
void ConversionPatternRewriter::inlineRegionBefore(Region &region,
Region &parent,
Region::iterator before) {
impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
PatternRewriter::inlineRegionBefore(region, parent, before);
}
void ConversionPatternRewriter::cloneRegionBefore(
Region &region, Region &parent, Region::iterator before,
BlockAndValueMapping &mapping) {
if (region.empty())
return;
PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
// Collect the range of the cloned blocks.
auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
}
void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Insert : '" << op->getName() << "'(" << op << ")\n";
});
impl->createdOps.push_back(op);
}
void ConversionPatternRewriter::startRootUpdate(Operation *op) {
#ifndef NDEBUG
impl->pendingRootUpdates.insert(op);
#endif
impl->rootUpdates.emplace_back(op);
}
void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
// There is nothing to do here, we only need to track the operation at the
// start of the update.
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
}
void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
// Erase the last update for this operation.
auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
auto &rootUpdates = impl->rootUpdates;
auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
assert(it != rootUpdates.rend() && "no root update started on op");
(*it).resetOperation();
int updateIdx = std::prev(rootUpdates.rend()) - it;
rootUpdates.erase(rootUpdates.begin() + updateIdx);
}
LogicalResult ConversionPatternRewriter::notifyMatchFailure(
Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
}
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
return *impl;
}
//===----------------------------------------------------------------------===//
// ConversionPattern
//===----------------------------------------------------------------------===//
LogicalResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
auto &rewriterImpl = dialectRewriter.getImpl();
// Track the current conversion pattern type converter in the rewriter.
llvm::SaveAndRestore<TypeConverter *> currentConverterGuard(
rewriterImpl.currentTypeConverter, getTypeConverter());
// Remap the operands of the operation.
SmallVector<Value, 4> operands;
if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
op->getOperands(), operands))) {
return failure();
}
return matchAndRewrite(op, operands, dialectRewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<const Pattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
using LegalizationAction = ConversionTarget::LegalizationAction;
OperationLegalizer(ConversionTarget &targetInfo,
const FrozenRewritePatternSet &patterns);
/// Returns true if the given operation is known to be illegal on the target.
bool isIllegal(Operation *op) const;
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
/// Returns the conversion target in use by the legalizer.
ConversionTarget &getTarget() { return target; }
private:
/// Attempt to legalize the given operation by folding it.
LogicalResult legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter);
/// Attempt to legalize the given operation by applying a pattern. Returns
/// success if the operation was legalized, failure otherwise.
LogicalResult legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter);
/// Return true if the given pattern may be applied to the given operation,
/// false otherwise.
bool canApplyPattern(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter);
/// Legalize the resultant IR after successfully applying the given pattern.
LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState);
/// Legalizes the actions registered during the execution of a pattern.
LogicalResult legalizePatternBlockActions(Operation *op,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state,
RewriterState &newState);
LogicalResult legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState);
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state,
RewriterState &newState);
//===--------------------------------------------------------------------===//
// Cost Model
//===--------------------------------------------------------------------===//
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
/// patterns for operations that are not directly legal, but may be
/// transitively legal for the current target given the provided patterns.
void buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the legalization depth when legalizing an operation of the given
/// type.
unsigned computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Apply the conversion cost model to the given set of patterns, and return
/// the smallest legalization depth of any of the patterns. See
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
unsigned applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// The current set of patterns that have been applied.
SmallPtrSet<const Pattern *, 8> appliedPatterns;
/// The legalization information provided by the target.
ConversionTarget &target;
/// The pattern applicator to use for conversions.
PatternApplicator applicator;
};
} // namespace
OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
const FrozenRewritePatternSet &patterns)
: target(targetInfo), applicator(patterns) {
// The set of patterns that can be applied to illegal operations to transform
// them into legal ones.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
LegalizationPatterns anyOpLegalizerPatterns;
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
}
bool OperationLegalizer::isIllegal(Operation *op) const {
return target.isIllegal(op);
}
LogicalResult
OperationLegalizer::legalize(Operation *op,
ConversionPatternRewriter &rewriter) {
#ifndef NDEBUG
const char *logLineComment =
"//===-------------------------------------------===//\n";
auto &logger = rewriter.getImpl().logger;
#endif
LLVM_DEBUG({
logger.getOStream() << "\n";
logger.startLine() << logLineComment;
logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
<< op << ") {\n";
logger.indent();
// If the operation has no regions, just print it here.
if (op->getNumRegions() == 0) {
op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
logger.getOStream() << "\n\n";
}
});
// Check if this operation is legal on the target.
if (auto legalityInfo = target.isLegal(op)) {
LLVM_DEBUG({
logSuccess(
logger, "operation marked legal by the target{0}",
legalityInfo->isRecursivelyLegal
? "; NOTE: operation is recursively legal; skipping internals"
: "");
logger.startLine() << logLineComment;
});
// If this operation is recursively legal, mark its children as ignored so
// that we don't consider them for legalization.
if (legalityInfo->isRecursivelyLegal)
rewriter.getImpl().markNestedOpsIgnored(op);
return success();
}
// Check to see if the operation is ignored and doesn't need to be converted.
if (rewriter.getImpl().isOpIgnored(op)) {
LLVM_DEBUG({
logSuccess(logger, "operation marked 'ignored' during conversion");
logger.startLine() << logLineComment;
});
return success();
}
// If the operation isn't legal, try to fold it in-place.
