|  | //===- FastISel.cpp - Implementation of the FastISel class ----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the implementation of the FastISel class. | 
|  | // | 
|  | // "Fast" instruction selection is designed to emit very poor code quickly. | 
|  | // Also, it is not designed to be able to do much lowering, so most illegal | 
|  | // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is | 
|  | // also not intended to be able to do much optimization, except in a few cases | 
|  | // where doing optimizations reduces overall compile time.  For example, folding | 
|  | // constants into immediate fields is often done, because it's cheap and it | 
|  | // reduces the number of instructions later phases have to examine. | 
|  | // | 
|  | // "Fast" instruction selection is able to fail gracefully and transfer | 
|  | // control to the SelectionDAG selector for operations that it doesn't | 
|  | // support.  In many cases, this allows us to avoid duplicating a lot of | 
|  | // the complicated lowering logic that SelectionDAG currently has. | 
|  | // | 
|  | // The intended use for "fast" instruction selection is "-O0" mode | 
|  | // compilation, where the quality of the generated code is irrelevant when | 
|  | // weighed against the speed at which the code can be generated.  Also, | 
|  | // at -O0, the LLVM optimizers are not running, and this makes the | 
|  | // compile time of codegen a much higher portion of the overall compile | 
|  | // time.  Despite its limitations, "fast" instruction selection is able to | 
|  | // handle enough code on its own to provide noticeable overall speedups | 
|  | // in -O0 compiles. | 
|  | // | 
|  | // Basic operations are supported in a target-independent way, by reading | 
|  | // the same instruction descriptions that the SelectionDAG selector reads, | 
|  | // and identifying simple arithmetic operations that can be directly selected | 
|  | // from simple operators.  More complicated operations currently require | 
|  | // target-specific code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/CodeGenTypes/MachineValueType.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Mangler.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <optional> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  |  | 
|  | STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " | 
|  | "target-independent selector"); | 
|  | STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " | 
|  | "target-specific selector"); | 
|  | STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); | 
|  |  | 
|  | /// Set the current block to which generated machine instructions will be | 
|  | /// appended. | 
|  | void FastISel::startNewBlock() { | 
|  | assert(LocalValueMap.empty() && | 
|  | "local values should be cleared after finishing a BB"); | 
|  |  | 
|  | // Instructions are appended to FuncInfo.MBB. If the basic block already | 
|  | // contains labels or copies, use the last instruction as the last local | 
|  | // value. | 
|  | EmitStartPt = nullptr; | 
|  | if (!FuncInfo.MBB->empty()) | 
|  | EmitStartPt = &FuncInfo.MBB->back(); | 
|  | LastLocalValue = EmitStartPt; | 
|  | } | 
|  |  | 
|  | void FastISel::finishBasicBlock() { flushLocalValueMap(); } | 
|  |  | 
|  | bool FastISel::lowerArguments() { | 
|  | if (!FuncInfo.CanLowerReturn) | 
|  | // Fallback to SDISel argument lowering code to deal with sret pointer | 
|  | // parameter. | 
|  | return false; | 
|  |  | 
|  | if (!fastLowerArguments()) | 
|  | return false; | 
|  |  | 
|  | // Enter arguments into ValueMap for uses in non-entry BBs. | 
|  | for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), | 
|  | E = FuncInfo.Fn->arg_end(); | 
|  | I != E; ++I) { | 
|  | DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); | 
|  | assert(VI != LocalValueMap.end() && "Missed an argument?"); | 
|  | FuncInfo.ValueMap[&*I] = VI->second; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return the defined register if this instruction defines exactly one | 
|  | /// virtual register and uses no other virtual registers. Otherwise return | 
|  | /// Register(); | 
|  | static Register findLocalRegDef(MachineInstr &MI) { | 
|  | Register RegDef; | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | if (MO.isDef()) { | 
|  | if (RegDef) | 
|  | return Register(); | 
|  | RegDef = MO.getReg(); | 
|  | } else if (MO.getReg().isVirtual()) { | 
|  | // This is another use of a vreg. Don't delete it. | 
|  | return Register(); | 
|  | } | 
|  | } | 
|  | return RegDef; | 
|  | } | 
|  |  | 
|  | static bool isRegUsedByPhiNodes(Register DefReg, | 
|  | FunctionLoweringInfo &FuncInfo) { | 
|  | for (auto &P : FuncInfo.PHINodesToUpdate) | 
|  | if (P.second == DefReg) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void FastISel::flushLocalValueMap() { | 
|  | // If FastISel bails out, it could leave local value instructions behind | 
|  | // that aren't used for anything.  Detect and erase those. | 
|  | if (LastLocalValue != EmitStartPt) { | 
|  | // Save the first instruction after local values, for later. | 
|  | MachineBasicBlock::iterator FirstNonValue(LastLocalValue); | 
|  | ++FirstNonValue; | 
|  |  | 
|  | MachineBasicBlock::reverse_iterator RE = | 
|  | EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) | 
|  | : FuncInfo.MBB->rend(); | 
