blob: 4b4217a946161765ebfc131a762c46ad5b4e41a6 [file] [log] [blame]
//===- AsyncRuntimeRefCounting.cpp - Async Runtime Ref Counting -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements automatic reference counting for Async runtime
// operations and types.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Analysis/Liveness.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/Async/Passes.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SmallSet.h"
using namespace mlir;
using namespace mlir::async;
#define DEBUG_TYPE "async-runtime-ref-counting"
//===----------------------------------------------------------------------===//
// Utility functions shared by reference counting passes.
//===----------------------------------------------------------------------===//
// Drop the reference count immediately if the value has no uses.
static LogicalResult dropRefIfNoUses(Value value, unsigned count = 1) {
if (!value.getUses().empty())
return failure();
OpBuilder b(value.getContext());
// Set insertion point after the operation producing a value, or at the
// beginning of the block if the value defined by the block argument.
if (Operation *op = value.getDefiningOp())
b.setInsertionPointAfter(op);
else
b.setInsertionPointToStart(value.getParentBlock());
b.create<RuntimeDropRefOp>(value.getLoc(), value, b.getI64IntegerAttr(1));
return success();
}
// Calls `addRefCounting` for every reference counted value defined by the
// operation `op` (block arguments and values defined in nested regions).
static LogicalResult walkReferenceCountedValues(
Operation *op, llvm::function_ref<LogicalResult(Value)> addRefCounting) {
// Check that we do not have high level async operations in the IR because
// otherwise reference counting will produce incorrect results after high
// level async operations will be lowered to `async.runtime`
WalkResult checkNoAsyncWalk = op->walk([&](Operation *op) -> WalkResult {
if (!isa<ExecuteOp, AwaitOp, AwaitAllOp, YieldOp>(op))
return WalkResult::advance();
return op->emitError()
<< "async operations must be lowered to async runtime operations";
});
if (checkNoAsyncWalk.wasInterrupted())
return failure();
// Add reference counting to block arguments.
WalkResult blockWalk = op->walk([&](Block *block) -> WalkResult {
for (BlockArgument arg : block->getArguments())
if (isRefCounted(arg.getType()))
if (failed(addRefCounting(arg)))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (blockWalk.wasInterrupted())
return failure();
// Add reference counting to operation results.
WalkResult opWalk = op->walk([&](Operation *op) -> WalkResult {
for (unsigned i = 0; i < op->getNumResults(); ++i)
if (isRefCounted(op->getResultTypes()[i]))
if (failed(addRefCounting(op->getResult(i))))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (opWalk.wasInterrupted())
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// Automatic reference counting based on the liveness analysis.
//===----------------------------------------------------------------------===//
namespace {
class AsyncRuntimeRefCountingPass
: public AsyncRuntimeRefCountingBase<AsyncRuntimeRefCountingPass> {
public:
AsyncRuntimeRefCountingPass() = default;
void runOnOperation() override;
private:
/// Adds an automatic reference counting to the `value`.
///
/// All values (token, group or value) are semantically created with a
/// reference count of +1 and it is the responsibility of the async value user
/// to place the `add_ref` and `drop_ref` operations to ensure that the value
/// is destroyed after the last use.
///
/// The function returns failure if it can't deduce the locations where
/// to place the reference counting operations.
///
/// Async values "semantically created" when:
/// 1. Operation returns async result (e.g. `async.runtime.create`)
/// 2. Async value passed in as a block argument (or function argument,
/// because function arguments are just entry block arguments)
///
/// Passing async value as a function argument (or block argument) does not
/// really mean that a new async value is created, it only means that the
/// caller of a function transfered ownership of `+1` reference to the callee.
/// It is convenient to think that from the callee perspective async value was
/// "created" with `+1` reference by the block argument.
///
/// Automatic reference counting algorithm outline:
///
/// #1 Insert `drop_ref` operations after last use of the `value`.
/// #2 Insert `add_ref` operations before functions calls with reference
/// counted `value` operand (newly created `+1` reference will be
/// transferred to the callee).
/// #3 Verify that divergent control flow does not lead to leaked reference
/// counted objects.
///
/// Async runtime reference counting optimization pass will optimize away
/// some of the redundant `add_ref` and `drop_ref` operations inserted by this
/// strategy (see `async-runtime-ref-counting-opt`).
LogicalResult addAutomaticRefCounting(Value value);
/// (#1) Adds the `drop_ref` operation after the last use of the `value`
/// relying on the liveness analysis.
///
/// If the `value` is in the block `liveIn` set and it is not in the block
/// `liveOut` set, it means that it "dies" in the block. We find the last
/// use of the value in such block and:
///
/// 1. If the last user is a `ReturnLike` operation we do nothing, because
/// it forwards the ownership to the caller.