// TODO: Should we always try to do this, even if the op is
// already legal?
if (succeeded(legalizeWithFold(op, rewriter))) {
LLVM_DEBUG({
logSuccess(logger, "operation was folded");
logger.startLine() << logLineComment;
});
return success();
}
// Otherwise, we need to apply a legalization pattern to this operation.
if (succeeded(legalizeWithPattern(op, rewriter))) {
LLVM_DEBUG({
logSuccess(logger, "");
logger.startLine() << logLineComment;
});
return success();
}
LLVM_DEBUG({
logFailure(logger, "no matched legalization pattern");
logger.startLine() << logLineComment;
});
return failure();
}
LogicalResult
OperationLegalizer::legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
RewriterState curState = rewriterImpl.getCurrentState();
LLVM_DEBUG({
rewriterImpl.logger.startLine() << "* Fold {\n";
rewriterImpl.logger.indent();
});
// Try to fold the operation.
SmallVector<Value, 2> replacementValues;
rewriter.setInsertionPoint(op);
if (failed(rewriter.tryFold(op, replacementValues))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
return failure();
}
// Insert a replacement for 'op' with the folded replacement values.
rewriter.replaceOp(op, replacementValues);
// Recursively legalize any new constant operations.
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
i != e; ++i) {
Operation *cstOp = rewriterImpl.createdOps[i];
if (failed(legalize(cstOp, rewriter))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"generated constant '{0}' was illegal",
cstOp->getName()));
rewriterImpl.resetState(curState);
return failure();
}
}
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
return success();
}
LogicalResult
OperationLegalizer::legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
// Functor that returns if the given pattern may be applied.
auto canApply = [&](const Pattern &pattern) {
return canApplyPattern(op, pattern, rewriter);
};
// Functor that cleans up the rewriter state after a pattern failed to match.
RewriterState curState = rewriterImpl.getCurrentState();
auto onFailure = [&](const Pattern &pattern) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
rewriterImpl.resetState(curState);
appliedPatterns.erase(&pattern);
};
// Functor that performs additional legalization when a pattern is
// successfully applied.
auto onSuccess = [&](const Pattern &pattern) {
auto result = legalizePatternResult(op, pattern, rewriter, curState);
appliedPatterns.erase(&pattern);
if (failed(result))
rewriterImpl.resetState(curState);
return result;
};
// Try to match and rewrite a pattern on this operation.
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
onSuccess);
}
bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter) {
LLVM_DEBUG({
auto &os = rewriter.getImpl().logger;
os.getOStream() << "\n";
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
os.getOStream() << ")' {\n";
os.indent();
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack if it is not known to be safe.
if (!pattern.hasBoundedRewriteRecursion() &&
!appliedPatterns.insert(&pattern).second) {
LLVM_DEBUG(
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
return false;
}
return true;
}
LogicalResult
OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState) {
auto &impl = rewriter.getImpl();
#ifndef NDEBUG
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
#endif
// Check that the root was either replaced or updated in place.
auto replacedRoot = [&] {
return llvm::any_of(
llvm::drop_begin(impl.replacements, curState.numReplacements),
[op](auto &it) { return it.first == op; });
};
auto updatedRootInPlace = [&] {
return llvm::any_of(
llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
[op](auto &state) { return state.getOperation() == op; });
};
(void)replacedRoot;
(void)updatedRootInPlace;
assert((replacedRoot() || updatedRootInPlace()) &&
"expected pattern to replace the root operation");
// Legalize each of the actions registered during application.
RewriterState newState = impl.getCurrentState();
if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
newState)) ||
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
newState))) {
return failure();
}
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
return success();
}
LogicalResult OperationLegalizer::legalizePatternBlockActions(
Operation *op, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl, RewriterState &state,
RewriterState &newState) {
SmallPtrSet<Operation *, 16> operationsToIgnore;
// If the pattern moved or created any blocks, make sure the types of block
// arguments get legalized.
for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
++i) {
auto &action = impl.blockActions[i];
if (action.kind == BlockActionKind::TypeConversion ||
action.kind == BlockActionKind::Erase)
continue;
// Only check blocks outside of the current operation.
Operation *parentOp = action.block->getParentOp();
if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
continue;
// If the region of the block has a type converter, try to convert the block
// directly.
if (auto *converter =
impl.argConverter.getConverter(action.block->getParent())) {
if (failed(impl.convertBlockSignature(action.block, converter))) {
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
"block"));
return failure();
}
continue;
}
// Otherwise, check that this operation isn't one generated by this pattern.