|  | MachineBasicBlock::reverse_iterator RI(LastLocalValue); | 
|  | for (MachineInstr &LocalMI : | 
|  | llvm::make_early_inc_range(llvm::make_range(RI, RE))) { | 
|  | Register DefReg = findLocalRegDef(LocalMI); | 
|  | if (!DefReg) | 
|  | continue; | 
|  | if (FuncInfo.RegsWithFixups.count(DefReg)) | 
|  | continue; | 
|  | bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); | 
|  | if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { | 
|  | if (EmitStartPt == &LocalMI) | 
|  | EmitStartPt = EmitStartPt->getPrevNode(); | 
|  | LLVM_DEBUG(dbgs() << "removing dead local value materialization" | 
|  | << LocalMI); | 
|  | LocalMI.eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FirstNonValue != FuncInfo.MBB->end()) { | 
|  | // See if there are any local value instructions left.  If so, we want to | 
|  | // make sure the first one has a debug location; if it doesn't, use the | 
|  | // first non-value instruction's debug location. | 
|  |  | 
|  | // If EmitStartPt is non-null, this block had copies at the top before | 
|  | // FastISel started doing anything; it points to the last one, so the | 
|  | // first local value instruction is the one after EmitStartPt. | 
|  | // If EmitStartPt is null, the first local value instruction is at the | 
|  | // top of the block. | 
|  | MachineBasicBlock::iterator FirstLocalValue = | 
|  | EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) | 
|  | : FuncInfo.MBB->begin(); | 
|  | if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) | 
|  | FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocalValueMap.clear(); | 
|  | LastLocalValue = EmitStartPt; | 
|  | recomputeInsertPt(); | 
|  | SavedInsertPt = FuncInfo.InsertPt; | 
|  | } | 
|  |  | 
|  | Register FastISel::getRegForValue(const Value *V) { | 
|  | EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); | 
|  | // Don't handle non-simple values in FastISel. | 
|  | if (!RealVT.isSimple()) | 
|  | return Register(); | 
|  |  | 
|  | // Ignore illegal types. We must do this before looking up the value | 
|  | // in ValueMap because Arguments are given virtual registers regardless | 
|  | // of whether FastISel can handle them. | 
|  | MVT VT = RealVT.getSimpleVT(); | 
|  | if (!TLI.isTypeLegal(VT)) { | 
|  | // Handle integer promotions, though, because they're common and easy. | 
|  | if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) | 
|  | VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); | 
|  | else | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | // Look up the value to see if we already have a register for it. | 
|  | Register Reg = lookUpRegForValue(V); | 
|  | if (Reg) | 
|  | return Reg; | 
|  |  | 
|  | // In bottom-up mode, just create the virtual register which will be used | 
|  | // to hold the value. It will be materialized later. | 
|  | if (isa<Instruction>(V) && | 
|  | (!isa<AllocaInst>(V) || | 
|  | !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) | 
|  | return FuncInfo.InitializeRegForValue(V); | 
|  |  | 
|  | SavePoint SaveInsertPt = enterLocalValueArea(); | 
|  |  | 
|  | // Materialize the value in a register. Emit any instructions in the | 
|  | // local value area. | 
|  | Reg = materializeRegForValue(V, VT); | 
|  |  | 
|  | leaveLocalValueArea(SaveInsertPt); | 
|  |  | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | Register FastISel::materializeConstant(const Value *V, MVT VT) { | 
|  | Register Reg; | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (CI->getValue().getActiveBits() <= 64) | 
|  | Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); | 
|  | } else if (isa<AllocaInst>(V)) | 
|  | Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); | 
|  | else if (isa<ConstantPointerNull>(V)) | 
|  | // Translate this as an integer zero so that it can be | 
|  | // local-CSE'd with actual integer zeros. | 
|  | Reg = | 
|  | getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); | 
|  | else if (const auto *CF = dyn_cast<ConstantFP>(V)) { | 
|  | if (CF->isNullValue()) | 
|  | Reg = fastMaterializeFloatZero(CF); | 
|  | else | 
|  | // Try to emit the constant directly. | 
|  | Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); | 
|  |  | 
|  | if (!Reg) { | 
|  | // Try to emit the constant by using an integer constant with a cast. | 
|  | const APFloat &Flt = CF->getValueAPF(); | 
|  | EVT IntVT = TLI.getPointerTy(DL); | 
|  | uint32_t IntBitWidth = IntVT.getSizeInBits(); | 
|  | APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); | 
|  | bool isExact; | 
|  | (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); | 
|  | if (isExact) { | 
|  | Register IntegerReg = | 
|  | getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); | 
|  | if (IntegerReg) | 
|  | Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, | 
|  | IntegerReg); | 
|  | } | 
|  | } | 
|  | } else if (const auto *Op = dyn_cast<Operator>(V)) { | 
|  | if (!selectOperator(Op, Op->getOpcode())) | 
|  | if (!isa<Instruction>(Op) || | 
|  | !fastSelectInstruction(cast<Instruction>(Op))) | 
|  | return Register(); | 
|  | Reg = lookUpRegForValue(Op); | 
|  | } else if (isa<UndefValue>(V)) { | 
|  | Reg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, | 
|  | TII.get(TargetOpcode::IMPLICIT_DEF), Reg); | 
|  | } | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | /// Helper for getRegForValue. This function is called when the value isn't | 
