blob: db0e7c2d8478026c86011e7db2b00cde550ff4a6 [file] [log] [blame]
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "DebugTranslation.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace mlir;
using namespace mlir::LLVM;
using namespace mlir::LLVM::detail;
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
/// Builds a constant of a sequential LLVM type `type`, potentially containing
/// other sequential types recursively, from the individual constant values
/// provided in `constants`. `shape` contains the number of elements in nested
/// sequential types. Reports errors at `loc` and returns nullptr on error.
static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
ArrayRef<int64_t> shape, llvm::Type *type,
Location loc) {
if (shape.empty()) {
llvm::Constant *result = constants.front();
constants = constants.drop_front();
return result;
}
llvm::Type *elementType;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
elementType = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
elementType = vectorTy->getElementType();
} else {
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
return nullptr;
}
SmallVector<llvm::Constant *, 8> nested;
nested.reserve(shape.front());
for (int64_t i = 0; i < shape.front(); ++i) {
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
elementType, loc));
if (!nested.back())
return nullptr;
}
if (shape.size() == 1 && type->isVectorTy())
return llvm::ConstantVector::get(nested);
return llvm::ConstantArray::get(
llvm::ArrayType::get(elementType, shape.front()), nested);
}
/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
do {
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
type = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
type = vectorTy->getElementType();
} else {
return type;
}
} while (true);
}
/// Convert a dense elements attribute to an LLVM IR constant using its raw data
/// storage if possible. This supports elements attributes of tensor or vector
/// type and avoids constructing separate objects for individual values of the
/// innermost dimension. Constants for other dimensions are still constructed
/// recursively. Returns null if constructing from raw data is not supported for
/// this type, e.g., element type is not a power-of-two-sized primitive. Reports
/// other errors at `loc`.
static llvm::Constant *
convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
llvm::Type *llvmType,
const ModuleTranslation &moduleTranslation) {
if (!denseElementsAttr)
return nullptr;
llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
return nullptr;
ShapedType type = denseElementsAttr.getType();
if (type.getNumElements() == 0)
return nullptr;
// Compute the shape of all dimensions but the innermost. Note that the
// innermost dimension may be that of the vector element type.
bool hasVectorElementType = type.getElementType().isa<VectorType>();
unsigned numAggregates =
denseElementsAttr.getNumElements() /
(hasVectorElementType ? 1
: denseElementsAttr.getType().getShape().back());
ArrayRef<int64_t> outerShape = type.getShape();
if (!hasVectorElementType)
outerShape = outerShape.drop_back();
// Handle the case of vector splat, LLVM has special support for it.
if (denseElementsAttr.isSplat() &&
(type.isa<VectorType>() || hasVectorElementType)) {
llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
moduleTranslation, /*isTopLevel=*/false);
llvm::Constant *splatVector =
llvm::ConstantDataVector::getSplat(0, splatValue);
SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
ArrayRef<llvm::Constant *> constantsRef = constants;
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}
if (denseElementsAttr.isSplat())
return nullptr;
// In case of non-splat, create a constructor for the innermost constant from
// a piece of raw data.
std::function<llvm::Constant *(StringRef)> buildCstData;
if (type.isa<TensorType>()) {
auto vectorElementType = type.getElementType().dyn_cast<VectorType>();
if (vectorElementType && vectorElementType.getRank() == 1) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(
data, vectorElementType.getShape().back(), innermostLLVMType);
};
} else if (!vectorElementType) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
} else if (type.isa<VectorType>()) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
if (!buildCstData)
return nullptr;
// Create innermost constants and defer to the default constant creation
// mechanism for other dimensions.
SmallVector<llvm::Constant *> constants;
unsigned aggregateSize = denseElementsAttr.getType().getShape().back() *
(innermostLLVMType->getScalarSizeInBits() / 8);
constants.reserve(numAggregates);
for (unsigned i = 0; i < numAggregates; ++i) {
StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
aggregateSize);
constants.push_back(buildCstData(data));
}
ArrayRef<llvm::Constant *> constantsRef = constants;
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. Also, an array attribute with two
/// elements is supported to represent a complex constant. In case of error,
/// report it to `loc` and return nullptr.