// This is because we will attempt to legalize the parent operation, and
// blocks in regions created by this pattern will already be legalized later
// on. If we haven't built the set yet, build it now.
if (operationsToIgnore.empty()) {
auto createdOps = ArrayRef<Operation *>(impl.createdOps)
.drop_front(state.numCreatedOps);
operationsToIgnore.insert(createdOps.begin(), createdOps.end());
}
// If this operation should be considered for re-legalization, try it.
if (operationsToIgnore.insert(parentOp).second &&
failed(legalize(parentOp, rewriter))) {
LLVM_DEBUG(logFailure(
impl.logger, "operation '{0}'({1}) became illegal after block action",
parentOp->getName(), parentOp));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
Operation *op = impl.createdOps[i];
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"generated operation '{0}'({1}) was illegal",
op->getName(), op));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
Operation *op = impl.rootUpdates[i].getOperation();
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"operation updated in-place '{0}' was illegal",
op->getName()));
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Cost Model
void OperationLegalizer::buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
// A worklist of patterns to consider for legality.
SetVector<const Pattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
applicator.walkAllPatterns([&](const Pattern &pattern) {
Optional<OperationName> root = pattern.getRootKind();
// If the pattern has no specific root, we can't analyze the relationship
// between the root op and generated operations. Given that, add all such
// patterns to the legalization set.
if (!root) {
anyOpLegalizerPatterns.push_back(&pattern);
return;
}
// Skip operations that are always known to be legal.
if (target.getOpAction(*root) == LegalizationAction::Legal)
return;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[*root].insert(&pattern);
for (auto op : pattern.getGeneratedOps())
parentOps[op].insert(*root);
// Add this pattern to the worklist.
patternWorklist.insert(&pattern);
});
// If there are any patterns that don't have a specific root kind, we can't
// make direct assumptions about what operations will never be legalized.
// Note: Technically we could, but it would require an analysis that may
// recurse into itself. It would be better to perform this kind of filtering
// at a higher level than here anyways.
if (!anyOpLegalizerPatterns.empty()) {
for (const Pattern *pattern : patternWorklist)
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
return;
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
Optional<LegalizationAction> action = target.getOpAction(op);
return !legalizerPatterns.count(op) &&
(!action || action == LegalizationAction::Illegal);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
invalidPatterns[*pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[*pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minOpPatternDepth;
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minOpPatternDepth.count(opIt.first))
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
legalizerPatterns);
// Apply the cost model to the patterns that can match any operation. Those
// with a specific operation type are already resolved when computing the op
// legalization depth.
if (!anyOpLegalizerPatterns.empty())
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
legalizerPatterns);
// Apply a cost model to the pattern applicator. We order patterns first by
// depth then benefit. `legalizerPatterns` contains per-op patterns by
// decreasing benefit.
applicator.applyCostModel([&](const Pattern &pattern) {
ArrayRef<const Pattern *> orderedPatternList;
if (Optional<OperationName> rootName = pattern.getRootKind())
orderedPatternList = legalizerPatterns[*rootName];
else
orderedPatternList = anyOpLegalizerPatterns;
// If the pattern is not found, then it was removed and cannot be matched.
auto *it = llvm::find(orderedPatternList, &pattern);
if (it == orderedPatternList.end())
return PatternBenefit::impossibleToMatch();
// Patterns found earlier in the list have higher benefit.
return PatternBenefit(std::distance(it, orderedPatternList.end()));
});
}
unsigned OperationLegalizer::computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// Check for existing depth.
auto depthIt = minOpPatternDepth.find(op);
if (depthIt != minOpPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
return 0u;
// Record this initial depth in case we encounter this op again when
// recursively computing the depth.
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
// Apply the cost model to the operation patterns, and update the minimum
// depth.
unsigned minDepth = applyCostModelToPatterns(
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
minOpPatternDepth[op] = minDepth;
return minDepth;
}
unsigned OperationLegalizer::applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
unsigned minDepth = std::numeric_limits<unsigned>::max();
// Compute the depth for each pattern within the set.
SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(patterns.size());
for (const Pattern *pattern : patterns) {
unsigned depth = 1;
for (auto generatedOp : pattern->getGeneratedOps()) {
unsigned generatedOpDepth = computeOpLegalizationDepth(
generatedOp, minOpPatternDepth, legalizerPatterns);
depth = std::max(depth, generatedOpDepth + 1);
}
patternsByDepth.emplace_back(pattern, depth);
// Update the minimum depth of the pattern list.
minDepth = std::min(minDepth, depth);
}
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<const Pattern *, unsigned> *lhs,
const std::pair<const Pattern *, unsigned> *rhs) {
// First sort by the smaller pattern legalization
// depth.
if (lhs->second != rhs->second)
return llvm::array_pod_sort_comparator<unsigned>(
&lhs->second, &rhs->second);
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs->first->getBenefit();
auto rhsBenefit = rhs->first->getBenefit();
return llvm::array_pod_sort_comparator<PatternBenefit>(
&rhsBenefit, &lhsBenefit);
});
// Update the legalization pattern to use the new sorted list.
patterns.clear();
for (auto &patternIt : patternsByDepth)
patterns.push_back(patternIt.first);
return minDepth;
}
//===----------------------------------------------------------------------===//
// OperationConverter
//===----------------------------------------------------------------------===//
namespace {
enum OpConversionMode {
/// In this mode, the conversion will ignore failed conversions to allow
/// illegal operations to co-exist in the IR.
