blob: 80cf470f1d32d3bcccf7ee02033b82daafc65974 [file] [log] [blame]
//===- AffineParser.cpp - MLIR Affine Parser ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a parser for Affine structures.
//
//===----------------------------------------------------------------------===//
#include "Parser.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IntegerSet.h"
#include "llvm/Support/SourceMgr.h"
using namespace mlir;
using namespace mlir::detail;
using llvm::MemoryBuffer;
using llvm::SMLoc;
using llvm::SourceMgr;
namespace {
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
/// Null value.
LNoOp,
Add,
Sub
};
/// Higher precedence ops - all at the same precedence level. HNoOp is false
/// in the boolean sense.
enum AffineHighPrecOp {
/// Null value.
HNoOp,
Mul,
FloorDiv,
CeilDiv,
Mod
};
/// This is a specialized parser for affine structures (affine maps, affine
/// expressions, and integer sets), maintaining the state transient to their
/// bodies.
class AffineParser : public Parser {
public:
AffineParser(ParserState &state, bool allowParsingSSAIds = false,
function_ref<ParseResult(bool)> parseElement = nullptr)
: Parser(state), allowParsingSSAIds(allowParsingSSAIds),
parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {}
AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
ParseResult parseAffineMapOfSSAIds(AffineMap &map,
OpAsmParser::Delimiter delimiter);
ParseResult parseAffineExprOfSSAIds(AffineExpr &expr);
void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
unsigned &numDims);
private:
// Binary affine op parsing.
AffineLowPrecOp consumeIfLowPrecOp();
AffineHighPrecOp consumeIfHighPrecOp();
// Identifier lists for polyhedral structures.
ParseResult parseDimIdList(unsigned &numDims);
ParseResult parseSymbolIdList(unsigned &numSymbols);
ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
unsigned &numSymbols);
ParseResult parseIdentifierDefinition(AffineExpr idExpr);
AffineExpr parseAffineExpr();
AffineExpr parseParentheticalExpr();
AffineExpr parseNegateExpression(AffineExpr lhs);
AffineExpr parseIntegerExpr();
AffineExpr parseBareIdExpr();
AffineExpr parseSSAIdExpr(bool isSymbol);
AffineExpr parseSymbolSSAIdExpr();
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
AffineExpr rhs, llvm::SMLoc opLoc);
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
AffineExpr rhs);
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
llvm::SMLoc llhsOpLoc);
AffineExpr parseAffineConstraint(bool *isEq);
private:
bool allowParsingSSAIds;
function_ref<ParseResult(bool)> parseElement;
unsigned numDimOperands;
unsigned numSymbolOperands;
SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
};
} // end anonymous namespace
/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
AffineExpr lhs, AffineExpr rhs,
SMLoc opLoc) {
// TODO: make the error location info accurate.
switch (op) {
case Mul:
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: at least one of the multiply "
"operands has to be either a constant or symbolic");
return nullptr;
}
return lhs * rhs;
case FloorDiv:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of floordiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.floorDiv(rhs);
case CeilDiv:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of ceildiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.ceilDiv(rhs);
case Mod:
if (!rhs.isSymbolicOrConstant()) {
emitError(opLoc, "non-affine expression: right operand of mod "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs % rhs;
case HNoOp:
llvm_unreachable("can't create affine expression for null high prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineHighPrecOp");
}
/// Create an affine binary low precedence op expression (add, sub).
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
AffineExpr lhs, AffineExpr rhs) {
switch (op) {
case AffineLowPrecOp::Add:
return lhs + rhs;
case AffineLowPrecOp::Sub:
return lhs - rhs;
case AffineLowPrecOp::LNoOp:
llvm_unreachable("can't create affine expression for null low prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineLowPrecOp");
}
/// Consume this token if it is a lower precedence affine op (there are only
/// two precedence levels).
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
switch (getToken().getKind()) {
case Token::plus:
consumeToken(Token::plus);
return AffineLowPrecOp::Add;
case Token::minus:
consumeToken(Token::minus);
return AffineLowPrecOp::Sub;
default:
return AffineLowPrecOp::LNoOp;
}
}
/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
switch (getToken().getKind()) {
case Token::star:
consumeToken(Token::star);
return Mul;
case Token::kw_floordiv:
consumeToken(Token::kw_floordiv);
return FloorDiv;
case Token::kw_ceildiv:
consumeToken(Token::kw_ceildiv);
return CeilDiv;
case Token::kw_mod:
consumeToken(Token::kw_mod);
return Mod;
default:
return HNoOp;
}
}
/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
/// expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc) {
AffineExpr lhs = parseAffineOperandExpr(llhs);
if (!lhs)
return nullptr;
// Found an LHS. Parse the remaining expression.
