blob: dbfc1186db4e0eaa65eb9f1eac68a011d2cedf69 [file] [log] [blame]
//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/Optional.h"
namespace mlir {
using Direction = Simplex::Direction;
const int nullIndex = std::numeric_limits<int>::max();
/// Construct a Simplex object with `nVar` variables.
Simplex::Simplex(unsigned nVar)
: nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) {
colUnknown.push_back(nullIndex);
colUnknown.push_back(nullIndex);
for (unsigned i = 0; i < nVar; ++i) {
var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
colUnknown.push_back(i);
nCol++;
}
}
Simplex::Simplex(const FlatAffineConstraints &constraints)
: Simplex(constraints.getNumIds()) {
for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
i < numIneqs; ++i)
addInequality(constraints.getInequality(i));
for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
addEquality(constraints.getEquality(i));
}
const Simplex::Unknown &Simplex::unknownFromIndex(int index) const {
assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
return index >= 0 ? var[index] : con[~index];
}
const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const {
assert(col < nCol && "Invalid column");
return unknownFromIndex(colUnknown[col]);
}
const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const {
assert(row < nRow && "Invalid row");
return unknownFromIndex(rowUnknown[row]);
}
Simplex::Unknown &Simplex::unknownFromIndex(int index) {
assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
return index >= 0 ? var[index] : con[~index];
}
Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) {
assert(col < nCol && "Invalid column");
return unknownFromIndex(colUnknown[col]);
}
Simplex::Unknown &Simplex::unknownFromRow(unsigned row) {
assert(row < nRow && "Invalid row");
return unknownFromIndex(rowUnknown[row]);
}
/// Add a new row to the tableau corresponding to the given constant term and
/// list of coefficients. The coefficients are specified as a vector of
/// (variable index, coefficient) pairs.
unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) {
assert(coeffs.size() == 1 + var.size() &&
"Incorrect number of coefficients!");
++nRow;
// If the tableau is not big enough to accomodate the extra row, we extend it.
if (nRow >= tableau.getNumRows())
tableau.resizeVertically(nRow);
rowUnknown.push_back(~con.size());
con.emplace_back(Orientation::Row, false, nRow - 1);
tableau(nRow - 1, 0) = 1;
tableau(nRow - 1, 1) = coeffs.back();
for (unsigned col = 2; col < nCol; ++col)
tableau(nRow - 1, col) = 0;
// Process each given variable coefficient.
for (unsigned i = 0; i < var.size(); ++i) {
unsigned pos = var[i].pos;
if (coeffs[i] == 0)
continue;
if (var[i].orientation == Orientation::Column) {
// If a variable is in column position at column col, then we just add the
// coefficient for that variable (scaled by the common row denominator) to
// the corresponding entry in the new row.
tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
continue;
}
// If the variable is in row position, we need to add that row to the new
// row, scaled by the coefficient for the variable, accounting for the two
// rows potentially having different denominators. The new denominator is
// the lcm of the two.
int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
tableau(nRow - 1, 0) = lcm;
for (unsigned col = 1; col < nCol; ++col)
tableau(nRow - 1, col) =
nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
}
normalizeRow(nRow - 1);
// Push to undo log along with the index of the new constraint.
undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
return con.size() - 1;
}
/// Normalize the row by removing factors that are common between the
/// denominator and all the numerator coefficients.
void Simplex::normalizeRow(unsigned row) {
int64_t gcd = 0;
for (unsigned col = 0; col < nCol; ++col) {
if (gcd == 1)
break;
gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
}
for (unsigned col = 0; col < nCol; ++col)
tableau(row, col) /= gcd;
}
namespace {
bool signMatchesDirection(int64_t elem, Direction direction) {
assert(elem != 0 && "elem should not be 0");
return direction == Direction::Up ? elem > 0 : elem < 0;
}
Direction flippedDirection(Direction direction) {
return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
}
} // anonymous namespace
/// Find a pivot to change the sample value of the row in the specified
/// direction. The returned pivot row will involve `row` if and only if the
/// unknown is unbounded in the specified direction.
///
/// To increase (resp. decrease) the value of a row, we need to find a live
/// column with a non-zero coefficient. If the coefficient is positive, we need
/// to increase (decrease) the value of the column, and if the coefficient is
/// negative, we need to decrease (increase) the value of the column. Also,
/// we cannot decrease the sample value of restricted columns.
///
/// If multiple columns are valid, we break ties by considering a lexicographic
/// ordering where we prefer unknowns with lower index.
Optional<Simplex::Pivot> Simplex::findPivot(int row,
Direction direction) const {
Optional<unsigned> col;
for (unsigned j = 2; j < nCol; ++j) {
int64_t elem = tableau(row, j);
if (elem == 0)
continue;
if (unknownFromColumn(j).restricted &&
!signMatchesDirection(elem, direction))
continue;
if (!col || colUnknown[j] < colUnknown[*col])
col = j;
}
if (!col)
return {};
Direction newDirection =
tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
return Pivot{maybePivotRow.getValueOr(row), *col};
}
/// Swap the associated unknowns for the row and the column.
