blob: 48affcd2c1ee3fd1e2cfe3271f4f6daa0ce209de [file] [log] [blame]
//===- AffineOps.cpp - MLIR Affine Operations -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
#define DEBUG_TYPE "affine-analysis"
#include "mlir/Dialect/Affine/IR/AffineOpsDialect.cpp.inc"
/// A utility function to check if a value is defined at the top level of
/// `region` or is an argument of `region`. A value of index type defined at the
/// top level of a `AffineScope` region is always a valid symbol for all
/// uses in that region.
static bool isTopLevelValue(Value value, Region *region) {
if (auto arg = value.dyn_cast<BlockArgument>())
return arg.getParentRegion() == region;
return value.getDefiningOp()->getParentRegion() == region;
}
/// Checks if `value` known to be a legal affine dimension or symbol in `src`
/// region remains legal if the operation that uses it is inlined into `dest`
/// with the given value mapping. `legalityCheck` is either `isValidDim` or
/// `isValidSymbol`, depending on the value being required to remain a valid
/// dimension or symbol.
static bool
remainsLegalAfterInline(Value value, Region *src, Region *dest,
const BlockAndValueMapping &mapping,
function_ref<bool(Value, Region *)> legalityCheck) {
// If the value is a valid dimension for any other reason than being
// a top-level value, it will remain valid: constants get inlined
// with the function, transitive affine applies also get inlined and
// will be checked themselves, etc.
if (!isTopLevelValue(value, src))
return true;
// If it's a top-level value because it's a block operand, i.e. a
// function argument, check whether the value replacing it after
// inlining is a valid dimension in the new region.
if (value.isa<BlockArgument>())
return legalityCheck(mapping.lookup(value), dest);
// If it's a top-level value because it's defined in the region,
// it can only be inlined if the defining op is a constant or a
// `dim`, which can appear anywhere and be valid, since the defining
// op won't be top-level anymore after inlining.
Attribute operandCst;
return matchPattern(value.getDefiningOp(), m_Constant(&operandCst)) ||
value.getDefiningOp<memref::DimOp>() ||
value.getDefiningOp<tensor::DimOp>();
}
/// Checks if all values known to be legal affine dimensions or symbols in `src`
/// remain so if their respective users are inlined into `dest`.
static bool
remainsLegalAfterInline(ValueRange values, Region *src, Region *dest,
const BlockAndValueMapping &mapping,
function_ref<bool(Value, Region *)> legalityCheck) {
return llvm::all_of(values, [&](Value v) {
return remainsLegalAfterInline(v, src, dest, mapping, legalityCheck);
});
}
/// Checks if an affine read or write operation remains legal after inlining
/// from `src` to `dest`.
template <typename OpTy>
static bool remainsLegalAfterInline(OpTy op, Region *src, Region *dest,
const BlockAndValueMapping &mapping) {
static_assert(llvm::is_one_of<OpTy, AffineReadOpInterface,
AffineWriteOpInterface>::value,
"only ops with affine read/write interface are supported");
AffineMap map = op.getAffineMap();
ValueRange dimOperands = op.getMapOperands().take_front(map.getNumDims());
ValueRange symbolOperands =
op.getMapOperands().take_back(map.getNumSymbols());
if (!remainsLegalAfterInline(
dimOperands, src, dest, mapping,
static_cast<bool (*)(Value, Region *)>(isValidDim)))
return false;
if (!remainsLegalAfterInline(
symbolOperands, src, dest, mapping,
static_cast<bool (*)(Value, Region *)>(isValidSymbol)))
return false;
return true;
}
/// Checks if an affine apply operation remains legal after inlining from `src`
/// to `dest`.
// Use "unused attribute" marker to silence clang-tidy warning stemming from
// the inability to see through "llvm::TypeSwitch".
template <>
bool LLVM_ATTRIBUTE_UNUSED
remainsLegalAfterInline(AffineApplyOp op, Region *src, Region *dest,
const BlockAndValueMapping &mapping) {
// If it's a valid dimension, we need to check that it remains so.
if (isValidDim(op.getResult(), src))
return remainsLegalAfterInline(
op.getMapOperands(), src, dest, mapping,
static_cast<bool (*)(Value, Region *)>(isValidDim));
// Otherwise it must be a valid symbol, check that it remains so.
return remainsLegalAfterInline(
op.getMapOperands(), src, dest, mapping,
static_cast<bool (*)(Value, Region *)>(isValidSymbol));
}
//===----------------------------------------------------------------------===//
// AffineDialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
/// This class defines the interface for handling inlining with affine
/// operations.
struct AffineInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks
//===--------------------------------------------------------------------===//
/// Returns true if the given region 'src' can be inlined into the region
/// 'dest' that is attached to an operation registered to the current dialect.
/// 'wouldBeCloned' is set if the region is cloned into its new location
/// rather than moved, indicating there may be other users.
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
BlockAndValueMapping &valueMapping) const final {
// We can inline into affine loops and conditionals if this doesn't break
// affine value categorization rules.
Operation *destOp = dest->getParentOp();
if (!isa<AffineParallelOp, AffineForOp, AffineIfOp>(destOp))
return false;
// Multi-block regions cannot be inlined into affine constructs, all of
// which require single-block regions.
if (!llvm::hasSingleElement(*src))
return false;
// Side-effecting operations that the affine dialect cannot understand
// should not be inlined.
Block &srcBlock = src->front();
for (Operation &op : srcBlock) {
// Ops with no side effects are fine,
if (auto iface = dyn_cast<MemoryEffectOpInterface>(op)) {
if (iface.hasNoEffect())
continue;
}
// Assuming the inlined region is valid, we only need to check if the
// inlining would change it.
bool remainsValid =
llvm::TypeSwitch<Operation *, bool>(&op)
.Case<AffineApplyOp, AffineReadOpInterface,
AffineWriteOpInterface>([&](auto op) {
return remainsLegalAfterInline(op, src, dest, valueMapping);
})
.Default([](Operation *) {
// Conservatively disallow inlining ops we cannot reason about.
return false;
});
if (!remainsValid)
return false;
}
return true;
}
/// Returns true if the given operation 'op', that is registered to this
/// dialect, can be inlined into the given region, false otherwise.
bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned,
BlockAndValueMapping &valueMapping) const final {
// Always allow inlining affine operations into a region that is marked as
// affine scope, or into affine loops and conditionals. There are some edge
// cases when inlining *into* affine structures, but that is handled in the
// other 'isLegalToInline' hook above.
Operation *parentOp = region->getParentOp();
return parentOp->hasTrait<OpTrait::AffineScope>() ||
isa<AffineForOp, AffineParallelOp, AffineIfOp>(parentOp);
}
/// Affine regions should be analyzed recursively.
bool shouldAnalyzeRecursively(Operation *op) const final { return true; }
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// AffineDialect
//===----------------------------------------------------------------------===//
void AffineDialect::initialize() {
addOperations<AffineDmaStartOp, AffineDmaWaitOp,
#define GET_OP_LIST
#include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc"
>();
addInterfaces<AffineInlinerInterface>();
}
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *AffineDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<arith::ConstantOp>(loc, type, value);
}
/// A utility function to check if a value is defined at the top level of an
/// op with trait `AffineScope`. If the value is defined in an unlinked region,
/// conservatively assume it is not top-level. A value of index type defined at
/// the top level is always a valid symbol.
bool mlir::isTopLevelValue(Value value) {
if (auto arg = value.dyn_cast<BlockArgument>()) {
// The block owning the argument may be unlinked, e.g. when the surrounding
// region has not yet been attached to an Op, at which point the parent Op
// is null.
Operation *parentOp = arg.getOwner()->getParentOp();
return parentOp && parentOp->hasTrait<OpTrait::AffineScope>();
}
// The defining Op may live in an unlinked block so its parent Op may be null.
Operation *parentOp = value.getDefiningOp()->getParentOp();
return parentOp && parentOp->hasTrait<OpTrait::AffineScope>();
}
/// Returns the closest region enclosing `op` that is held by an operation with
/// trait `AffineScope`; `nullptr` if there is no such region.
// TODO: getAffineScope should be publicly exposed for affine passes/utilities.
static Region *getAffineScope(Operation *op) {
auto *curOp = op;
while (auto *parentOp = curOp->getParentOp()) {
if (parentOp->hasTrait<OpTrait::AffineScope>())
return curOp->getParentRegion();
curOp = parentOp;
}
return nullptr;
}
// A Value can be used as a dimension id iff it meets one of the following
// conditions:
// *) It is valid as a symbol.
// *) It is an induction variable.
// *) It is the result of affine apply operation with dimension id arguments.
bool mlir::isValidDim(Value value) {
// The value must be an index type.
if (!value.getType().isIndex())
return false;
if (auto *defOp = value.getDefiningOp())
return isValidDim(value, getAffineScope(defOp));
// This value has to be a block argument for an op that has the
// `AffineScope` trait or for an affine.for or affine.parallel.
auto *parentOp = value.cast<BlockArgument>().getOwner()->getParentOp();
return parentOp && (parentOp->hasTrait<OpTrait::AffineScope>() ||
isa<AffineForOp, AffineParallelOp>(parentOp));
}
// Value can be used as a dimension id iff it meets one of the following
// conditions:
// *) It is valid as a symbol.
// *) It is an induction variable.
// *) It is the result of an affine apply operation with dimension id operands.
bool mlir::isValidDim(Value value, Region *region) {
// The value must be an index type.
if (!value.getType().isIndex())
return false;
// All valid symbols are okay.
if (isValidSymbol(value, region))
return true;
auto *op = value.getDefiningOp();
if (!op) {
// This value has to be a block argument for an affine.for or an
// affine.parallel.
auto *parentOp = value.cast<BlockArgument>().getOwner()->getParentOp();
return isa<AffineForOp, AffineParallelOp>(parentOp);
}
// Affine apply operation is ok if all of its operands are ok.
if (auto applyOp = dyn_cast<AffineApplyOp>(op))
return applyOp.isValidDim(region);
// The dim op is okay if its operand memref/tensor is defined at the top
// level.
if (auto dimOp = dyn_cast<memref::DimOp>(op))
return isTopLevelValue(dimOp.source());
if (auto dimOp = dyn_cast<tensor::DimOp>(op))
return isTopLevelValue(dimOp.source());
return false;
}
/// Returns true if the 'index' dimension of the `memref` defined by
/// `memrefDefOp` is a statically shaped one or defined using a valid symbol
/// for `region`.
template <typename AnyMemRefDefOp>
static bool isMemRefSizeValidSymbol(AnyMemRefDefOp memrefDefOp, unsigned index,
Region *region) {
auto memRefType = memrefDefOp.getType();
// Statically shaped.
if (!memRefType.isDynamicDim(index))
return true;
// Get the position of the dimension among dynamic dimensions;
unsigned dynamicDimPos = memRefType.getDynamicDimIndex(index);
return isValidSymbol(*(memrefDefOp.getDynamicSizes().begin() + dynamicDimPos),
region);
}
/// Returns true if the result of the dim op is a valid symbol for `region`.
template <typename OpTy>
static bool isDimOpValidSymbol(OpTy dimOp, Region *region) {
// The dim op is okay if its source is defined at the top level.
if (isTopLevelValue(dimOp.source()))
return true;
// Conservatively handle remaining BlockArguments as non-valid symbols.
// E.g. scf.for iterArgs.
if (dimOp.source().template isa<BlockArgument>())
return false;
// The dim op is also okay if its operand memref is a view/subview whose
// corresponding size is a valid symbol.
Optional<int64_t> index = dimOp.getConstantIndex();
assert(index.hasValue() &&
"expect only `dim` operations with a constant index");
int64_t i = index.getValue();
return TypeSwitch<Operation *, bool>(dimOp.source().getDefiningOp())
.Case<memref::ViewOp, memref::SubViewOp, memref::AllocOp>(
[&](auto op) { return isMemRefSizeValidSymbol(op, i, region); })
.Default([](Operation *) { return false; });
}
// A value can be used as a symbol (at all its use sites) iff it meets one of
// the following conditions:
// *) It is a constant.
// *) Its defining op or block arg appearance is immediately enclosed by an op
// with `AffineScope` trait.
// *) It is the result of an affine.apply operation with symbol operands.
// *) It is a result of the dim op on a memref whose corresponding size is a
// valid symbol.
bool mlir::isValidSymbol(Value value) {
if (!value)
return false;
// The value must be an index type.
if (!value.getType().isIndex())
return false;
// Check that the value is a top level value.
if (isTopLevelValue(value))
return true;
if (auto *defOp = value.getDefiningOp())
return isValidSymbol(value, getAffineScope(defOp));
return false;
}
/// A value can be used as a symbol for `region` iff it meets one of the
/// following conditions:
/// *) It is a constant.
/// *) It is the result of an affine apply operation with symbol arguments.
/// *) It is a result of the dim op on a memref whose corresponding size is
/// a valid symbol.
/// *) It is defined at the top level of 'region' or is its argument.
/// *) It dominates `region`'s parent op.
/// If `region` is null, conservatively assume the symbol definition scope does
/// not exist and only accept the values that would be symbols regardless of
/// the surrounding region structure, i.e. the first three cases above.
bool mlir::isValidSymbol(Value value, Region *region) {
// The value must be an index type.
if (!value.getType().isIndex())
return false;
// A top-level value is a valid symbol.
if (region && ::isTopLevelValue(value, region))
return true;
auto *defOp = value.getDefiningOp();
if (!defOp) {
// A block argument that is not a top-level value is a valid symbol if it
// dominates region's parent op.
Operation *regionOp = region ? region->getParentOp() : nullptr;
if (regionOp && !regionOp->hasTrait<OpTrait::IsIsolatedFromAbove>())
if (auto *parentOpRegion = region->getParentOp()->getParentRegion())
return isValidSymbol(value, parentOpRegion);
return false;
}
// Constant operation is ok.
Attribute operandCst;
if (matchPattern(defOp, m_Constant(&operandCst)))
return true;
// Affine apply operation is ok if all of its operands are ok.
if (auto applyOp = dyn_cast<AffineApplyOp>(defOp))
return applyOp.isValidSymbol(region);
// Dim op results could be valid symbols at any level.
if (auto dimOp = dyn_cast<memref::DimOp>(defOp))
return isDimOpValidSymbol(dimOp, region);
if (auto dimOp = dyn_cast<tensor::DimOp>(defOp))
return isDimOpValidSymbol(dimOp, region);
// Check for values dominating `region`'s parent op.
Operation *regionOp = region ? region->getParentOp() : nullptr;
if (regionOp && !regionOp->hasTrait<OpTrait::IsIsolatedFromAbove>())
if (auto *parentRegion = region->getParentOp()->getParentRegion())
return isValidSymbol(value, parentRegion);
return false;
}
// Returns true if 'value' is a valid index to an affine operation (e.g.
// affine.load, affine.store, affine.dma_start, affine.dma_wait) where
// `region` provides the polyhedral symbol scope. Returns false otherwise.
static bool isValidAffineIndexOperand(Value value, Region *region) {
return isValidDim(value, region) || isValidSymbol(value, region);
}
/// Prints dimension and symbol list.
static void printDimAndSymbolList(Operation::operand_iterator begin,
Operation::operand_iterator end,
unsigned numDims, OpAsmPrinter &printer) {
OperandRange operands(begin, end);
printer << '(' << operands.take_front(numDims) << ')';
if (operands.size() > numDims)
printer << '[' << operands.drop_front(numDims) << ']';
}
/// Parses dimension and symbol list and returns true if parsing failed.