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
llvm::Type *llvmType, Attribute attr, Location loc,
const ModuleTranslation &moduleTranslation, bool isTopLevel) {
if (!attr)
return llvm::UndefValue::get(llvmType);
if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
if (!isTopLevel) {
emitError(loc, "nested struct types are not supported in constants");
return nullptr;
}
auto arrayAttr = attr.cast<ArrayAttr>();
llvm::Type *elementType = structType->getElementType(0);
llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc,
moduleTranslation, false);
if (!real)
return nullptr;
llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc,
moduleTranslation, false);
if (!imag)
return nullptr;
return llvm::ConstantStruct::get(structType, {real, imag});
}
// For integer types, we allow a mismatch in sizes as the index type in
// MLIR might have a different size than the index type in the LLVM module.
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
return llvm::ConstantInt::get(
llvmType,
intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
if (llvmType !=
llvm::Type::getFloatingPointTy(llvmType->getContext(),
floatAttr.getValue().getSemantics())) {
emitError(loc, "FloatAttr does not match expected type of the constant");
return nullptr;
}
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
}
if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
return llvm::ConstantExpr::getBitCast(
moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
llvm::Type *elementType;
uint64_t numElements;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
elementType = arrayTy->getElementType();
numElements = arrayTy->getNumElements();
} else {
auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
elementType = vectorTy->getElementType();
numElements = vectorTy->getNumElements();
}
// Splat value is a scalar. Extract it only if the element type is not
// another sequence type. The recursion terminates because each step removes
// one outer sequential type.
bool elementTypeSequential =
isa<llvm::ArrayType, llvm::VectorType>(elementType);
llvm::Constant *child = getLLVMConstant(
elementType,
elementTypeSequential ? splatAttr
: splatAttr.getSplatValue<Attribute>(),
loc, moduleTranslation, false);
if (!child)
return nullptr;
if (llvmType->isVectorTy())
return llvm::ConstantVector::getSplat(
llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
if (llvmType->isArrayTy()) {
auto *arrayType = llvm::ArrayType::get(elementType, numElements);
SmallVector<llvm::Constant *, 8> constants(numElements, child);
return llvm::ConstantArray::get(arrayType, constants);
}
}
// Try using raw elements data if possible.
if (llvm::Constant *result =
convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(),
llvmType, moduleTranslation)) {
return result;
}
// Fall back to element-by-element construction otherwise.
if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
assert(elementsAttr.getType().hasStaticShape());
assert(!elementsAttr.getType().getShape().empty() &&
"unexpected empty elements attribute shape");
SmallVector<llvm::Constant *, 8> constants;
constants.reserve(elementsAttr.getNumElements());
llvm::Type *innermostType = getInnermostElementType(llvmType);
for (auto n : elementsAttr.getValues<Attribute>()) {
constants.push_back(
getLLVMConstant(innermostType, n, loc, moduleTranslation, false));
if (!constants.back())
return nullptr;
}
ArrayRef<llvm::Constant *> constantsRef = constants;
llvm::Constant *result = buildSequentialConstant(
constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
assert(constantsRef.empty() && "did not consume all elemental constants");
return result;
}
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
return llvm::ConstantDataArray::get(
moduleTranslation.getLLVMContext(),
ArrayRef<char>{stringAttr.getValue().data(),
stringAttr.getValue().size()});
}
emitError(loc, "unsupported constant value");
return nullptr;
}
ModuleTranslation::ModuleTranslation(Operation *module,
std::unique_ptr<llvm::Module> llvmModule)
: mlirModule(module), llvmModule(std::move(llvmModule)),
debugTranslation(