///
/// First we swap the index associated with the row and column. Then we update
/// the unknowns to reflect their new position and orientation.
void Simplex::swapRowWithCol(unsigned row, unsigned col) {
std::swap(rowUnknown[row], colUnknown[col]);
Unknown &uCol = unknownFromColumn(col);
Unknown &uRow = unknownFromRow(row);
uCol.orientation = Orientation::Column;
uRow.orientation = Orientation::Row;
uCol.pos = col;
uRow.pos = row;
}
void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); }
/// Pivot pivotRow and pivotCol.
///
/// Let R be the pivot row unknown and let C be the pivot col unknown.
/// Since initially R = a*C + sum b_i * X_i
/// (where the sum is over the other column's unknowns, x_i)
/// C = (R - (sum b_i * X_i))/a
///
/// Let u be some other row unknown.
/// u = c*C + sum d_i * X_i
/// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
///
/// This results in the following transform:
/// pivot col other col pivot col other col
/// pivot row a b -> pivot row 1/a -b/a
/// other row c d other row c/a d - bc/a
///
/// Taking into account the common denominators p and q:
///
/// pivot col other col pivot col other col
/// pivot row a/p b/p -> pivot row p/a -b/a
/// other row c/q d/q other row cp/aq (da - bc)/aq
///
/// The pivot row transform is accomplished be swapping a with the pivot row's
/// common denominator and negating the pivot row except for the pivot column
/// element.
void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) {
assert(pivotCol >= 2 && "Refusing to pivot invalid column");
swapRowWithCol(pivotRow, pivotCol);
std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
// We need to negate the whole pivot row except for the pivot column.
if (tableau(pivotRow, 0) < 0) {
// If the denominator is negative, we negate the row by simply negating the
// denominator.
tableau(pivotRow, 0) = -tableau(pivotRow, 0);
tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
} else {
for (unsigned col = 1; col < nCol; ++col) {
if (col == pivotCol)
continue;
tableau(pivotRow, col) = -tableau(pivotRow, col);
}
}
normalizeRow(pivotRow);
for (unsigned row = 0; row < nRow; ++row) {
if (row == pivotRow)
continue;
if (tableau(row, pivotCol) == 0) // Nothing to do.
continue;
tableau(row, 0) *= tableau(pivotRow, 0);
for (unsigned j = 1; j < nCol; ++j) {
if (j == pivotCol)
continue;
// Add rather than subtract because the pivot row has been negated.
tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
tableau(row, pivotCol) * tableau(pivotRow, j);
}
tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
normalizeRow(row);
}
}
/// Perform pivots until the unknown has a non-negative sample value or until
/// no more upward pivots can be performed. Return success if we were able to
/// bring the row to a non-negative sample value, and failure otherwise.
LogicalResult Simplex::restoreRow(Unknown &u) {
assert(u.orientation == Orientation::Row &&
"unknown should be in row position");
while (tableau(u.pos, 1) < 0) {
Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
if (!maybePivot)
break;
pivot(*maybePivot);
if (u.orientation == Orientation::Column)
return success(); // the unknown is unbounded above.
}
return success(tableau(u.pos, 1) >= 0);
}
/// Find a row that can be used to pivot the column in the specified direction.
/// This returns an empty optional if and only if the column is unbounded in the
/// specified direction (ignoring skipRow, if skipRow is set).
///
/// If skipRow is set, this row is not considered, and (if it is restricted) its
/// restriction may be violated by the returned pivot. Usually, skipRow is set
/// because we don't want to move it to column position unless it is unbounded,
/// and we are either trying to increase the value of skipRow or explicitly
/// trying to make skipRow negative, so we are not concerned about this.
///
/// If the direction is up (resp. down) and a restricted row has a negative
/// (positive) coefficient for the column, then this row imposes a bound on how
/// much the sample value of the column can change. Such a row with constant
/// term c and coefficient f for the column imposes a bound of c/|f| on the
/// change in sample value (in the specified direction). (note that c is
/// non-negative here since the row is restricted and the tableau is consistent)
///
/// We iterate through the rows and pick the row which imposes the most
/// stringent bound, since pivoting with a row changes the row's sample value to
/// 0 and hence saturates the bound it imposes. We break ties between rows that
/// impose the same bound by considering a lexicographic ordering where we
/// prefer unknowns with lower index value.
Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
Direction direction,
unsigned col) const {
Optional<unsigned> retRow;
int64_t retElem, retConst;
for (unsigned row = nRedundant; row < nRow; ++row) {
if (skipRow && row == *skipRow)
continue;
int64_t elem = tableau(row, col);
if (elem == 0)
continue;
if (!unknownFromRow(row).restricted)
continue;
if (signMatchesDirection(elem, direction))
continue;
int64_t constTerm = tableau(row, 1);
if (!retRow) {
retRow = row;
retElem = elem;
retConst = constTerm;
continue;
}
int64_t diff = retConst * elem - constTerm * retElem;
if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
(diff != 0 && !signMatchesDirection(diff, direction))) {
retRow = row;
retElem = elem;
retConst = constTerm;
}
}
return retRow;
}
bool Simplex::isEmpty() const { return empty; }
void Simplex::swapRows(unsigned i, unsigned j) {
if (i == j)
return;
tableau.swapRows(i, j);
std::swap(rowUnknown[i], rowUnknown[j]);
unknownFromRow(i).pos = i;
unknownFromRow(j).pos = j;
}
void Simplex::swapColumns(unsigned i, unsigned j) {
assert(i < nCol && j < nCol && "Invalid columns provided!");
if (i == j)
return;
tableau.swapColumns(i, j);
std::swap(colUnknown[i], colUnknown[j]);
unknownFromColumn(i).pos = i;
unknownFromColumn(j).pos = j;
}
/// Mark this tableau empty and push an entry to the undo stack.
void Simplex::markEmpty() {
// If the set is already empty, then we shouldn't add another UnmarkEmpty log
// entry, since in that case the Simplex will be erroneously marked as
// non-empty when rolling back past this point.
if (empty)
return;
undoLog.push_back(UndoLogEntry::UnmarkEmpty);
empty = true;
}
/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
/// is the current number of variables, then the corresponding inequality is
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
///
/// We add the inequality and mark it as restricted. We then try to make its
/// sample value non-negative. If this is not possible, the tableau has become
/// empty and we mark it as such.
void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
unsigned conIndex = addRow(coeffs);
Unknown &u = con[conIndex];
u.restricted = true;
LogicalResult result = restoreRow(u);
if (failed(result))
markEmpty();
}
/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
/// is the current number of variables, then the corresponding equality is
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
///
/// We simply add two opposing inequalities, which force the expression to
/// be zero.
void Simplex::addEquality(ArrayRef<int64_t> coeffs) {
addInequality(coeffs);
SmallVector<int64_t, 8> negatedCoeffs;
for (int64_t coeff : coeffs)
negatedCoeffs.emplace_back(-coeff);
addInequality(negatedCoeffs);
}
unsigned Simplex::getNumVariables() const { return var.size(); }
unsigned Simplex::getNumConstraints() const { return con.size(); }
/// Return a snapshot of the current state. This is just the current size of the
/// undo log.
unsigned Simplex::getSnapshot() const { return undoLog.size(); }
void Simplex::undo(UndoLogEntry entry) {
if (entry == UndoLogEntry::RemoveLastConstraint) {
Unknown &constraint = con.back();
if (constraint.orientation == Orientation::Column) {
unsigned column = constraint.pos;
Optional<unsigned> row;
// Try to find any pivot row for this column that preserves tableau
// consistency (except possibly the column itself, which is going to be
// deallocated anyway).
//
// If no pivot row is found in either direction, then the unknown is
// unbounded in both directions and we are free to
// perform any pivot at all. To do this, we just need to find any row with
// a non-zero coefficient for the column.
if (Optional<unsigned> maybeRow =
findPivotRow({}, Direction::Up, column)) {
row = *maybeRow;
} else if (Optional<unsigned> maybeRow =
findPivotRow({}, Direction::Down, column)) {
row = *maybeRow;
} else {
// The loop doesn't find a pivot row only if the column has zero
// coefficients for every row. But the unknown is a constraint,
// so it was added initially as a row. Such a row could never have been
// pivoted to a column. So a pivot row will always be found.
for (unsigned i = nRedundant; i < nRow; ++i) {
if (tableau(i, column) != 0) {
row = i;
break;
}
}
}
assert(row.hasValue() && "No pivot row found!");
pivot(*row, column);
}
// Move this unknown to the last row and remove the last row from the
// tableau.
swapRows(constraint.pos, nRow - 1);
// It is not strictly necessary to shrink the tableau, but for now we
// maintain the invariant that the tableau has exactly nRow rows.
tableau.resizeVertically(nRow - 1);
nRow--;
rowUnknown.pop_back();
con.pop_back();
} else if (entry == UndoLogEntry::RemoveLastVariable) {
// Whenever we are rolling back the addition of a variable, it is guaranteed
// that the variable will be in column position.
//
// We can see this as follows: any constraint that depends on this variable
// was added after this variable was added, so the addition of such
// constraints should already have been rolled back by the time we get to
// rolling back the addition of the variable. Therefore, no constraint
// currently has a component along the variable, so the variable itself must
// be part of the basis.
assert(var.back().orientation == Orientation::Column &&
"Variable to be removed must be in column orientation!");
// Move this variable to the last column and remove the column from the
// tableau.
swapColumns(var.back().pos, nCol - 1);
tableau.resizeHorizontally(nCol - 1);
var.pop_back();
colUnknown.pop_back();
nCol--;
} else if (entry == UndoLogEntry::UnmarkEmpty) {
empty = false;
} else if (entry == UndoLogEntry::UnmarkLastRedundant) {
nRedundant--;
}
}
/// Rollback to the specified snapshot.