ParseResult mlir::parseDimAndSymbolList(OpAsmParser &parser,
SmallVectorImpl<Value> &operands,
unsigned &numDims) {
SmallVector<OpAsmParser::OperandType, 8> opInfos;
if (parser.parseOperandList(opInfos, OpAsmParser::Delimiter::Paren))
return failure();
// Store number of dimensions for validation by caller.
numDims = opInfos.size();
// Parse the optional symbol operands.
auto indexTy = parser.getBuilder().getIndexType();
return failure(parser.parseOperandList(
opInfos, OpAsmParser::Delimiter::OptionalSquare) ||
parser.resolveOperands(opInfos, indexTy, operands));
}
/// Utility function to verify that a set of operands are valid dimension and
/// symbol identifiers. The operands should be laid out such that the dimension
/// operands are before the symbol operands. This function returns failure if
/// there was an invalid operand. An operation is provided to emit any necessary
/// errors.
template <typename OpTy>
static LogicalResult
verifyDimAndSymbolIdentifiers(OpTy &op, Operation::operand_range operands,
unsigned numDims) {
unsigned opIt = 0;
for (auto operand : operands) {
if (opIt++ < numDims) {
if (!isValidDim(operand, getAffineScope(op)))
return op.emitOpError("operand cannot be used as a dimension id");
} else if (!isValidSymbol(operand, getAffineScope(op))) {
return op.emitOpError("operand cannot be used as a symbol");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// AffineApplyOp
//===----------------------------------------------------------------------===//
AffineValueMap AffineApplyOp::getAffineValueMap() {
return AffineValueMap(getAffineMap(), getOperands(), getResult());
}
static ParseResult parseAffineApplyOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
auto indexTy = builder.getIndexType();
AffineMapAttr mapAttr;
unsigned numDims;
if (parser.parseAttribute(mapAttr, "map", result.attributes) ||
parseDimAndSymbolList(parser, result.operands, numDims) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
auto map = mapAttr.getValue();
if (map.getNumDims() != numDims ||
numDims + map.getNumSymbols() != result.operands.size()) {
return parser.emitError(parser.getNameLoc(),
"dimension or symbol index mismatch");
}
result.types.append(map.getNumResults(), indexTy);
return success();
}
static void print(OpAsmPrinter &p, AffineApplyOp op) {
p << " " << op.mapAttr();
printDimAndSymbolList(op.operand_begin(), op.operand_end(),
op.getAffineMap().getNumDims(), p);
p.printOptionalAttrDict(op->getAttrs(), /*elidedAttrs=*/{"map"});
}
static LogicalResult verify(AffineApplyOp op) {
// Check input and output dimensions match.
auto map = op.map();
// Verify that operand count matches affine map dimension and symbol count.
if (op.getNumOperands() != map.getNumDims() + map.getNumSymbols())
return op.emitOpError(
"operand count and affine map dimension and symbol count must match");
// Verify that the map only produces one result.
if (map.getNumResults() != 1)
return op.emitOpError("mapping must produce one value");
return success();
}
// The result of the affine apply operation can be used as a dimension id if all
// its operands are valid dimension ids.
bool AffineApplyOp::isValidDim() {
return llvm::all_of(getOperands(),
[](Value op) { return mlir::isValidDim(op); });
}
// The result of the affine apply operation can be used as a dimension id if all
// its operands are valid dimension ids with the parent operation of `region`
// defining the polyhedral scope for symbols.
bool AffineApplyOp::isValidDim(Region *region) {
return llvm::all_of(getOperands(),
[&](Value op) { return ::isValidDim(op, region); });
}
// The result of the affine apply operation can be used as a symbol if all its
// operands are symbols.
bool AffineApplyOp::isValidSymbol() {
return llvm::all_of(getOperands(),
[](Value op) { return mlir::isValidSymbol(op); });
}
// The result of the affine apply operation can be used as a symbol in `region`
// if all its operands are symbols in `region`.
bool AffineApplyOp::isValidSymbol(Region *region) {
return llvm::all_of(getOperands(), [&](Value operand) {
return mlir::isValidSymbol(operand, region);
});
}
OpFoldResult AffineApplyOp::fold(ArrayRef<Attribute> operands) {
auto map = getAffineMap();
// Fold dims and symbols to existing values.
auto expr = map.getResult(0);
if (auto dim = expr.dyn_cast<AffineDimExpr>())
return getOperand(dim.getPosition());
if (auto sym = expr.dyn_cast<AffineSymbolExpr>())
return getOperand(map.getNumDims() + sym.getPosition());
// Otherwise, default to folding the map.
SmallVector<Attribute, 1> result;
if (failed(map.constantFold(operands, result)))
return {};
return result[0];
}
/// Replace all occurrences of AffineExpr at position `pos` in `map` by the
/// defining AffineApplyOp expression and operands.
/// When `dimOrSymbolPosition < dims.size()`, AffineDimExpr@[pos] is replaced.
/// When `dimOrSymbolPosition >= dims.size()`,
/// AffineSymbolExpr@[pos - dims.size()] is replaced.
/// Mutate `map`,`dims` and `syms` in place as follows:
/// 1. `dims` and `syms` are only appended to.
/// 2. `map` dim and symbols are gradually shifted to higer positions.
/// 3. Old `dim` and `sym` entries are replaced by nullptr
/// This avoids the need for any bookkeeping.
static LogicalResult replaceDimOrSym(AffineMap *map,
unsigned dimOrSymbolPosition,
SmallVectorImpl<Value> &dims,
SmallVectorImpl<Value> &syms) {
bool isDimReplacement = (dimOrSymbolPosition < dims.size());
unsigned pos = isDimReplacement ? dimOrSymbolPosition
: dimOrSymbolPosition - dims.size();
Value &v = isDimReplacement ? dims[pos] : syms[pos];
if (!v)
return failure();
auto affineApply = v.getDefiningOp<AffineApplyOp>();
if (!affineApply)
return failure();
// At this point we will perform a replacement of `v`, set the entry in `dim`
// or `sym` to nullptr immediately.
v = nullptr;
// Compute the map, dims and symbols coming from the AffineApplyOp.
AffineMap composeMap = affineApply.getAffineMap();
assert(composeMap.getNumResults() == 1 && "affine.apply with >1 results");
AffineExpr composeExpr =
composeMap.shiftDims(dims.size()).shiftSymbols(syms.size()).getResult(0);
ValueRange composeDims =
affineApply.getMapOperands().take_front(composeMap.getNumDims());
ValueRange composeSyms =
affineApply.getMapOperands().take_back(composeMap.getNumSymbols());
// Append the dims and symbols where relevant and perform the replacement.
MLIRContext *ctx = map->getContext();
AffineExpr toReplace = isDimReplacement ? getAffineDimExpr(pos, ctx)
: getAffineSymbolExpr(pos, ctx);
dims.append(composeDims.begin(), composeDims.end());
syms.append(composeSyms.begin(), composeSyms.end());
*map = map->replace(toReplace, composeExpr, dims.size(), syms.size());
return success();
}
/// Iterate over `operands` and fold away all those produced by an AffineApplyOp
/// iteratively. Perform canonicalization of map and operands as well as
/// AffineMap simplification. `map` and `operands` are mutated in place.
static void composeAffineMapAndOperands(AffineMap *map,
SmallVectorImpl<Value> *operands) {
if (map->getNumResults() == 0) {
canonicalizeMapAndOperands(map, operands);
*map = simplifyAffineMap(*map);
return;
}
MLIRContext *ctx = map->getContext();
SmallVector<Value, 4> dims(operands->begin(),
operands->begin() + map->getNumDims());
SmallVector<Value, 4> syms(operands->begin() + map->getNumDims(),
operands->end());
// Iterate over dims and symbols coming from AffineApplyOp and replace until
// exhaustion. This iteratively mutates `map`, `dims` and `syms`. Both `dims`
// and `syms` can only increase by construction.
// The implementation uses a `while` loop to support the case of symbols
// that may be constructed from dims ;this may be overkill.
while (true) {
bool changed = false;
for (unsigned pos = 0; pos != dims.size() + syms.size(); ++pos)
if ((changed |= succeeded(replaceDimOrSym(map, pos, dims, syms))))
break;
if (!changed)
break;
}
// Clear operands so we can fill them anew.
operands->clear();
// At this point we may have introduced null operands, prune them out before
// canonicalizing map and operands.
unsigned nDims = 0, nSyms = 0;
SmallVector<AffineExpr, 4> dimReplacements, symReplacements;
dimReplacements.reserve(dims.size());
symReplacements.reserve(syms.size());
for (auto *container : {&dims, &syms}) {
bool isDim = (container == &dims);
auto &repls = isDim ? dimReplacements : symReplacements;
for (auto en : llvm::enumerate(*container)) {
Value v = en.value();
if (!v) {
assert(isDim ? !map->isFunctionOfDim(en.index())
: !map->isFunctionOfSymbol(en.index()) &&
"map is function of unexpected expr@pos");
repls.push_back(getAffineConstantExpr(0, ctx));
continue;
}
repls.push_back(isDim ? getAffineDimExpr(nDims++, ctx)
: getAffineSymbolExpr(nSyms++, ctx));
operands->push_back(v);
}
}
*map = map->replaceDimsAndSymbols(dimReplacements, symReplacements, nDims,
nSyms);
// Canonicalize and simplify before returning.
canonicalizeMapAndOperands(map, operands);
*map = simplifyAffineMap(*map);
}
void mlir::fullyComposeAffineMapAndOperands(AffineMap *map,
SmallVectorImpl<Value> *operands) {
while (llvm::any_of(*operands, [](Value v) {
return isa_and_nonnull<AffineApplyOp>(v.getDefiningOp());
})) {
composeAffineMapAndOperands(map, operands);
}
}
AffineApplyOp mlir::makeComposedAffineApply(OpBuilder &b, Location loc,
AffineMap map,
ValueRange operands) {
AffineMap normalizedMap = map;
SmallVector<Value, 8> normalizedOperands(operands.begin(), operands.end());
composeAffineMapAndOperands(&normalizedMap, &normalizedOperands);
assert(normalizedMap);
return b.create<AffineApplyOp>(loc, normalizedMap, normalizedOperands);
}
AffineApplyOp mlir::makeComposedAffineApply(OpBuilder &b, Location loc,
AffineExpr e, ValueRange values) {
return makeComposedAffineApply(
b, loc, AffineMap::inferFromExprList(ArrayRef<AffineExpr>{e}).front(),
values);
}
// A symbol may appear as a dim in affine.apply operations. This function
// canonicalizes dims that are valid symbols into actual symbols.
template <class MapOrSet>
static void canonicalizePromotedSymbols(MapOrSet *mapOrSet,
SmallVectorImpl<Value> *operands) {
if (!mapOrSet || operands->empty())
return;
assert(mapOrSet->getNumInputs() == operands->size() &&
"map/set inputs must match number of operands");
auto *context = mapOrSet->getContext();
SmallVector<Value, 8> resultOperands;
resultOperands.reserve(operands->size());
SmallVector<Value, 8> remappedSymbols;
remappedSymbols.reserve(operands->size());
unsigned nextDim = 0;
unsigned nextSym = 0;
unsigned oldNumSyms = mapOrSet->getNumSymbols();
SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims());
for (unsigned i = 0, e = mapOrSet->getNumInputs(); i != e; ++i) {
if (i < mapOrSet->getNumDims()) {
if (isValidSymbol((*operands)[i])) {
// This is a valid symbol that appears as a dim, canonicalize it.
dimRemapping[i] = getAffineSymbolExpr(oldNumSyms + nextSym++, context);
remappedSymbols.push_back((*operands)[i]);
} else {
dimRemapping[i] = getAffineDimExpr(nextDim++, context);
resultOperands.push_back((*operands)[i]);
}
} else {
resultOperands.push_back((*operands)[i]);
}
}
resultOperands.append(remappedSymbols.begin(), remappedSymbols.end());
*operands = resultOperands;
*mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, {}, nextDim,
oldNumSyms + nextSym);
assert(mapOrSet->getNumInputs() == operands->size() &&
"map/set inputs must match number of operands");
}
// Works for either an affine map or an integer set.
template <class MapOrSet>
static void canonicalizeMapOrSetAndOperands(MapOrSet *mapOrSet,
SmallVectorImpl<Value> *operands) {
static_assert(llvm::is_one_of<MapOrSet, AffineMap, IntegerSet>::value,
"Argument must be either of AffineMap or IntegerSet type");
if (!mapOrSet || operands->empty())
return;
assert(mapOrSet->getNumInputs() == operands->size() &&
"map/set inputs must match number of operands");
canonicalizePromotedSymbols<MapOrSet>(mapOrSet, operands);
// Check to see what dims are used.
llvm::SmallBitVector usedDims(mapOrSet->getNumDims());
llvm::SmallBitVector usedSyms(mapOrSet->getNumSymbols());
mapOrSet->walkExprs([&](AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
usedDims[dimExpr.getPosition()] = true;
else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
usedSyms[symExpr.getPosition()] = true;
});
auto *context = mapOrSet->getContext();
SmallVector<Value, 8> resultOperands;
resultOperands.reserve(operands->size());
llvm::SmallDenseMap<Value, AffineExpr, 8> seenDims;
SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims());
unsigned nextDim = 0;
for (unsigned i = 0, e = mapOrSet->getNumDims(); i != e; ++i) {
if (usedDims[i]) {
// Remap dim positions for duplicate operands.
auto it = seenDims.find((*operands)[i]);
if (it == seenDims.end()) {
dimRemapping[i] = getAffineDimExpr(nextDim++, context);
resultOperands.push_back((*operands)[i]);
seenDims.insert(std::make_pair((*operands)[i], dimRemapping[i]));
} else {
dimRemapping[i] = it->second;
}
}
}
llvm::SmallDenseMap<Value, AffineExpr, 8> seenSymbols;
SmallVector<AffineExpr, 8> symRemapping(mapOrSet->getNumSymbols());
unsigned nextSym = 0;
for (unsigned i = 0, e = mapOrSet->getNumSymbols(); i != e; ++i) {
if (!usedSyms[i])
continue;
// Handle constant operands (only needed for symbolic operands since
// constant operands in dimensional positions would have already been
// promoted to symbolic positions above).
IntegerAttr operandCst;
if (matchPattern((*operands)[i + mapOrSet->getNumDims()],
m_Constant(&operandCst))) {
symRemapping[i] =
getAffineConstantExpr(operandCst.getValue().getSExtValue(), context);
continue;
}
// Remap symbol positions for duplicate operands.
auto it = seenSymbols.find((*operands)[i + mapOrSet->getNumDims()]);
if (it == seenSymbols.end()) {
symRemapping[i] = getAffineSymbolExpr(nextSym++, context);
resultOperands.push_back((*operands)[i + mapOrSet->getNumDims()]);
seenSymbols.insert(std::make_pair((*operands)[i + mapOrSet->getNumDims()],
symRemapping[i]));
} else {
symRemapping[i] = it->second;
}
}
*mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, symRemapping,
nextDim, nextSym);
*operands = resultOperands;
}
void mlir::canonicalizeMapAndOperands(AffineMap *map,
SmallVectorImpl<Value> *operands) {
canonicalizeMapOrSetAndOperands<AffineMap>(map, operands);
}
void mlir::canonicalizeSetAndOperands(IntegerSet *set,
SmallVectorImpl<Value> *operands) {
canonicalizeMapOrSetAndOperands<IntegerSet>(set, operands);
}
namespace {
/// Simplify AffineApply, AffineLoad, and AffineStore operations by composing
/// maps that supply results into them.
