blob: 27b570108011ed6147d7431d4fb33ffb60f54997 [file] [log] [blame]
//===- StructuredOpsUtils.cpp - Utilities used by structured ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
using namespace mlir;
bool mlir::isRowMajorMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = indexingMaps[0].cast<AffineMapAttr>().getValue();
auto map1 = indexingMaps[1].cast<AffineMapAttr>().getValue();
auto map2 = indexingMaps[2].cast<AffineMapAttr>().getValue();
if (map0.getNumResults() != 2 || map1.getNumResults() != 2 ||
map2.getNumResults() != 2 || map0.getNumInputs() != 3 ||
map1.getNumInputs() != 3 || map2.getNumInputs() != 3) {
return false;
}
// Extract dimensions for MxK * KxN -> MxN
AffineExpr m = map2.getResult(0);
AffineExpr n = map2.getResult(1);
AffineExpr k = map0.getResult(1);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {m, k}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {k, n}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {m, n}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}
bool mlir::isColumnMajorMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = indexingMaps[0].cast<AffineMapAttr>().getValue();
auto map1 = indexingMaps[1].cast<AffineMapAttr>().getValue();
auto map2 = indexingMaps[2].cast<AffineMapAttr>().getValue();
if (map0.getNumResults() != 2 || map1.getNumResults() != 2 ||
map2.getNumResults() != 2 || map0.getNumInputs() != 3 ||
map1.getNumInputs() != 3 || map2.getNumInputs() != 3) {
return false;
}
// Extract dimensions for KxM * NxK -> NxM
AffineExpr n = map2.getResult(0);
AffineExpr m = map2.getResult(1);
AffineExpr k = map0.getResult(0);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {k, m}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {n, k}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {n, m}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}
bool mlir::isRowMajorBatchMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = indexingMaps[0].cast<AffineMapAttr>().getValue();
auto map1 = indexingMaps[1].cast<AffineMapAttr>().getValue();
auto map2 = indexingMaps[2].cast<AffineMapAttr>().getValue();
if (map0.getNumResults() != 3 || map1.getNumResults() != 3 ||
map2.getNumResults() != 3 || map0.getNumInputs() != 4 ||
map1.getNumInputs() != 4 || map2.getNumInputs() != 4) {
return false;
}
// Extract dimensions for BxMxK * BxKxN -> BxMxN
AffineExpr b = map2.getResult(0);
AffineExpr m = map2.getResult(1);
AffineExpr n = map2.getResult(2);
AffineExpr k = map0.getResult(2);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, k}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(4, 0, {b, k, n}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, n}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}