|  | /// already available in a register and must be materialized with new | 
|  | /// instructions. | 
|  | Register FastISel::materializeRegForValue(const Value *V, MVT VT) { | 
|  | Register Reg; | 
|  | // Give the target-specific code a try first. | 
|  | if (isa<Constant>(V)) | 
|  | Reg = fastMaterializeConstant(cast<Constant>(V)); | 
|  |  | 
|  | // If target-specific code couldn't or didn't want to handle the value, then | 
|  | // give target-independent code a try. | 
|  | if (!Reg) | 
|  | Reg = materializeConstant(V, VT); | 
|  |  | 
|  | // Don't cache constant materializations in the general ValueMap. | 
|  | // To do so would require tracking what uses they dominate. | 
|  | if (Reg) { | 
|  | LocalValueMap[V] = Reg; | 
|  | LastLocalValue = MRI.getVRegDef(Reg); | 
|  | } | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | Register FastISel::lookUpRegForValue(const Value *V) { | 
|  | // Look up the value to see if we already have a register for it. We | 
|  | // cache values defined by Instructions across blocks, and other values | 
|  | // only locally. This is because Instructions already have the SSA | 
|  | // def-dominates-use requirement enforced. | 
|  | DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); | 
|  | if (I != FuncInfo.ValueMap.end()) | 
|  | return I->second; | 
|  | return LocalValueMap[V]; | 
|  | } | 
|  |  | 
|  | void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { | 
|  | if (!isa<Instruction>(I)) { | 
|  | LocalValueMap[I] = Reg; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Register &AssignedReg = FuncInfo.ValueMap[I]; | 
|  | if (!AssignedReg) | 
|  | // Use the new register. | 
|  | AssignedReg = Reg; | 
|  | else if (Reg != AssignedReg) { | 
|  | // Arrange for uses of AssignedReg to be replaced by uses of Reg. | 
|  | for (unsigned i = 0; i < NumRegs; i++) { | 
|  | FuncInfo.RegFixups[AssignedReg + i] = Reg + i; | 
|  | FuncInfo.RegsWithFixups.insert(Reg + i); | 
|  | } | 
|  |  | 
|  | AssignedReg = Reg; | 
|  | } | 
|  | } | 
|  |  | 
|  | Register FastISel::getRegForGEPIndex(MVT PtrVT, const Value *Idx) { | 
|  | Register IdxN = getRegForValue(Idx); | 
|  | if (!IdxN) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return Register(); | 
|  |  | 
|  | // If the index is smaller or larger than intptr_t, truncate or extend it. | 
|  | EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); | 
|  | if (IdxVT.bitsLT(PtrVT)) { | 
|  | IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN); | 
|  | } else if (IdxVT.bitsGT(PtrVT)) { | 
|  | IdxN = | 
|  | fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN); | 
|  | } | 
|  | return IdxN; | 
|  | } | 
|  |  | 
|  | void FastISel::recomputeInsertPt() { | 
|  | if (getLastLocalValue()) { | 
|  | FuncInfo.InsertPt = getLastLocalValue(); | 
|  | FuncInfo.MBB = FuncInfo.InsertPt->getParent(); | 
|  | ++FuncInfo.InsertPt; | 
|  | } else | 
|  | FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); | 
|  | } | 
|  |  | 
|  | void FastISel::removeDeadCode(MachineBasicBlock::iterator I, | 
|  | MachineBasicBlock::iterator E) { | 
|  | assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && | 
|  | "Invalid iterator!"); | 
|  | while (I != E) { | 
|  | if (SavedInsertPt == I) | 
|  | SavedInsertPt = E; | 
|  | if (EmitStartPt == I) | 
|  | EmitStartPt = E.isValid() ? &*E : nullptr; | 
|  | if (LastLocalValue == I) | 
|  | LastLocalValue = E.isValid() ? &*E : nullptr; | 
|  |  | 
|  | MachineInstr *Dead = &*I; | 
|  | ++I; | 
|  | Dead->eraseFromParent(); | 
|  | ++NumFastIselDead; | 
|  | } | 
|  | recomputeInsertPt(); | 
|  | } | 
|  |  | 
|  | FastISel::SavePoint FastISel::enterLocalValueArea() { | 
|  | SavePoint OldInsertPt = FuncInfo.InsertPt; | 
|  | recomputeInsertPt(); | 
|  | return OldInsertPt; | 
|  | } | 
|  |  | 
|  | void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { | 
|  | if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) | 
|  | LastLocalValue = &*std::prev(FuncInfo.InsertPt); | 
|  |  | 
|  | // Restore the previous insert position. | 
|  | FuncInfo.InsertPt = OldInsertPt; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { | 
|  | EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); | 
|  | if (VT == MVT::Other || !VT.isSimple()) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // We only handle legal types. For example, on x86-32 the instruction | 
|  | // selector contains all of the 64-bit instructions from x86-64, | 
|  | // under the assumption that i64 won't be used if the target doesn't | 
|  | // support it. | 
|  | if (!TLI.isTypeLegal(VT)) { | 
|  | // MVT::i1 is special. Allow AND, OR, or XOR because they | 
|  | // don't require additional zeroing, which makes them easy. | 
|  | if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode)) | 
|  | VT = TLI.getTypeToTransformTo(I->getContext(), VT); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if the first operand is a constant, and handle it as "ri".  At -O0, | 
|  | // we don't have anything that canonicalizes operand order. | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) | 
|  | if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { | 
|  | Register Op1 = getRegForValue(I->getOperand(1)); | 
|  | if (!Op1) | 
|  | return false; | 
|  |  | 
|  | Register ResultReg = | 
|  | fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(), | 