///
template <typename AffineOpTy>
struct SimplifyAffineOp : public OpRewritePattern<AffineOpTy> {
using OpRewritePattern<AffineOpTy>::OpRewritePattern;
/// Replace the affine op with another instance of it with the supplied
/// map and mapOperands.
void replaceAffineOp(PatternRewriter &rewriter, AffineOpTy affineOp,
AffineMap map, ArrayRef<Value> mapOperands) const;
LogicalResult matchAndRewrite(AffineOpTy affineOp,
PatternRewriter &rewriter) const override {
static_assert(
llvm::is_one_of<AffineOpTy, AffineLoadOp, AffinePrefetchOp,
AffineStoreOp, AffineApplyOp, AffineMinOp, AffineMaxOp,
AffineVectorStoreOp, AffineVectorLoadOp>::value,
"affine load/store/vectorstore/vectorload/apply/prefetch/min/max op "
"expected");
auto map = affineOp.getAffineMap();
AffineMap oldMap = map;
auto oldOperands = affineOp.getMapOperands();
SmallVector<Value, 8> resultOperands(oldOperands);
composeAffineMapAndOperands(&map, &resultOperands);
canonicalizeMapAndOperands(&map, &resultOperands);
if (map == oldMap && std::equal(oldOperands.begin(), oldOperands.end(),
resultOperands.begin()))
return failure();
replaceAffineOp(rewriter, affineOp, map, resultOperands);
return success();
}
};
// Specialize the template to account for the different build signatures for
// affine load, store, and apply ops.
template <>
void SimplifyAffineOp<AffineLoadOp>::replaceAffineOp(
PatternRewriter &rewriter, AffineLoadOp load, AffineMap map,
ArrayRef<Value> mapOperands) const {
rewriter.replaceOpWithNewOp<AffineLoadOp>(load, load.getMemRef(), map,
mapOperands);
}
template <>
void SimplifyAffineOp<AffinePrefetchOp>::replaceAffineOp(
PatternRewriter &rewriter, AffinePrefetchOp prefetch, AffineMap map,
ArrayRef<Value> mapOperands) const {
rewriter.replaceOpWithNewOp<AffinePrefetchOp>(
prefetch, prefetch.memref(), map, mapOperands, prefetch.localityHint(),
prefetch.isWrite(), prefetch.isDataCache());
}
template <>
void SimplifyAffineOp<AffineStoreOp>::replaceAffineOp(
PatternRewriter &rewriter, AffineStoreOp store, AffineMap map,
ArrayRef<Value> mapOperands) const {
rewriter.replaceOpWithNewOp<AffineStoreOp>(
store, store.getValueToStore(), store.getMemRef(), map, mapOperands);
}
template <>
void SimplifyAffineOp<AffineVectorLoadOp>::replaceAffineOp(
PatternRewriter &rewriter, AffineVectorLoadOp vectorload, AffineMap map,
ArrayRef<Value> mapOperands) const {
rewriter.replaceOpWithNewOp<AffineVectorLoadOp>(
vectorload, vectorload.getVectorType(), vectorload.getMemRef(), map,
mapOperands);
}
template <>
void SimplifyAffineOp<AffineVectorStoreOp>::replaceAffineOp(
PatternRewriter &rewriter, AffineVectorStoreOp vectorstore, AffineMap map,
ArrayRef<Value> mapOperands) const {
rewriter.replaceOpWithNewOp<AffineVectorStoreOp>(
vectorstore, vectorstore.getValueToStore(), vectorstore.getMemRef(), map,
mapOperands);
}
// Generic version for ops that don't have extra operands.
template <typename AffineOpTy>
void SimplifyAffineOp<AffineOpTy>::replaceAffineOp(
PatternRewriter &rewriter, AffineOpTy op, AffineMap map,
ArrayRef<Value> mapOperands) const {
rewriter.replaceOpWithNewOp<AffineOpTy>(op, map, mapOperands);
}
} // end anonymous namespace.
void AffineApplyOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyAffineOp<AffineApplyOp>>(context);
}
//===----------------------------------------------------------------------===//
// Common canonicalization pattern support logic
//===----------------------------------------------------------------------===//
/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop". It folds the source of any memref.cast
/// into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op, Value ignore = nullptr) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto cast = operand.get().getDefiningOp<memref::CastOp>();
if (cast && operand.get() != ignore &&
!cast.getOperand().getType().isa<UnrankedMemRefType>()) {
operand.set(cast.getOperand());
folded = true;
}
}
return success(folded);
}
//===----------------------------------------------------------------------===//
// AffineDmaStartOp
//===----------------------------------------------------------------------===//
// TODO: Check that map operands are loop IVs or symbols.
void AffineDmaStartOp::build(OpBuilder &builder, OperationState &result,
Value srcMemRef, AffineMap srcMap,
ValueRange srcIndices, Value destMemRef,
AffineMap dstMap, ValueRange destIndices,
Value tagMemRef, AffineMap tagMap,
ValueRange tagIndices, Value numElements,
Value stride, Value elementsPerStride) {
result.addOperands(srcMemRef);
result.addAttribute(getSrcMapAttrName(), AffineMapAttr::get(srcMap));
result.addOperands(srcIndices);
result.addOperands(destMemRef);
result.addAttribute(getDstMapAttrName(), AffineMapAttr::get(dstMap));
result.addOperands(destIndices);
result.addOperands(tagMemRef);
result.addAttribute(getTagMapAttrName(), AffineMapAttr::get(tagMap));
result.addOperands(tagIndices);
result.addOperands(numElements);
if (stride) {
result.addOperands({stride, elementsPerStride});
}
}
void AffineDmaStartOp::print(OpAsmPrinter &p) {
p << " " << getSrcMemRef() << '[';
p.printAffineMapOfSSAIds(getSrcMapAttr(), getSrcIndices());
p << "], " << getDstMemRef() << '[';
p.printAffineMapOfSSAIds(getDstMapAttr(), getDstIndices());
p << "], " << getTagMemRef() << '[';
p.printAffineMapOfSSAIds(getTagMapAttr(), getTagIndices());
p << "], " << getNumElements();
if (isStrided()) {
p << ", " << getStride();
p << ", " << getNumElementsPerStride();
}
p << " : " << getSrcMemRefType() << ", " << getDstMemRefType() << ", "
<< getTagMemRefType();
}
// Parse AffineDmaStartOp.
// Ex:
// affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%index], %size,
// %stride, %num_elt_per_stride
// : memref<3076 x f32, 0>, memref<1024 x f32, 2>, memref<1 x i32>
//
ParseResult AffineDmaStartOp::parse(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType srcMemRefInfo;
AffineMapAttr srcMapAttr;
SmallVector<OpAsmParser::OperandType, 4> srcMapOperands;
OpAsmParser::OperandType dstMemRefInfo;
AffineMapAttr dstMapAttr;
SmallVector<OpAsmParser::OperandType, 4> dstMapOperands;
OpAsmParser::OperandType tagMemRefInfo;
AffineMapAttr tagMapAttr;
SmallVector<OpAsmParser::OperandType, 4> tagMapOperands;
OpAsmParser::OperandType numElementsInfo;
SmallVector<OpAsmParser::OperandType, 2> strideInfo;
SmallVector<Type, 3> types;
auto indexType = parser.getBuilder().getIndexType();
// Parse and resolve the following list of operands:
// *) dst memref followed by its affine maps operands (in square brackets).
// *) src memref followed by its affine map operands (in square brackets).
// *) tag memref followed by its affine map operands (in square brackets).
// *) number of elements transferred by DMA operation.
if (parser.parseOperand(srcMemRefInfo) ||
parser.parseAffineMapOfSSAIds(srcMapOperands, srcMapAttr,
getSrcMapAttrName(), result.attributes) ||
parser.parseComma() || parser.parseOperand(dstMemRefInfo) ||
parser.parseAffineMapOfSSAIds(dstMapOperands, dstMapAttr,
getDstMapAttrName(), result.attributes) ||
parser.parseComma() || parser.parseOperand(tagMemRefInfo) ||
parser.parseAffineMapOfSSAIds(tagMapOperands, tagMapAttr,
getTagMapAttrName(), result.attributes) ||
parser.parseComma() || parser.parseOperand(numElementsInfo))
return failure();
// Parse optional stride and elements per stride.
if (parser.parseTrailingOperandList(strideInfo)) {
return failure();
}
if (!strideInfo.empty() && strideInfo.size() != 2) {
return parser.emitError(parser.getNameLoc(),
"expected two stride related operands");
}
bool isStrided = strideInfo.size() == 2;
if (parser.parseColonTypeList(types))
return failure();
if (types.size() != 3)
return parser.emitError(parser.getNameLoc(), "expected three types");
if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) ||
parser.resolveOperands(srcMapOperands, indexType, result.operands) ||
parser.resolveOperand(dstMemRefInfo, types[1], result.operands) ||
parser.resolveOperands(dstMapOperands, indexType, result.operands) ||
parser.resolveOperand(tagMemRefInfo, types[2], result.operands) ||
parser.resolveOperands(tagMapOperands, indexType, result.operands) ||
parser.resolveOperand(numElementsInfo, indexType, result.operands))
return failure();
if (isStrided) {
if (parser.resolveOperands(strideInfo, indexType, result.operands))
return failure();
}
// Check that src/dst/tag operand counts match their map.numInputs.
if (srcMapOperands.size() != srcMapAttr.getValue().getNumInputs() ||
dstMapOperands.size() != dstMapAttr.getValue().getNumInputs() ||
tagMapOperands.size() != tagMapAttr.getValue().getNumInputs())
return parser.emitError(parser.getNameLoc(),
"memref operand count not equal to map.numInputs");
return success();
}
LogicalResult AffineDmaStartOp::verify() {
if (!getOperand(getSrcMemRefOperandIndex()).getType().isa<MemRefType>())
return emitOpError("expected DMA source to be of memref type");
if (!getOperand(getDstMemRefOperandIndex()).getType().isa<MemRefType>())
return emitOpError("expected DMA destination to be of memref type");
if (!getOperand(getTagMemRefOperandIndex()).getType().isa<MemRefType>())
return emitOpError("expected DMA tag to be of memref type");
unsigned numInputsAllMaps = getSrcMap().getNumInputs() +
getDstMap().getNumInputs() +
getTagMap().getNumInputs();
if (getNumOperands() != numInputsAllMaps + 3 + 1 &&
getNumOperands() != numInputsAllMaps + 3 + 1 + 2) {
return emitOpError("incorrect number of operands");
}
Region *scope = getAffineScope(*this);
for (auto idx : getSrcIndices()) {
if (!idx.getType().isIndex())
return emitOpError("src index to dma_start must have 'index' type");
if (!isValidAffineIndexOperand(idx, scope))
return emitOpError("src index must be a dimension or symbol identifier");
}
for (auto idx : getDstIndices()) {
if (!idx.getType().isIndex())
return emitOpError("dst index to dma_start must have 'index' type");
if (!isValidAffineIndexOperand(idx, scope))
return emitOpError("dst index must be a dimension or symbol identifier");
}
for (auto idx : getTagIndices()) {
if (!idx.getType().isIndex())
return emitOpError("tag index to dma_start must have 'index' type");
if (!isValidAffineIndexOperand(idx, scope))
return emitOpError("tag index must be a dimension or symbol identifier");
}
return success();
}
LogicalResult AffineDmaStartOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_start(memrefcast) -> dma_start
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// AffineDmaWaitOp
//===----------------------------------------------------------------------===//
// TODO: Check that map operands are loop IVs or symbols.
void AffineDmaWaitOp::build(OpBuilder &builder, OperationState &result,
Value tagMemRef, AffineMap tagMap,
ValueRange tagIndices, Value numElements) {
result.addOperands(tagMemRef);
result.addAttribute(getTagMapAttrName(), AffineMapAttr::get(tagMap));
result.addOperands(tagIndices);
result.addOperands(numElements);
}
void AffineDmaWaitOp::print(OpAsmPrinter &p) {
p << " " << getTagMemRef() << '[';
SmallVector<Value, 2> operands(getTagIndices());
p.printAffineMapOfSSAIds(getTagMapAttr(), operands);
p << "], ";
p.printOperand(getNumElements());
p << " : " << getTagMemRef().getType();
}
// Parse AffineDmaWaitOp.
// Eg:
// affine.dma_wait %tag[%index], %num_elements
// : memref<1 x i32, (d0) -> (d0), 4>
//
ParseResult AffineDmaWaitOp::parse(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType tagMemRefInfo;
AffineMapAttr tagMapAttr;
SmallVector<OpAsmParser::OperandType, 2> tagMapOperands;
Type type;
auto indexType = parser.getBuilder().getIndexType();
OpAsmParser::OperandType numElementsInfo;
// Parse tag memref, its map operands, and dma size.
if (parser.parseOperand(tagMemRefInfo) ||
parser.parseAffineMapOfSSAIds(tagMapOperands, tagMapAttr,
getTagMapAttrName(), result.attributes) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseColonType(type) ||
parser.resolveOperand(tagMemRefInfo, type, result.operands) ||
parser.resolveOperands(tagMapOperands, indexType, result.operands) ||
parser.resolveOperand(numElementsInfo, indexType, result.operands))
return failure();
if (!type.isa<MemRefType>())
return parser.emitError(parser.getNameLoc(),
"expected tag to be of memref type");
if (tagMapOperands.size() != tagMapAttr.getValue().getNumInputs())
return parser.emitError(parser.getNameLoc(),
"tag memref operand count != to map.numInputs");
return success();
}
LogicalResult AffineDmaWaitOp::verify() {
if (!getOperand(0).getType().isa<MemRefType>())
return emitOpError("expected DMA tag to be of memref type");
Region *scope = getAffineScope(*this);
for (auto idx : getTagIndices()) {
if (!idx.getType().isIndex())
return emitOpError("index to dma_wait must have 'index' type");
if (!isValidAffineIndexOperand(idx, scope))
return emitOpError("index must be a dimension or symbol identifier");
}
return success();
}
LogicalResult AffineDmaWaitOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_wait(memrefcast) -> dma_wait
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// AffineForOp
//===----------------------------------------------------------------------===//
/// 'bodyBuilder' is used to build the body of affine.for. If iterArgs and
/// bodyBuilder are empty/null, we include default terminator op.
void AffineForOp::build(OpBuilder &builder, OperationState &result,
ValueRange lbOperands, AffineMap lbMap,
ValueRange ubOperands, AffineMap ubMap, int64_t step,
ValueRange iterArgs, BodyBuilderFn bodyBuilder) {
assert(((!lbMap && lbOperands.empty()) ||
lbOperands.size() == lbMap.getNumInputs()) &&
"lower bound operand count does not match the affine map");
assert(((!ubMap && ubOperands.empty()) ||
ubOperands.size() == ubMap.getNumInputs()) &&
"upper bound operand count does not match the affine map");
assert(step > 0 && "step has to be a positive integer constant");
for (Value val : iterArgs)
result.addTypes(val.getType());
// Add an attribute for the step.
result.addAttribute(getStepAttrName(),
builder.getIntegerAttr(builder.getIndexType(), step));
// Add the lower bound.
result.addAttribute(getLowerBoundAttrName(), AffineMapAttr::get(lbMap));
result.addOperands(lbOperands);
// Add the upper bound.
result.addAttribute(getUpperBoundAttrName(), AffineMapAttr::get(ubMap));
result.addOperands(ubOperands);
result.addOperands(iterArgs);
// Create a region and a block for the body. The argument of the region is
// the loop induction variable.
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
Value inductionVar = bodyBlock.addArgument(builder.getIndexType());
for (Value val : iterArgs)
bodyBlock.addArgument(val.getType());
// Create the default terminator if the builder is not provided and if the
// iteration arguments are not provided. Otherwise, leave this to the caller
// because we don't know which values to return from the loop.
if (iterArgs.empty() && !bodyBuilder) {
ensureTerminator(*bodyRegion, builder, result.location);
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, inductionVar,
bodyBlock.getArguments().drop_front());
}
}
void AffineForOp::build(OpBuilder &builder, OperationState &result, int64_t lb,
int64_t ub, int64_t step, ValueRange iterArgs,
BodyBuilderFn bodyBuilder) {
auto lbMap = AffineMap::getConstantMap(lb, builder.getContext());
auto ubMap = AffineMap::getConstantMap(ub, builder.getContext());
return build(builder, result, {}, lbMap, {}, ubMap, step, iterArgs,
bodyBuilder);
}
static LogicalResult verify(AffineForOp op) {
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (body->getNumArguments() == 0 || !body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body to have a single index argument for the "
"induction variable");
// Verify that the bound operands are valid dimension/symbols.
/// Lower bound.
if (op.getLowerBoundMap().getNumInputs() > 0)
if (failed(
verifyDimAndSymbolIdentifiers(op, op.getLowerBoundOperands(),
op.getLowerBoundMap().getNumDims())))
return failure();
/// Upper bound.
if (op.getUpperBoundMap().getNumInputs() > 0)
if (failed(
verifyDimAndSymbolIdentifiers(op, op.getUpperBoundOperands(),
op.getUpperBoundMap().getNumDims())))
return failure();
unsigned opNumResults = op.getNumResults();
if (opNumResults == 0)
return success();
// If ForOp defines values, check that the number and types of the defined
// values match ForOp initial iter operands and backedge basic block
// arguments.