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
if (llhs) {
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
if (!expr)
return nullptr;
return parseAffineHighPrecOpExpr(expr, op, opLoc);
}
// No LLHS, get RHS
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
}
// This is the last operand in this expression.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression inside parentheses.
///
/// affine-expr ::= `(` affine-expr `)`
AffineExpr AffineParser::parseParentheticalExpr() {
if (parseToken(Token::l_paren, "expected '('"))
return nullptr;
if (getToken().is(Token::r_paren))
return (emitError("no expression inside parentheses"), nullptr);
auto expr = parseAffineExpr();
if (!expr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')'"))
return nullptr;
return expr;
}
/// Parse the negation expression.
///
/// affine-expr ::= `-` affine-expr
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
if (parseToken(Token::minus, "expected '-'"))
return nullptr;
AffineExpr operand = parseAffineOperandExpr(lhs);
// Since negation has the highest precedence of all ops (including high
// precedence ops) but lower than parentheses, we are only going to use
// parseAffineOperandExpr instead of parseAffineExpr here.
if (!operand)
// Extra error message although parseAffineOperandExpr would have
// complained. Leads to a better diagnostic.
return (emitError("missing operand of negation"), nullptr);
return (-1) * operand;
}
/// Parse a bare id that may appear in an affine expression.
///
/// affine-expr ::= bare-id
AffineExpr AffineParser::parseBareIdExpr() {
if (getToken().isNot(Token::bare_identifier))
return (emitError("expected bare identifier"), nullptr);
StringRef sRef = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == sRef) {
consumeToken(Token::bare_identifier);
return entry.second;
}
}
return (emitError("use of undeclared identifier"), nullptr);
}
/// Parse an SSA id which may appear in an affine expression.
AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
if (!allowParsingSSAIds)
return (emitError("unexpected ssa identifier"), nullptr);
if (getToken().isNot(Token::percent_identifier))
return (emitError("expected ssa identifier"), nullptr);
auto name = getTokenSpelling();
// Check if we already parsed this SSA id.
for (auto entry : dimsAndSymbols) {
if (entry.first == name) {
consumeToken(Token::percent_identifier);
return entry.second;
}
}
// Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
if (parseElement(isSymbol))
return (emitError("failed to parse ssa identifier"), nullptr);
auto idExpr = isSymbol
? getAffineSymbolExpr(numSymbolOperands++, getContext())
: getAffineDimExpr(numDimOperands++, getContext());
dimsAndSymbols.push_back({name, idExpr});
return idExpr;
}
AffineExpr AffineParser::parseSymbolSSAIdExpr() {
if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
return nullptr;
AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
if (!symbolExpr)
return nullptr;
if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
return nullptr;
return symbolExpr;
}
/// Parse a positive integral constant appearing in an affine expression.
///
/// affine-expr ::= integer-literal
AffineExpr AffineParser::parseIntegerExpr() {
auto val = getToken().getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return (emitError("constant too large for index"), nullptr);
consumeToken(Token::integer);
return builder.getAffineConstantExpr((int64_t)val.getValue());
}
/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
// Eg: for an expression without parentheses (like i + j + k + l), each
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
// operand expression, it's an op expression and will be parsed via
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
// -l are valid operands that will be parsed by this function.
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
switch (getToken().getKind()) {
case Token::bare_identifier:
return parseBareIdExpr();
case Token::kw_symbol:
return parseSymbolSSAIdExpr();
case Token::percent_identifier:
return parseSSAIdExpr(/*isSymbol=*/false);
case Token::integer:
return parseIntegerExpr();
case Token::l_paren:
return parseParentheticalExpr();
case Token::minus:
return parseNegateExpression(lhs);
case Token::kw_ceildiv:
case Token::kw_floordiv:
case Token::kw_mod:
case Token::plus:
case Token::star:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("missing left operand of binary operator");
return nullptr;
default:
if (lhs)
emitError("missing right operand of binary operator");
else
emitError("expected affine expression");
return nullptr;
}
}
/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
AffineLowPrecOp llhsOp) {
AffineExpr lhs;
if (!(lhs = parseAffineOperandExpr(llhs)))
return nullptr;
// Found an LHS. Deal with the ops.
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
if (llhs) {
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
return parseAffineLowPrecOpExpr(sum, lOp);
}
// No LLHS, get RHS and form the expression.
return parseAffineLowPrecOpExpr(lhs, lOp);
}
auto opLoc = getToken().getLoc();
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
// We have a higher precedence op here. Get the rhs operand for the llhs
// through parseAffineHighPrecOpExpr.