|  | VT.getSimpleVT()); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Register Op0 = getRegForValue(I->getOperand(0)); | 
|  | if (!Op0) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // Check if the second operand is a constant and handle it appropriately. | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | uint64_t Imm = CI->getSExtValue(); | 
|  |  | 
|  | // Transform "sdiv exact X, 8" -> "sra X, 3". | 
|  | if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && | 
|  | cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { | 
|  | Imm = Log2_64(Imm); | 
|  | ISDOpcode = ISD::SRA; | 
|  | } | 
|  |  | 
|  | // Transform "urem x, pow2" -> "and x, pow2-1". | 
|  | if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && | 
|  | isPowerOf2_64(Imm)) { | 
|  | --Imm; | 
|  | ISDOpcode = ISD::AND; | 
|  | } | 
|  |  | 
|  | Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm, | 
|  | VT.getSimpleVT()); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Register Op1 = getRegForValue(I->getOperand(1)); | 
|  | if (!Op1) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // Now we have both operands in registers. Emit the instruction. | 
|  | Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), | 
|  | ISDOpcode, Op0, Op1); | 
|  | if (!ResultReg) | 
|  | // Target-specific code wasn't able to find a machine opcode for | 
|  | // the given ISD opcode and type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectGetElementPtr(const User *I) { | 
|  | Register N = getRegForValue(I->getOperand(0)); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // FIXME: The code below does not handle vector GEPs. Halt "fast" selection | 
|  | // and bail. | 
|  | if (isa<VectorType>(I->getType())) | 
|  | return false; | 
|  |  | 
|  | // Keep a running tab of the total offset to coalesce multiple N = N + Offset | 
|  | // into a single N = N + TotalOffset. | 
|  | uint64_t TotalOffs = 0; | 
|  | // FIXME: What's a good SWAG number for MaxOffs? | 
|  | uint64_t MaxOffs = 2048; | 
|  | MVT VT = TLI.getValueType(DL, I->getType()).getSimpleVT(); | 
|  |  | 
|  | for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); | 
|  | GTI != E; ++GTI) { | 
|  | const Value *Idx = GTI.getOperand(); | 
|  | if (StructType *StTy = GTI.getStructTypeOrNull()) { | 
|  | uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); | 
|  | if (Field) { | 
|  | // N = N + Offset | 
|  | TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); | 
|  | if (TotalOffs >= MaxOffs) { | 
|  | N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | TotalOffs = 0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // If this is a constant subscript, handle it quickly. | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { | 
|  | if (CI->isZero()) | 
|  | continue; | 
|  | // N = N + Offset | 
|  | uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); | 
|  | TotalOffs += GTI.getSequentialElementStride(DL) * IdxN; | 
|  | if (TotalOffs >= MaxOffs) { | 
|  | N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | TotalOffs = 0; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (TotalOffs) { | 
|  | N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | TotalOffs = 0; | 
|  | } | 
|  |  | 
|  | // N = N + Idx * ElementSize; | 
|  | uint64_t ElementSize = GTI.getSequentialElementStride(DL); | 
|  | Register IdxN = getRegForGEPIndex(VT, Idx); | 
|  | if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | if (ElementSize != 1) { | 
|  | IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); | 
|  | if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (TotalOffs) { | 
|  | N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT); | 
|  | if (!N) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | updateValueMap(I, N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, | 
|  | const CallInst *CI, unsigned StartIdx) { | 
|  | for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) { | 
|  | Value *Val = CI->getArgOperand(i); | 
|  | // Check for constants and encode them with a StackMaps::ConstantOp prefix. | 
|  | if (const auto *C = dyn_cast<ConstantInt>(Val)) { | 
|  | Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); | 
|  | Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); | 
|  | } else if (isa<ConstantPointerNull>(Val)) { | 
|  | Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); | 
|  | Ops.push_back(MachineOperand::CreateImm(0)); | 
|  | } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { | 
|  | // Values coming from a stack location also require a special encoding, | 
|  | // but that is added later on by the target specific frame index | 
|  | // elimination implementation. | 
|  | auto SI = FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) | 
|  | Ops.push_back(MachineOperand::CreateFI(SI->second)); | 
|  | else | 
|  | return false; | 
|  | } else { | 
|  | Register Reg = getRegForValue(Val); | 
|  | if (!Reg) | 
|  | return false; | 
|  | Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectStackmap(const CallInst *I) { | 
|  | // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, | 
|  | //                                  [live variables...]) | 
|  | assert(I->getCalledFunction()->getReturnType()->isVoidTy() && | 
|  | "Stackmap cannot return a value."); | 
|  |  | 
|  | // The stackmap intrinsic only records the live variables (the arguments | 