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch between the number of loop-carried values and results");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch between the number of basic block args and results");
return success();
}
/// Parse a for operation loop bounds.
static ParseResult parseBound(bool isLower, OperationState &result,
OpAsmParser &p) {
// 'min' / 'max' prefixes are generally syntactic sugar, but are required if
// the map has multiple results.
bool failedToParsedMinMax =
failed(p.parseOptionalKeyword(isLower ? "max" : "min"));
auto &builder = p.getBuilder();
auto boundAttrName = isLower ? AffineForOp::getLowerBoundAttrName()
: AffineForOp::getUpperBoundAttrName();
// Parse ssa-id as identity map.
SmallVector<OpAsmParser::OperandType, 1> boundOpInfos;
if (p.parseOperandList(boundOpInfos))
return failure();
if (!boundOpInfos.empty()) {
// Check that only one operand was parsed.
if (boundOpInfos.size() > 1)
return p.emitError(p.getNameLoc(),
"expected only one loop bound operand");
// TODO: improve error message when SSA value is not of index type.
// Currently it is 'use of value ... expects different type than prior uses'
if (p.resolveOperand(boundOpInfos.front(), builder.getIndexType(),
result.operands))
return failure();
// Create an identity map using symbol id. This representation is optimized
// for storage. Analysis passes may expand it into a multi-dimensional map
// if desired.
AffineMap map = builder.getSymbolIdentityMap();
result.addAttribute(boundAttrName, AffineMapAttr::get(map));
return success();
}
// Get the attribute location.
llvm::SMLoc attrLoc = p.getCurrentLocation();
Attribute boundAttr;
if (p.parseAttribute(boundAttr, builder.getIndexType(), boundAttrName,
result.attributes))
return failure();
// Parse full form - affine map followed by dim and symbol list.
if (auto affineMapAttr = boundAttr.dyn_cast<AffineMapAttr>()) {
unsigned currentNumOperands = result.operands.size();
unsigned numDims;
if (parseDimAndSymbolList(p, result.operands, numDims))
return failure();
auto map = affineMapAttr.getValue();
if (map.getNumDims() != numDims)
return p.emitError(
p.getNameLoc(),
"dim operand count and affine map dim count must match");
unsigned numDimAndSymbolOperands =
result.operands.size() - currentNumOperands;
if (numDims + map.getNumSymbols() != numDimAndSymbolOperands)
return p.emitError(
p.getNameLoc(),
"symbol operand count and affine map symbol count must match");
// If the map has multiple results, make sure that we parsed the min/max
// prefix.
if (map.getNumResults() > 1 && failedToParsedMinMax) {
if (isLower) {
return p.emitError(attrLoc, "lower loop bound affine map with "
"multiple results requires 'max' prefix");
}
return p.emitError(attrLoc, "upper loop bound affine map with multiple "
"results requires 'min' prefix");
}
return success();
}
// Parse custom assembly form.
if (auto integerAttr = boundAttr.dyn_cast<IntegerAttr>()) {
result.attributes.pop_back();
result.addAttribute(
boundAttrName,
AffineMapAttr::get(builder.getConstantAffineMap(integerAttr.getInt())));
return success();
}
return p.emitError(
p.getNameLoc(),
"expected valid affine map representation for loop bounds");
}
static ParseResult parseAffineForOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
OpAsmParser::OperandType inductionVariable;
// Parse the induction variable followed by '='.
if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
return failure();
// Parse loop bounds.
if (parseBound(/*isLower=*/true, result, parser) ||
parser.parseKeyword("to", " between bounds") ||
parseBound(/*isLower=*/false, result, parser))
return failure();
// Parse the optional loop step, we default to 1 if one is not present.
if (parser.parseOptionalKeyword("step")) {
result.addAttribute(
AffineForOp::getStepAttrName(),
builder.getIntegerAttr(builder.getIndexType(), /*value=*/1));
} else {
llvm::SMLoc stepLoc = parser.getCurrentLocation();
IntegerAttr stepAttr;
if (parser.parseAttribute(stepAttr, builder.getIndexType(),
AffineForOp::getStepAttrName().data(),
result.attributes))
return failure();
if (stepAttr.getValue().getSExtValue() < 0)
return parser.emitError(
stepLoc,
"expected step to be representable as a positive signed integer");
}
// Parse the optional initial iteration arguments.
SmallVector<OpAsmParser::OperandType, 4> regionArgs, operands;
SmallVector<Type, 4> argTypes;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
// Resolve input operands.
for (auto operandType : llvm::zip(operands, result.types))
if (parser.resolveOperand(std::get<0>(operandType),
std::get<1>(operandType), result.operands))
return failure();
}
// Induction variable.
Type indexType = builder.getIndexType();
argTypes.push_back(indexType);
// Loop carried variables.
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
Region *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch between the number of loop-carried values and results");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
AffineForOp::ensureTerminator(*body, builder, result.location);
// Parse the optional attribute list.
return parser.parseOptionalAttrDict(result.attributes);
}
static void printBound(AffineMapAttr boundMap,
Operation::operand_range boundOperands,
const char *prefix, OpAsmPrinter &p) {
AffineMap map = boundMap.getValue();
// Check if this bound should be printed using custom assembly form.
// The decision to restrict printing custom assembly form to trivial cases
// comes from the will to roundtrip MLIR binary -> text -> binary in a
// lossless way.
// Therefore, custom assembly form parsing and printing is only supported for
// zero-operand constant maps and single symbol operand identity maps.
if (map.getNumResults() == 1) {
AffineExpr expr = map.getResult(0);
// Print constant bound.
if (map.getNumDims() == 0 && map.getNumSymbols() == 0) {
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
p << constExpr.getValue();
return;
}
}
// Print bound that consists of a single SSA symbol if the map is over a
// single symbol.
if (map.getNumDims() == 0 && map.getNumSymbols() == 1) {
if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) {
p.printOperand(*boundOperands.begin());
return;
}
}
} else {
// Map has multiple results. Print 'min' or 'max' prefix.
p << prefix << ' ';
}
// Print the map and its operands.
p << boundMap;
printDimAndSymbolList(boundOperands.begin(), boundOperands.end(),
map.getNumDims(), p);
}
unsigned AffineForOp::getNumIterOperands() {
AffineMap lbMap = getLowerBoundMapAttr().getValue();
AffineMap ubMap = getUpperBoundMapAttr().getValue();
return getNumOperands() - lbMap.getNumInputs() - ubMap.getNumInputs();
}
static void print(OpAsmPrinter &p, AffineForOp op) {
p << ' ';
p.printOperand(op.getBody()->getArgument(0));
p << " = ";
printBound(op.getLowerBoundMapAttr(), op.getLowerBoundOperands(), "max", p);
p << " to ";
printBound(op.getUpperBoundMapAttr(), op.getUpperBoundOperands(), "min", p);
if (op.getStep() != 1)
p << " step " << op.getStep();
bool printBlockTerminators = false;
if (op.getNumIterOperands() > 0) {
p << " iter_args(";
auto regionArgs = op.getRegionIterArgs();
auto operands = op.getIterOperands();
llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ") -> (" << op.getResultTypes() << ")";
printBlockTerminators = true;
}
p.printRegion(op.region(),
/*printEntryBlockArgs=*/false, printBlockTerminators);
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{op.getLowerBoundAttrName(),
op.getUpperBoundAttrName(),
op.getStepAttrName()});
}
/// Fold the constant bounds of a loop.
static LogicalResult foldLoopBounds(AffineForOp forOp) {
auto foldLowerOrUpperBound = [&forOp](bool lower) {
// Check to see if each of the operands is the result of a constant. If
// so, get the value. If not, ignore it.
SmallVector<Attribute, 8> operandConstants;
auto boundOperands =
lower ? forOp.getLowerBoundOperands() : forOp.getUpperBoundOperands();
for (auto operand : boundOperands) {
Attribute operandCst;
matchPattern(operand, m_Constant(&operandCst));
operandConstants.push_back(operandCst);
}
AffineMap boundMap =
lower ? forOp.getLowerBoundMap() : forOp.getUpperBoundMap();
assert(boundMap.getNumResults() >= 1 &&
"bound maps should have at least one result");
SmallVector<Attribute, 4> foldedResults;
if (failed(boundMap.constantFold(operandConstants, foldedResults)))
return failure();
// Compute the max or min as applicable over the results.
assert(!foldedResults.empty() && "bounds should have at least one result");
auto maxOrMin = foldedResults[0].cast<IntegerAttr>().getValue();
for (unsigned i = 1, e = foldedResults.size(); i < e; i++) {
auto foldedResult = foldedResults[i].cast<IntegerAttr>().getValue();
maxOrMin = lower ? llvm::APIntOps::smax(maxOrMin, foldedResult)
: llvm::APIntOps::smin(maxOrMin, foldedResult);
}
lower ? forOp.setConstantLowerBound(maxOrMin.getSExtValue())
: forOp.setConstantUpperBound(maxOrMin.getSExtValue());
return success();
};
// Try to fold the lower bound.
bool folded = false;
if (!forOp.hasConstantLowerBound())
folded |= succeeded(foldLowerOrUpperBound(/*lower=*/true));
// Try to fold the upper bound.
if (!forOp.hasConstantUpperBound())
folded |= succeeded(foldLowerOrUpperBound(/*lower=*/false));
return success(folded);
}
/// Canonicalize the bounds of the given loop.
static LogicalResult canonicalizeLoopBounds(AffineForOp forOp) {
SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands());
SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands());
auto lbMap = forOp.getLowerBoundMap();
auto ubMap = forOp.getUpperBoundMap();
auto prevLbMap = lbMap;
auto prevUbMap = ubMap;
composeAffineMapAndOperands(&lbMap, &lbOperands);
canonicalizeMapAndOperands(&lbMap, &lbOperands);
lbMap = removeDuplicateExprs(lbMap);
composeAffineMapAndOperands(&ubMap, &ubOperands);
canonicalizeMapAndOperands(&ubMap, &ubOperands);
ubMap = removeDuplicateExprs(ubMap);
// Any canonicalization change always leads to updated map(s).
if (lbMap == prevLbMap && ubMap == prevUbMap)
return failure();
if (lbMap != prevLbMap)
forOp.setLowerBound(lbOperands, lbMap);
if (ubMap != prevUbMap)
forOp.setUpperBound(ubOperands, ubMap);
return success();
}
namespace {
/// This is a pattern to fold trivially empty loop bodies.
/// TODO: This should be moved into the folding hook.
struct AffineForEmptyLoopFolder : public OpRewritePattern<AffineForOp> {
using OpRewritePattern<AffineForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineForOp forOp,
PatternRewriter &rewriter) const override {
// Check that the body only contains a yield.
if (!llvm::hasSingleElement(*forOp.getBody()))
return failure();
// The initial values of the iteration arguments would be the op's results.
rewriter.replaceOp(forOp, forOp.getIterOperands());
return success();
}
};
} // end anonymous namespace
void AffineForOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<AffineForEmptyLoopFolder>(context);
}
/// Returns true if the affine.for has zero iterations in trivial cases.
static bool hasTrivialZeroTripCount(AffineForOp op) {
if (!op.hasConstantBounds())
return false;
int64_t lb = op.getConstantLowerBound();
int64_t ub = op.getConstantUpperBound();
return ub - lb <= 0;
}
LogicalResult AffineForOp::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
bool folded = succeeded(foldLoopBounds(*this));
folded |= succeeded(canonicalizeLoopBounds(*this));
if (hasTrivialZeroTripCount(*this)) {
// The initial values of the loop-carried variables (iter_args) are the
// results of the op.
results.assign(getIterOperands().begin(), getIterOperands().end());
folded = true;
}
return success(folded);
}
AffineBound AffineForOp::getLowerBound() {
auto lbMap = getLowerBoundMap();
return AffineBound(AffineForOp(*this), 0, lbMap.getNumInputs(), lbMap);
}
AffineBound AffineForOp::getUpperBound() {
auto lbMap = getLowerBoundMap();
auto ubMap = getUpperBoundMap();
return AffineBound(AffineForOp(*this), lbMap.getNumInputs(),
lbMap.getNumInputs() + ubMap.getNumInputs(), ubMap);
}
void AffineForOp::setLowerBound(ValueRange lbOperands, AffineMap map) {
assert(lbOperands.size() == map.getNumInputs());
assert(map.getNumResults() >= 1 && "bound map has at least one result");
SmallVector<Value, 4> newOperands(lbOperands.begin(), lbOperands.end());
auto ubOperands = getUpperBoundOperands();
newOperands.append(ubOperands.begin(), ubOperands.end());
auto iterOperands = getIterOperands();
newOperands.append(iterOperands.begin(), iterOperands.end());
(*this)->setOperands(newOperands);
(*this)->setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map));
}
void AffineForOp::setUpperBound(ValueRange ubOperands, AffineMap map) {
assert(ubOperands.size() == map.getNumInputs());
assert(map.getNumResults() >= 1 && "bound map has at least one result");
SmallVector<Value, 4> newOperands(getLowerBoundOperands());
newOperands.append(ubOperands.begin(), ubOperands.end());
auto iterOperands = getIterOperands();
newOperands.append(iterOperands.begin(), iterOperands.end());
(*this)->setOperands(newOperands);
(*this)->setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map));
}
void AffineForOp::setLowerBoundMap(AffineMap map) {
auto lbMap = getLowerBoundMap();
assert(lbMap.getNumDims() == map.getNumDims() &&
lbMap.getNumSymbols() == map.getNumSymbols());
assert(map.getNumResults() >= 1 && "bound map has at least one result");
(void)lbMap;
(*this)->setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map));
}
void AffineForOp::setUpperBoundMap(AffineMap map) {
auto ubMap = getUpperBoundMap();
assert(ubMap.getNumDims() == map.getNumDims() &&
ubMap.getNumSymbols() == map.getNumSymbols());
assert(map.getNumResults() >= 1 && "bound map has at least one result");
(void)ubMap;
(*this)->setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map));
}
bool AffineForOp::hasConstantLowerBound() {
return getLowerBoundMap().isSingleConstant();
}
bool AffineForOp::hasConstantUpperBound() {
return getUpperBoundMap().isSingleConstant();
}
int64_t AffineForOp::getConstantLowerBound() {
return getLowerBoundMap().getSingleConstantResult();
}
int64_t AffineForOp::getConstantUpperBound() {
return getUpperBoundMap().getSingleConstantResult();
}
void AffineForOp::setConstantLowerBound(int64_t value) {
setLowerBound({}, AffineMap::getConstantMap(value, getContext()));
}
void AffineForOp::setConstantUpperBound(int64_t value) {
setUpperBound({}, AffineMap::getConstantMap(value, getContext()));
}
AffineForOp::operand_range AffineForOp::getLowerBoundOperands() {
return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs()};
}
AffineForOp::operand_range AffineForOp::getUpperBoundOperands() {
return {operand_begin() + getLowerBoundMap().getNumInputs(),
operand_begin() + getLowerBoundMap().getNumInputs() +
getUpperBoundMap().getNumInputs()};
}
AffineForOp::operand_range AffineForOp::getControlOperands() {
return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs() +
getUpperBoundMap().getNumInputs()};
}
bool AffineForOp::matchingBoundOperandList() {
auto lbMap = getLowerBoundMap();
auto ubMap = getUpperBoundMap();
if (lbMap.getNumDims() != ubMap.getNumDims() ||
lbMap.getNumSymbols() != ubMap.getNumSymbols())
return false;
unsigned numOperands = lbMap.getNumInputs();
for (unsigned i = 0, e = lbMap.getNumInputs(); i < e; i++) {
// Compare Value 's.
if (getOperand(i) != getOperand(numOperands + i))
return false;
}
return true;
}
Region &AffineForOp::getLoopBody() { return region(); }
bool AffineForOp::isDefinedOutsideOfLoop(Value value) {
return !region().isAncestor(value.getParentRegion());
}
LogicalResult AffineForOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto *op : ops)
op->moveBefore(*this);
return success();
}
/// Returns true if the provided value is the induction variable of a
/// AffineForOp.
bool mlir::isForInductionVar(Value val) {
return getForInductionVarOwner(val) != AffineForOp();
}
/// Returns the loop parent of an induction variable. If the provided value is
/// not an induction variable, then return nullptr.