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
typeTranslator(this->llvmModule->getContext()),
iface(module->getContext()) {
assert(satisfiesLLVMModule(mlirModule) &&
"mlirModule should honor LLVM's module semantics.");
}
ModuleTranslation::~ModuleTranslation() {
if (ompBuilder)
ompBuilder->finalize();
}
void ModuleTranslation::forgetMapping(Region &region) {
SmallVector<Region *> toProcess;
toProcess.push_back(&region);
while (!toProcess.empty()) {
Region *current = toProcess.pop_back_val();
for (Block &block : *current) {
blockMapping.erase(&block);
for (Value arg : block.getArguments())
valueMapping.erase(arg);
for (Operation &op : block) {
for (Value value : op.getResults())
valueMapping.erase(value);
if (op.hasSuccessors())
branchMapping.erase(&op);
if (isa<LLVM::GlobalOp>(op))
globalsMapping.erase(&op);
accessGroupMetadataMapping.erase(&op);
llvm::append_range(
toProcess,
llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
}
}
}
}
/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
unsigned numArguments, unsigned index) {
Operation &terminator = *pred->getTerminator();
if (isa<LLVM::BrOp>(terminator))
return terminator.getOperand(index);
SuccessorRange successors = terminator.getSuccessors();
assert(std::adjacent_find(successors.begin(), successors.end()) ==
successors.end() &&
"successors with arguments in LLVM branches must be different blocks");
(void)successors;
// For instructions that branch based on a condition value, we need to take
// the operands for the branch that was taken.
if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
// For conditional branches, we take the operands from either the "true" or
// the "false" branch.
return condBranchOp.getSuccessor(0) == current
? condBranchOp.getTrueDestOperands()[index]
: condBranchOp.getFalseDestOperands()[index];
}
if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
// For switches, we take the operands from either the default case, or from
// the case branch that was taken.
if (switchOp.getDefaultDestination() == current)
return switchOp.getDefaultOperands()[index];
for (auto i : llvm::enumerate(switchOp.getCaseDestinations()))
if (i.value() == current)
return switchOp.getCaseOperands(i.index())[index];
}
llvm_unreachable("only branch or switch operations can be terminators of a "
"block that has successors");
}
/// Connect the PHI nodes to the results of preceding blocks.
void mlir::LLVM::detail::connectPHINodes(Region &region,
const ModuleTranslation &state) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
++it) {
Block *bb = &*it;
llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
auto phis = llvmBB->phis();
auto numArguments = bb->getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (auto *pred : bb->getPredecessors()) {
// Find the LLVM IR block that contains the converted terminator
// instruction and use it in the PHI node. Note that this block is not
// necessarily the same as state.lookupBlock(pred), some operations
// (in particular, OpenMP operations using OpenMPIRBuilder) may have
// split the blocks.
llvm::Instruction *terminator =
state.lookupBranch(pred->getTerminator());
assert(terminator && "missing the mapping for a terminator");
phiNode.addIncoming(
state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
terminator->getParent());
}
}
}
}
/// Sort function blocks topologically.
SetVector<Block *>
mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
// For each block that has not been visited yet (i.e. that has no
// predecessors), add it to the list as well as its successors.
SetVector<Block *> blocks;
for (Block &b : region) {
if (blocks.count(&b) == 0) {
llvm::ReversePostOrderTraversal<Block *> traversal(&b);
blocks.insert(traversal.begin(), traversal.end());
}
}
assert(blocks.size() == region.getBlocks().size() &&
"some blocks are not sorted");
return blocks;
}
llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
llvm::Module *module = builder.GetInsertBlock()->getModule();
llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
return builder.CreateCall(fn, args);
}
/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`.