Partial,
/// In this mode, all operations must be legal for the given target for the
/// conversion to succeed.
Full,
/// In this mode, operations are analyzed for legality. No actual rewrites are
/// applied to the operations on success.
Analysis,
};
// This class converts operations to a given conversion target via a set of
// rewrite patterns. The conversion behaves differently depending on the
// conversion mode.
struct OperationConverter {
explicit OperationConverter(ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
OpConversionMode mode,
DenseSet<Operation *> *trackedOps = nullptr)
: opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
/// Converts the given operations to the conversion target.
LogicalResult convertOperations(ArrayRef<Operation *> ops);
private:
/// Converts an operation with the given rewriter.
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
/// This method is called after the conversion process to legalize any
/// remaining artifacts and complete the conversion.
LogicalResult finalize(ConversionPatternRewriter &rewriter);
/// Legalize the types of converted block arguments.
LogicalResult
legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl);
/// Legalize any unresolved type materializations.
LogicalResult legalizeUnresolvedMaterializations(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
/// Legalize an operation result that was marked as "erased".
LogicalResult
legalizeErasedResult(Operation *op, OpResult result,
ConversionPatternRewriterImpl &rewriterImpl);
/// Legalize an operation result that was replaced with a value of a different
/// type.
LogicalResult legalizeChangedResultType(
Operation *op, OpResult result, Value newValue,
TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping);
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
/// The conversion mode to use when legalizing operations.
OpConversionMode mode;
/// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
/// this is populated with ops found to be legalizable to the target.
/// When mode == OpConversionMode::Partial, this is populated with ops found
/// *not* to be legalizable to the target.
DenseSet<Operation *> *trackedOps;
};
} // end anonymous namespace
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
Operation *op) {
// Legalize the given operation.
if (failed(opLegalizer.legalize(op, rewriter))) {
// Handle the case of a failed conversion for each of the different modes.
// Full conversions expect all operations to be converted.
if (mode == OpConversionMode::Full)
return op->emitError()
<< "failed to legalize operation '" << op->getName() << "'";
// Partial conversions allow conversions to fail iff the operation was not
// explicitly marked as illegal. If the user provided a nonlegalizableOps
// set, non-legalizable ops are included.
if (mode == OpConversionMode::Partial) {
if (opLegalizer.isIllegal(op))
return op->emitError()
<< "failed to legalize operation '" << op->getName()
<< "' that was explicitly marked illegal";
if (trackedOps)
trackedOps->insert(op);
}
} else if (mode == OpConversionMode::Analysis) {
// Analysis conversions don't fail if any operations fail to legalize,
// they are only interested in the operations that were successfully
// legalized.
trackedOps->insert(op);
}
return success();
}
LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
if (ops.empty())
return success();
ConversionTarget &target = opLegalizer.getTarget();
// Compute the set of operations and blocks to convert.
SmallVector<Operation *> toConvert;
for (auto *op : ops) {
toConvert.emplace_back(op);
for (auto &region : op->getRegions())
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
toConvert, &target)))
return failure();
}
// Convert each operation and discard rewrites on failure.
ConversionPatternRewriter rewriter(ops.front()->getContext());
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
for (auto *op : toConvert)
if (failed(convert(rewriter, op)))
return rewriterImpl.discardRewrites(), failure();
// Now that all of the operations have been converted, finalize the conversion
// process to ensure any lingering conversion artifacts are cleaned up and
// legalized.
if (failed(finalize(rewriter)))
return rewriterImpl.discardRewrites(), failure();
// After a successful conversion, apply rewrites if this is not an analysis
// conversion.
if (mode == OpConversionMode::Analysis) {
rewriterImpl.discardRewrites();
} else {
rewriterImpl.applyRewrites();
// It is possible for a later pattern to erase an op that was originally
// identified as illegal and added to the trackedOps, remove it now after
// replacements have been computed.
if (trackedOps)
for (auto &repl : rewriterImpl.replacements)
trackedOps->erase(repl.first);
}
return success();
}
LogicalResult
OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
inverseMapping)) ||
failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
return failure();
if (rewriterImpl.operationsWithChangedResults.empty())
return success();
// Process requested operation replacements.
for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
i != e; ++i) {
unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
for (OpResult result : repl.first->getResults()) {
Value newValue = rewriterImpl.mapping.lookupOrNull(result);
// If the operation result was replaced with null, all of the uses of this
// value should be replaced.