AffineForOp mlir::getForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg || !ivArg.getOwner())
return AffineForOp();
auto *containingInst = ivArg.getOwner()->getParent()->getParentOp();
if (auto forOp = dyn_cast<AffineForOp>(containingInst))
// Check to make sure `val` is the induction variable, not an iter_arg.
return forOp.getInductionVar() == val ? forOp : AffineForOp();
return AffineForOp();
}
/// Extracts the induction variables from a list of AffineForOps and returns
/// them.
void mlir::extractForInductionVars(ArrayRef<AffineForOp> forInsts,
SmallVectorImpl<Value> *ivs) {
ivs->reserve(forInsts.size());
for (auto forInst : forInsts)
ivs->push_back(forInst.getInductionVar());
}
/// Builds an affine loop nest, using "loopCreatorFn" to create individual loop
/// operations.
template <typename BoundListTy, typename LoopCreatorTy>
static void buildAffineLoopNestImpl(
OpBuilder &builder, Location loc, BoundListTy lbs, BoundListTy ubs,
ArrayRef<int64_t> steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn,
LoopCreatorTy &&loopCreatorFn) {
assert(lbs.size() == ubs.size() && "Mismatch in number of arguments");
assert(lbs.size() == steps.size() && "Mismatch in number of arguments");
// If there are no loops to be constructed, construct the body anyway.
OpBuilder::InsertionGuard guard(builder);
if (lbs.empty()) {
if (bodyBuilderFn)
bodyBuilderFn(builder, loc, ValueRange());
return;
}
// Create the loops iteratively and store the induction variables.
SmallVector<Value, 4> ivs;
ivs.reserve(lbs.size());
for (unsigned i = 0, e = lbs.size(); i < e; ++i) {
// Callback for creating the loop body, always creates the terminator.
auto loopBody = [&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
ValueRange iterArgs) {
ivs.push_back(iv);
// In the innermost loop, call the body builder.
if (i == e - 1 && bodyBuilderFn) {
OpBuilder::InsertionGuard nestedGuard(nestedBuilder);
bodyBuilderFn(nestedBuilder, nestedLoc, ivs);
}
nestedBuilder.create<AffineYieldOp>(nestedLoc);
};
// Delegate actual loop creation to the callback in order to dispatch
// between constant- and variable-bound loops.
auto loop = loopCreatorFn(builder, loc, lbs[i], ubs[i], steps[i], loopBody);
builder.setInsertionPointToStart(loop.getBody());
}
}
/// Creates an affine loop from the bounds known to be constants.
static AffineForOp
buildAffineLoopFromConstants(OpBuilder &builder, Location loc, int64_t lb,
int64_t ub, int64_t step,
AffineForOp::BodyBuilderFn bodyBuilderFn) {
return builder.create<AffineForOp>(loc, lb, ub, step, /*iterArgs=*/llvm::None,
bodyBuilderFn);
}
/// Creates an affine loop from the bounds that may or may not be constants.
static AffineForOp
buildAffineLoopFromValues(OpBuilder &builder, Location loc, Value lb, Value ub,
int64_t step,
AffineForOp::BodyBuilderFn bodyBuilderFn) {
auto lbConst = lb.getDefiningOp<arith::ConstantIndexOp>();
auto ubConst = ub.getDefiningOp<arith::ConstantIndexOp>();
if (lbConst && ubConst)
return buildAffineLoopFromConstants(builder, loc, lbConst.value(),
ubConst.value(), step, bodyBuilderFn);
return builder.create<AffineForOp>(loc, lb, builder.getDimIdentityMap(), ub,
builder.getDimIdentityMap(), step,
/*iterArgs=*/llvm::None, bodyBuilderFn);
}
void mlir::buildAffineLoopNest(
OpBuilder &builder, Location loc, ArrayRef<int64_t> lbs,
ArrayRef<int64_t> ubs, ArrayRef<int64_t> steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
buildAffineLoopNestImpl(builder, loc, lbs, ubs, steps, bodyBuilderFn,
buildAffineLoopFromConstants);
}
void mlir::buildAffineLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ArrayRef<int64_t> steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
buildAffineLoopNestImpl(builder, loc, lbs, ubs, steps, bodyBuilderFn,
buildAffineLoopFromValues);
}
AffineForOp mlir::replaceForOpWithNewYields(OpBuilder &b, AffineForOp loop,
ValueRange newIterOperands,
ValueRange newYieldedValues,
ValueRange newIterArgs,
bool replaceLoopResults) {
assert(newIterOperands.size() == newYieldedValues.size() &&
"newIterOperands must be of the same size as newYieldedValues");
// Create a new loop before the existing one, with the extra operands.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(loop);
auto operands = llvm::to_vector<4>(loop.getIterOperands());
operands.append(newIterOperands.begin(), newIterOperands.end());
SmallVector<Value, 4> lbOperands(loop.getLowerBoundOperands());
SmallVector<Value, 4> ubOperands(loop.getUpperBoundOperands());
SmallVector<Value, 4> steps(loop.getStep());
auto lbMap = loop.getLowerBoundMap();
auto ubMap = loop.getUpperBoundMap();
AffineForOp newLoop =
b.create<AffineForOp>(loop.getLoc(), lbOperands, lbMap, ubOperands, ubMap,
loop.getStep(), operands);
// Take the body of the original parent loop.
newLoop.getLoopBody().takeBody(loop.getLoopBody());
for (Value val : newIterArgs)
newLoop.getLoopBody().addArgument(val.getType());
// Update yield operation with new values to be added.
if (!newYieldedValues.empty()) {
auto yield = cast<AffineYieldOp>(newLoop.getBody()->getTerminator());
b.setInsertionPoint(yield);
auto yieldOperands = llvm::to_vector<4>(yield.getOperands());
yieldOperands.append(newYieldedValues.begin(), newYieldedValues.end());
b.create<AffineYieldOp>(yield.getLoc(), yieldOperands);
yield.erase();
}
if (replaceLoopResults) {
for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
loop.getNumResults()))) {
std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
}
}
return newLoop;
}
//===----------------------------------------------------------------------===//
// AffineIfOp
//===----------------------------------------------------------------------===//
namespace {
/// Remove else blocks that have nothing other than a zero value yield.
struct SimplifyDeadElse : public OpRewritePattern<AffineIfOp> {
using OpRewritePattern<AffineIfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineIfOp ifOp,
PatternRewriter &rewriter) const override {
if (ifOp.elseRegion().empty() ||
!llvm::hasSingleElement(*ifOp.getElseBlock()) || ifOp.getNumResults())
return failure();
rewriter.startRootUpdate(ifOp);
rewriter.eraseBlock(ifOp.getElseBlock());
rewriter.finalizeRootUpdate(ifOp);
return success();
}
};
/// Removes affine.if cond if the condition is always true or false in certain
/// trivial cases. Promotes the then/else block in the parent operation block.
struct AlwaysTrueOrFalseIf : public OpRewritePattern<AffineIfOp> {
using OpRewritePattern<AffineIfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineIfOp op,
PatternRewriter &rewriter) const override {
auto isTriviallyFalse = [](IntegerSet iSet) {
return iSet.isEmptyIntegerSet();
};
auto isTriviallyTrue = [](IntegerSet iSet) {
return (iSet.getNumEqualities() == 1 && iSet.getNumInequalities() == 0 &&
iSet.getConstraint(0) == 0);
};
IntegerSet affineIfConditions = op.getIntegerSet();
Block *blockToMove;
if (isTriviallyFalse(affineIfConditions)) {
// The absence, or equivalently, the emptiness of the else region need not
// be checked when affine.if is returning results because if an affine.if
// operation is returning results, it always has a non-empty else region.
if (op.getNumResults() == 0 && !op.hasElse()) {
// If the else region is absent, or equivalently, empty, remove the
// affine.if operation (which is not returning any results).
rewriter.eraseOp(op);
return success();
}
blockToMove = op.getElseBlock();
} else if (isTriviallyTrue(affineIfConditions)) {
blockToMove = op.getThenBlock();
} else {
return failure();
}
Operation *blockToMoveTerminator = blockToMove->getTerminator();
// Promote the "blockToMove" block to the parent operation block between the
// prologue and epilogue of "op".
rewriter.mergeBlockBefore(blockToMove, op);
// Replace the "op" operation with the operands of the
// "blockToMoveTerminator" operation. Note that "blockToMoveTerminator" is
// the affine.yield operation present in the "blockToMove" block. It has no
// operands when affine.if is not returning results and therefore, in that
// case, replaceOp just erases "op". When affine.if is not returning
// results, the affine.yield operation can be omitted. It gets inserted
// implicitly.
rewriter.replaceOp(op, blockToMoveTerminator->getOperands());
// Erase the "blockToMoveTerminator" operation since it is now in the parent
// operation block, which already has its own terminator.
rewriter.eraseOp(blockToMoveTerminator);
return success();
}
};
} // end anonymous namespace.
static LogicalResult verify(AffineIfOp op) {
// Verify that we have a condition attribute.
auto conditionAttr =
op->getAttrOfType<IntegerSetAttr>(op.getConditionAttrName());
if (!conditionAttr)
return op.emitOpError(
"requires an integer set attribute named 'condition'");
// Verify that there are enough operands for the condition.
IntegerSet condition = conditionAttr.getValue();
if (op.getNumOperands() != condition.getNumInputs())
return op.emitOpError(
"operand count and condition integer set dimension and "
"symbol count must match");
// Verify that the operands are valid dimension/symbols.
if (failed(verifyDimAndSymbolIdentifiers(op, op.getOperands(),
condition.getNumDims())))
return failure();
return success();
}
static ParseResult parseAffineIfOp(OpAsmParser &parser,
OperationState &result) {
// Parse the condition attribute set.
IntegerSetAttr conditionAttr;
unsigned numDims;
if (parser.parseAttribute(conditionAttr, AffineIfOp::getConditionAttrName(),
result.attributes) ||
parseDimAndSymbolList(parser, result.operands, numDims))
return failure();
// Verify the condition operands.
auto set = conditionAttr.getValue();
if (set.getNumDims() != numDims)
return parser.emitError(
parser.getNameLoc(),
"dim operand count and integer set dim count must match");
if (numDims + set.getNumSymbols() != result.operands.size())
return parser.emitError(
parser.getNameLoc(),
"symbol operand count and integer set symbol count must match");
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Create the regions for 'then' and 'else'. The latter must be created even
// if it remains empty for the validity of the operation.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, {}, {}))
return failure();
AffineIfOp::ensureTerminator(*thenRegion, parser.getBuilder(),
result.location);
// If we find an 'else' keyword then parse the 'else' region.
if (!parser.parseOptionalKeyword("else")) {
if (parser.parseRegion(*elseRegion, {}, {}))
return failure();
AffineIfOp::ensureTerminator(*elseRegion, parser.getBuilder(),
result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, AffineIfOp op) {
auto conditionAttr =
op->getAttrOfType<IntegerSetAttr>(op.getConditionAttrName());
p << " " << conditionAttr;
printDimAndSymbolList(op.operand_begin(), op.operand_end(),
conditionAttr.getValue().getNumDims(), p);
p.printOptionalArrowTypeList(op.getResultTypes());
p.printRegion(op.thenRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/op.getNumResults());
// Print the 'else' regions if it has any blocks.
auto &elseRegion = op.elseRegion();
if (!elseRegion.empty()) {
p << " else";
p.printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/op.getNumResults());
}
// Print the attribute list.
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/op.getConditionAttrName());
}
IntegerSet AffineIfOp::getIntegerSet() {
return (*this)
->getAttrOfType<IntegerSetAttr>(getConditionAttrName())
.getValue();
}
void AffineIfOp::setIntegerSet(IntegerSet newSet) {
(*this)->setAttr(getConditionAttrName(), IntegerSetAttr::get(newSet));
}
void AffineIfOp::setConditional(IntegerSet set, ValueRange operands) {
setIntegerSet(set);
(*this)->setOperands(operands);
}
void AffineIfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, IntegerSet set, ValueRange args,
bool withElseRegion) {
assert(resultTypes.empty() || withElseRegion);
result.addTypes(resultTypes);
result.addOperands(args);
result.addAttribute(getConditionAttrName(), IntegerSetAttr::get(set));
Region *thenRegion = result.addRegion();
thenRegion->push_back(new Block());
if (resultTypes.empty())
AffineIfOp::ensureTerminator(*thenRegion, builder, result.location);
Region *elseRegion = result.addRegion();
if (withElseRegion) {
elseRegion->push_back(new Block());
if (resultTypes.empty())
AffineIfOp::ensureTerminator(*elseRegion, builder, result.location);
}
}
void AffineIfOp::build(OpBuilder &builder, OperationState &result,
IntegerSet set, ValueRange args, bool withElseRegion) {
AffineIfOp::build(builder, result, /*resultTypes=*/{}, set, args,
withElseRegion);
}
/// Canonicalize an affine if op's conditional (integer set + operands).
LogicalResult AffineIfOp::fold(ArrayRef<Attribute>,
SmallVectorImpl<OpFoldResult> &) {
auto set = getIntegerSet();
SmallVector<Value, 4> operands(getOperands());
canonicalizeSetAndOperands(&set, &operands);
// Any canonicalization change always leads to either a reduction in the
// number of operands or a change in the number of symbolic operands
// (promotion of dims to symbols).
if (operands.size() < getIntegerSet().getNumInputs() ||
set.getNumSymbols() > getIntegerSet().getNumSymbols()) {
setConditional(set, operands);
return success();
}
return failure();
}
void AffineIfOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyDeadElse, AlwaysTrueOrFalseIf>(context);
}
//===----------------------------------------------------------------------===//
// AffineLoadOp
//===----------------------------------------------------------------------===//
void AffineLoadOp::build(OpBuilder &builder, OperationState &result,
AffineMap map, ValueRange operands) {
assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands");
result.addOperands(operands);
if (map)
result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
auto memrefType = operands[0].getType().cast<MemRefType>();
result.types.push_back(memrefType.getElementType());
}
void AffineLoadOp::build(OpBuilder &builder, OperationState &result,
Value memref, AffineMap map, ValueRange mapOperands) {
assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
result.addOperands(memref);
result.addOperands(mapOperands);
auto memrefType = memref.getType().cast<MemRefType>();
result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
result.types.push_back(memrefType.getElementType());
}
void AffineLoadOp::build(OpBuilder &builder, OperationState &result,
Value memref, ValueRange indices) {
auto memrefType = memref.getType().cast<MemRefType>();
int64_t rank = memrefType.getRank();
// Create identity map for memrefs with at least one dimension or () -> ()
// for zero-dimensional memrefs.
auto map =
rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap();
build(builder, result, memref, map, indices);
}
static ParseResult parseAffineLoadOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
auto indexTy = builder.getIndexType();
MemRefType type;
OpAsmParser::OperandType memrefInfo;
AffineMapAttr mapAttr;
SmallVector<OpAsmParser::OperandType, 1> mapOperands;
return failure(
parser.parseOperand(memrefInfo) ||
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
AffineLoadOp::getMapAttrName(),
result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(memrefInfo, type, result.operands) ||
parser.resolveOperands(mapOperands, indexTy, result.operands) ||
parser.addTypeToList(type.getElementType(), result.types));
}
static void print(OpAsmPrinter &p, AffineLoadOp op) {
p << " " << op.getMemRef() << '[';
if (AffineMapAttr mapAttr =
op->getAttrOfType<AffineMapAttr>(op.getMapAttrName()))
p.printAffineMapOfSSAIds(mapAttr, op.getMapOperands());
p << ']';
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{op.getMapAttrName()});
p << " : " << op.getMemRefType();
}
/// Verify common indexing invariants of affine.load, affine.store,
/// affine.vector_load and affine.vector_store.
