blob: 5e60bed7b074db289ca9d51a20ff3e6bdd73b617 [file] [log] [blame]
//===- LegalizeForLLVMExport.cpp - Prepare AMX for LLVM translation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/AMX/Transforms.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/AMX/AMXDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
using namespace mlir::amx;
namespace {
/// Maps the 2-dim vector shape to the two 16-bit tile sizes. The first
/// dimension directly translates into the number of rows of the tiles.
/// The second dimensions needs to be scaled by the number of bytes.
std::pair<Value, Value> getTileSizes(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter,
VectorType vType, Location loc) {
Type llvmInt16Type = IntegerType::get(&typeConverter.getContext(), 16);
unsigned width = vType.getElementType().getIntOrFloatBitWidth();
assert(llvm::isPowerOf2_64(width) && width >= 8);
unsigned bytes = width >> 3;
auto mattr = rewriter.getI16IntegerAttr(vType.getDimSize(0));
auto nattr = rewriter.getI16IntegerAttr(vType.getDimSize(1) * bytes);
return std::make_pair(
rewriter.create<LLVM::ConstantOp>(loc, llvmInt16Type, mattr),
rewriter.create<LLVM::ConstantOp>(loc, llvmInt16Type, nattr));
}
/// Verifies if the stride matches proper tile access.
LogicalResult verifyStride(MemRefType mType) {
if (mType.getRank() < 2)
return failure();
int64_t last = mType.getRank() - 1;
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(mType, strides, offset)) || strides[last] != 1)
return failure();
return success();
}
/// Maps the 2-dim memref shape to the 64-bit stride. Note that the buffer
/// shape may "envelop" the actual tile shape, and may be dynamically sized.
Value getStride(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, MemRefType mType, Value base,
Location loc) {
assert(mType.getRank() >= 2);
int64_t last = mType.getRank() - 1;
Type llvmInt64Type = IntegerType::get(&typeConverter.getContext(), 64);
unsigned width = mType.getElementType().getIntOrFloatBitWidth();
assert(llvm::isPowerOf2_64(width) && width >= 8);
unsigned bytes = width >> 3;
if (mType.isDynamicDim(last)) {
// Dynamic size needs code to compute the stride at runtime.
MemRefDescriptor memrefDescriptor(base);
auto attr = rewriter.getI64IntegerAttr(bytes);
Value scale = rewriter.create<LLVM::ConstantOp>(loc, llvmInt64Type, attr);
return rewriter.create<LLVM::MulOp>(
loc, llvmInt64Type, scale, memrefDescriptor.size(rewriter, loc, last));
}
// Use direct constant for static size.
auto attr = rewriter.getI64IntegerAttr(mType.getDimSize(last) * bytes);
return rewriter.create<LLVM::ConstantOp>(loc, llvmInt64Type, attr);
}
/// Cast any pointer to the !llvm.ptr<i8> pointer type.
Value castPtr(ConversionPatternRewriter &rewriter, Location loc, Value ptr) {
auto i8Ptr =
LLVM::LLVMPointerType::get(IntegerType::get(ptr.getContext(), 8));
return rewriter.create<LLVM::BitcastOp>(loc, i8Ptr, ptr);
}
struct TileZeroConversion : public ConvertOpToLLVMPattern<TileZeroOp> {
using ConvertOpToLLVMPattern<TileZeroOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileZeroOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(vType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tilezero>(op, resType, tsz.first,
tsz.second);
return success();
}
};
struct TileLoadConversion : public ConvertOpToLLVMPattern<TileLoadOp> {
using ConvertOpToLLVMPattern<TileLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileLoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType mType = op.getMemRefType();
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Determine stride.
if (failed(verifyStride(mType)))
return failure();
Value stride = getStride(rewriter, *getTypeConverter(), mType,
adaptor.base(), op.getLoc());
// Replace operation with intrinsic.
Value ptr = getStridedElementPtr(op.getLoc(), mType, adaptor.base(),
adaptor.indices(), rewriter);
ptr = castPtr(rewriter, op.getLoc(), ptr);
Type resType = typeConverter->convertType(vType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tileloadd64>(
op, resType, tsz.first, tsz.second, ptr, stride);
return success();
}
};
struct TileStoreConversion : public ConvertOpToLLVMPattern<TileStoreOp> {
using ConvertOpToLLVMPattern<TileStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType mType = op.getMemRefType();
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Determine stride.
if (failed(verifyStride(mType)))
return failure();
Value stride = getStride(rewriter, *getTypeConverter(), mType,
adaptor.base(), op.getLoc());
// Replace operation with intrinsic.
Value ptr = getStridedElementPtr(op.getLoc(), mType, adaptor.base(),
adaptor.indices(), rewriter);
ptr = castPtr(rewriter, op.getLoc(), ptr);
rewriter.replaceOpWithNewOp<amx::x86_amx_tilestored64>(
op, tsz.first, tsz.second, ptr, stride, adaptor.val());
return success();
}
};
struct TileMulFConversion : public ConvertOpToLLVMPattern<TileMulFOp> {
using ConvertOpToLLVMPattern<TileMulFOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileMulFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType aType = op.getLhsVectorType();
VectorType bType = op.getRhsVectorType();
VectorType cType = op.getVectorType();
// Determine m x n x k tile sizes.
std::pair<Value, Value> tsza =
getTileSizes(rewriter, *getTypeConverter(), aType, op.getLoc());
std::pair<Value, Value> tszb =
getTileSizes(rewriter, *getTypeConverter(), bType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(cType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbf16ps>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
return success();
}
};
struct TileMulIConversion : public ConvertOpToLLVMPattern<TileMulIOp> {
using ConvertOpToLLVMPattern<TileMulIOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileMulIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType aType = op.getLhsVectorType();
VectorType bType = op.getRhsVectorType();
VectorType cType = op.getVectorType();
// Determine m x n x k tile sizes.
std::pair<Value, Value> tsza =
getTileSizes(rewriter, *getTypeConverter(), aType, op.getLoc());
std::pair<Value, Value> tszb =
getTileSizes(rewriter, *getTypeConverter(), bType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(cType);
bool zexta = op.isZextLhs();
bool zextb = op.isZextRhs();
if (zexta && zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbuud>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
else if (zexta && !zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbusd>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
else if (!zexta && zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbsud>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
else
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbssd>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
return success();
}
};
} // namespace
void mlir::populateAMXLegalizeForLLVMExportPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<TileZeroConversion, TileLoadConversion, TileStoreConversion,
TileMulFConversion, TileMulIConversion>(converter);
}
void mlir::configureAMXLegalizeForExportTarget(LLVMConversionTarget &target) {
target.addLegalOp<x86_amx_tilezero, x86_amx_tileloadd64, x86_amx_tilestored64,
x86_amx_tdpbf16ps, x86_amx_tdpbssd, x86_amx_tdpbsud,
x86_amx_tdpbusd, x86_amx_tdpbuud>();
target.addIllegalOp<TileZeroOp, TileLoadOp, TileStoreOp, TileMulIOp,
TileMulFOp>();
}