///
/// We undo all the log entries until the log size when the snapshot was taken
/// is reached.
void Simplex::rollback(unsigned snapshot) {
while (undoLog.size() > snapshot) {
undo(undoLog.back());
undoLog.pop_back();
}
}
void Simplex::appendVariable(unsigned count) {
if (count == 0)
return;
var.reserve(var.size() + count);
colUnknown.reserve(colUnknown.size() + count);
for (unsigned i = 0; i < count; ++i) {
nCol++;
var.emplace_back(Orientation::Column, /*restricted=*/false,
/*pos=*/nCol - 1);
colUnknown.push_back(var.size() - 1);
}
tableau.resizeHorizontally(nCol);
undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
}
/// Add all the constraints from the given FlatAffineConstraints.
void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) {
assert(fac.getNumIds() == getNumVariables() &&
"FlatAffineConstraints must have same dimensionality as simplex");
for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i)
addInequality(fac.getInequality(i));
for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i)
addEquality(fac.getEquality(i));
}
Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
unsigned row) {
// Keep trying to find a pivot for the row in the specified direction.
while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
// If findPivot returns a pivot involving the row itself, then the optimum
// is unbounded, so we return None.
if (maybePivot->row == row)
return {};
pivot(*maybePivot);
}
// The row has reached its optimal sample value, which we return.
// The sample value is the entry in the constant column divided by the common
// denominator for this row.
return Fraction(tableau(row, 1), tableau(row, 0));
}
/// Compute the optimum of the specified expression in the specified direction,
/// or None if it is unbounded.
Optional<Fraction> Simplex::computeOptimum(Direction direction,
ArrayRef<int64_t> coeffs) {
assert(!empty && "Simplex should not be empty");
unsigned snapshot = getSnapshot();
unsigned conIndex = addRow(coeffs);
unsigned row = con[conIndex].pos;
Optional<Fraction> optimum = computeRowOptimum(direction, row);
rollback(snapshot);
return optimum;
}
Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) {
assert(!empty && "Simplex should not be empty!");
if (u.orientation == Orientation::Column) {
unsigned column = u.pos;
Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
// If no pivot is returned, the constraint is unbounded in the specified
// direction.
if (!pivotRow)
return {};
pivot(*pivotRow, column);
}
unsigned row = u.pos;
Optional<Fraction> optimum = computeRowOptimum(direction, row);
if (u.restricted && direction == Direction::Down &&
(!optimum || *optimum < Fraction(0, 1)))
(void)restoreRow(u);
return optimum;
}
bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
assert(!empty && "It is not meaningful to ask whether a direction is bounded "
"in an empty set.");
// The constraint's perpendicular is already bounded below, since it is a
// constraint. If it is also bounded above, we can return true.
return computeOptimum(Direction::Up, con[constraintIndex]).hasValue();
}
/// Redundant constraints are those that are in row orientation and lie in
/// rows 0 to nRedundant - 1.
bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
const Unknown &u = con[constraintIndex];
return u.orientation == Orientation::Row && u.pos < nRedundant;
}
/// Mark the specified row redundant.
///
/// This is done by moving the unknown to the end of the block of redundant
/// rows (namely, to row nRedundant) and incrementing nRedundant to
/// accomodate the new redundant row.
void Simplex::markRowRedundant(Unknown &u) {
assert(u.orientation == Orientation::Row &&
"Unknown should be in row position!");
assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
swapRows(u.pos, nRedundant);
++nRedundant;
undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
}
/// Find a subset of constraints that is redundant and mark them redundant.
void Simplex::detectRedundant() {
// It is not meaningful to talk about redundancy for empty sets.
if (empty)
return;
// Iterate through the constraints and check for each one if it can attain
// negative sample values. If it can, it's not redundant. Otherwise, it is.
// We mark redundant constraints redundant.
//
// Constraints that get marked redundant in one iteration are not respected
// when checking constraints in later iterations. This prevents, for example,
// two identical constraints both being marked redundant since each is
// redundant given the other one. In this example, only the first of the
// constraints that is processed will get marked redundant, as it should be.
for (Unknown &u : con) {
if (u.orientation == Orientation::Column) {
unsigned column = u.pos;
Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
// If no downward pivot is returned, the constraint is unbounded below
// and hence not redundant.
if (!pivotRow)
continue;
pivot(*pivotRow, column);
}
unsigned row = u.pos;
Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row);
if (!minimum || *minimum < Fraction(0, 1)) {
// Constraint is unbounded below or can attain negative sample values and
// hence is not redundant.