/// 2. Otherwise we add a `drop_ref` operation immediately after the last
/// use.
LogicalResult addDropRefAfterLastUse(Value value);
/// (#2) Adds the `add_ref` operation before the function call taking `value`
/// operand to ensure that the value passed to the function entry block
/// has a `+1` reference count.
LogicalResult addAddRefBeforeFunctionCall(Value value);
/// (#3) Adds the `drop_ref` operation to account for successor blocks with
/// divergent `liveIn` property: `value` is not in the `liveIn` set of all
/// successor blocks.
///
/// Example:
///
/// ^entry:
/// %token = async.runtime.create : !async.token
/// cond_br %cond, ^bb1, ^bb2
/// ^bb1:
/// async.runtime.await %token
/// async.runtime.drop_ref %token
/// br ^bb2
/// ^bb2:
/// return
///
/// In this example ^bb2 does not have `value` in the `liveIn` set, so we have
/// to branch into a special "reference counting block" from the ^entry that
/// will have a `drop_ref` operation, and then branch into the ^bb2.
///
/// After transformation:
///
/// ^entry:
/// %token = async.runtime.create : !async.token
/// cond_br %cond, ^bb1, ^reference_counting
/// ^bb1:
/// async.runtime.await %token
/// async.runtime.drop_ref %token
/// br ^bb2
/// ^reference_counting:
/// async.runtime.drop_ref %token
/// br ^bb2
/// ^bb2:
/// return
///
/// An exception to this rule are blocks with `async.coro.suspend` terminator,
/// because in Async to LLVM lowering it is guaranteed that the control flow
/// will jump into the resume block, and then follow into the cleanup and
/// suspend blocks.
///
/// Example:
///
/// ^entry(%value: !async.value<f32>):
/// async.runtime.await_and_resume %value, %hdl : !async.value<f32>
/// async.coro.suspend %ret, ^suspend, ^resume, ^cleanup
/// ^resume:
/// %0 = async.runtime.load %value
/// br ^cleanup
/// ^cleanup:
/// ...
/// ^suspend:
/// ...
///
/// Although cleanup and suspend blocks do not have the `value` in the
/// `liveIn` set, it is guaranteed that execution will eventually continue in
/// the resume block (we never explicitly destroy coroutines).
LogicalResult addDropRefInDivergentLivenessSuccessor(Value value);
};
} // namespace
LogicalResult AsyncRuntimeRefCountingPass::addDropRefAfterLastUse(Value value) {
OpBuilder builder(value.getContext());
Location loc = value.getLoc();
// Use liveness analysis to find the placement of `drop_ref`operation.
auto &liveness = getAnalysis<Liveness>();
// We analyse only the blocks of the region that defines the `value`, and do
// not check nested blocks attached to operations.
//
// By analyzing only the `definingRegion` CFG we potentially loose an
// opportunity to drop the reference count earlier and can extend the lifetime
// of reference counted value longer then it is really required.
//
// We also assume that all nested regions finish their execution before the
// completion of the owner operation. The only exception to this rule is
// `async.execute` operation, and we verify that they are lowered to the
// `async.runtime` operations before adding automatic reference counting.
Region *definingRegion = value.getParentRegion();
// Last users of the `value` inside all blocks where the value dies.
llvm::SmallSet<Operation *, 4> lastUsers;
// Find blocks in the `definingRegion` that have users of the `value` (if
// there are multiple users in the block, which one will be selected is
// undefined). User operation might be not the actual user of the value, but
// the operation in the block that has a "real user" in one of the attached
// regions.
llvm::DenseMap<Block *, Operation *> usersInTheBlocks;
for (Operation *user : value.getUsers()) {
Block *userBlock = user->getBlock();
Block *ancestor = definingRegion->findAncestorBlockInRegion(*userBlock);
usersInTheBlocks[ancestor] = ancestor->findAncestorOpInBlock(*user);
assert(ancestor && "ancestor block must be not null");
assert(usersInTheBlocks[ancestor] && "ancestor op must be not null");
}
// Find blocks where the `value` dies: the value is in `liveIn` set and not
// in the `liveOut` set. We place `drop_ref` immediately after the last use
// of the `value` in such regions (after handling few special cases).
//
// We do not traverse all the blocks in the `definingRegion`, because the
// `value` can be in the live in set only if it has users in the block, or it
// is defined in the block.
//
// Values with zero users (only definition) handled explicitly above.
for (auto &blockAndUser : usersInTheBlocks) {
Block *block = blockAndUser.getFirst();
Operation *userInTheBlock = blockAndUser.getSecond();
const LivenessBlockInfo *blockLiveness = liveness.getLiveness(block);
// Value must be in the live input set or defined in the block.
assert(blockLiveness->isLiveIn(value) ||
blockLiveness->getBlock() == value.getParentBlock());
// If value is in the live out set, it means it doesn't "die" in the block.
if (blockLiveness->isLiveOut(value))
continue;
// At this point we proved that `value` dies in the `block`. Find the last
// use of the `value` inside the `block`, this is where it "dies".