|  | // passed to it) and emits NOPS (if requested). Unlike the patchpoint | 
|  | // intrinsic, this won't be lowered to a function call. This means we don't | 
|  | // have to worry about calling conventions and target-specific lowering code. | 
|  | // Instead we perform the call lowering right here. | 
|  | // | 
|  | // CALLSEQ_START(0, 0...) | 
|  | // STACKMAP(id, nbytes, ...) | 
|  | // CALLSEQ_END(0, 0) | 
|  | // | 
|  | SmallVector<MachineOperand, 32> Ops; | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); | 
|  | Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); | 
|  |  | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *NumBytes = | 
|  | cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); | 
|  | Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); | 
|  |  | 
|  | // Push live variables for the stack map (skipping the first two arguments | 
|  | // <id> and <numBytes>). | 
|  | if (!addStackMapLiveVars(Ops, I, 2)) | 
|  | return false; | 
|  |  | 
|  | // We are not adding any register mask info here, because the stackmap doesn't | 
|  | // clobber anything. | 
|  |  | 
|  | // Add scratch registers as implicit def and early clobber. | 
|  | CallingConv::ID CC = I->getCallingConv(); | 
|  | const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); | 
|  | for (unsigned i = 0; ScratchRegs[i]; ++i) | 
|  | Ops.push_back(MachineOperand::CreateReg( | 
|  | ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, | 
|  | /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); | 
|  |  | 
|  | // Issue CALLSEQ_START | 
|  | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); | 
|  | auto Builder = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)); | 
|  | const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); | 
|  | for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) | 
|  | Builder.addImm(0); | 
|  |  | 
|  | // Issue STACKMAP. | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, | 
|  | TII.get(TargetOpcode::STACKMAP)); | 
|  | for (auto const &MO : Ops) | 
|  | MIB.add(MO); | 
|  |  | 
|  | // Issue CALLSEQ_END | 
|  | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) | 
|  | .addImm(0) | 
|  | .addImm(0); | 
|  |  | 
|  | // Inform the Frame Information that we have a stackmap in this function. | 
|  | FuncInfo.MF->getFrameInfo().setHasStackMap(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Lower an argument list according to the target calling convention. | 
|  | /// | 
|  | /// This is a helper for lowering intrinsics that follow a target calling | 
|  | /// convention or require stack pointer adjustment. Only a subset of the | 
|  | /// intrinsic's operands need to participate in the calling convention. | 
|  | bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, | 
|  | unsigned NumArgs, const Value *Callee, | 
|  | bool ForceRetVoidTy, CallLoweringInfo &CLI) { | 
|  | ArgListTy Args; | 
|  | Args.reserve(NumArgs); | 
|  |  | 
|  | // Populate the argument list. | 
|  | for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { | 
|  | Value *V = CI->getOperand(ArgI); | 
|  |  | 
|  | assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); | 
|  |  | 
|  | ArgListEntry Entry(V); | 
|  | Entry.setAttributes(CI, ArgI); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) | 
|  | : CI->getType(); | 
|  | CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); | 
|  |  | 
|  | return lowerCallTo(CLI); | 
|  | } | 
|  |  | 
|  | FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( | 
|  | const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, | 
|  | StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { | 
|  | SmallString<32> MangledName; | 
|  | Mangler::getNameWithPrefix(MangledName, Target, DL); | 
|  | MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); | 
|  | return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); | 
|  | } | 
|  |  | 
|  | bool FastISel::selectPatchpoint(const CallInst *I) { | 
|  | // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, | 
|  | //                                         i32 <numBytes>, | 
|  | //                                         i8* <target>, | 
|  | //                                         i32 <numArgs>, | 
|  | //                                         [Args...], | 
|  | //                                         [live variables...]) | 
|  | CallingConv::ID CC = I->getCallingConv(); | 
|  | bool IsAnyRegCC = CC == CallingConv::AnyReg; | 
|  | bool HasDef = !I->getType()->isVoidTy(); | 
|  | Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); | 
|  |  | 
|  | // Check if we can lower the return type when using anyregcc. | 
|  | MVT ValueType; | 
|  | if (IsAnyRegCC && HasDef) { | 
|  | ValueType = TLI.getSimpleValueType(DL, I->getType(), /*AllowUnknown=*/true); | 
|  | if (ValueType == MVT::Other) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get the real number of arguments participating in the call <numArgs> | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *NumArgsVal = | 
|  | cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); | 
|  | unsigned NumArgs = NumArgsVal->getZExtValue(); | 
|  |  | 
|  | // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> | 
|  | // This includes all meta-operands up to but not including CC. | 
|  | unsigned NumMetaOpers = PatchPointOpers::CCPos; | 
|  | assert(I->arg_size() >= NumMetaOpers + NumArgs && | 