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
if (!highRes)
return nullptr;
// If llhs is null, the product forms the first operand of the yet to be
// found expression. If non-null, the op to associate with llhs is llhsOp.
AffineExpr expr =
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
// Recurse for subsequent low prec op's after the affine high prec op
// expression.
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
return parseAffineLowPrecOpExpr(expr, nextOp);
return expr;
}
// Last operand in the expression list.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression.
/// affine-expr ::= `(` affine-expr `)`
/// | `-` affine-expr
/// | affine-expr `+` affine-expr
/// | affine-expr `-` affine-expr
/// | affine-expr `*` affine-expr
/// | affine-expr `floordiv` affine-expr
/// | affine-expr `ceildiv` affine-expr
/// | affine-expr `mod` affine-expr
/// | bare-id
/// | integer-literal
///
/// Additional conditions are checked depending on the production. For eg.,
/// one of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr AffineParser::parseAffineExpr() {
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}
/// Parse a dim or symbol from the lists appearing before the actual
/// expressions of the affine map. Update our state to store the
/// dimensional/symbolic identifier.
ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
if (getToken().isNot(Token::bare_identifier))
return emitError("expected bare identifier");
auto name = getTokenSpelling();
for (auto entry : dimsAndSymbols) {
if (entry.first == name)
return emitError("redefinition of identifier '" + name + "'");
}
consumeToken(Token::bare_identifier);
dimsAndSymbols.push_back({name, idExpr});
return success();
}
/// Parse the list of dimensional identifiers to an affine map.
ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
auto parseElt = [&]() -> ParseResult {
auto dimension = getAffineDimExpr(numDims++, getContext());
return parseIdentifierDefinition(dimension);
};
return parseCommaSeparatedList(Delimiter::Paren, parseElt,
" in dimensional identifier list");
}
/// Parse the list of symbolic identifiers to an affine map.
ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
auto parseElt = [&]() -> ParseResult {
auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
return parseIdentifierDefinition(symbol);
};
return parseCommaSeparatedList(Delimiter::Square, parseElt,
" in symbol list");
}
/// Parse the list of symbolic identifiers to an affine map.
ParseResult
AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
unsigned &numSymbols) {
if (parseDimIdList(numDims)) {
return failure();
}
if (!getToken().is(Token::l_square)) {
numSymbols = 0;
return success();
}
return parseSymbolIdList(numSymbols);
}
/// Parses an ambiguous affine map or integer set definition inline.
ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
IntegerSet &set) {
unsigned numDims = 0, numSymbols = 0;
// List of dimensional and optional symbol identifiers.
if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) {
return failure();
}
// This is needed for parsing attributes as we wouldn't know whether we would
// be parsing an integer set attribute or an affine map attribute.
bool isArrow = getToken().is(Token::arrow);
bool isColon = getToken().is(Token::colon);
if (!isArrow && !isColon) {
return emitError("expected '->' or ':'");
} else if (isArrow) {
parseToken(Token::arrow, "expected '->' or '['");
map = parseAffineMapRange(numDims, numSymbols);
return map ? success() : failure();
} else if (parseToken(Token::colon, "expected ':' or '['")) {
return failure();
}
if ((set = parseIntegerSetConstraints(numDims, numSymbols)))
return success();
return failure();
}
/// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
ParseResult
AffineParser::parseAffineMapOfSSAIds(AffineMap &map,
OpAsmParser::Delimiter delimiter) {
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto elt = parseAffineExpr();
exprs.push_back(elt);
return elt ? success() : failure();
};
// Parse a multi-dimensional affine expression (a comma-separated list of
// 1-d affine expressions); the list can be empty. Grammar:
// multi-dim-affine-expr ::= `(` `)`
// | `(` affine-expr (`,` affine-expr)* `)`
if (parseCommaSeparatedList(delimiter, parseElt, " in affine map"))
return failure();
// Parsed a valid affine map.
map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
exprs, getContext());
return success();
}
/// Parse an AffineExpr where the dim and symbol identifiers are SSA ids.
ParseResult AffineParser::parseAffineExprOfSSAIds(AffineExpr &expr) {
expr = parseAffineExpr();
return success(expr != nullptr);
}
/// Parse the range and sizes affine map definition inline.
///
/// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
///
/// multi-dim-affine-expr ::= `(` `)`
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
unsigned numSymbols) {
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto elt = parseAffineExpr();
ParseResult res = elt ? success() : failure();
exprs.push_back(elt);
return res;
};
// Parse a multi-dimensional affine expression (a comma-separated list of
// 1-d affine expressions). Grammar:
// multi-dim-affine-expr ::= `(` `)`
// | `(` affine-expr (`,` affine-expr)* `)`
if (parseCommaSeparatedList(Delimiter::Paren, parseElt,
" in affine map range"))
return AffineMap();
// Parsed a valid affine map.
return AffineMap::get(numDims, numSymbols, exprs, getContext());
}
/// Parse an affine constraint.