Operation *lastUser = blockLiveness->getEndOperation(value, userInTheBlock);
assert(lastUsers.count(lastUser) == 0 && "last users must be unique");
lastUsers.insert(lastUser);
}
// Process all the last users of the `value` inside each block where the value
// dies.
for (Operation *lastUser : lastUsers) {
// Return like operations forward reference count.
if (lastUser->hasTrait<OpTrait::ReturnLike>())
continue;
// We can't currently handle other types of terminators.
if (lastUser->hasTrait<OpTrait::IsTerminator>())
return lastUser->emitError() << "async reference counting can't handle "
"terminators that are not ReturnLike";
// Add a drop_ref immediately after the last user.
builder.setInsertionPointAfter(lastUser);
builder.create<RuntimeDropRefOp>(loc, value, builder.getI64IntegerAttr(1));
}
return success();
}
LogicalResult
AsyncRuntimeRefCountingPass::addAddRefBeforeFunctionCall(Value value) {
OpBuilder builder(value.getContext());
Location loc = value.getLoc();
for (Operation *user : value.getUsers()) {
if (!isa<CallOp>(user))
continue;
// Add a reference before the function call to pass the value at `+1`
// reference to the function entry block.
builder.setInsertionPoint(user);
builder.create<RuntimeAddRefOp>(loc, value, builder.getI64IntegerAttr(1));
}
return success();
}
LogicalResult
AsyncRuntimeRefCountingPass::addDropRefInDivergentLivenessSuccessor(
Value value) {
using BlockSet = llvm::SmallPtrSet<Block *, 4>;
OpBuilder builder(value.getContext());
// If a block has successors with different `liveIn` property of the `value`,
// record block successors that do not thave the `value` in the `liveIn` set.
llvm::SmallDenseMap<Block *, BlockSet> divergentLivenessBlocks;
// Use liveness analysis to find the placement of `drop_ref`operation.
auto &liveness = getAnalysis<Liveness>();
// Because we only add `drop_ref` operations to the region that defines the
// `value` we can only process CFG for the same region.
Region *definingRegion = value.getParentRegion();
// Collect blocks with successors with mismatching `liveIn` sets.
for (Block &block : definingRegion->getBlocks()) {
const LivenessBlockInfo *blockLiveness = liveness.getLiveness(&block);
// Skip the block if value is not in the `liveOut` set.
if (!blockLiveness || !blockLiveness->isLiveOut(value))
continue;
BlockSet liveInSuccessors; // `value` is in `liveIn` set
BlockSet noLiveInSuccessors; // `value` is not in the `liveIn` set
// Collect successors that do not have `value` in the `liveIn` set.
for (Block *successor : block.getSuccessors()) {
const LivenessBlockInfo *succLiveness = liveness.getLiveness(successor);
if (succLiveness && succLiveness->isLiveIn(value))
liveInSuccessors.insert(successor);
else
noLiveInSuccessors.insert(successor);
}
// Block has successors with different `liveIn` property of the `value`.
if (!liveInSuccessors.empty() && !noLiveInSuccessors.empty())
divergentLivenessBlocks.try_emplace(&block, noLiveInSuccessors);
}
// Try to insert `dropRef` operations to handle blocks with divergent liveness
// in successors blocks.
for (auto kv : divergentLivenessBlocks) {
Block *block = kv.getFirst();
BlockSet &successors = kv.getSecond();
// Coroutine suspension is a special case terminator for wich we do not
// need to create additional reference counting (see details above).
Operation *terminator = block->getTerminator();
if (isa<CoroSuspendOp>(terminator))
continue;
// We only support successor blocks with empty block argument list.
auto hasArgs = [](Block *block) { return !block->getArguments().empty(); };
if (llvm::any_of(successors, hasArgs))
return terminator->emitOpError()
<< "successor have different `liveIn` property of the reference "
"counted value";
// Make sure that `dropRef` operation is called when branched into the
// successor block without `value` in the `liveIn` set.
for (Block *successor : successors) {
// If successor has a unique predecessor, it is safe to create `dropRef`
// operations directly in the successor block.
//
// Otherwise we need to create a special block for reference counting
// operations, and branch from it to the original successor block.