|  | "Not enough arguments provided to the patchpoint intrinsic"); | 
|  |  | 
|  | // For AnyRegCC the arguments are lowered later on manually. | 
|  | unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; | 
|  | CallLoweringInfo CLI; | 
|  | CLI.setIsPatchPoint(); | 
|  | if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) | 
|  | return false; | 
|  |  | 
|  | assert(CLI.Call && "No call instruction specified."); | 
|  |  | 
|  | SmallVector<MachineOperand, 32> Ops; | 
|  |  | 
|  | // Add an explicit result reg if we use the anyreg calling convention. | 
|  | if (IsAnyRegCC && HasDef) { | 
|  | assert(CLI.NumResultRegs == 0 && "Unexpected result register."); | 
|  | assert(ValueType.isValid()); | 
|  | CLI.ResultReg = createResultReg(TLI.getRegClassFor(ValueType)); | 
|  | CLI.NumResultRegs = 1; | 
|  | Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); | 
|  | } | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); | 
|  | Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); | 
|  |  | 
|  | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && | 
|  | "Expected a constant integer."); | 
|  | const auto *NumBytes = | 
|  | cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); | 
|  | Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); | 
|  |  | 
|  | // Add the call target. | 
|  | if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { | 
|  | uint64_t CalleeConstAddr = | 
|  | cast<ConstantInt>(C->getOperand(0))->getZExtValue(); | 
|  | Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); | 
|  | } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { | 
|  | if (C->getOpcode() == Instruction::IntToPtr) { | 
|  | uint64_t CalleeConstAddr = | 
|  | cast<ConstantInt>(C->getOperand(0))->getZExtValue(); | 
|  | Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); | 
|  | } else | 
|  | llvm_unreachable("Unsupported ConstantExpr."); | 
|  | } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { | 
|  | Ops.push_back(MachineOperand::CreateGA(GV, 0)); | 
|  | } else if (isa<ConstantPointerNull>(Callee)) | 
|  | Ops.push_back(MachineOperand::CreateImm(0)); | 
|  | else | 
|  | llvm_unreachable("Unsupported callee address."); | 
|  |  | 
|  | // Adjust <numArgs> to account for any arguments that have been passed on | 
|  | // the stack instead. | 
|  | unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); | 
|  | Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); | 
|  |  | 
|  | // Add the calling convention | 
|  | Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); | 
|  |  | 
|  | // Add the arguments we omitted previously. The register allocator should | 
|  | // place these in any free register. | 
|  | if (IsAnyRegCC) { | 
|  | for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { | 
|  | Register Reg = getRegForValue(I->getArgOperand(i)); | 
|  | if (!Reg) | 
|  | return false; | 
|  | Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Push the arguments from the call instruction. | 
|  | for (auto Reg : CLI.OutRegs) | 
|  | Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); | 
|  |  | 
|  | // Push live variables for the stack map. | 
|  | if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) | 
|  | return false; | 
|  |  | 
|  | // Push the register mask info. | 
|  | Ops.push_back(MachineOperand::CreateRegMask( | 
|  | TRI.getCallPreservedMask(*FuncInfo.MF, CC))); | 
|  |  | 
|  | // Add scratch registers as implicit def and early clobber. | 
|  | const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); | 
|  | for (unsigned i = 0; ScratchRegs[i]; ++i) | 
|  | Ops.push_back(MachineOperand::CreateReg( | 
|  | ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, | 
|  | /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); | 
|  |  | 
|  | // Add implicit defs (return values). | 
|  | for (auto Reg : CLI.InRegs) | 
|  | Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, | 
|  | /*isImp=*/true)); | 
|  |  | 
|  | // Insert the patchpoint instruction before the call generated by the target. | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD, | 
|  | TII.get(TargetOpcode::PATCHPOINT)); | 
|  |  | 
|  | for (auto &MO : Ops) | 
|  | MIB.add(MO); | 
|  |  | 
|  | MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); | 
|  |  | 
|  | // Delete the original call instruction. | 
|  | CLI.Call->eraseFromParent(); | 
|  |  | 
|  | // Inform the Frame Information that we have a patchpoint in this function. | 
|  | FuncInfo.MF->getFrameInfo().setHasPatchPoint(); | 
|  |  | 
|  | if (CLI.NumResultRegs) | 
|  | updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectXRayCustomEvent(const CallInst *I) { | 
|  | const auto &Triple = TM.getTargetTriple(); | 
|  | if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) | 
|  | return true; // don't do anything to this instruction. | 
|  | SmallVector<MachineOperand, 8> Ops; | 
|  | Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), | 
|  | /*isDef=*/false)); | 
|  | Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), | 
|  | /*isDef=*/false)); | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, | 
|  | TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); | 
|  | for (auto &MO : Ops) | 
|  | MIB.add(MO); | 
|  |  | 
|  | // Insert the Patchable Event Call instruction, that gets lowered properly. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectXRayTypedEvent(const CallInst *I) { | 