static LogicalResult
verifyMemoryOpIndexing(Operation *op, AffineMapAttr mapAttr,
Operation::operand_range mapOperands,
MemRefType memrefType, unsigned numIndexOperands) {
if (mapAttr) {
AffineMap map = mapAttr.getValue();
if (map.getNumResults() != memrefType.getRank())
return op->emitOpError("affine map num results must equal memref rank");
if (map.getNumInputs() != numIndexOperands)
return op->emitOpError("expects as many subscripts as affine map inputs");
} else {
if (memrefType.getRank() != numIndexOperands)
return op->emitOpError(
"expects the number of subscripts to be equal to memref rank");
}
Region *scope = getAffineScope(op);
for (auto idx : mapOperands) {
if (!idx.getType().isIndex())
return op->emitOpError("index to load must have 'index' type");
if (!isValidAffineIndexOperand(idx, scope))
return op->emitOpError("index must be a dimension or symbol identifier");
}
return success();
}
LogicalResult verify(AffineLoadOp op) {
auto memrefType = op.getMemRefType();
if (op.getType() != memrefType.getElementType())
return op.emitOpError("result type must match element type of memref");
if (failed(verifyMemoryOpIndexing(
op.getOperation(),
op->getAttrOfType<AffineMapAttr>(op.getMapAttrName()),
op.getMapOperands(), memrefType,
/*numIndexOperands=*/op.getNumOperands() - 1)))
return failure();
return success();
}
void AffineLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyAffineOp<AffineLoadOp>>(context);
}
OpFoldResult AffineLoadOp::fold(ArrayRef<Attribute> cstOperands) {
/// load(memrefcast) -> load
if (succeeded(foldMemRefCast(*this)))
return getResult();
return OpFoldResult();
}
//===----------------------------------------------------------------------===//
// AffineStoreOp
//===----------------------------------------------------------------------===//
void AffineStoreOp::build(OpBuilder &builder, OperationState &result,
Value valueToStore, Value memref, AffineMap map,
ValueRange mapOperands) {
assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
result.addOperands(valueToStore);
result.addOperands(memref);
result.addOperands(mapOperands);
result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
}
// Use identity map.
void AffineStoreOp::build(OpBuilder &builder, OperationState &result,
Value valueToStore, Value memref,
ValueRange indices) {
auto memrefType = memref.getType().cast<MemRefType>();
int64_t rank = memrefType.getRank();
// Create identity map for memrefs with at least one dimension or () -> ()
// for zero-dimensional memrefs.
auto map =
rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap();
build(builder, result, valueToStore, memref, map, indices);
}
static ParseResult parseAffineStoreOp(OpAsmParser &parser,
OperationState &result) {
auto indexTy = parser.getBuilder().getIndexType();
MemRefType type;
OpAsmParser::OperandType storeValueInfo;
OpAsmParser::OperandType memrefInfo;
AffineMapAttr mapAttr;
SmallVector<OpAsmParser::OperandType, 1> mapOperands;
return failure(parser.parseOperand(storeValueInfo) || parser.parseComma() ||
parser.parseOperand(memrefInfo) ||
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
AffineStoreOp::getMapAttrName(),
result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(storeValueInfo, type.getElementType(),
result.operands) ||
parser.resolveOperand(memrefInfo, type, result.operands) ||
parser.resolveOperands(mapOperands, indexTy, result.operands));
}
static void print(OpAsmPrinter &p, AffineStoreOp op) {
p << " " << op.getValueToStore();
p << ", " << op.getMemRef() << '[';
if (AffineMapAttr mapAttr =
op->getAttrOfType<AffineMapAttr>(op.getMapAttrName()))
p.printAffineMapOfSSAIds(mapAttr, op.getMapOperands());
p << ']';
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{op.getMapAttrName()});
p << " : " << op.getMemRefType();
}
LogicalResult verify(AffineStoreOp op) {
// The value to store must have the same type as memref element type.
auto memrefType = op.getMemRefType();
if (op.getValueToStore().getType() != memrefType.getElementType())
return op.emitOpError(
"value to store must have the same type as memref element type");
if (failed(verifyMemoryOpIndexing(
op.getOperation(),
op->getAttrOfType<AffineMapAttr>(op.getMapAttrName()),
op.getMapOperands(), memrefType,
/*numIndexOperands=*/op.getNumOperands() - 2)))
return failure();
return success();
}
void AffineStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyAffineOp<AffineStoreOp>>(context);
}
LogicalResult AffineStoreOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// store(memrefcast) -> store
return foldMemRefCast(*this, getValueToStore());
}
//===----------------------------------------------------------------------===//
// AffineMinMaxOpBase
//===----------------------------------------------------------------------===//
template <typename T> static LogicalResult verifyAffineMinMaxOp(T op) {
// Verify that operand count matches affine map dimension and symbol count.
if (op.getNumOperands() != op.map().getNumDims() + op.map().getNumSymbols())
return op.emitOpError(
"operand count and affine map dimension and symbol count must match");
return success();
}
template <typename T> static void printAffineMinMaxOp(OpAsmPrinter &p, T op) {
p << ' ' << op->getAttr(T::getMapAttrName());
auto operands = op.getOperands();
unsigned numDims = op.map().getNumDims();
p << '(' << operands.take_front(numDims) << ')';
if (operands.size() != numDims)
p << '[' << operands.drop_front(numDims) << ']';
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{T::getMapAttrName()});
}
template <typename T>
static ParseResult parseAffineMinMaxOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
auto indexType = builder.getIndexType();
SmallVector<OpAsmParser::OperandType, 8> dimInfos;
SmallVector<OpAsmParser::OperandType, 8> symInfos;
AffineMapAttr mapAttr;
return failure(
parser.parseAttribute(mapAttr, T::getMapAttrName(), result.attributes) ||
parser.parseOperandList(dimInfos, OpAsmParser::Delimiter::Paren) ||
parser.parseOperandList(symInfos,
OpAsmParser::Delimiter::OptionalSquare) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.resolveOperands(dimInfos, indexType, result.operands) ||
parser.resolveOperands(symInfos, indexType, result.operands) ||
parser.addTypeToList(indexType, result.types));
}
/// Fold an affine min or max operation with the given operands. The operand
/// list may contain nulls, which are interpreted as the operand not being a
/// constant.
template <typename T>
static OpFoldResult foldMinMaxOp(T op, ArrayRef<Attribute> operands) {
static_assert(llvm::is_one_of<T, AffineMinOp, AffineMaxOp>::value,
"expected affine min or max op");
// Fold the affine map.
// TODO: Fold more cases:
// min(some_affine, some_affine + constant, ...), etc.
SmallVector<int64_t, 2> results;
auto foldedMap = op.map().partialConstantFold(operands, &results);
// If some of the map results are not constant, try changing the map in-place.
if (results.empty()) {
// If the map is the same, report that folding did not happen.
if (foldedMap == op.map())
return {};
op->setAttr("map", AffineMapAttr::get(foldedMap));
return op.getResult();
}
// Otherwise, completely fold the op into a constant.
auto resultIt = std::is_same<T, AffineMinOp>::value
? std::min_element(results.begin(), results.end())
: std::max_element(results.begin(), results.end());
if (resultIt == results.end())
return {};
return IntegerAttr::get(IndexType::get(op.getContext()), *resultIt);
}
/// Remove duplicated expressions in affine min/max ops.
template <typename T>
struct DeduplicateAffineMinMaxExpressions : public OpRewritePattern<T> {
using OpRewritePattern<T>::OpRewritePattern;
LogicalResult matchAndRewrite(T affineOp,
PatternRewriter &rewriter) const override {
AffineMap oldMap = affineOp.getAffineMap();
SmallVector<AffineExpr, 4> newExprs;
for (AffineExpr expr : oldMap.getResults()) {
// This is a linear scan over newExprs, but it should be fine given that
// we typically just have a few expressions per op.
if (!llvm::is_contained(newExprs, expr))
newExprs.push_back(expr);
}
if (newExprs.size() == oldMap.getNumResults())
return failure();
auto newMap = AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(),
newExprs, rewriter.getContext());
rewriter.replaceOpWithNewOp<T>(affineOp, newMap, affineOp.getMapOperands());
return success();
}
};
/// Merge an affine min/max op to its consumers if its consumer is also an
/// affine min/max op.
///
/// This pattern requires the producer affine min/max op is bound to a
/// dimension/symbol that is used as a standalone expression in the consumer
/// affine op's map.
///
/// For example, a pattern like the following:
///
/// %0 = affine.min affine_map<()[s0] -> (s0 + 16, s0 * 8)> ()[%sym1]
/// %1 = affine.min affine_map<(d0)[s0] -> (s0 + 4, d0)> (%0)[%sym2]
///
/// Can be turned into:
///
/// %1 = affine.min affine_map<
/// ()[s0, s1] -> (s0 + 4, s1 + 16, s1 * 8)> ()[%sym2, %sym1]
template <typename T> struct MergeAffineMinMaxOp : public OpRewritePattern<T> {
using OpRewritePattern<T>::OpRewritePattern;
LogicalResult matchAndRewrite(T affineOp,
PatternRewriter &rewriter) const override {
AffineMap oldMap = affineOp.getAffineMap();
ValueRange dimOperands =
affineOp.getMapOperands().take_front(oldMap.getNumDims());
ValueRange symOperands =
affineOp.getMapOperands().take_back(oldMap.getNumSymbols());
auto newDimOperands = llvm::to_vector<8>(dimOperands);
auto newSymOperands = llvm::to_vector<8>(symOperands);
SmallVector<AffineExpr, 4> newExprs;
SmallVector<T, 4> producerOps;
// Go over each expression to see whether it's a single dimension/symbol
// with the corresponding operand which is the result of another affine
// min/max op. If So it can be merged into this affine op.
for (AffineExpr expr : oldMap.getResults()) {
if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) {
Value symValue = symOperands[symExpr.getPosition()];
if (auto producerOp = symValue.getDefiningOp<T>()) {
producerOps.push_back(producerOp);
continue;
}
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
Value dimValue = dimOperands[dimExpr.getPosition()];
if (auto producerOp = dimValue.getDefiningOp<T>()) {
producerOps.push_back(producerOp);
continue;
}
}
// For the above cases we will remove the expression by merging the
// producer affine min/max's affine expressions. Otherwise we need to
// keep the existing expression.
newExprs.push_back(expr);
}
if (producerOps.empty())
return failure();
unsigned numUsedDims = oldMap.getNumDims();
unsigned numUsedSyms = oldMap.getNumSymbols();
// Now go over all producer affine ops and merge their expressions.
for (T producerOp : producerOps) {
AffineMap producerMap = producerOp.getAffineMap();
unsigned numProducerDims = producerMap.getNumDims();
unsigned numProducerSyms = producerMap.getNumSymbols();
// Collect all dimension/symbol values.
ValueRange dimValues =
producerOp.getMapOperands().take_front(numProducerDims);
ValueRange symValues =
producerOp.getMapOperands().take_back(numProducerSyms);
newDimOperands.append(dimValues.begin(), dimValues.end());
newSymOperands.append(symValues.begin(), symValues.end());
// For expressions we need to shift to avoid overlap.
for (AffineExpr expr : producerMap.getResults()) {
newExprs.push_back(expr.shiftDims(numProducerDims, numUsedDims)
.shiftSymbols(numProducerSyms, numUsedSyms));
}
numUsedDims += numProducerDims;
numUsedSyms += numProducerSyms;
}
auto newMap = AffineMap::get(numUsedDims, numUsedSyms, newExprs,
rewriter.getContext());
auto newOperands =
llvm::to_vector<8>(llvm::concat<Value>(newDimOperands, newSymOperands));
rewriter.replaceOpWithNewOp<T>(affineOp, newMap, newOperands);
return success();
}
};
template <typename T>
struct CanonicalizeSingleResultAffineMinMaxOp : public OpRewritePattern<T> {
using OpRewritePattern<T>::OpRewritePattern;
LogicalResult matchAndRewrite(T affineOp,
PatternRewriter &rewriter) const override {
if (affineOp.map().getNumResults() != 1)
return failure();
rewriter.replaceOpWithNewOp<AffineApplyOp>(affineOp, affineOp.map(),
affineOp.getOperands());
return success();
}
};
//===----------------------------------------------------------------------===//
// AffineMinOp
//===----------------------------------------------------------------------===//
//
// %0 = affine.min (d0) -> (1000, d0 + 512) (%i0)
//
OpFoldResult AffineMinOp::fold(ArrayRef<Attribute> operands) {
return foldMinMaxOp(*this, operands);
}
void AffineMinOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<CanonicalizeSingleResultAffineMinMaxOp<AffineMinOp>,
DeduplicateAffineMinMaxExpressions<AffineMinOp>,
MergeAffineMinMaxOp<AffineMinOp>, SimplifyAffineOp<AffineMinOp>>(
context);
}
//===----------------------------------------------------------------------===//
// AffineMaxOp
//===----------------------------------------------------------------------===//
//
// %0 = affine.max (d0) -> (1000, d0 + 512) (%i0)
//
OpFoldResult AffineMaxOp::fold(ArrayRef<Attribute> operands) {
return foldMinMaxOp(*this, operands);
}
void AffineMaxOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<CanonicalizeSingleResultAffineMinMaxOp<AffineMaxOp>,
DeduplicateAffineMinMaxExpressions<AffineMaxOp>,
MergeAffineMinMaxOp<AffineMaxOp>, SimplifyAffineOp<AffineMaxOp>>(
context);
}
//===----------------------------------------------------------------------===//
// AffinePrefetchOp
//===----------------------------------------------------------------------===//
//
// affine.prefetch %0[%i, %j + 5], read, locality<3>, data : memref<400x400xi32>
//
static ParseResult parseAffinePrefetchOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
auto indexTy = builder.getIndexType();
MemRefType type;
OpAsmParser::OperandType memrefInfo;
IntegerAttr hintInfo;
auto i32Type = parser.getBuilder().getIntegerType(32);
StringRef readOrWrite, cacheType;
AffineMapAttr mapAttr;
SmallVector<OpAsmParser::OperandType, 1> mapOperands;
if (parser.parseOperand(memrefInfo) ||
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
AffinePrefetchOp::getMapAttrName(),
result.attributes) ||
parser.parseComma() || parser.parseKeyword(&readOrWrite) ||
parser.parseComma() || parser.parseKeyword("locality") ||
parser.parseLess() ||
parser.parseAttribute(hintInfo, i32Type,
AffinePrefetchOp::getLocalityHintAttrName(),
result.attributes) ||
parser.parseGreater() || parser.parseComma() ||
parser.parseKeyword(&cacheType) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(memrefInfo, type, result.operands) ||
parser.resolveOperands(mapOperands, indexTy, result.operands))
return failure();
if (!readOrWrite.equals("read") && !readOrWrite.equals("write"))
return parser.emitError(parser.getNameLoc(),
"rw specifier has to be 'read' or 'write'");
result.addAttribute(
AffinePrefetchOp::getIsWriteAttrName(),
parser.getBuilder().getBoolAttr(readOrWrite.equals("write")));
if (!cacheType.equals("data") && !cacheType.equals("instr"))
return parser.emitError(parser.getNameLoc(),
"cache type has to be 'data' or 'instr'");
result.addAttribute(
AffinePrefetchOp::getIsDataCacheAttrName(),
parser.getBuilder().getBoolAttr(cacheType.equals("data")));
return success();
}
static void print(OpAsmPrinter &p, AffinePrefetchOp op) {
p << " " << op.memref() << '[';
AffineMapAttr mapAttr = op->getAttrOfType<AffineMapAttr>(op.getMapAttrName());
if (mapAttr) {
SmallVector<Value, 2> operands(op.getMapOperands());
p.printAffineMapOfSSAIds(mapAttr, operands);
}
p << ']' << ", " << (op.isWrite() ? "write" : "read") << ", "
<< "locality<" << op.localityHint() << ">, "
<< (op.isDataCache() ? "data" : "instr");
p.printOptionalAttrDict(
op->getAttrs(),
/*elidedAttrs=*/{op.getMapAttrName(), op.getLocalityHintAttrName(),
op.getIsDataCacheAttrName(), op.getIsWriteAttrName()});
p << " : " << op.getMemRefType();
}
static LogicalResult verify(AffinePrefetchOp op) {
auto mapAttr = op->getAttrOfType<AffineMapAttr>(op.getMapAttrName());
if (mapAttr) {
AffineMap map = mapAttr.getValue();
if (map.getNumResults() != op.getMemRefType().getRank())
return op.emitOpError("affine.prefetch affine map num results must equal"
" memref rank");
if (map.getNumInputs() + 1 != op.getNumOperands())
return op.emitOpError("too few operands");
} else {
if (op.getNumOperands() != 1)
return op.emitOpError("too few operands");
}
Region *scope = getAffineScope(op);
for (auto idx : op.getMapOperands()) {
if (!isValidAffineIndexOperand(idx, scope))
return op.emitOpError("index must be a dimension or symbol identifier");
}
return success();
}
void AffinePrefetchOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
// prefetch(memrefcast) -> prefetch
results.add<SimplifyAffineOp<AffinePrefetchOp>>(context);
}
LogicalResult AffinePrefetchOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// prefetch(memrefcast) -> prefetch
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// AffineParallelOp
//===----------------------------------------------------------------------===//
void AffineParallelOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes,
ArrayRef<AtomicRMWKind> reductions,
ArrayRef<int64_t> ranges) {
SmallVector<AffineMap> lbs(ranges.size(), builder.getConstantAffineMap(0));
auto ubs = llvm::to_vector<4>(llvm::map_range(ranges, [&](int64_t value) {
return builder.getConstantAffineMap(value);
}));
SmallVector<int64_t> steps(ranges.size(), 1);
build(builder, result, resultTypes, reductions, lbs, /*lbArgs=*/{}, ubs,
/*ubArgs=*/{}, steps);
}
void AffineParallelOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes,
ArrayRef<AtomicRMWKind> reductions,
ArrayRef<AffineMap> lbMaps, ValueRange lbArgs,
ArrayRef<AffineMap> ubMaps, ValueRange ubArgs,
ArrayRef<int64_t> steps) {
assert(llvm::all_of(lbMaps,
[lbMaps](AffineMap m) {
return m.getNumDims() == lbMaps[0].getNumDims() &&
m.getNumSymbols() == lbMaps[0].getNumSymbols();
}) &&
"expected all lower bounds maps to have the same number of dimensions "
"and symbols");
assert(llvm::all_of(ubMaps,
[ubMaps](AffineMap m) {
return m.getNumDims() == ubMaps[0].getNumDims() &&
m.getNumSymbols() == ubMaps[0].getNumSymbols();
}) &&
"expected all upper bounds maps to have the same number of dimensions "
"and symbols");
assert((lbMaps.empty() || lbMaps[0].getNumInputs() == lbArgs.size()) &&
"expected lower bound maps to have as many inputs as lower bound "
"operands");
assert((ubMaps.empty() || ubMaps[0].getNumInputs() == ubArgs.size()) &&
"expected upper bound maps to have as many inputs as upper bound "
"operands");
result.addTypes(resultTypes);
// Convert the reductions to integer attributes.