Block *refCountingBlock = nullptr;
if (successor->getUniquePredecessor() == block) {
refCountingBlock = successor;
} else {
refCountingBlock = &successor->getParent()->emplaceBlock();
refCountingBlock->moveBefore(successor);
OpBuilder builder = OpBuilder::atBlockEnd(refCountingBlock);
builder.create<BranchOp>(value.getLoc(), successor);
}
OpBuilder builder = OpBuilder::atBlockBegin(refCountingBlock);
builder.create<RuntimeDropRefOp>(value.getLoc(), value,
builder.getI64IntegerAttr(1));
// No need to update the terminator operation.
if (successor == refCountingBlock)
continue;
// Update terminator `successor` block to `refCountingBlock`.
for (auto pair : llvm::enumerate(terminator->getSuccessors()))
if (pair.value() == successor)
terminator->setSuccessor(refCountingBlock, pair.index());
}
}
return success();
}
LogicalResult
AsyncRuntimeRefCountingPass::addAutomaticRefCounting(Value value) {
// Short-circuit reference counting for values without uses.
if (succeeded(dropRefIfNoUses(value)))
return success();
// Add `drop_ref` operations based on the liveness analysis.
if (failed(addDropRefAfterLastUse(value)))
return failure();
// Add `add_ref` operations before function calls.
if (failed(addAddRefBeforeFunctionCall(value)))
return failure();
// Add `drop_ref` operations to successors with divergent `value` liveness.
if (failed(addDropRefInDivergentLivenessSuccessor(value)))
return failure();
return success();
}
void AsyncRuntimeRefCountingPass::runOnOperation() {
auto functor = [&](Value value) { return addAutomaticRefCounting(value); };
if (failed(walkReferenceCountedValues(getOperation(), functor)))
signalPassFailure();
}
//===----------------------------------------------------------------------===//
// Reference counting based on the user defined policy.
//===----------------------------------------------------------------------===//
namespace {
class AsyncRuntimePolicyBasedRefCountingPass
: public AsyncRuntimePolicyBasedRefCountingBase<
AsyncRuntimePolicyBasedRefCountingPass> {
public:
AsyncRuntimePolicyBasedRefCountingPass() { initializeDefaultPolicy(); }
void runOnOperation() override;
private:
// Adds a reference counting operations for all uses of the `value` according
// to the reference counting policy.
LogicalResult addRefCounting(Value value);
void initializeDefaultPolicy();
llvm::SmallVector<std::function<FailureOr<int>(OpOperand &)>> policy;
};
} // namespace
LogicalResult
AsyncRuntimePolicyBasedRefCountingPass::addRefCounting(Value value) {
// Short-circuit reference counting for values without uses.
if (succeeded(dropRefIfNoUses(value)))
return success();
OpBuilder b(value.getContext());
// Consult the user defined policy for every value use.
for (OpOperand &operand : value.getUses()) {
Location loc = operand.getOwner()->getLoc();
for (auto &func : policy) {
FailureOr<int> refCount = func(operand);
if (failed(refCount))
return failure();
int cnt = refCount.getValue();
// Create `add_ref` operation before the operand owner.
if (cnt > 0) {
b.setInsertionPoint(operand.getOwner());
b.create<RuntimeAddRefOp>(loc, value, b.getI64IntegerAttr(cnt));
}
// Create `drop_ref` operation after the operand owner.
if (cnt < 0) {
b.setInsertionPointAfter(operand.getOwner());
b.create<RuntimeDropRefOp>(loc, value, b.getI64IntegerAttr(-cnt));
}
}
}
return success();
}
void AsyncRuntimePolicyBasedRefCountingPass::initializeDefaultPolicy() {
policy.push_back([](OpOperand &operand) -> FailureOr<int> {
Operation *op = operand.getOwner();
Type type = operand.get().getType();
bool isToken = type.isa<TokenType>();
bool isGroup = type.isa<GroupType>();
bool isValue = type.isa<ValueType>();
// Drop reference after async token or group error check (coro await).
if (auto await = dyn_cast<RuntimeIsErrorOp>(op))
return (isToken || isGroup) ? -1 : 0;
// Drop reference after async value load.
if (auto load = dyn_cast<RuntimeLoadOp>(op))
return isValue ? -1 : 0;
// Drop reference after async token added to the group.
if (auto add = dyn_cast<RuntimeAddToGroupOp>(op))
return isToken ? -1 : 0;
return 0;
});
}
void AsyncRuntimePolicyBasedRefCountingPass::runOnOperation() {
auto functor = [&](Value value) { return addRefCounting(value); };
if (failed(walkReferenceCountedValues(getOperation(), functor)))
signalPassFailure();
}
//----------------------------------------------------------------------------//
std::unique_ptr<Pass> mlir::createAsyncRuntimeRefCountingPass() {
return std::make_unique<AsyncRuntimeRefCountingPass>();
}
std::unique_ptr<Pass> mlir::createAsyncRuntimePolicyBasedRefCountingPass() {
return std::make_unique<AsyncRuntimePolicyBasedRefCountingPass>();
}