(void)restoreRow(u);
continue;
}
markRowRedundant(u);
}
}
bool Simplex::isUnbounded() {
if (empty)
return false;
SmallVector<int64_t, 8> dir(var.size() + 1);
for (unsigned i = 0; i < var.size(); ++i) {
dir[i] = 1;
Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
if (!maybeMax)
return true;
Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
if (!maybeMin)
return true;
dir[i] = 0;
}
return false;
}
/// Make a tableau to represent a pair of points in the original tableau.
///
/// The product constraints and variables are stored as: first A's, then B's.
///
/// The product tableau has row layout:
/// A's redundant rows, B's redundant rows, A's other rows, B's other rows.
///
/// It has column layout:
/// denominator, constant, A's columns, B's columns.
Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
unsigned numVar = a.getNumVariables() + b.getNumVariables();
unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
Simplex result(numVar);
result.tableau.resizeVertically(numCon);
result.empty = a.empty || b.empty;
auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
SmallVector<Unknown, 8> result;
result.reserve(v.size() + w.size());
result.insert(result.end(), v.begin(), v.end());
result.insert(result.end(), w.begin(), w.end());
return result;
};
result.con = concat(a.con, b.con);
result.var = concat(a.var, b.var);
auto indexFromBIndex = [&](int index) {
return index >= 0 ? a.getNumVariables() + index
: ~(a.getNumConstraints() + ~index);
};
result.colUnknown.assign(2, nullIndex);
for (unsigned i = 2; i < a.nCol; ++i) {
result.colUnknown.push_back(a.colUnknown[i]);
result.unknownFromIndex(result.colUnknown.back()).pos =
result.colUnknown.size() - 1;
}
for (unsigned i = 2; i < b.nCol; ++i) {
result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
result.unknownFromIndex(result.colUnknown.back()).pos =
result.colUnknown.size() - 1;
}
auto appendRowFromA = [&](unsigned row) {
for (unsigned col = 0; col < a.nCol; ++col)
result.tableau(result.nRow, col) = a.tableau(row, col);
result.rowUnknown.push_back(a.rowUnknown[row]);
result.unknownFromIndex(result.rowUnknown.back()).pos =
result.rowUnknown.size() - 1;
result.nRow++;
};
// Also fixes the corresponding entry in rowUnknown and var/con (as the case
// may be).
auto appendRowFromB = [&](unsigned row) {
result.tableau(result.nRow, 0) = b.tableau(row, 0);
result.tableau(result.nRow, 1) = b.tableau(row, 1);
unsigned offset = a.nCol - 2;
for (unsigned col = 2; col < b.nCol; ++col)
result.tableau(result.nRow, offset + col) = b.tableau(row, col);
result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
result.unknownFromIndex(result.rowUnknown.back()).pos =
result.rowUnknown.size() - 1;
result.nRow++;
};
result.nRedundant = a.nRedundant + b.nRedundant;
for (unsigned row = 0; row < a.nRedundant; ++row)
appendRowFromA(row);
for (unsigned row = 0; row < b.nRedundant; ++row)
appendRowFromB(row);
for (unsigned row = a.nRedundant; row < a.nRow; ++row)
appendRowFromA(row);
for (unsigned row = b.nRedundant; row < b.nRow; ++row)
appendRowFromB(row);
return result;
}
SmallVector<Fraction, 8> Simplex::getRationalSample() const {
assert(!empty && "This should not be called when Simplex is empty.");
SmallVector<Fraction, 8> sample;
sample.reserve(var.size());
// Push the sample value for each variable into the vector.
for (const Unknown &u : var) {
if (u.orientation == Orientation::Column) {
// If the variable is in column position, its sample value is zero.
sample.emplace_back(0, 1);
} else {
// If the variable is in row position, its sample value is the entry in
// the constant column divided by the entry in the common denominator
// column.
sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0));
}
}
return sample;
}
Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
// If the tableau is empty, no sample point exists.
if (empty)
return {};
SmallVector<Fraction, 8> rationalSample = getRationalSample();
SmallVector<int64_t, 8> integerSample;
integerSample.reserve(var.size());
for (const Fraction &coord : rationalSample) {
// If the sample is non-integral, return None.
if (coord.num % coord.den != 0)
return {};
integerSample.push_back(coord.num / coord.den);
}
return integerSample;
}
/// Given a simplex for a polytope, construct a new simplex whose variables are
/// identified with a pair of points (x, y) in the original polytope. Supports
/// some operations needed for generalized basis reduction. In what follows,
/// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
/// dimension of the original polytope.
///
/// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
/// also supports rolling back this addition, by maintaining a snapshot stack
/// that contains a snapshot of the Simplex's state for each equality, just
/// before that equality was added.
class GBRSimplex {
using Orientation = Simplex::Orientation;
public:
GBRSimplex(const Simplex &originalSimplex)
: simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
simplexConstraintOffset(simplex.getNumConstraints()) {}
/// Add an equality dotProduct(dir, x - y) == 0.