if (!newValue) {
if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
return failure();
continue;
}
// Otherwise, check to see if the type of the result changed.
if (result.getType() == newValue.getType())
continue;
// Compute the inverse mapping only if it is really needed.
if (!inverseMapping)
inverseMapping = rewriterImpl.mapping.getInverse();
// Legalize this result.
rewriter.setInsertionPoint(repl.first);
if (failed(legalizeChangedResultType(repl.first, result, newValue,
repl.second.converter, rewriter,
rewriterImpl, *inverseMapping)))
return failure();
// Update the end iterator for this loop in the case it was updated
// when legalizing generated conversion operations.
e = rewriterImpl.operationsWithChangedResults.size();
}
}
return success();
}
LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl) {
// Functor used to check if all users of a value will be dead after
// conversion.
auto findLiveUser = [&](Value val) {
auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
};
return rewriterImpl.argConverter.materializeLiveConversions(
rewriterImpl.mapping, rewriter, findLiveUser);
}
/// Replace the results of a materialization operation with the given values.
static void
replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
ResultRange matResults, ValueRange values,
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
matResults.replaceAllUsesWith(values);
// For each of the materialization results, update the inverse mappings to
// point to the replacement values.
for (auto it : llvm::zip(matResults, values)) {
Value matResult, newValue;
std::tie(matResult, newValue) = it;
auto inverseMapIt = inverseMapping.find(matResult);
if (inverseMapIt == inverseMapping.end())
continue;
// Update the reverse mapping, or remove the mapping if we couldn't update
// it. Not being able to update signals that the mapping would have become
// circular (i.e. %foo -> newValue -> %foo), which may occur as values are
// propagated through temporary materializations. We simply drop the
// mapping, and let the post-conversion replacement logic handle updating
// uses.
for (Value inverseMapVal : inverseMapIt->second)
if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
rewriterImpl.mapping.erase(inverseMapVal);
}
}
/// Compute all of the unresolved materializations that will persist beyond the
/// conversion process, and require inserting a proper user materialization for.
static void computeNecessaryMaterializations(
DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
DenseMap<Value, SmallVector<Value>> &inverseMapping,
SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
auto isLive = [&](Value value) {
auto findFn = [&](Operation *user) {
auto matIt = materializationOps.find(user);
if (matIt != materializationOps.end())
return !necessaryMaterializations.count(matIt->second);
return rewriterImpl.isOpIgnored(user);
};
return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
};
llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
[&](Value invalidRoot, Value value, Type type) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
if (remappedValue.getType() == type && remappedValue != invalidRoot)
return remappedValue;
// Check to see if the input is a materialization operation that
// provides an inverse conversion. We just check blindly for
// UnrealizedConversionCastOp here, but it has no effect on correctness.
auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
if (inputCastOp && inputCastOp->getNumOperands() == 1)
return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
type);
return Value();
};
SetVector<UnresolvedMaterialization *> worklist;
for (auto &mat : rewriterImpl.unresolvedMaterializations) {
materializationOps.try_emplace(mat.getOp(), &mat);
worklist.insert(&mat);
}
while (!worklist.empty()) {
UnresolvedMaterialization *mat = worklist.pop_back_val();
UnrealizedConversionCastOp op = mat->getOp();
// We currently only handle target materializations here.
assert(op->getNumResults() == 1 && "unexpected materialization type");
OpResult opResult = op->getOpResult(0);
Type outputType = opResult.getType();
Operation::operand_range inputOperands = op.getOperands();
// Try to forward propagate operands for user conversion casts that result
// in the input types of the current cast.
for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
if (!castOp)
continue;
if (castOp->getResultTypes() == inputOperands.getTypes()) {
replaceMaterialization(rewriterImpl, opResult, inputOperands,
inverseMapping);
necessaryMaterializations.remove(materializationOps.lookup(user));
}
}
// Try to avoid materializing a resolved materialization if possible.
// Handle the case of a 1-1 materialization.
if (inputOperands.size() == 1) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue =
lookupRemappedValue(opResult, inputOperands[0], outputType);
if (remappedValue && remappedValue != opResult) {
replaceMaterialization(rewriterImpl, opResult, remappedValue,
inverseMapping);
necessaryMaterializations.remove(mat);
continue;
}
} else {
// TODO: Avoid materializing other types of conversions here.
}
// Check to see if this is an argument materialization.
auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); };
if (llvm::any_of(op->getOperands(), isBlockArg) ||
llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
mat->setKind(UnresolvedMaterialization::Argument);
}
// If the materialization does not have any live users, we don't need to
// generate a user materialization for it.