|  | const auto &Triple = TM.getTargetTriple(); | 
|  | if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) | 
|  | return true; // don't do anything to this instruction. | 
|  | SmallVector<MachineOperand, 8> Ops; | 
|  | Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), | 
|  | /*isDef=*/false)); | 
|  | Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), | 
|  | /*isDef=*/false)); | 
|  | Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), | 
|  | /*isDef=*/false)); | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, | 
|  | TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); | 
|  | for (auto &MO : Ops) | 
|  | MIB.add(MO); | 
|  |  | 
|  | // Insert the Patchable Typed Event Call instruction, that gets lowered properly. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns an AttributeList representing the attributes applied to the return | 
|  | /// value of the given call. | 
|  | static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { | 
|  | SmallVector<Attribute::AttrKind, 2> Attrs; | 
|  | if (CLI.RetSExt) | 
|  | Attrs.push_back(Attribute::SExt); | 
|  | if (CLI.RetZExt) | 
|  | Attrs.push_back(Attribute::ZExt); | 
|  | if (CLI.IsInReg) | 
|  | Attrs.push_back(Attribute::InReg); | 
|  |  | 
|  | return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, | 
|  | Attrs); | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, | 
|  | unsigned NumArgs) { | 
|  | MCContext &Ctx = MF->getContext(); | 
|  | SmallString<32> MangledName; | 
|  | Mangler::getNameWithPrefix(MangledName, SymName, DL); | 
|  | MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); | 
|  | return lowerCallTo(CI, Sym, NumArgs); | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, | 
|  | unsigned NumArgs) { | 
|  | FunctionType *FTy = CI->getFunctionType(); | 
|  | Type *RetTy = CI->getType(); | 
|  |  | 
|  | ArgListTy Args; | 
|  | Args.reserve(NumArgs); | 
|  |  | 
|  | // Populate the argument list. | 
|  | // Attributes for args start at offset 1, after the return attribute. | 
|  | for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { | 
|  | Value *V = CI->getOperand(ArgI); | 
|  |  | 
|  | assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); | 
|  |  | 
|  | ArgListEntry Entry(V); | 
|  | Entry.setAttributes(CI, ArgI); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  | TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); | 
|  |  | 
|  | CallLoweringInfo CLI; | 
|  | CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); | 
|  |  | 
|  | return lowerCallTo(CLI); | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { | 
|  | // Handle the incoming return values from the call. | 
|  | CLI.clearIns(); | 
|  | SmallVector<EVT, 4> RetTys; | 
|  | ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); | 
|  |  | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); | 
|  |  | 
|  | bool CanLowerReturn = TLI.CanLowerReturn( | 
|  | CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext(), CLI.RetTy); | 
|  |  | 
|  | // FIXME: sret demotion isn't supported yet - bail out. | 
|  | if (!CanLowerReturn) | 
|  | return false; | 
|  |  | 
|  | for (EVT VT : RetTys) { | 
|  | MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); | 
|  | unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | ISD::ArgFlagsTy Flags; | 
|  | if (CLI.RetSExt) | 
|  | Flags.setSExt(); | 
|  | if (CLI.RetZExt) | 
|  | Flags.setZExt(); | 
|  | if (CLI.IsInReg) | 
|  | Flags.setInReg(); | 
|  | ISD::InputArg Ret(Flags, RegisterVT, VT, CLI.RetTy, CLI.IsReturnValueUsed, | 
|  | ISD::InputArg::NoArgIndex, 0); | 
|  | CLI.Ins.push_back(Ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle all of the outgoing arguments. | 
|  | CLI.clearOuts(); | 
|  | for (auto &Arg : CLI.getArgs()) { | 
|  | Type *FinalType = Arg.Ty; | 
|  | if (Arg.IsByVal) | 
|  | FinalType = Arg.IndirectType; | 
|  | bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( | 
|  | FinalType, CLI.CallConv, CLI.IsVarArg, DL); | 
|  |  | 
|  | ISD::ArgFlagsTy Flags; | 
|  | if (Arg.IsZExt) | 
|  | Flags.setZExt(); | 
|  | if (Arg.IsSExt) | 
|  | Flags.setSExt(); | 
|  | if (Arg.IsInReg) | 
|  | Flags.setInReg(); | 
|  | if (Arg.IsSRet) | 
|  | Flags.setSRet(); | 
|  | if (Arg.IsSwiftSelf) | 
|  | Flags.setSwiftSelf(); | 
|  | if (Arg.IsSwiftAsync) | 
|  | Flags.setSwiftAsync(); | 
|  | if (Arg.IsSwiftError) | 
|  | Flags.setSwiftError(); | 
|  | if (Arg.IsCFGuardTarget) | 
|  | Flags.setCFGuardTarget(); | 
|  | if (Arg.IsByVal) | 
|  | Flags.setByVal(); | 
|  | if (Arg.IsInAlloca) { | 
|  | Flags.setInAlloca(); | 
|  | // Set the byval flag for CCAssignFn callbacks that don't know about | 
|  | // inalloca. This way we can know how many bytes we should've allocated | 
|  | // and how many bytes a callee cleanup function will pop.  If we port | 
|  | // inalloca to more targets, we'll have to add custom inalloca handling in | 
|  | // the various CC lowering callbacks. | 
|  | Flags.setByVal(); | 
|  | } | 
|  | if (Arg.IsPreallocated) { | 
|  | Flags.setPreallocated(); | 
|  | // Set the byval flag for CCAssignFn callbacks that don't know about | 
|  | // preallocated. This way we can know how many bytes we should've | 
|  | // allocated and how many bytes a callee cleanup function will pop.  If we | 
|  | // port preallocated to more targets, we'll have to add custom | 