LogicalResult
ModuleTranslation::convertOperation(Operation &op,
llvm::IRBuilderBase &builder) {
const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
if (!opIface)
return op.emitError("cannot be converted to LLVM IR: missing "
"`LLVMTranslationDialectInterface` registration for "
"dialect for op: ")
<< op.getName();
if (failed(opIface->convertOperation(&op, builder, *this)))
return op.emitError("LLVM Translation failed for operation: ")
<< op.getName();
return convertDialectAttributes(&op);
}
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments. These nodes
/// are not connected to the source basic blocks, which may not exist yet. Uses
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
/// been created for `bb` and included in the block mapping. Inserts new
/// instructions at the end of the block and leaves `builder` in a state
/// suitable for further insertion into the end of the block.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
llvm::IRBuilderBase &builder) {
builder.SetInsertPoint(lookupBlock(&bb));
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
// Before traversing operations, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (auto arg : bb.getArguments()) {
auto wrappedType = arg.getType();
if (!isCompatibleType(wrappedType))
return emitError(bb.front().getLoc(),
"block argument does not have an LLVM type");
llvm::Type *type = convertType(wrappedType);
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
mapValue(arg, phi);
}
}
// Traverse operations.
for (auto &op : bb) {
// Set the current debug location within the builder.
builder.SetCurrentDebugLocation(
debugTranslation->translateLoc(op.getLoc(), subprogram));
if (failed(convertOperation(op, builder)))
return failure();
}
return success();
}
/// A helper method to get the single Block in an operation honoring LLVM's
/// module requirements.
static Block &getModuleBody(Operation *module) {
return module->getRegion(0).front();
}
/// A helper method to decide if a constant must not be set as a global variable
/// initializer. For an external linkage variable, the variable with an
/// initializer is considered externally visible and defined in this module, the
/// variable without an initializer is externally available and is defined
/// elsewhere.
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
llvm::Constant *cst) {
return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
linkage == llvm::GlobalVariable::ExternalWeakLinkage;
}
/// Sets the runtime preemption specifier of `gv` to dso_local if
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
llvm::GlobalValue *gv) {
if (dsoLocalRequested)
gv->setDSOLocal(true);
}
/// Create named global variables that correspond to llvm.mlir.global
/// definitions. Convert llvm.global_ctors and global_dtors ops.
LogicalResult ModuleTranslation::convertGlobals() {
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
llvm::Type *type = convertType(op.getType());
llvm::Constant *cst = nullptr;
if (op.getValueOrNull()) {
// String attributes are treated separately because they cannot appear as
// in-function constants and are thus not supported by getLLVMConstant.
if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
cst = llvm::ConstantDataArray::getString(
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
type = cst->getType();
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
*this))) {
return failure();
}
}
auto linkage = convertLinkageToLLVM(op.getLinkage());
auto addrSpace = op.getAddrSpace();
// LLVM IR requires constant with linkage other than external or weak
// external to have initializers. If MLIR does not provide an initializer,
// default to undef.
bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
if (!dropInitializer && !cst)
cst = llvm::UndefValue::get(type);
else if (dropInitializer && cst)
cst = nullptr;
auto *var = new llvm::GlobalVariable(
*llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
if (op.getUnnamedAddr().hasValue())
var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
if (op.getSection().hasValue())
var->setSection(*op.getSection());
addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
Optional<uint64_t> alignment = op.getAlignment();
if (alignment.hasValue())
var->setAlignment(llvm::MaybeAlign(alignment.getValue()));
globalsMapping.try_emplace(op, var);
}
// Convert global variable bodies. This is done after all global variables
// have been created in LLVM IR because a global body may refer to another
// global or itself. So all global variables need to be mapped first.
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
if (Block *initializer = op.getInitializerBlock()) {
llvm::IRBuilder<> builder(llvmModule->getContext());
for (auto &op : initializer->without_terminator()) {
if (failed(convertOperation(op, builder)) ||
!isa<llvm::Constant>(lookupValue(op.getResult(0))))
return emitError(op.getLoc(), "unemittable constant value");
}
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
llvm::Constant *cst =
cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
global->setInitializer(cst);
}
}
// Convert llvm.mlir.global_ctors and dtors.