SmallVector<Attribute, 4> reductionAttrs;
for (AtomicRMWKind reduction : reductions)
reductionAttrs.push_back(
builder.getI64IntegerAttr(static_cast<int64_t>(reduction)));
result.addAttribute(getReductionsAttrName(),
builder.getArrayAttr(reductionAttrs));
// Concatenates maps defined in the same input space (same dimensions and
// symbols), assumes there is at least one map.
auto concatMapsSameInput = [&builder](ArrayRef<AffineMap> maps,
SmallVectorImpl<int32_t> &groups) {
if (maps.empty())
return AffineMap::get(builder.getContext());
SmallVector<AffineExpr> exprs;
groups.reserve(groups.size() + maps.size());
exprs.reserve(maps.size());
for (AffineMap m : maps) {
llvm::append_range(exprs, m.getResults());
groups.push_back(m.getNumResults());
}
return AffineMap::get(maps[0].getNumDims(), maps[0].getNumSymbols(), exprs,
maps[0].getContext());
};
// Set up the bounds.
SmallVector<int32_t> lbGroups, ubGroups;
AffineMap lbMap = concatMapsSameInput(lbMaps, lbGroups);
AffineMap ubMap = concatMapsSameInput(ubMaps, ubGroups);
result.addAttribute(getLowerBoundsMapAttrName(), AffineMapAttr::get(lbMap));
result.addAttribute(getLowerBoundsGroupsAttrName(),
builder.getI32TensorAttr(lbGroups));
result.addAttribute(getUpperBoundsMapAttrName(), AffineMapAttr::get(ubMap));
result.addAttribute(getUpperBoundsGroupsAttrName(),
builder.getI32TensorAttr(ubGroups));
result.addAttribute(getStepsAttrName(), builder.getI64ArrayAttr(steps));
result.addOperands(lbArgs);
result.addOperands(ubArgs);
// Create a region and a block for the body.
auto *bodyRegion = result.addRegion();
auto *body = new Block();
// Add all the block arguments.
for (unsigned i = 0, e = steps.size(); i < e; ++i)
body->addArgument(IndexType::get(builder.getContext()));
bodyRegion->push_back(body);
if (resultTypes.empty())
ensureTerminator(*bodyRegion, builder, result.location);
}
Region &AffineParallelOp::getLoopBody() { return region(); }
bool AffineParallelOp::isDefinedOutsideOfLoop(Value value) {
return !region().isAncestor(value.getParentRegion());
}
LogicalResult AffineParallelOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (Operation *op : ops)
op->moveBefore(*this);
return success();
}
unsigned AffineParallelOp::getNumDims() { return steps().size(); }
AffineParallelOp::operand_range AffineParallelOp::getLowerBoundsOperands() {
return getOperands().take_front(lowerBoundsMap().getNumInputs());
}
AffineParallelOp::operand_range AffineParallelOp::getUpperBoundsOperands() {
return getOperands().drop_front(lowerBoundsMap().getNumInputs());
}
AffineMap AffineParallelOp::getLowerBoundMap(unsigned pos) {
auto values = lowerBoundsGroups().getValues<int32_t>();
unsigned start = 0;
for (unsigned i = 0; i < pos; ++i)
start += values[i];
return lowerBoundsMap().getSliceMap(start, values[pos]);
}
AffineMap AffineParallelOp::getUpperBoundMap(unsigned pos) {
auto values = upperBoundsGroups().getValues<int32_t>();
unsigned start = 0;
for (unsigned i = 0; i < pos; ++i)
start += values[i];
return upperBoundsMap().getSliceMap(start, values[pos]);
}
AffineValueMap AffineParallelOp::getLowerBoundsValueMap() {
return AffineValueMap(lowerBoundsMap(), getLowerBoundsOperands());
}
AffineValueMap AffineParallelOp::getUpperBoundsValueMap() {
return AffineValueMap(upperBoundsMap(), getUpperBoundsOperands());
}
Optional<SmallVector<int64_t, 8>> AffineParallelOp::getConstantRanges() {
if (hasMinMaxBounds())
return llvm::None;
// Try to convert all the ranges to constant expressions.
SmallVector<int64_t, 8> out;
AffineValueMap rangesValueMap;
AffineValueMap::difference(getUpperBoundsValueMap(), getLowerBoundsValueMap(),
&rangesValueMap);
out.reserve(rangesValueMap.getNumResults());
for (unsigned i = 0, e = rangesValueMap.getNumResults(); i < e; ++i) {
auto expr = rangesValueMap.getResult(i);
auto cst = expr.dyn_cast<AffineConstantExpr>();
if (!cst)
return llvm::None;
out.push_back(cst.getValue());
}
return out;
}
Block *AffineParallelOp::getBody() { return &region().front(); }
OpBuilder AffineParallelOp::getBodyBuilder() {
return OpBuilder(getBody(), std::prev(getBody()->end()));
}
void AffineParallelOp::setLowerBounds(ValueRange lbOperands, AffineMap map) {
assert(lbOperands.size() == map.getNumInputs() &&
"operands to map must match number of inputs");
auto ubOperands = getUpperBoundsOperands();
SmallVector<Value, 4> newOperands(lbOperands);
newOperands.append(ubOperands.begin(), ubOperands.end());
(*this)->setOperands(newOperands);
lowerBoundsMapAttr(AffineMapAttr::get(map));
}
void AffineParallelOp::setUpperBounds(ValueRange ubOperands, AffineMap map) {
assert(ubOperands.size() == map.getNumInputs() &&
"operands to map must match number of inputs");
SmallVector<Value, 4> newOperands(getLowerBoundsOperands());
newOperands.append(ubOperands.begin(), ubOperands.end());
(*this)->setOperands(newOperands);
upperBoundsMapAttr(AffineMapAttr::get(map));
}
void AffineParallelOp::setLowerBoundsMap(AffineMap map) {
AffineMap lbMap = lowerBoundsMap();
assert(lbMap.getNumDims() == map.getNumDims() &&
lbMap.getNumSymbols() == map.getNumSymbols());
(void)lbMap;
lowerBoundsMapAttr(AffineMapAttr::get(map));
}
void AffineParallelOp::setUpperBoundsMap(AffineMap map) {
AffineMap ubMap = upperBoundsMap();
assert(ubMap.getNumDims() == map.getNumDims() &&
ubMap.getNumSymbols() == map.getNumSymbols());
(void)ubMap;
upperBoundsMapAttr(AffineMapAttr::get(map));
}
SmallVector<int64_t, 8> AffineParallelOp::getSteps() {
SmallVector<int64_t, 8> result;
for (Attribute attr : steps()) {
result.push_back(attr.cast<IntegerAttr>().getInt());
}
return result;
}
void AffineParallelOp::setSteps(ArrayRef<int64_t> newSteps) {
stepsAttr(getBodyBuilder().getI64ArrayAttr(newSteps));
}
static LogicalResult verify(AffineParallelOp op) {
auto numDims = op.getNumDims();
if (op.lowerBoundsGroups().getNumElements() != numDims ||
op.upperBoundsGroups().getNumElements() != numDims ||
op.steps().size() != numDims ||
op.getBody()->getNumArguments() != numDims) {
return op.emitOpError()
<< "the number of region arguments ("
<< op.getBody()->getNumArguments()
<< ") and the number of map groups for lower ("
<< op.lowerBoundsGroups().getNumElements() << ") and upper bound ("
<< op.upperBoundsGroups().getNumElements()
<< "), and the number of steps (" << op.steps().size()
<< ") must all match";
}
unsigned expectedNumLBResults = 0;
for (APInt v : op.lowerBoundsGroups())
expectedNumLBResults += v.getZExtValue();
if (expectedNumLBResults != op.lowerBoundsMap().getNumResults())
return op.emitOpError() << "expected lower bounds map to have "
<< expectedNumLBResults << " results";
unsigned expectedNumUBResults = 0;
for (APInt v : op.upperBoundsGroups())
expectedNumUBResults += v.getZExtValue();
if (expectedNumUBResults != op.upperBoundsMap().getNumResults())
return op.emitOpError() << "expected upper bounds map to have "
<< expectedNumUBResults << " results";
if (op.reductions().size() != op.getNumResults())
return op.emitOpError("a reduction must be specified for each output");
// Verify reduction ops are all valid
for (Attribute attr : op.reductions()) {
auto intAttr = attr.dyn_cast<IntegerAttr>();
if (!intAttr || !symbolizeAtomicRMWKind(intAttr.getInt()))
return op.emitOpError("invalid reduction attribute");
}
// Verify that the bound operands are valid dimension/symbols.
/// Lower bounds.
if (failed(verifyDimAndSymbolIdentifiers(op, op.getLowerBoundsOperands(),
op.lowerBoundsMap().getNumDims())))
return failure();
/// Upper bounds.
if (failed(verifyDimAndSymbolIdentifiers(op, op.getUpperBoundsOperands(),
op.upperBoundsMap().getNumDims())))
return failure();
return success();
}
LogicalResult AffineValueMap::canonicalize() {
SmallVector<Value, 4> newOperands{operands};
auto newMap = getAffineMap();
composeAffineMapAndOperands(&newMap, &newOperands);
if (newMap == getAffineMap() && newOperands == operands)
return failure();
reset(newMap, newOperands);
return success();
}
/// Canonicalize the bounds of the given loop.
static LogicalResult canonicalizeLoopBounds(AffineParallelOp op) {
AffineValueMap lb = op.getLowerBoundsValueMap();
bool lbCanonicalized = succeeded(lb.canonicalize());
AffineValueMap ub = op.getUpperBoundsValueMap();
bool ubCanonicalized = succeeded(ub.canonicalize());
// Any canonicalization change always leads to updated map(s).
if (!lbCanonicalized && !ubCanonicalized)
return failure();
if (lbCanonicalized)
op.setLowerBounds(lb.getOperands(), lb.getAffineMap());
if (ubCanonicalized)
op.setUpperBounds(ub.getOperands(), ub.getAffineMap());
return success();
}
LogicalResult AffineParallelOp::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
return canonicalizeLoopBounds(*this);
}
/// Prints a lower(upper) bound of an affine parallel loop with max(min)
/// conditions in it. `mapAttr` is a flat list of affine expressions and `group`
/// identifies which of the those expressions form max/min groups. `operands`
/// are the SSA values of dimensions and symbols and `keyword` is either "min"
/// or "max".
static void printMinMaxBound(OpAsmPrinter &p, AffineMapAttr mapAttr,
DenseIntElementsAttr group, ValueRange operands,
StringRef keyword) {
AffineMap map = mapAttr.getValue();
unsigned numDims = map.getNumDims();
ValueRange dimOperands = operands.take_front(numDims);
ValueRange symOperands = operands.drop_front(numDims);
unsigned start = 0;
for (llvm::APInt groupSize : group) {
if (start != 0)
p << ", ";
unsigned size = groupSize.getZExtValue();
if (size == 1) {
p.printAffineExprOfSSAIds(map.getResult(start), dimOperands, symOperands);
++start;
} else {
p << keyword << '(';
AffineMap submap = map.getSliceMap(start, size);
p.printAffineMapOfSSAIds(AffineMapAttr::get(submap), operands);
p << ')';
start += size;
}
}
}
static void print(OpAsmPrinter &p, AffineParallelOp op) {
p << " (" << op.getBody()->getArguments() << ") = (";
printMinMaxBound(p, op.lowerBoundsMapAttr(), op.lowerBoundsGroupsAttr(),
op.getLowerBoundsOperands(), "max");
p << ") to (";
printMinMaxBound(p, op.upperBoundsMapAttr(), op.upperBoundsGroupsAttr(),
op.getUpperBoundsOperands(), "min");
p << ')';
SmallVector<int64_t, 8> steps = op.getSteps();
bool elideSteps = llvm::all_of(steps, [](int64_t step) { return step == 1; });
if (!elideSteps) {
p << " step (";
llvm::interleaveComma(steps, p);
p << ')';
}
if (op.getNumResults()) {
p << " reduce (";
llvm::interleaveComma(op.reductions(), p, [&](auto &attr) {
AtomicRMWKind sym =
*symbolizeAtomicRMWKind(attr.template cast<IntegerAttr>().getInt());
p << "\"" << stringifyAtomicRMWKind(sym) << "\"";
});
p << ") -> (" << op.getResultTypes() << ")";
}
p.printRegion(op.region(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/op.getNumResults());
p.printOptionalAttrDict(
op->getAttrs(),
/*elidedAttrs=*/{AffineParallelOp::getReductionsAttrName(),
AffineParallelOp::getLowerBoundsMapAttrName(),
AffineParallelOp::getLowerBoundsGroupsAttrName(),
AffineParallelOp::getUpperBoundsMapAttrName(),
AffineParallelOp::getUpperBoundsGroupsAttrName(),
AffineParallelOp::getStepsAttrName()});
}
/// Given a list of lists of parsed operands, populates `uniqueOperands` with
/// unique operands. Also populates `replacements with affine expressions of
/// `kind` that can be used to update affine maps previously accepting a
/// `operands` to accept `uniqueOperands` instead.
static void deduplicateAndResolveOperands(
OpAsmParser &parser,
ArrayRef<SmallVector<OpAsmParser::OperandType>> operands,
SmallVectorImpl<Value> &uniqueOperands,
SmallVectorImpl<AffineExpr> &replacements, AffineExprKind kind) {
assert((kind == AffineExprKind::DimId || kind == AffineExprKind::SymbolId) &&
"expected operands to be dim or symbol expression");
Type indexType = parser.getBuilder().getIndexType();
for (const auto &list : operands) {
SmallVector<Value> valueOperands;
parser.resolveOperands(list, indexType, valueOperands);
for (Value operand : valueOperands) {
unsigned pos = std::distance(uniqueOperands.begin(),
llvm::find(uniqueOperands, operand));
if (pos == uniqueOperands.size())
uniqueOperands.push_back(operand);
replacements.push_back(
kind == AffineExprKind::DimId
? getAffineDimExpr(pos, parser.getContext())
: getAffineSymbolExpr(pos, parser.getContext()));
}
}
}
namespace {
enum class MinMaxKind { Min, Max };
} // namespace
/// Parses an affine map that can contain a min/max for groups of its results,
/// e.g., max(expr-1, expr-2), expr-3, max(expr-4, expr-5, expr-6). Populates
/// `result` attributes with the map (flat list of expressions) and the grouping
/// (list of integers that specify how many expressions to put into each
/// min/max) attributes. Deduplicates repeated operands.