/// affine-constraint ::= affine-expr `>=` `0`
/// | affine-expr `==` `0`
///
/// isEq is set to true if the parsed constraint is an equality, false if it
/// is an inequality (greater than or equal).
///
AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
AffineExpr expr = parseAffineExpr();
if (!expr)
return nullptr;
if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
getToken().is(Token::integer)) {
auto dim = getToken().getUnsignedIntegerValue();
if (dim.hasValue() && dim.getValue() == 0) {
consumeToken(Token::integer);
*isEq = false;
return expr;
}
return (emitError("expected '0' after '>='"), nullptr);
}
if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
getToken().is(Token::integer)) {
auto dim = getToken().getUnsignedIntegerValue();
if (dim.hasValue() && dim.getValue() == 0) {
consumeToken(Token::integer);
*isEq = true;
return expr;
}
return (emitError("expected '0' after '=='"), nullptr);
}
return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
nullptr);
}
/// Parse the constraints that are part of an integer set definition.
/// integer-set-inline
/// ::= dim-and-symbol-id-lists `:`
/// '(' affine-constraint-conjunction? ')'
/// affine-constraint-conjunction ::= affine-constraint (`,`
/// affine-constraint)*
///
IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
unsigned numSymbols) {
SmallVector<AffineExpr, 4> constraints;
SmallVector<bool, 4> isEqs;
auto parseElt = [&]() -> ParseResult {
bool isEq;
auto elt = parseAffineConstraint(&isEq);
ParseResult res = elt ? success() : failure();
if (elt) {
constraints.push_back(elt);
isEqs.push_back(isEq);
}
return res;
};
// Parse a list of affine constraints (comma-separated).
if (parseCommaSeparatedList(Delimiter::Paren, parseElt,
" in integer set constraint list"))
return IntegerSet();
// If no constraints were parsed, then treat this as a degenerate 'true' case.
if (constraints.empty()) {
/* 0 == 0 */
auto zero = getAffineConstantExpr(0, getContext());
return IntegerSet::get(numDims, numSymbols, zero, true);
}
// Parsed a valid integer set.
return IntegerSet::get(numDims, numSymbols, constraints, isEqs);
}
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// Parse an ambiguous reference to either and affine map or an integer set.
ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
IntegerSet &set) {
return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
}
ParseResult Parser::parseAffineMapReference(AffineMap &map) {
llvm::SMLoc curLoc = getToken().getLoc();
IntegerSet set;
if (parseAffineMapOrIntegerSetReference(map, set))
return failure();
if (set)
return emitError(curLoc, "expected AffineMap, but got IntegerSet");
return success();
}
ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
llvm::SMLoc curLoc = getToken().getLoc();
AffineMap map;
if (parseAffineMapOrIntegerSetReference(map, set))
return failure();
if (map)
return emitError(curLoc, "expected IntegerSet, but got AffineMap");
return success();
}
/// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
/// parse SSA value uses encountered while parsing affine expressions.
ParseResult
Parser::parseAffineMapOfSSAIds(AffineMap &map,
function_ref<ParseResult(bool)> parseElement,
OpAsmParser::Delimiter delimiter) {
return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
.parseAffineMapOfSSAIds(map, delimiter);
}
/// Parse an AffineExpr of SSA ids. The callback `parseElement` is used to parse
/// SSA value uses encountered while parsing.
ParseResult
Parser::parseAffineExprOfSSAIds(AffineExpr &expr,
function_ref<ParseResult(bool)> parseElement) {
return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
.parseAffineExprOfSSAIds(expr);
}
IntegerSet mlir::parseIntegerSet(StringRef inputStr, MLIRContext *context,
bool printDiagnosticInfo) {
llvm::SourceMgr sourceMgr;
auto memBuffer = llvm::MemoryBuffer::getMemBuffer(
inputStr, /*BufferName=*/"<mlir_parser_buffer>",
/*RequiresNullTerminator=*/false);
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
SymbolState symbolState;
ParserState state(sourceMgr, context, symbolState, /*asmState=*/nullptr);
Parser parser(state);
raw_ostream &os = printDiagnosticInfo ? llvm::errs() : llvm::nulls();
SourceMgrDiagnosticHandler handler(sourceMgr, context, os);
IntegerSet set;
if (parser.parseIntegerSetReference(set))
return IntegerSet();
Token endTok = parser.getToken();
if (endTok.isNot(Token::eof)) {
parser.emitError(endTok.getLoc(), "encountered unexpected token");
return IntegerSet();
}
return set;
}