/// First pushes a snapshot for the current simplex state to the stack so
/// that this can be rolled back later.
void addEqualityForDirection(ArrayRef<int64_t> dir) {
assert(
std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
"Direction passed is the zero vector!");
snapshotStack.push_back(simplex.getSnapshot());
simplex.addEquality(getCoeffsForDirection(dir));
}
/// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
/// the direction equalities to `dual`.
Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
SmallVectorImpl<int64_t> &dual,
int64_t &dualDenom) {
unsigned snap = simplex.getSnapshot();
unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
unsigned row = simplex.con[conIndex].pos;
Optional<Fraction> maybeWidth =
simplex.computeRowOptimum(Simplex::Direction::Up, row);
assert(maybeWidth.hasValue() && "Width should not be unbounded!");
dualDenom = simplex.tableau(row, 0);
dual.clear();
// The increment is i += 2 because equalities are added as two inequalities,
// one positive and one negative. Each iteration processes one equality.
for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
// The dual variable is the negative of the coefficient of the new row
// in the column of the constraint, if the constraint is in a column.
// Note that the second inequality for the equality is negated.
//
// We want the dual for the original equality. If the positive inequality
// is in column position, the negative of its row coefficient is the
// desired dual. If the negative inequality is in column position, its row
// coefficient is the desired dual. (its coefficients are already the
// negated coefficients of the original equality, so we don't need to
// negate it now.)
//
// If neither are in column position, we move the negated inequality to
// column position. Since the inequality must have sample value zero
// (since it corresponds to an equality), we are free to pivot with
// any column. Since both the unknowns have sample value before and after
// pivoting, no other sample values will change and the tableau will
// remain consistent. To pivot, we just need to find a column that has a
// non-zero coefficient in this row. There must be one since otherwise the
// equality would be 0 == 0, which should never be passed to
// addEqualityForDirection.
//
// After finding a column, we pivot with the column, after which we can
// get the dual from the inequality in column position as explained above.
if (simplex.con[i].orientation == Orientation::Column) {
dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
} else {
if (simplex.con[i + 1].orientation == Orientation::Row) {
unsigned ineqRow = simplex.con[i + 1].pos;
// Since it is an equality, the sample value must be zero.
assert(simplex.tableau(ineqRow, 1) == 0 &&
"Equality's sample value must be zero.");
for (unsigned col = 2; col < simplex.nCol; ++col) {
if (simplex.tableau(ineqRow, col) != 0) {
simplex.pivot(ineqRow, col);
break;
}
}
assert(simplex.con[i + 1].orientation == Orientation::Column &&
"No pivot found. Equality has all-zeros row in tableau!");
}
dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
}
}
simplex.rollback(snap);
return *maybeWidth;
}
/// Remove the last equality that was added through addEqualityForDirection.
///
/// We do this by rolling back to the snapshot at the top of the stack, which
/// should be a snapshot taken just before the last equality was added.
void removeLastEquality() {
assert(!snapshotStack.empty() && "Snapshot stack is empty!");
simplex.rollback(snapshotStack.back());
snapshotStack.pop_back();
}
private:
/// Returns coefficients of the expression 'dot_product(dir, x - y)',
/// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
/// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
/// where n is the dimension of the original polytope.
SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
assert(2 * dir.size() == simplex.getNumVariables() &&
"Direction vector has wrong dimensionality");
SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
coeffs.reserve(2 * dir.size());
for (int64_t coeff : dir)
coeffs.push_back(-coeff);
coeffs.push_back(0); // constant term
return coeffs;
}
Simplex simplex;
/// The first index of the equality constraints, the index immediately after
/// the last constraint in the initial product simplex.
unsigned simplexConstraintOffset;
/// A stack of snapshots, used for rolling back.
SmallVector<unsigned, 8> snapshotStack;
};
/// Reduce the basis to try and find a direction in which the polytope is
/// "thin". This only works for bounded polytopes.
///
/// This is an implementation of the algorithm described in the paper
/// "An Implementation of Generalized Basis Reduction for Integer Programming"
/// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
///
/// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
/// Let width_i(v) = max <v, x - y> where x and y are points in the original
/// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
///
/// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
/// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
/// be the dual variable associated with the constraint <b_i, x - y> = 0 when
/// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
/// minimizing value of u, if it were allowed to be fractional. Due to
/// convexity, the minimizing integer value is either floor(dual_i) or
/// ceil(dual_i), so we just need to check which of these gives a lower
/// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
///
/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
/// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
/// same i). Otherwise, we increment i.
///
/// We keep f values and duals cached and invalidate them when necessary.
/// Whenever possible, we use them instead of recomputing them. We implement the
/// algorithm as follows.
///
/// In an iteration at i we need to compute:
/// a) width_i(b_{i + 1})
/// b) width_i(b_i)
/// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
///
/// If width_i(b_i) is not already cached, we compute it.
///
/// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
/// store the duals from this computation.