///
/// parallel-bound ::= `(` parallel-group-list `)`
/// parallel-group-list ::= parallel-group (`,` parallel-group-list)?
/// parallel-group ::= simple-group | min-max-group
/// simple-group ::= expr-of-ssa-ids
/// min-max-group ::= ( `min` | `max` ) `(` expr-of-ssa-ids-list `)`
/// expr-of-ssa-ids-list ::= expr-of-ssa-ids (`,` expr-of-ssa-id-list)?
///
/// Examples:
/// (%0, min(%1 + %2, %3), %4, min(%5 floordiv 32, %6))
/// (%0, max(%1 - 2 * %2))
static ParseResult parseAffineMapWithMinMax(OpAsmParser &parser,
OperationState &result,
MinMaxKind kind) {
constexpr llvm::StringLiteral tmpAttrName = "__pseudo_bound_map";
StringRef mapName = kind == MinMaxKind::Min
? AffineParallelOp::getUpperBoundsMapAttrName()
: AffineParallelOp::getLowerBoundsMapAttrName();
StringRef groupsName = kind == MinMaxKind::Min
? AffineParallelOp::getUpperBoundsGroupsAttrName()
: AffineParallelOp::getLowerBoundsGroupsAttrName();
if (failed(parser.parseLParen()))
return failure();
if (succeeded(parser.parseOptionalRParen())) {
result.addAttribute(
mapName, AffineMapAttr::get(parser.getBuilder().getEmptyAffineMap()));
result.addAttribute(groupsName, parser.getBuilder().getI32TensorAttr({}));
return success();
}
SmallVector<AffineExpr> flatExprs;
SmallVector<SmallVector<OpAsmParser::OperandType>> flatDimOperands;
SmallVector<SmallVector<OpAsmParser::OperandType>> flatSymOperands;
SmallVector<int32_t> numMapsPerGroup;
SmallVector<OpAsmParser::OperandType> mapOperands;
do {
if (succeeded(parser.parseOptionalKeyword(
kind == MinMaxKind::Min ? "min" : "max"))) {
mapOperands.clear();
AffineMapAttr map;
if (failed(parser.parseAffineMapOfSSAIds(mapOperands, map, tmpAttrName,
result.attributes,
OpAsmParser::Delimiter::Paren)))
return failure();
result.attributes.erase(tmpAttrName);
llvm::append_range(flatExprs, map.getValue().getResults());
auto operandsRef = llvm::makeArrayRef(mapOperands);
auto dimsRef = operandsRef.take_front(map.getValue().getNumDims());
SmallVector<OpAsmParser::OperandType> dims(dimsRef.begin(),
dimsRef.end());
auto symsRef = operandsRef.drop_front(map.getValue().getNumDims());
SmallVector<OpAsmParser::OperandType> syms(symsRef.begin(),
symsRef.end());
flatDimOperands.append(map.getValue().getNumResults(), dims);
flatSymOperands.append(map.getValue().getNumResults(), syms);
numMapsPerGroup.push_back(map.getValue().getNumResults());
} else {
if (failed(parser.parseAffineExprOfSSAIds(flatDimOperands.emplace_back(),
flatSymOperands.emplace_back(),
flatExprs.emplace_back())))
return failure();
numMapsPerGroup.push_back(1);
}
} while (succeeded(parser.parseOptionalComma()));
if (failed(parser.parseRParen()))
return failure();
unsigned totalNumDims = 0;
unsigned totalNumSyms = 0;
for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
unsigned numDims = flatDimOperands[i].size();
unsigned numSyms = flatSymOperands[i].size();
flatExprs[i] = flatExprs[i]
.shiftDims(numDims, totalNumDims)
.shiftSymbols(numSyms, totalNumSyms);
totalNumDims += numDims;
totalNumSyms += numSyms;
}
// Deduplicate map operands.
SmallVector<Value> dimOperands, symOperands;
SmallVector<AffineExpr> dimRplacements, symRepacements;
deduplicateAndResolveOperands(parser, flatDimOperands, dimOperands,
dimRplacements, AffineExprKind::DimId);
deduplicateAndResolveOperands(parser, flatSymOperands, symOperands,
symRepacements, AffineExprKind::SymbolId);
result.operands.append(dimOperands.begin(), dimOperands.end());
result.operands.append(symOperands.begin(), symOperands.end());
Builder &builder = parser.getBuilder();
auto flatMap = AffineMap::get(totalNumDims, totalNumSyms, flatExprs,
parser.getContext());
flatMap = flatMap.replaceDimsAndSymbols(
dimRplacements, symRepacements, dimOperands.size(), symOperands.size());
result.addAttribute(mapName, AffineMapAttr::get(flatMap));
result.addAttribute(groupsName, builder.getI32TensorAttr(numMapsPerGroup));
return success();
}
//
// operation ::= `affine.parallel` `(` ssa-ids `)` `=` parallel-bound
// `to` parallel-bound steps? region attr-dict?
// steps ::= `steps` `(` integer-literals `)`
//
static ParseResult parseAffineParallelOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
auto indexType = builder.getIndexType();
SmallVector<OpAsmParser::OperandType, 4> ivs;
if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren) ||
parser.parseEqual() ||
parseAffineMapWithMinMax(parser, result, MinMaxKind::Max) ||
parser.parseKeyword("to") ||
parseAffineMapWithMinMax(parser, result, MinMaxKind::Min))
return failure();
AffineMapAttr stepsMapAttr;
NamedAttrList stepsAttrs;
SmallVector<OpAsmParser::OperandType, 4> stepsMapOperands;
if (failed(parser.parseOptionalKeyword("step"))) {
SmallVector<int64_t, 4> steps(ivs.size(), 1);
result.addAttribute(AffineParallelOp::getStepsAttrName(),
builder.getI64ArrayAttr(steps));
} else {
if (parser.parseAffineMapOfSSAIds(stepsMapOperands, stepsMapAttr,
AffineParallelOp::getStepsAttrName(),
stepsAttrs,
OpAsmParser::Delimiter::Paren))
return failure();
// Convert steps from an AffineMap into an I64ArrayAttr.
SmallVector<int64_t, 4> steps;
auto stepsMap = stepsMapAttr.getValue();
for (const auto &result : stepsMap.getResults()) {
auto constExpr = result.dyn_cast<AffineConstantExpr>();
if (!constExpr)
return parser.emitError(parser.getNameLoc(),
"steps must be constant integers");
steps.push_back(constExpr.getValue());
}
result.addAttribute(AffineParallelOp::getStepsAttrName(),
builder.getI64ArrayAttr(steps));
}
// Parse optional clause of the form: `reduce ("addf", "maxf")`, where the
// quoted strings are a member of the enum AtomicRMWKind.
SmallVector<Attribute, 4> reductions;
if (succeeded(parser.parseOptionalKeyword("reduce"))) {
if (parser.parseLParen())
return failure();
do {
// Parse a single quoted string via the attribute parsing, and then
// verify it is a member of the enum and convert to it's integer
// representation.
StringAttr attrVal;
NamedAttrList attrStorage;
auto loc = parser.getCurrentLocation();
if (parser.parseAttribute(attrVal, builder.getNoneType(), "reduce",
attrStorage))
return failure();
llvm::Optional<AtomicRMWKind> reduction =
symbolizeAtomicRMWKind(attrVal.getValue());
if (!reduction)
return parser.emitError(loc, "invalid reduction value: ") << attrVal;
reductions.push_back(builder.getI64IntegerAttr(
static_cast<int64_t>(reduction.getValue())));
// While we keep getting commas, keep parsing.
} while (succeeded(parser.parseOptionalComma()));
if (parser.parseRParen())
return failure();
}
result.addAttribute(AffineParallelOp::getReductionsAttrName(),
builder.getArrayAttr(reductions));
// Parse return types of reductions (if any)
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Now parse the body.
Region *body = result.addRegion();
SmallVector<Type, 4> types(ivs.size(), indexType);
if (parser.parseRegion(*body, ivs, types) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
// Add a terminator if none was parsed.
AffineParallelOp::ensureTerminator(*body, builder, result.location);
return success();
}
//===----------------------------------------------------------------------===//
// AffineYieldOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AffineYieldOp op) {
auto *parentOp = op->getParentOp();
auto results = parentOp->getResults();
auto operands = op.getOperands();
if (!isa<AffineParallelOp, AffineIfOp, AffineForOp>(parentOp))
return op.emitOpError() << "only terminates affine.if/for/parallel regions";
if (parentOp->getNumResults() != op.getNumOperands())
return op.emitOpError() << "parent of yield must have same number of "
"results as the yield operands";
for (auto it : llvm::zip(results, operands)) {
if (std::get<0>(it).getType() != std::get<1>(it).getType())
return op.emitOpError()
<< "types mismatch between yield op and its parent";
}
return success();
}
//===----------------------------------------------------------------------===//
// AffineVectorLoadOp
//===----------------------------------------------------------------------===//
void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result,
VectorType resultType, AffineMap map,
ValueRange operands) {
assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands");
result.addOperands(operands);
if (map)
result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
result.types.push_back(resultType);
}
void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result,
VectorType resultType, Value memref,
AffineMap map, ValueRange mapOperands) {
assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
result.addOperands(memref);
result.addOperands(mapOperands);
result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
result.types.push_back(resultType);
}
void AffineVectorLoadOp::build(OpBuilder &builder, OperationState &result,
VectorType resultType, Value memref,
ValueRange indices) {
auto memrefType = memref.getType().cast<MemRefType>();
int64_t rank = memrefType.getRank();
// Create identity map for memrefs with at least one dimension or () -> ()
// for zero-dimensional memrefs.
auto map =
rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap();
build(builder, result, resultType, memref, map, indices);
}
void AffineVectorLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyAffineOp<AffineVectorLoadOp>>(context);
}
static ParseResult parseAffineVectorLoadOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
auto indexTy = builder.getIndexType();
MemRefType memrefType;
VectorType resultType;
OpAsmParser::OperandType memrefInfo;
AffineMapAttr mapAttr;
SmallVector<OpAsmParser::OperandType, 1> mapOperands;
return failure(
parser.parseOperand(memrefInfo) ||
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
AffineVectorLoadOp::getMapAttrName(),
result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(memrefType) || parser.parseComma() ||
parser.parseType(resultType) ||
parser.resolveOperand(memrefInfo, memrefType, result.operands) ||
parser.resolveOperands(mapOperands, indexTy, result.operands) ||
parser.addTypeToList(resultType, result.types));
}
static void print(OpAsmPrinter &p, AffineVectorLoadOp op) {
p << " " << op.getMemRef() << '[';
if (AffineMapAttr mapAttr =
op->getAttrOfType<AffineMapAttr>(op.getMapAttrName()))
p.printAffineMapOfSSAIds(mapAttr, op.getMapOperands());
p << ']';
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{op.getMapAttrName()});
p << " : " << op.getMemRefType() << ", " << op.getType();
}
/// Verify common invariants of affine.vector_load and affine.vector_store.
static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType,
VectorType vectorType) {
// Check that memref and vector element types match.
if (memrefType.getElementType() != vectorType.getElementType())
return op->emitOpError(
"requires memref and vector types of the same elemental type");
return success();
}
static LogicalResult verify(AffineVectorLoadOp op) {
MemRefType memrefType = op.getMemRefType();
if (failed(verifyMemoryOpIndexing(
op.getOperation(),
op->getAttrOfType<AffineMapAttr>(op.getMapAttrName()),
op.getMapOperands(), memrefType,
/*numIndexOperands=*/op.getNumOperands() - 1)))
return failure();
if (failed(verifyVectorMemoryOp(op.getOperation(), memrefType,
op.getVectorType())))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// AffineVectorStoreOp
//===----------------------------------------------------------------------===//
void AffineVectorStoreOp::build(OpBuilder &builder, OperationState &result,
Value valueToStore, Value memref, AffineMap map,
ValueRange mapOperands) {
assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
result.addOperands(valueToStore);
result.addOperands(memref);
result.addOperands(mapOperands);
result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
}
// Use identity map.
void AffineVectorStoreOp::build(OpBuilder &builder, OperationState &result,
Value valueToStore, Value memref,
ValueRange indices) {
auto memrefType = memref.getType().cast<MemRefType>();
int64_t rank = memrefType.getRank();
// Create identity map for memrefs with at least one dimension or () -> ()
// for zero-dimensional memrefs.
auto map =
rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap();
build(builder, result, valueToStore, memref, map, indices);
}
void AffineVectorStoreOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<SimplifyAffineOp<AffineVectorStoreOp>>(context);
}
static ParseResult parseAffineVectorStoreOp(OpAsmParser &parser,
OperationState &result) {
auto indexTy = parser.getBuilder().getIndexType();
MemRefType memrefType;
VectorType resultType;
OpAsmParser::OperandType storeValueInfo;
OpAsmParser::OperandType memrefInfo;
AffineMapAttr mapAttr;
SmallVector<OpAsmParser::OperandType, 1> mapOperands;
return failure(
parser.parseOperand(storeValueInfo) || parser.parseComma() ||
parser.parseOperand(memrefInfo) ||
parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
AffineVectorStoreOp::getMapAttrName(),
result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(memrefType) || parser.parseComma() ||
parser.parseType(resultType) ||
parser.resolveOperand(storeValueInfo, resultType, result.operands) ||
parser.resolveOperand(memrefInfo, memrefType, result.operands) ||
parser.resolveOperands(mapOperands, indexTy, result.operands));
}
static void print(OpAsmPrinter &p, AffineVectorStoreOp op) {
p << " " << op.getValueToStore();
p << ", " << op.getMemRef() << '[';
if (AffineMapAttr mapAttr =
op->getAttrOfType<AffineMapAttr>(op.getMapAttrName()))
p.printAffineMapOfSSAIds(mapAttr, op.getMapOperands());
p << ']';
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{op.getMapAttrName()});
p << " : " << op.getMemRefType() << ", " << op.getValueToStore().getType();
}
static LogicalResult verify(AffineVectorStoreOp op) {
MemRefType memrefType = op.getMemRefType();
if (failed(verifyMemoryOpIndexing(
op.getOperation(),
op->getAttrOfType<AffineMapAttr>(op.getMapAttrName()),
op.getMapOperands(), memrefType,
/*numIndexOperands=*/op.getNumOperands() - 2)))
return failure();
if (failed(verifyVectorMemoryOp(op.getOperation(), memrefType,
op.getVectorType())))
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc"