blob: afa26650b4c440d05d9cc8337b56d7ba44c77683 [file] [log] [blame]
//===- SPIRVConversion.cpp - SPIR-V Conversion Utilities ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities used to lower to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include <functional>
#define DEBUG_TYPE "mlir-spirv-conversion"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
/// Checks that `candidates` extension requirements are possible to be satisfied
/// with the given `targetEnv`.
///
/// `candidates` is a vector of vector for extension requirements following
/// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D))
/// convention.
template <typename LabelT>
static LogicalResult checkExtensionRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::ExtensionArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
LLVM_DEBUG({
SmallVector<StringRef> extStrings;
for (spirv::Extension ext : ors)
extStrings.push_back(spirv::stringifyExtension(ext));
llvm::dbgs() << label << " illegal: requires at least one extension in ["
<< llvm::join(extStrings, ", ")
<< "] but none allowed in target environment\n";
});
return failure();
}
return success();
}
/// Checks that `candidates`capability requirements are possible to be satisfied
/// with the given `isAllowedFn`.
///
/// `candidates` is a vector of vector for capability requirements following
/// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D))
/// convention.
template <typename LabelT>
static LogicalResult checkCapabilityRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::CapabilityArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
LLVM_DEBUG({
SmallVector<StringRef> capStrings;
for (spirv::Capability cap : ors)
capStrings.push_back(spirv::stringifyCapability(cap));
llvm::dbgs() << label << " illegal: requires at least one capability in ["
<< llvm::join(capStrings, ", ")
<< "] but none allowed in target environment\n";
});
return failure();
}
return success();
}
/// Returns true if the given `storageClass` needs explicit layout when used in
/// Shader environments.
static bool needsExplicitLayout(spirv::StorageClass storageClass) {
switch (storageClass) {
case spirv::StorageClass::PhysicalStorageBuffer:
case spirv::StorageClass::PushConstant:
case spirv::StorageClass::StorageBuffer:
case spirv::StorageClass::Uniform:
return true;
default:
return false;
}
}
/// Wraps the given `elementType` in a struct and gets the pointer to the
/// struct. This is used to satisfy Vulkan interface requirements.
static spirv::PointerType
wrapInStructAndGetPointer(Type elementType, spirv::StorageClass storageClass) {
auto structType = needsExplicitLayout(storageClass)
? spirv::StructType::get(elementType, /*offsetInfo=*/0)
: spirv::StructType::get(elementType);
return spirv::PointerType::get(structType, storageClass);
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
Type SPIRVTypeConverter::getIndexType() const {
return IntegerType::get(getContext(), options.use64bitIndex ? 64 : 32);
}
/// Mapping between SPIR-V storage classes to memref memory spaces.
///
/// Note: memref does not have a defined semantics for each memory space; it
/// depends on the context where it is used. There are no particular reasons
/// behind the number assignments; we try to follow NVVM conventions and largely
/// give common storage classes a smaller number. The hope is use symbolic
/// memory space representation eventually after memref supports it.
// TODO: swap Generic and StorageBuffer assignment to be more akin
// to NVVM.