for (Operation &op : getModuleBody(mlirModule)) {
auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
if (!ctorOp && !dtorOp)
continue;
auto range = ctorOp ? llvm::zip(ctorOp.ctors(), ctorOp.priorities())
: llvm::zip(dtorOp.dtors(), dtorOp.priorities());
auto appendGlobalFn =
ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
for (auto symbolAndPriority : range) {
llvm::Function *f = lookupFunction(
std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue());
appendGlobalFn(
*llvmModule.get(), f,
std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(),
/*Data=*/nullptr);
}
}
return success();
}
/// Attempts to add an attribute identified by `key`, optionally with the given
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
/// otherwise keep it as a string attribute. Performs additional checks for
/// attributes known to have or not have a value in order to avoid assertions
/// inside LLVM upon construction.
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
llvm::Function *llvmFunc,
StringRef key,
StringRef value = StringRef()) {
auto kind = llvm::Attribute::getAttrKindFromName(key);
if (kind == llvm::Attribute::None) {
llvmFunc->addFnAttr(key, value);
return success();
}
if (llvm::Attribute::isIntAttrKind(kind)) {
if (value.empty())
return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
int result;
if (!value.getAsInteger(/*Radix=*/0, result))
llvmFunc->addFnAttr(
llvm::Attribute::get(llvmFunc->getContext(), kind, result));
else
llvmFunc->addFnAttr(key, value);
return success();
}
if (!value.empty())
return emitError(loc) << "LLVM attribute '" << key
<< "' does not expect a value, found '" << value
<< "'";
llvmFunc->addFnAttr(kind);
return success();
}
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
/// to be an array attribute containing either string attributes, treated as
/// value-less LLVM attributes, or array attributes containing two string
/// attributes, with the first string being the name of the corresponding LLVM
/// attribute and the second string beings its value. Note that even integer
/// attributes are expected to have their values expressed as strings.
static LogicalResult
forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
llvm::Function *llvmFunc) {
if (!attributes)
return success();
for (Attribute attr : *attributes) {
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
if (failed(
checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
return failure();
continue;
}
auto arrayAttr = attr.dyn_cast<ArrayAttr>();
if (!arrayAttr || arrayAttr.size() != 2)
return emitError(loc)
<< "expected 'passthrough' to contain string or array attributes";
auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
if (!keyAttr || !valueAttr)
return emitError(loc)
<< "expected arrays within 'passthrough' to contain two strings";
if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
valueAttr.getValue())))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
// Clear the block, branch value mappings, they are only relevant within one
// function.
blockMapping.clear();
valueMapping.clear();
branchMapping.clear();
llvm::Function *llvmFunc = lookupFunction(func.getName());
// Translate the debug information for this function.
debugTranslation->translate(func, *llvmFunc);
// Add function arguments to the value remapping table.
// If there was noalias info then we decorate each argument accordingly.
unsigned int argIdx = 0;
for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
llvm::Argument &llvmArg = std::get<1>(kvp);
BlockArgument mlirArg = std::get<0>(kvp);
if (auto attr = func.getArgAttrOfType<UnitAttr>(
argIdx, LLVMDialect::getNoAliasAttrName())) {
// NB: Attribute already verified to be boolean, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg.getType();
if (!argTy.isa<LLVM::LLVMPointerType>())
return func.emitError(
"llvm.noalias attribute attached to LLVM non-pointer argument");
llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
}
if (auto attr = func.getArgAttrOfType<IntegerAttr>(
argIdx, LLVMDialect::getAlignAttrName())) {
// NB: Attribute already verified to be int, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg.getType();
if (!argTy.isa<LLVM::LLVMPointerType>())
return func.emitError(
"llvm.align attribute attached to LLVM non-pointer argument");
llvmArg.addAttrs(
llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
}
if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
auto argTy = mlirArg.getType();
if (!argTy.isa<LLVM::LLVMPointerType>())
return func.emitError(
"llvm.sret attribute attached to LLVM non-pointer argument");
llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr(
llvmArg.getType()->getPointerElementType()));
}
if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
auto argTy = mlirArg.getType();
if (!argTy.isa<LLVM::LLVMPointerType>())
return func.emitError(
"llvm.byval attribute attached to LLVM non-pointer argument");
llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr(
llvmArg.getType()->getPointerElementType()));
}
mapValue(mlirArg, &llvmArg);
argIdx++;
}
// Check the personality and set it.
if (func.getPersonality().hasValue()) {
llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
func.getLoc(), *this))
llvmFunc->setPersonalityFn(pfunc);
}
// First, create all blocks so we can jump to them.