// FIXME: For argument materializations, we currently need to check if any
// of the inverse mapped values are used because some patterns expect blind
// value replacement even if the types differ in some cases. When those
// patterns are fixed, we can drop the argument special case here.
bool isMaterializationLive = isLive(opResult);
if (mat->getKind() == UnresolvedMaterialization::Argument)
isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
if (!isMaterializationLive)
continue;
if (!necessaryMaterializations.insert(mat))
continue;
// Reprocess input materializations to see if they have an updated status.
for (Value input : inputOperands) {
if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
if (auto *mat = materializationOps.lookup(parentOp))
worklist.insert(mat);
}
}
}
}
/// Legalize the given unresolved materialization. Returns success if the
/// materialization was legalized, failure otherise.
static LogicalResult legalizeUnresolvedMaterialization(
UnresolvedMaterialization &mat,
DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
auto findLiveUser = [&](auto &&users) {
auto liveUserIt = llvm::find_if_not(
users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
return liveUserIt == users.end() ? nullptr : *liveUserIt;
};
llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
[&](Value value, Type type) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
if (remappedValue.getType() == type)
return remappedValue;
return Value();
};
UnrealizedConversionCastOp op = mat.getOp();
if (!rewriterImpl.ignoredOps.insert(op))
return success();
// We currently only handle target materializations here.
OpResult opResult = op->getOpResult(0);
Operation::operand_range inputOperands = op.getOperands();
Type outputType = opResult.getType();
// If any input to this materialization is another materialization, resolve
// the input first.
for (Value value : op->getOperands()) {
auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
if (!valueCast)
continue;
auto matIt = materializationOps.find(valueCast);
if (matIt != materializationOps.end())
if (failed(legalizeUnresolvedMaterialization(
*matIt->second, materializationOps, rewriter, rewriterImpl,
inverseMapping)))
return failure();
}
// Perform a last ditch attempt to avoid materializing a resolved
// materialization if possible.
// Handle the case of a 1-1 materialization.
if (inputOperands.size() == 1) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
if (remappedValue && remappedValue != opResult) {
replaceMaterialization(rewriterImpl, opResult, remappedValue,
inverseMapping);
return success();
}
} else {
// TODO: Avoid materializing other types of conversions here.
}
// Try to materialize the conversion.
if (TypeConverter *converter = mat.getConverter()) {
// FIXME: Determine a suitable insertion location when there are multiple
// inputs.
if (inputOperands.size() == 1)
rewriter.setInsertionPointAfterValue(inputOperands.front());
else
rewriter.setInsertionPoint(op);
Value newMaterialization;
switch (mat.getKind()) {
case UnresolvedMaterialization::Argument:
// Try to materialize an argument conversion.
// FIXME: The current argument materialization hook expects the original
// output type, even though it doesn't use that as the actual output type
// of the generated IR. The output type is just used as an indicator of
// the type of materialization to do. This behavior is really awkward in
// that it diverges from the behavior of the other hooks, and can be
// easily misunderstood. We should clean up the argument hooks to better
// represent the desired invariants we actually care about.
newMaterialization = converter->materializeArgumentConversion(
rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
if (newMaterialization)
break;
// If an argument materialization failed, fallback to trying a target
// materialization.
LLVM_FALLTHROUGH;
case UnresolvedMaterialization::Target:
newMaterialization = converter->materializeTargetConversion(
rewriter, op->getLoc(), outputType, inputOperands);
break;
}
if (newMaterialization) {
replaceMaterialization(rewriterImpl, opResult, newMaterialization,
inverseMapping);
return success();
}
}
InFlightDiagnostic diag = op->emitError()
<< "failed to legalize unresolved materialization "
"from "
<< inputOperands.getTypes() << " to " << outputType
<< " that remained live after conversion";
if (Operation *liveUser = findLiveUser(op->getUsers())) {
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
}
return failure();
}
LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
if (rewriterImpl.unresolvedMaterializations.empty())
return success();
inverseMapping = rewriterImpl.mapping.getInverse();
// As an initial step, compute all of the inserted materializations that we
// expect to persist beyond the conversion process.
DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
SetVector<UnresolvedMaterialization *> necessaryMaterializations;
computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
*inverseMapping, necessaryMaterializations);
// Once computed, legalize any necessary materializations.
for (auto *mat : necessaryMaterializations) {
if (failed(legalizeUnresolvedMaterialization(
*mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
return failure();
}
return success();
}
LogicalResult OperationConverter::legalizeErasedResult(
Operation *op, OpResult result,
ConversionPatternRewriterImpl &rewriterImpl) {
// If the operation result was replaced with null, all of the uses of this
// value should be replaced.
auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt != result.user_end()) {
InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
<< op->getName() << "' marked as erased";
diag.attachNote(liveUserIt->getLoc())
<< "found live user of result #" << result.getResultNumber() << ": "
<< *liveUserIt;
return failure();
}
return success();
}
/// Finds a user of the given value, or of any other value that the given value
/// replaced, that was not replaced in the conversion process.
static Operation *findLiveUserOfReplaced(
Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
SmallVector<Value> worklist(1, initialValue);
while (!worklist.empty()) {
Value value = worklist.pop_back_val();
// Walk the users of this value to see if there are any live users that
// weren't replaced during conversion.
auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt != value.user_end())
return *liveUserIt;
auto mapIt = inverseMapping.find(value);
if (mapIt != inverseMapping.end())
worklist.append(mapIt->second);
}
return nullptr;
}
LogicalResult OperationConverter::legalizeChangedResultType(
Operation *op, OpResult result, Value newValue,
TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
Operation *liveUser =
findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
if (!liveUser)
return success();
// Functor used to emit a conversion error for a failed materialization.
auto emitConversionError = [&] {
InFlightDiagnostic diag = op->emitError()
<< "failed to materialize conversion for result #"
<< result.getResultNumber() << " of operation '"
<< op->getName()
<< "' that remained live after conversion";
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
return failure();
};
// If the replacement has a type converter, attempt to materialize a
// conversion back to the original type.
if (!replConverter)
return emitConversionError();
// Materialize a conversion for this live result value.
Type resultType = result.getType();
Value convertedValue = replConverter->materializeSourceConversion(
rewriter, op->getLoc(), resultType, newValue);
if (!convertedValue)
return emitConversionError();
rewriterImpl.mapping.map(result, convertedValue);
return success();
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
ArrayRef<Type> types) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types);
}
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
argTypes.append(types.begin(), types.end());
}
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] =
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
}
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
Value replacementValue) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
remappedInputs[origInputNo] =
InputMapping{origInputNo, /*size=*/0, replacementValue};
}
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) {
auto existingIt = cachedDirectConversions.find(t);
if (existingIt != cachedDirectConversions.end()) {
if (existingIt->second)
results.push_back(existingIt->second);
return success(existingIt->second != nullptr);
}
auto multiIt = cachedMultiConversions.find(t);
if (multiIt != cachedMultiConversions.end()) {
results.append(multiIt->second.begin(), multiIt->second.end());
return success();
}
// Walk the added converters in reverse order to apply the most recently
// registered first.
size_t currentCount = results.size();
conversionCallStack.push_back(t);
auto popConversionCallStack =
llvm::make_scope_exit([this]() { conversionCallStack.pop_back(); });
for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
if (Optional<LogicalResult> result =
converter(t, results, conversionCallStack)) {
if (!succeeded(*result)) {
cachedDirectConversions.try_emplace(t, nullptr);
return failure();
}
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
if (newTypes.size() == 1)
cachedDirectConversions.try_emplace(t, newTypes.front());
else
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
return success();
}
}
return failure();
}
Type TypeConverter::convertType(Type t) {
// Use the multi-type result version to convert the type.
SmallVector<Type, 1> results;
if (failed(convertType(t, results)))
return nullptr;
// Check to ensure that only one type was produced.
return results.size() == 1 ? results.front() : nullptr;
}
LogicalResult TypeConverter::convertTypes(TypeRange types,
SmallVectorImpl<Type> &results) {
for (Type type : types)
if (failed(convertType(type, results)))
return failure();
return success();
}
bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
bool TypeConverter::isLegal(Operation *op) {
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
}
bool TypeConverter::isLegal(Region *region) {
return llvm::all_of(*region, [this](Block &block) {
return isLegal(block.getArgumentTypes());
});
}
bool TypeConverter::isSignatureLegal(FunctionType ty) {
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
}
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
SignatureConversion &result) {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
result.addInputs(inputNo, convertedTypes);
return success();
}
LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
SignatureConversion &result,
unsigned origInputOffset) {
for (unsigned i = 0, e = types.size(); i != e; ++i)
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
return failure();
return success();
}
Value TypeConverter::materializeConversion(
MutableArrayRef<MaterializationCallbackFn> materializations,
OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
if (Optional<Value> result = fn(builder, resultType, inputs, loc))
return result.getValue();
return nullptr;
}
auto TypeConverter::convertBlockSignature(Block *block)
-> Optional<SignatureConversion> {
SignatureConversion conversion(block->getNumArguments());
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
return llvm::None;
return conversion;
}
//===----------------------------------------------------------------------===//
// FunctionLikeSignatureConversion
//===----------------------------------------------------------------------===//
/// Create a default conversion pattern that rewrites the type signature of a
/// FunctionLike op. This only supports FunctionLike ops which use FunctionType
/// to represent their type.
namespace {
struct FunctionLikeSignatureConversion : public ConversionPattern {
FunctionLikeSignatureConversion(StringRef functionLikeOpName,
MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
/// Hook to implement combined matching and rewriting for FunctionLike ops.
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
FunctionType type = function_like_impl::getFunctionType(op);
// Convert the original function types.