#define STORAGE_SPACE_MAP_LIST(MAP_FN) \
MAP_FN(spirv::StorageClass::Generic, 1) \
MAP_FN(spirv::StorageClass::StorageBuffer, 0) \
MAP_FN(spirv::StorageClass::Workgroup, 3) \
MAP_FN(spirv::StorageClass::Uniform, 4) \
MAP_FN(spirv::StorageClass::Private, 5) \
MAP_FN(spirv::StorageClass::Function, 6) \
MAP_FN(spirv::StorageClass::PushConstant, 7) \
MAP_FN(spirv::StorageClass::UniformConstant, 8) \
MAP_FN(spirv::StorageClass::Input, 9) \
MAP_FN(spirv::StorageClass::Output, 10) \
MAP_FN(spirv::StorageClass::CrossWorkgroup, 11) \
MAP_FN(spirv::StorageClass::AtomicCounter, 12) \
MAP_FN(spirv::StorageClass::Image, 13) \
MAP_FN(spirv::StorageClass::CallableDataKHR, 14) \
MAP_FN(spirv::StorageClass::IncomingCallableDataKHR, 15) \
MAP_FN(spirv::StorageClass::RayPayloadKHR, 16) \
MAP_FN(spirv::StorageClass::HitAttributeKHR, 17) \
MAP_FN(spirv::StorageClass::IncomingRayPayloadKHR, 18) \
MAP_FN(spirv::StorageClass::ShaderRecordBufferKHR, 19) \
MAP_FN(spirv::StorageClass::PhysicalStorageBuffer, 20) \
MAP_FN(spirv::StorageClass::CodeSectionINTEL, 21) \
MAP_FN(spirv::StorageClass::DeviceOnlyINTEL, 22) \
MAP_FN(spirv::StorageClass::HostOnlyINTEL, 23)
unsigned
SPIRVTypeConverter::getMemorySpaceForStorageClass(spirv::StorageClass storage) {
#define STORAGE_SPACE_MAP_FN(storage, space) \
case storage: \
return space;
switch (storage) { STORAGE_SPACE_MAP_LIST(STORAGE_SPACE_MAP_FN) }
#undef STORAGE_SPACE_MAP_FN
llvm_unreachable("unhandled storage class!");
}
Optional<spirv::StorageClass>
SPIRVTypeConverter::getStorageClassForMemorySpace(unsigned space) {
#define STORAGE_SPACE_MAP_FN(storage, space) \
case space: \
return storage;
switch (space) {
STORAGE_SPACE_MAP_LIST(STORAGE_SPACE_MAP_FN)
default:
return llvm::None;
}
#undef STORAGE_SPACE_MAP_FN
}
const SPIRVTypeConverter::Options &SPIRVTypeConverter::getOptions() const {
return options;
}
MLIRContext *SPIRVTypeConverter::getContext() const {
return targetEnv.getAttr().getContext();
}
#undef STORAGE_SPACE_MAP_LIST
// TODO: This is a utility function that should probably be exposed by the
// SPIR-V dialect. Keeping it local till the use case arises.
static Optional<int64_t>
getTypeNumBytes(const SPIRVTypeConverter::Options &options, Type type) {
if (type.isa<spirv::ScalarType>()) {
auto bitWidth = type.getIntOrFloatBitWidth();
// According to the SPIR-V spec:
// "There is no physical size or bit pattern defined for values with boolean
// type. If they are stored (in conjunction with OpVariable), they can only
// be used with logical addressing operations, not physical, and only with
// non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup,
// Private, Function, Input, and Output."
if (bitWidth == 1)
return llvm::None;
return bitWidth / 8;
}
if (auto vecType = type.dyn_cast<VectorType>()) {
auto elementSize = getTypeNumBytes(options, vecType.getElementType());
if (!elementSize)
return llvm::None;
return vecType.getNumElements() * elementSize.getValue();
}
if (auto memRefType = type.dyn_cast<MemRefType>()) {
// TODO: Layout should also be controlled by the ABI attributes. For now
// using the layout from MemRef.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (!memRefType.hasStaticShape() ||
failed(getStridesAndOffset(memRefType, strides, offset)))
return llvm::None;
// To get the size of the memref object in memory, the total size is the
// max(stride * dimension-size) computed for all dimensions times the size
// of the element.
auto elementSize = getTypeNumBytes(options, memRefType.getElementType());
if (!elementSize)
return llvm::None;
if (memRefType.getRank() == 0)
return elementSize;
auto dims = memRefType.getShape();
if (llvm::is_contained(dims, ShapedType::kDynamicSize) ||
offset == MemRefType::getDynamicStrideOrOffset() ||
llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()))
return llvm::None;
int64_t memrefSize = -1;
for (auto shape : enumerate(dims))
memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]);
return (offset + memrefSize) * elementSize.getValue();
}
if (auto tensorType = type.dyn_cast<TensorType>()) {
if (!tensorType.hasStaticShape())
return llvm::None;
auto elementSize = getTypeNumBytes(options, tensorType.getElementType());
if (!elementSize)
return llvm::None;
int64_t size = elementSize.getValue();
for (auto shape : tensorType.getShape())
size *= shape;
return size;
}
// TODO: Add size computation for other types.