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
for (auto &bb : func) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(llvmFunc);
mapBlock(&bb, llvmBB);
}
// Then, convert blocks one by one in topological order to ensure defs are
// converted before uses.
auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
for (Block *bb : blocks) {
llvm::IRBuilder<> builder(llvmContext);
if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
return failure();
}
// After all blocks have been traversed and values mapped, connect the PHI
// nodes to the results of preceding blocks.
detail::connectPHINodes(func.getBody(), *this);
// Finally, convert dialect attributes attached to the function.
return convertDialectAttributes(func);
}
LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
for (NamedAttribute attribute : op->getDialectAttrs())
if (failed(iface.amendOperation(op, attribute, *this)))
return failure();
return success();
}
LogicalResult ModuleTranslation::convertFunctionSignatures() {
// Declare all functions first because there may be function calls that form a
// call graph with cycles, or global initializers that reference functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
function.getName(),
cast<llvm::FunctionType>(convertType(function.getType())));
llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
mapFunction(function.getName(), llvmFunc);
addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
// Forward the pass-through attributes to LLVM.
if (failed(forwardPassthroughAttributes(
function.getLoc(), function.getPassthrough(), llvmFunc)))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertFunctions() {
// Convert functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
// Ignore external functions.
if (function.isExternal())
continue;
if (failed(convertOneFunction(function)))
return failure();
}
return success();
}
llvm::MDNode *
ModuleTranslation::getAccessGroup(Operation &opInst,
SymbolRefAttr accessGroupRef) const {
auto metadataName = accessGroupRef.getRootReference();
auto accessGroupName = accessGroupRef.getLeafReference();
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
opInst.getParentOp(), metadataName);
auto *accessGroupOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
return accessGroupMetadataMapping.lookup(accessGroupOp);
}
LogicalResult ModuleTranslation::createAccessGroupMetadata() {
mlirModule->walk([&](LLVM::MetadataOp metadatas) {
metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
accessGroupMetadataMapping.insert({op, accessGroup});
});
});
return success();
}
void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
llvm::Instruction *inst) {
auto accessGroups =
op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
if (accessGroups && !accessGroups.empty()) {
llvm::Module *module = inst->getModule();
SmallVector<llvm::Metadata *> metadatas;
for (SymbolRefAttr accessGroupRef :
accessGroups.getAsRange<SymbolRefAttr>())
metadatas.push_back(getAccessGroup(*op, accessGroupRef));
llvm::MDNode *unionMD = nullptr;
if (metadatas.size() == 1)
unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
else if (metadatas.size() >= 2)
unionMD = llvm::MDNode::get(module->getContext(), metadatas);
inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
}
}
LogicalResult ModuleTranslation::createAliasScopeMetadata() {
mlirModule->walk([&](LLVM::MetadataOp metadatas) {
// Create the domains first, so they can be reference below in the scopes.
DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping;
metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::SmallVector<llvm::Metadata *, 2> operands;
operands.push_back({}); // Placeholder for self-reference
if (Optional<StringRef> description = op.getDescription())
operands.push_back(llvm::MDString::get(ctx, description.getValue()));
llvm::MDNode *domain = llvm::MDNode::get(ctx, operands);
domain->replaceOperandWith(0, domain); // Self-reference for uniqueness
aliasScopeDomainMetadataMapping.insert({op, domain});
});
// Now create the scopes, referencing the domains created above.
metadatas.walk([&](LLVM::AliasScopeMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
assert(isa<LLVM::MetadataOp>(op->getParentOp()));
auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp());
Operation *domainOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr());
llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp);
assert(domain && "Scope's domain should already be valid");
llvm::SmallVector<llvm::Metadata *, 3> operands;
operands.push_back({}); // Placeholder for self-reference
operands.push_back(domain);
if (Optional<StringRef> description = op.getDescription())
operands.push_back(llvm::MDString::get(ctx, description.getValue()));
llvm::MDNode *scope = llvm::MDNode::get(ctx, operands);
scope->replaceOperandWith(0, scope); // Self-reference for uniqueness
aliasScopeMetadataMapping.insert({op, scope});
});
});
return success();
}
llvm::MDNode *
ModuleTranslation::getAliasScope(Operation &opInst,
SymbolRefAttr aliasScopeRef) const {
StringAttr metadataName = aliasScopeRef.getRootReference();
StringAttr scopeName = aliasScopeRef.getLeafReference();
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
opInst.getParentOp(), metadataName);
Operation *aliasScopeOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName);
return aliasScopeMetadataMapping.lookup(aliasScopeOp);
}
void ModuleTranslation::setAliasScopeMetadata(Operation *op,
llvm::Instruction *inst) {
auto populateScopeMetadata = [this, op, inst](StringRef attrName,
StringRef llvmMetadataName) {
auto scopes = op->getAttrOfType<ArrayAttr>(attrName);
if (!scopes || scopes.empty())
return;
llvm::Module *module = inst->getModule();
SmallVector<llvm::Metadata *> scopeMDs;
for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>())
scopeMDs.push_back(getAliasScope(*op, scopeRef));
llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs);
inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD);
};
populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope");
populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias");
}
llvm::Type *ModuleTranslation::convertType(Type type) {
return typeTranslator.translateType(type);
}
/// A helper to look up remapped operands in the value remapping table.
SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
SmallVector<llvm::Value *> remapped;
remapped.reserve(values.size());
for (Value v : values)
remapped.push_back(lookupValue(v));
return remapped;
}
const llvm::DILocation *
ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
return debugTranslation->translateLoc(loc, scope);
}
llvm::NamedMDNode *
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
return llvmModule->getOrInsertNamedMetadata(name);
}
void ModuleTranslation::StackFrame::anchor() {}
static std::unique_ptr<llvm::Module>
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
StringRef name) {
m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
if (auto dataLayoutAttr =
m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
if (auto targetTripleAttr =
m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
// Inject declarations for `malloc` and `free` functions that can be used in
// memref allocation/deallocation coming from standard ops lowering.
llvm::IRBuilder<> builder(llvmContext);
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
builder.getInt64Ty());
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
builder.getInt8PtrTy());
return llvmModule;
}
std::unique_ptr<llvm::Module>
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
StringRef name) {
if (!satisfiesLLVMModule(module))
return nullptr;
std::unique_ptr<llvm::Module> llvmModule =
prepareLLVMModule(module, llvmContext, name);
LLVM::ensureDistinctSuccessors(module);
ModuleTranslation translator(module, std::move(llvmModule));
if (failed(translator.convertFunctionSignatures()))
return nullptr;
if (failed(translator.convertGlobals()))
return nullptr;
if (failed(translator.createAccessGroupMetadata()))
return nullptr;
if (failed(translator.createAliasScopeMetadata()))
return nullptr;
if (failed(translator.convertFunctions()))
return nullptr;
// Convert other top-level operations if possible.
llvm::IRBuilder<> llvmBuilder(llvmContext);
for (Operation &o : getModuleBody(module).getOperations()) {
if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) &&
!o.hasTrait<OpTrait::IsTerminator>() &&
failed(translator.convertOperation(o, llvmBuilder))) {
return nullptr;
}
}
if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
return nullptr;
return std::move(translator.llvmModule);
}