TypeConverter::SignatureConversion result(type.getNumInputs());
SmallVector<Type, 1> newResults;
if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
failed(rewriter.convertRegionTypes(
&function_like_impl::getFunctionBody(op), *typeConverter, &result)))
return failure();
// Update the function signature in-place.
auto newType = FunctionType::get(rewriter.getContext(),
result.getConvertedTypes(), newResults);
rewriter.updateRootInPlace(
op, [&] { function_like_impl::setFunctionType(op, newType); });
return success();
}
};
} // end anonymous namespace
void mlir::populateFunctionLikeTypeConversionPattern(
StringRef functionLikeOpName, RewritePatternSet &patterns,
TypeConverter &converter) {
patterns.add<FunctionLikeSignatureConversion>(
functionLikeOpName, patterns.getContext(), converter);
}
void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns,
TypeConverter &converter) {
populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter);
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op].action = action;
}
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
auto ConversionTarget::getOpAction(OperationName op) const
-> Optional<LegalizationAction> {
Optional<LegalizationInfo> info = getOpInfo(op);
return info ? info->action : Optional<LegalizationAction>();
}
auto ConversionTarget::isLegal(Operation *op) const
-> Optional<LegalOpDetails> {
Optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return llvm::None;
// Returns true if this operation instance is known to be legal.
auto isOpLegal = [&] {
// Handle dynamic legality either with the provided legality function.
if (info->action == LegalizationAction::Dynamic) {
Optional<bool> result = info->legalityFn(op);
if (result)
return *result;
}
// Otherwise, the operation is only legal if it was marked 'Legal'.
return info->action == LegalizationAction::Legal;
};
if (!isOpLegal())
return llvm::None;
// This operation is legal, compute any additional legality information.
LegalOpDetails legalityDetails;
if (info->isRecursivelyLegal) {
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
if (legalityFnIt != opRecursiveLegalityFns.end()) {
legalityDetails.isRecursivelyLegal =
legalityFnIt->second(op).getValueOr(true);
} else {
legalityDetails.isRecursivelyLegal = true;
}
}
return legalityDetails;
}
bool ConversionTarget::isIllegal(Operation *op) const {
Optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return false;
if (info->action == LegalizationAction::Dynamic) {
Optional<bool> result = info->legalityFn(op);
if (!result)
return false;
return !(*result);
}
return info->action == LegalizationAction::Illegal;
}
static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
ConversionTarget::DynamicLegalityCallbackFn oldCallback,
ConversionTarget::DynamicLegalityCallbackFn newCallback) {
if (!oldCallback)
return newCallback;
auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
Operation *op) -> Optional<bool> {
if (Optional<bool> result = newCl(op))
return *result;
return oldCl(op);
};
return chain;
}
void ConversionTarget::setLegalityCallback(
OperationName name, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
auto infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action == LegalizationAction::Dynamic &&
"expected operation to already be marked as dynamically legal");
infoIt->second.legalityFn =
composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
}
void ConversionTarget::markOpRecursivelyLegal(
OperationName name, const DynamicLegalityCallbackFn &callback) {
auto infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action != LegalizationAction::Illegal &&
"expected operation to already be marked as legal");
infoIt->second.isRecursivelyLegal = true;
if (callback)
opRecursiveLegalityFns[name] = composeLegalityCallbacks(
std::move(opRecursiveLegalityFns[name]), callback);
else
opRecursiveLegalityFns.erase(name);
}
void ConversionTarget::setLegalityCallback(
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
for (StringRef dialect : dialects)
dialectLegalityFns[dialect] = composeLegalityCallbacks(
std::move(dialectLegalityFns[dialect]), callback);
}
void ConversionTarget::setLegalityCallback(
const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
}
auto ConversionTarget::getOpInfo(OperationName op) const
-> Optional<LegalizationInfo> {
// Check for info for this specific operation.
auto it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Check for info for the parent dialect.
auto dialectIt = legalDialects.find(op.getDialectNamespace());
if (dialectIt != legalDialects.end()) {
DynamicLegalityCallbackFn callback;
auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
if (dialectFn != dialectLegalityFns.end())
callback = dialectFn->second;
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
callback};
}
// Otherwise, check if we mark unknown operations as dynamic.
if (unknownLegalityFn)
return LegalizationInfo{LegalizationAction::Dynamic,
/*isRecursivelyLegal=*/false, unknownLegalityFn};
return llvm::None;
}
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Partial Conversion
LogicalResult
mlir::applyPartialConversion(ArrayRef<Operation *> ops,
ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
DenseSet<Operation *> *unconvertedOps) {
OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
unconvertedOps);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
DenseSet<Operation *> *unconvertedOps) {
return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
unconvertedOps);
}
//===----------------------------------------------------------------------===//
// Full Conversion
LogicalResult
mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
const FrozenRewritePatternSet &patterns) {
OperationConverter opConverter(target, patterns, OpConversionMode::Full);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyFullConversion(Operation *op, ConversionTarget &target,
const FrozenRewritePatternSet &patterns) {
return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
}
//===----------------------------------------------------------------------===//
// Analysis Conversion
LogicalResult
mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
DenseSet<Operation *> &convertedOps) {
OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
&convertedOps);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
DenseSet<Operation *> &convertedOps) {
return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
convertedOps);
}