return llvm::None;
}
/// Converts a scalar `type` to a suitable type under the given `targetEnv`.
static Type convertScalarType(const spirv::TargetEnv &targetEnv,
const SPIRVTypeConverter::Options &options,
spirv::ScalarType type,
Optional<spirv::StorageClass> storageClass = {}) {
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
type.getExtensions(extensions, storageClass);
type.getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
// Otherwise we need to adjust the type, which really means adjusting the
// bitwidth given this is a scalar type.
if (!options.emulateNon32BitScalarTypes)
return nullptr;
if (auto floatType = type.dyn_cast<FloatType>()) {
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return Builder(targetEnv.getContext()).getF32Type();
}
auto intType = type.cast<IntegerType>();
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return IntegerType::get(targetEnv.getContext(), /*width=*/32,
intType.getSignedness());
}
/// Converts a vector `type` to a suitable type under the given `targetEnv`.
static Type convertVectorType(const spirv::TargetEnv &targetEnv,
const SPIRVTypeConverter::Options &options,
VectorType type,
Optional<spirv::StorageClass> storageClass = {}) {
if (type.getRank() == 1 && type.getNumElements() == 1)
return type.getElementType();
if (!spirv::CompositeType::isValid(type)) {
// TODO: Vector types with more than four elements can be translated into
// array types.
LLVM_DEBUG(llvm::dbgs() << type << " illegal: > 4-element unimplemented\n");
return nullptr;
}
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
type.cast<spirv::CompositeType>().getExtensions(extensions, storageClass);
type.cast<spirv::CompositeType>().getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
auto elementType = convertScalarType(
targetEnv, options, type.getElementType().cast<spirv::ScalarType>(),
storageClass);
if (elementType)
return VectorType::get(type.getShape(), elementType);
return nullptr;
}
/// Converts a tensor `type` to a suitable type under the given `targetEnv`.
///
/// Note that this is mainly for lowering constant tensors. In SPIR-V one can
/// create composite constants with OpConstantComposite to embed relative large
/// constant values and use OpCompositeExtract and OpCompositeInsert to
/// manipulate, like what we do for vectors.
static Type convertTensorType(const spirv::TargetEnv &targetEnv,
const SPIRVTypeConverter::Options &options,
TensorType type) {
// TODO: Handle dynamic shapes.
if (!type.hasStaticShape()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: dynamic shape unimplemented\n");
return nullptr;
}
auto scalarType = type.getElementType().dyn_cast<spirv::ScalarType>();
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return nullptr;
}
Optional<int64_t> scalarSize = getTypeNumBytes(options, scalarType);
Optional<int64_t> tensorSize = getTypeNumBytes(options, type);
if (!scalarSize || !tensorSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return nullptr;
}
auto arrayElemCount = *tensorSize / *scalarSize;
auto arrayElemType = convertScalarType(targetEnv, options, scalarType);
if (!arrayElemType)
return nullptr;
Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
return spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
}
static Type convertBoolMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVTypeConverter::Options &options,
MemRefType type) {
Optional<spirv::StorageClass> storageClass =
SPIRVTypeConverter::getStorageClassForMemorySpace(
type.getMemorySpaceAsInt());
if (!storageClass) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert memory space\n");
return nullptr;
}
unsigned numBoolBits = options.boolNumBits;
if (numBoolBits != 8) {
LLVM_DEBUG(llvm::dbgs()
<< "using non-8-bit storage for bool types unimplemented");
return nullptr;
}
auto elementType = IntegerType::get(type.getContext(), numBoolBits)
.dyn_cast<spirv::ScalarType>();
if (!elementType)
return nullptr;
Type arrayElemType =
convertScalarType(targetEnv, options, elementType, storageClass);
if (!arrayElemType)
return nullptr;
Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
auto arrayType =
spirv::RuntimeArrayType::get(arrayElemType, *arrayElemSize);
return wrapInStructAndGetPointer(arrayType, *storageClass);
}
int64_t memrefSize = (type.getNumElements() * numBoolBits + 7) / 8;
auto arrayElemCount = (memrefSize + *arrayElemSize - 1) / *arrayElemSize;
auto arrayType =
spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
return wrapInStructAndGetPointer(arrayType, *storageClass);
}
static Type convertMemrefType(const spirv::TargetEnv &targetEnv,
const SPIRVTypeConverter::Options &options,
MemRefType type) {
if (type.getElementType().isa<IntegerType>() &&
type.getElementTypeBitWidth() == 1) {
return convertBoolMemrefType(targetEnv, options, type);
}
Optional<spirv::StorageClass> storageClass =
SPIRVTypeConverter::getStorageClassForMemorySpace(
type.getMemorySpaceAsInt());
if (!storageClass) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert memory space\n");
return nullptr;
}
Type arrayElemType;
Type elementType = type.getElementType();
if (auto vecType = elementType.dyn_cast<VectorType>()) {
arrayElemType =
convertVectorType(targetEnv, options, vecType, storageClass);
} else if (auto scalarType = elementType.dyn_cast<spirv::ScalarType>()) {
arrayElemType =
convertScalarType(targetEnv, options, scalarType, storageClass);
} else {
LLVM_DEBUG(
llvm::dbgs()
<< type
<< " unhandled: can only convert scalar or vector element type\n");
return nullptr;
}
if (!arrayElemType)
return nullptr;
Optional<int64_t> elementSize = getTypeNumBytes(options, elementType);
if (!elementSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element size\n");
return nullptr;
}
Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
auto arrayType =
spirv::RuntimeArrayType::get(arrayElemType, *arrayElemSize);
return wrapInStructAndGetPointer(arrayType, *storageClass);
}
Optional<int64_t> memrefSize = getTypeNumBytes(options, type);
if (!memrefSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return nullptr;
}
auto arrayElemCount = *memrefSize / *elementSize;
auto arrayType =
spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
return wrapInStructAndGetPointer(arrayType, *storageClass);
}
SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr,
Options options)
: targetEnv(targetAttr), options(options) {
// Add conversions. The order matters here: later ones will be tried earlier.
// Allow all SPIR-V dialect specific types. This assumes all builtin types
// adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType)
// were tried before.
//
// TODO: this assumes that the SPIR-V types are valid to use in
// the given target environment, which should be the case if the whole
// pipeline is driven by the same target environment. Still, we probably still
// want to validate and convert to be safe.
addConversion([](spirv::SPIRVType type) { return type; });
addConversion([this](IndexType /*indexType*/) { return getIndexType(); });
addConversion([this](IntegerType intType) -> Optional<Type> {
if (auto scalarType = intType.dyn_cast<spirv::ScalarType>())
return convertScalarType(this->targetEnv, this->options, scalarType);
return Type();
});
addConversion([this](FloatType floatType) -> Optional<Type> {
if (auto scalarType = floatType.dyn_cast<spirv::ScalarType>())
return convertScalarType(this->targetEnv, this->options, scalarType);
return Type();
});
addConversion([this](VectorType vectorType) {
return convertVectorType(this->targetEnv, this->options, vectorType);
});
addConversion([this](TensorType tensorType) {
return convertTensorType(this->targetEnv, this->options, tensorType);
});
addConversion([this](MemRefType memRefType) {
return convertMemrefType(this->targetEnv, this->options, memRefType);
});
}
//===----------------------------------------------------------------------===//
// FuncOp Conversion Patterns
//===----------------------------------------------------------------------===//
namespace {
/// A pattern for rewriting function signature to convert arguments of functions
/// to be of valid SPIR-V types.