///
/// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
/// of u as explained before, caches the duals from this computation, sets
/// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
///
/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
/// decrement i, resulting in the basis
/// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
/// with corresponding f values
/// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
/// The values up to i - 1 remain unchanged. We have just gotten the middle
/// value from updateBasisWithUAndGetFCandidate, so we can update that in the
/// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
/// the cache. The iteration after decrementing needs exactly the duals from the
/// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
///
/// When incrementing i, no cached f values get invalidated. However, the cached
/// duals do get invalidated as the duals for the higher levels are different.
void Simplex::reduceBasis(Matrix &basis, unsigned level) {
const Fraction epsilon(3, 4);
if (level == basis.getNumRows() - 1)
return;
GBRSimplex gbrSimplex(*this);
SmallVector<Fraction, 8> width;
SmallVector<int64_t, 8> dual;
int64_t dualDenom;
// Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
// duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
// the new value of width_i(b_{i+1}).
//
// If dual_i is not an integer, the minimizing value must be either
// floor(dual_i) or ceil(dual_i). We compute the expression for both and
// choose the minimizing value.
//
// If dual_i is an integer, we don't need to perform these computations. We
// know that in this case,
// a) u = dual_i.
// b) one can show that dual_j for j < i are the same duals we would have
// gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
// are the ones already in the cache.
// c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
// which
// one can show is equal to width_{i+1}(b_{i+1}). The latter value must
// be in the cache, so we get it from there and return it.
auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
assert(i < level + dual.size() && "dual_i is not known!");
int64_t u = floorDiv(dual[i - level], dualDenom);
basis.addToRow(i, i + 1, u);
if (dual[i - level] % dualDenom != 0) {
SmallVector<int64_t, 8> candidateDual[2];
int64_t candidateDualDenom[2];
Fraction widthI[2];
// Initially u is floor(dual) and basis reflects this.
widthI[0] = gbrSimplex.computeWidthAndDuals(
basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
// Now try ceil(dual), i.e. floor(dual) + 1.
++u;
basis.addToRow(i, i + 1, 1);
widthI[1] = gbrSimplex.computeWidthAndDuals(
basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
unsigned j = widthI[0] < widthI[1] ? 0 : 1;
if (j == 0)
// Subtract 1 to go from u = ceil(dual) back to floor(dual).
basis.addToRow(i, i + 1, -1);
dual = std::move(candidateDual[j]);
dualDenom = candidateDualDenom[j];
return widthI[j];
}
assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
// When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to
// width_{i+1}(b_{i+1}).
return width[i + 1 - level];
};
// In the ith iteration of the loop, gbrSimplex has constraints for directions
// from `level` to i - 1.
unsigned i = level;
while (i < basis.getNumRows() - 1) {
if (i >= level + width.size()) {
// We don't even know the value of f_i(b_i), so let's find that first.
// We have to do this first since later we assume that width already
// contains values up to and including i.
assert((i == 0 || i - 1 < level + width.size()) &&
"We are at level i but we don't know the value of width_{i-1}");
// We don't actually use these duals at all, but it doesn't matter
// because this case should only occur when i is level, and there are no
// duals in that case anyway.
assert(i == level && "This case should only occur when i == level");
width.push_back(
gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
}
if (i >= level + dual.size()) {
assert(i + 1 >= level + width.size() &&
"We don't know dual_i but we know width_{i+1}");
// We don't know dual for our level, so let's find it.
gbrSimplex.addEqualityForDirection(basis.getRow(i));
width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
dualDenom));
gbrSimplex.removeLastEquality();
}
// This variable stores width_i(b_{i+1} + u*b_i).
Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
if (widthICandidate < epsilon * width[i - level]) {
basis.swapRows(i, i + 1);
width[i - level] = widthICandidate;
// The values of width_{i+1}(b_{i+1}) and higher may change after the
// swap, so we remove the cached values here.
width.resize(i - level + 1);
if (i == level) {
dual.clear();
continue;
}
gbrSimplex.removeLastEquality();
i--;
continue;
}
// Invalidate duals since the higher level needs to recompute its own duals.
dual.clear();
gbrSimplex.addEqualityForDirection(basis.getRow(i));
i++;
}
}
/// Search for an integer sample point using a branch and bound algorithm.
///
/// Each row in the basis matrix is a vector, and the set of basis vectors
/// should span the space. Initially this is the identity matrix,
/// i.e., the basis vectors are just the variables.
///
/// In every level, a value is assigned to the level-th basis vector, as
/// follows. Compute the minimum and maximum rational values of this direction.
/// If only one integer point lies in this range, constrain the variable to
/// have this value and recurse to the next variable.
///
/// If the range has multiple values, perform generalized basis reduction via
/// reduceBasis and then compute the bounds again. Now we try constraining
/// this direction in the first value in this range and "recurse" to the next
/// level. If we fail to find a sample, we try assigning the direction the next
/// value in this range, and so on.
///
/// If no integer sample is found from any of the assignments, or if the range
/// contains no integer value, then of course the polytope is empty for the
/// current assignment of the values in previous levels, so we return to
/// the previous level.