class FuncOpConversion final : public OpConversionPattern<FuncOp> {
public:
using OpConversionPattern<FuncOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
FuncOpConversion::matchAndRewrite(FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto fnType = funcOp.getType();
if (fnType.getNumResults() > 1)
return failure();
TypeConverter::SignatureConversion signatureConverter(fnType.getNumInputs());
for (auto argType : enumerate(fnType.getInputs())) {
auto convertedType = getTypeConverter()->convertType(argType.value());
if (!convertedType)
return failure();
signatureConverter.addInputs(argType.index(), convertedType);
}
Type resultType;
if (fnType.getNumResults() == 1) {
resultType = getTypeConverter()->convertType(fnType.getResult(0));
if (!resultType)
return failure();
}
// Create the converted spv.func op.
auto newFuncOp = rewriter.create<spirv::FuncOp>(
funcOp.getLoc(), funcOp.getName(),
rewriter.getFunctionType(signatureConverter.getConvertedTypes(),
resultType ? TypeRange(resultType)
: TypeRange()));
// Copy over all attributes other than the function name and type.
for (const auto &namedAttr : funcOp->getAttrs()) {
if (namedAttr.getName() != function_like_impl::getTypeAttrName() &&
namedAttr.getName() != SymbolTable::getSymbolAttrName())
newFuncOp->setAttr(namedAttr.getName(), namedAttr.getValue());
}
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(
&newFuncOp.getBody(), *getTypeConverter(), &signatureConverter)))
return failure();
rewriter.eraseOp(funcOp);
return success();
}
void mlir::populateBuiltinFuncToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<FuncOpConversion>(typeConverter, patterns.getContext());
}
//===----------------------------------------------------------------------===//
// Builtin Variables
//===----------------------------------------------------------------------===//
static spirv::GlobalVariableOp getBuiltinVariable(Block &body,
spirv::BuiltIn builtin) {
// Look through all global variables in the given `body` block and check if
// there is a spv.GlobalVariable that has the same `builtin` attribute.
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
if (auto builtinAttr = varOp->getAttrOfType<StringAttr>(
spirv::SPIRVDialect::getAttributeName(
spirv::Decoration::BuiltIn))) {
auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue());
if (varBuiltIn && varBuiltIn.getValue() == builtin) {
return varOp;
}
}
}
return nullptr;
}
/// Gets name of global variable for a builtin.
static std::string getBuiltinVarName(spirv::BuiltIn builtin) {
return std::string("__builtin_var_") + stringifyBuiltIn(builtin).str() + "__";
}
/// Gets or inserts a global variable for a builtin within `body` block.
static spirv::GlobalVariableOp
getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin,
Type integerType, OpBuilder &builder) {
if (auto varOp = getBuiltinVariable(body, builtin))
return varOp;
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&body);
spirv::GlobalVariableOp newVarOp;
switch (builtin) {
case spirv::BuiltIn::NumWorkgroups:
case spirv::BuiltIn::WorkgroupSize:
case spirv::BuiltIn::WorkgroupId:
case spirv::BuiltIn::LocalInvocationId:
case spirv::BuiltIn::GlobalInvocationId: {
auto ptrType = spirv::PointerType::get(VectorType::get({3}, integerType),
spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
case spirv::BuiltIn::SubgroupId:
case spirv::BuiltIn::NumSubgroups:
case spirv::BuiltIn::SubgroupSize: {
auto ptrType =
spirv::PointerType::get(integerType, spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
default:
emitError(loc, "unimplemented builtin variable generation for ")
<< stringifyBuiltIn(builtin);
}
return newVarOp;
}
Value mlir::spirv::getBuiltinVariableValue(Operation *op,
spirv::BuiltIn builtin,
Type integerType,
OpBuilder &builder) {
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp =
getOrInsertBuiltinVariable(*parent->getRegion(0).begin(), op->getLoc(),
builtin, integerType, builder);
Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp);
return builder.create<spirv::LoadOp>(op->getLoc(), ptr);
}
//===----------------------------------------------------------------------===//
// Push constant storage
//===----------------------------------------------------------------------===//
/// Returns the pointer type for the push constant storage containing
/// `elementCount` 32-bit integer values.
static spirv::PointerType getPushConstantStorageType(unsigned elementCount,
Builder &builder,
Type indexType) {
auto arrayType = spirv::ArrayType::get(indexType, elementCount,
/*stride=*/4);
auto structType = spirv::StructType::get({arrayType}, /*offsetInfo=*/0);
return spirv::PointerType::get(structType, spirv::StorageClass::PushConstant);
}
/// Returns the push constant varible containing `elementCount` 32-bit integer
/// values in `body`. Returns null op if such an op does not exit.
static spirv::GlobalVariableOp getPushConstantVariable(Block &body,
unsigned elementCount) {
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
auto ptrType = varOp.type().dyn_cast<spirv::PointerType>();
if (!ptrType)
continue;
// Note that Vulkan requires "There must be no more than one push constant
// block statically used per shader entry point." So we should always reuse
// the existing one.
if (ptrType.getStorageClass() == spirv::StorageClass::PushConstant) {
auto numElements = ptrType.getPointeeType()
.cast<spirv::StructType>()
.getElementType(0)
.cast<spirv::ArrayType>()
.getNumElements();
if (numElements == elementCount)
return varOp;
}
}
return nullptr;
}
/// Gets or inserts a global variable for push constant storage containing
/// `elementCount` 32-bit integer values in `block`.
static spirv::GlobalVariableOp
getOrInsertPushConstantVariable(Location loc, Block &block,
unsigned elementCount, OpBuilder &b,
Type indexType) {
if (auto varOp = getPushConstantVariable(block, elementCount))
return varOp;
auto builder = OpBuilder::atBlockBegin(&block, b.getListener());
auto type = getPushConstantStorageType(elementCount, builder, indexType);
const char *name = "__push_constant_var__";
return builder.create<spirv::GlobalVariableOp>(loc, type, name,
/*initializer=*/nullptr);
}
Value spirv::getPushConstantValue(Operation *op, unsigned elementCount,
unsigned offset, Type integerType,
OpBuilder &builder) {
Location loc = op->getLoc();
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp = getOrInsertPushConstantVariable(
loc, parent->getRegion(0).front(), elementCount, builder, integerType);
Value zeroOp = spirv::ConstantOp::getZero(integerType, loc, builder);
Value offsetOp = builder.create<spirv::ConstantOp>(
loc, integerType, builder.getI32IntegerAttr(offset));
auto addrOp = builder.create<spirv::AddressOfOp>(loc, varOp);
auto acOp = builder.create<spirv::AccessChainOp>(
loc, addrOp, llvm::makeArrayRef({zeroOp, offsetOp}));
return builder.create<spirv::LoadOp>(loc, acOp);
}
//===----------------------------------------------------------------------===//
// Index calculation
//===----------------------------------------------------------------------===//
Value mlir::spirv::linearizeIndex(ValueRange indices, ArrayRef<int64_t> strides,
int64_t offset, Type integerType,
Location loc, OpBuilder &builder) {
assert(indices.size() == strides.size() &&
"must provide indices for all dimensions");
// TODO: Consider moving to use affine.apply and patterns converting
// affine.apply to standard ops. This needs converting to SPIR-V passes to be
// broken down into progressive small steps so we can have intermediate steps
// using other dialects. At the moment SPIR-V is the final sink.
Value linearizedIndex = builder.create<spirv::ConstantOp>(
loc, integerType, IntegerAttr::get(integerType, offset));
for (auto index : llvm::enumerate(indices)) {
Value strideVal = builder.create<spirv::ConstantOp>(
loc, integerType,
IntegerAttr::get(integerType, strides[index.index()]));
Value update = builder.create<spirv::IMulOp>(loc, strideVal, index.value());
linearizedIndex =
builder.create<spirv::IAddOp>(loc, linearizedIndex, update);
}
return linearizedIndex;
}
spirv::AccessChainOp mlir::spirv::getElementPtr(
SPIRVTypeConverter &typeConverter, MemRefType baseType, Value basePtr,
ValueRange indices, Location loc, OpBuilder &builder) {
// Get base and offset of the MemRefType and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()) ||
offset == MemRefType::getDynamicStrideOrOffset()) {
return nullptr;
}
auto indexType = typeConverter.getIndexType();
SmallVector<Value, 2> linearizedIndices;
auto zero = spirv::ConstantOp::getZero(indexType, loc, builder);
// Add a '0' at the start to index into the struct.
linearizedIndices.push_back(zero);
if (baseType.getRank() == 0) {
linearizedIndices.push_back(zero);
} else {
linearizedIndices.push_back(
linearizeIndex(indices, strides, offset, indexType, loc, builder));
}
return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices);
}
//===----------------------------------------------------------------------===//
// SPIR-V ConversionTarget
//===----------------------------------------------------------------------===//
std::unique_ptr<SPIRVConversionTarget>
SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) {
std::unique_ptr<SPIRVConversionTarget> target(
// std::make_unique does not work here because the constructor is private.
new SPIRVConversionTarget(targetAttr));
SPIRVConversionTarget *targetPtr = target.get();
target->addDynamicallyLegalDialect<spirv::SPIRVDialect>(
// We need to capture the raw pointer here because it is stable:
// target will be destroyed once this function is returned.
[targetPtr](Operation *op) { return targetPtr->isLegalOp(op); });
return target;
}
SPIRVConversionTarget::SPIRVConversionTarget(spirv::TargetEnvAttr targetAttr)
: ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {}
bool SPIRVConversionTarget::isLegalOp(Operation *op) {
// Make sure this op is available at the given version. Ops not implementing
// QueryMinVersionInterface/QueryMaxVersionInterface are available to all
// SPIR-V versions.
if (auto minVersionIfx = dyn_cast<spirv::QueryMinVersionInterface>(op)) {
Optional<spirv::Version> minVersion = minVersionIfx.getMinVersion();
if (minVersion && *minVersion > this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring min version "
<< spirv::stringifyVersion(*minVersion) << "\n");
return false;
}
}
if (auto maxVersionIfx = dyn_cast<spirv::QueryMaxVersionInterface>(op)) {
Optional<spirv::Version> maxVersion = maxVersionIfx.getMaxVersion();
if (maxVersion && *maxVersion < this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring max version "
<< spirv::stringifyVersion(*maxVersion) << "\n");
return false;
}
}
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryExtensionInterface do not require extensions to be
// available.
if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op))
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
extensions.getExtensions())))
return false;
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryCapabilityInterface do not require capabilities to be
// available.
if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op))
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
capabilities.getCapabilities())))
return false;
SmallVector<Type, 4> valueTypes;
valueTypes.append(op->operand_type_begin(), op->operand_type_end());
valueTypes.append(op->result_type_begin(), op->result_type_end());
// Ensure that all types have been converted to SPIRV types.
if (llvm::any_of(valueTypes,
[](Type t) { return !t.isa<spirv::SPIRVType>(); }))
return false;
// Special treatment for global variables, whose type requirements are
// conveyed by type attributes.
if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op))
valueTypes.push_back(globalVar.type());
// Make sure the op's operands/results use types that are allowed by the
// target environment.
SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions;
SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities;
for (Type valueType : valueTypes) {
typeExtensions.clear();
valueType.cast<spirv::SPIRVType>().getExtensions(typeExtensions);
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
typeExtensions)))
return false;
typeCapabilities.clear();
valueType.cast<spirv::SPIRVType>().getCapabilities(typeCapabilities);
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
typeCapabilities)))
return false;
}
return true;
}