///
/// If we reach the last level where all the variables have been assigned values
/// already, then we simply return the current sample point if it is integral,
/// and go back to the previous level otherwise.
///
/// To avoid potentially arbitrarily large recursion depths leading to stack
/// overflows, this algorithm is implemented iteratively.
Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
if (empty)
return {};
unsigned nDims = var.size();
Matrix basis = Matrix::identity(nDims);
unsigned level = 0;
// The snapshot just before constraining a direction to a value at each level.
SmallVector<unsigned, 8> snapshotStack;
// The maximum value in the range of the direction for each level.
SmallVector<int64_t, 8> upperBoundStack;
// The next value to try constraining the basis vector to at each level.
SmallVector<int64_t, 8> nextValueStack;
snapshotStack.reserve(basis.getNumRows());
upperBoundStack.reserve(basis.getNumRows());
nextValueStack.reserve(basis.getNumRows());
while (level != -1u) {
if (level == basis.getNumRows()) {
// We've assigned values to all variables. Return if we have a sample,
// or go back up to the previous level otherwise.
if (auto maybeSample = getSamplePointIfIntegral())
return maybeSample;
level--;
continue;
}
if (level >= upperBoundStack.size()) {
// We haven't populated the stack values for this level yet, so we have
// just come down a level ("recursed"). Find the lower and upper bounds.
// If there is more than one integer point in the range, perform
// generalized basis reduction.
SmallVector<int64_t, 8> basisCoeffs =
llvm::to_vector<8>(basis.getRow(level));
basisCoeffs.push_back(0);
int64_t minRoundedUp, maxRoundedDown;
std::tie(minRoundedUp, maxRoundedDown) =
computeIntegerBounds(basisCoeffs);
// Heuristic: if the sample point is integral at this point, just return
// it.
if (auto maybeSample = getSamplePointIfIntegral())
return *maybeSample;
if (minRoundedUp < maxRoundedDown) {
reduceBasis(basis, level);
basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
basisCoeffs.push_back(0);
std::tie(minRoundedUp, maxRoundedDown) =
computeIntegerBounds(basisCoeffs);
}
snapshotStack.push_back(getSnapshot());
// The smallest value in the range is the next value to try.
nextValueStack.push_back(minRoundedUp);
upperBoundStack.push_back(maxRoundedDown);
}
assert((snapshotStack.size() - 1 == level &&
nextValueStack.size() - 1 == level &&
upperBoundStack.size() - 1 == level) &&
"Mismatched variable stack sizes!");
// Whether we "recursed" or "returned" from a lower level, we rollback
// to the snapshot of the starting state at this level. (in the "recursed"
// case this has no effect)
rollback(snapshotStack.back());
int64_t nextValue = nextValueStack.back();
nextValueStack.back()++;
if (nextValue > upperBoundStack.back()) {
// We have exhausted the range and found no solution. Pop the stack and
// return up a level.
snapshotStack.pop_back();
nextValueStack.pop_back();
upperBoundStack.pop_back();
level--;
continue;
}
// Try the next value in the range and "recurse" into the next level.
SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
basis.getRow(level).end());
basisCoeffs.push_back(-nextValue);
addEquality(basisCoeffs);
level++;
}
return {};
}
/// Compute the minimum and maximum integer values the expression can take. We
/// compute each separately.
std::pair<int64_t, int64_t>
Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
int64_t minRoundedUp;
if (Optional<Fraction> maybeMin =
computeOptimum(Simplex::Direction::Down, coeffs))
minRoundedUp = ceil(*maybeMin);
else
llvm_unreachable("Tableau should not be unbounded");
int64_t maxRoundedDown;
if (Optional<Fraction> maybeMax =
computeOptimum(Simplex::Direction::Up, coeffs))
maxRoundedDown = floor(*maybeMax);
else
llvm_unreachable("Tableau should not be unbounded");
return {minRoundedUp, maxRoundedDown};
}
void Simplex::print(raw_ostream &os) const {
os << "rows = " << nRow << ", columns = " << nCol << "\n";
if (empty)
os << "Simplex marked empty!\n";
os << "var: ";
for (unsigned i = 0; i < var.size(); ++i) {
if (i > 0)
os << ", ";
var[i].print(os);
}
os << "\ncon: ";
for (unsigned i = 0; i < con.size(); ++i) {
if (i > 0)
os << ", ";
con[i].print(os);
}
os << '\n';
for (unsigned row = 0; row < nRow; ++row) {
if (row > 0)
os << ", ";
os << "r" << row << ": " << rowUnknown[row];
}
os << '\n';
os << "c0: denom, c1: const";
for (unsigned col = 2; col < nCol; ++col)
os << ", c" << col << ": " << colUnknown[col];
os << '\n';
for (unsigned row = 0; row < nRow; ++row) {
for (unsigned col = 0; col < nCol; ++col)
os << tableau(row, col) << '\t';
os << '\n';
}
os << '\n';
}
void Simplex::dump() const { print(llvm::errs()); }
} // namespace mlir