|  | // preallocated handling in the various CC lowering callbacks. | 
|  | Flags.setByVal(); | 
|  | } | 
|  | MaybeAlign MemAlign = Arg.Alignment; | 
|  | if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { | 
|  | unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType); | 
|  |  | 
|  | // For ByVal, alignment should come from FE. BE will guess if this info | 
|  | // is not there, but there are cases it cannot get right. | 
|  | if (!MemAlign) | 
|  | MemAlign = TLI.getByValTypeAlignment(Arg.IndirectType, DL); | 
|  | Flags.setByValSize(FrameSize); | 
|  | } else if (!MemAlign) { | 
|  | MemAlign = DL.getABITypeAlign(Arg.Ty); | 
|  | } | 
|  | Flags.setMemAlign(*MemAlign); | 
|  | if (Arg.IsNest) | 
|  | Flags.setNest(); | 
|  | if (NeedsRegBlock) | 
|  | Flags.setInConsecutiveRegs(); | 
|  | Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); | 
|  | CLI.OutVals.push_back(Arg.Val); | 
|  | CLI.OutFlags.push_back(Flags); | 
|  | } | 
|  |  | 
|  | if (!fastLowerCall(CLI)) | 
|  | return false; | 
|  |  | 
|  | // Set all unused physreg defs as dead. | 
|  | assert(CLI.Call && "No call instruction specified."); | 
|  | CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); | 
|  |  | 
|  | if (CLI.NumResultRegs && CLI.CB) | 
|  | updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); | 
|  |  | 
|  | // Set labels for heapallocsite call. | 
|  | if (CLI.CB) | 
|  | if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) | 
|  | CLI.Call->setHeapAllocMarker(*MF, MD); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerCall(const CallInst *CI) { | 
|  | FunctionType *FuncTy = CI->getFunctionType(); | 
|  | Type *RetTy = CI->getType(); | 
|  |  | 
|  | ArgListTy Args; | 
|  | Args.reserve(CI->arg_size()); | 
|  |  | 
|  | for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { | 
|  | Value *V = *i; | 
|  |  | 
|  | // Skip empty types | 
|  | if (V->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | ArgListEntry Entry(V); | 
|  | // Skip the first return-type Attribute to get to params. | 
|  | Entry.setAttributes(CI, i - CI->arg_begin()); | 
|  | Args.push_back(Entry); | 
|  | } | 
|  |  | 
|  | // Check if target-independent constraints permit a tail call here. | 
|  | // Target-dependent constraints are checked within fastLowerCall. | 
|  | bool IsTailCall = CI->isTailCall(); | 
|  | if (IsTailCall && !isInTailCallPosition(*CI, TM)) | 
|  | IsTailCall = false; | 
|  | if (IsTailCall && !CI->isMustTailCall() && | 
|  | MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool()) | 
|  | IsTailCall = false; | 
|  |  | 
|  | CallLoweringInfo CLI; | 
|  | CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) | 
|  | .setTailCall(IsTailCall); | 
|  |  | 
|  | if (lowerCallTo(CLI)) { | 
|  | diagnoseDontCall(*CI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectCall(const User *I) { | 
|  | const CallInst *Call = cast<CallInst>(I); | 
|  |  | 
|  | // Handle simple inline asms. | 
|  | if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { | 
|  | // Don't attempt to handle constraints. | 
|  | if (!IA->getConstraintString().empty()) | 
|  | return false; | 
|  |  | 
|  | unsigned ExtraInfo = 0; | 
|  | if (IA->hasSideEffects()) | 
|  | ExtraInfo |= InlineAsm::Extra_HasSideEffects; | 
|  | if (IA->isAlignStack()) | 
|  | ExtraInfo |= InlineAsm::Extra_IsAlignStack; | 
|  | if (Call->isConvergent()) | 
|  | ExtraInfo |= InlineAsm::Extra_IsConvergent; | 
|  | ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, | 
|  | TII.get(TargetOpcode::INLINEASM)); | 
|  | MIB.addExternalSymbol(IA->getAsmString().data()); | 
|  | MIB.addImm(ExtraInfo); | 
|  |  | 
|  | const MDNode *SrcLoc = Call->getMetadata("srcloc"); | 
|  | if (SrcLoc) | 
|  | MIB.addMetadata(SrcLoc); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle intrinsic function calls. | 
|  | if (const auto *II = dyn_cast<IntrinsicInst>(Call)) | 
|  | return selectIntrinsicCall(II); | 
|  |  | 
|  | return lowerCall(Call); | 
|  | } | 
|  |  | 
|  | void FastISel::handleDbgInfo(const Instruction *II) { | 
|  | if (!II->hasDbgRecords()) | 
|  | return; | 
|  |  | 
|  | // Clear any metadata. | 
|  | MIMD = MIMetadata(); | 
|  |  | 
|  | // Reverse order of debug records, because fast-isel walks through backwards. | 
|  | for (DbgRecord &DR : llvm::reverse(II->getDbgRecordRange())) { | 
|  | flushLocalValueMap(); | 
|  | recomputeInsertPt(); | 
|  |  | 
|  | if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { | 
|  | assert(DLR->getLabel() && "Missing label"); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DLR->getDebugLoc(), | 
|  | TII.get(TargetOpcode::DBG_LABEL)) | 
|  | .addMetadata(DLR->getLabel()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); | 
|  |  | 
|  | Value *V = nullptr; | 
|  | if (!DVR.hasArgList()) | 
|  | V = DVR.getVariableLocationOp(0); | 
|  |  | 
|  | bool Res = false; | 
|  | if (DVR.getType() == DbgVariableRecord::LocationType::Value || | 
|  | DVR.getType() == DbgVariableRecord::LocationType::Assign) { | 
|  | Res = lowerDbgValue(V, DVR.getExpression(), DVR.getVariable(), | 
|  | DVR.getDebugLoc()); | 
|  | } else { | 
|  | assert(DVR.getType() == DbgVariableRecord::LocationType::Declare); | 
|  | if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) | 
|  | continue; | 
|  | Res = lowerDbgDeclare(V, DVR.getExpression(), DVR.getVariable(), | 
|  | DVR.getDebugLoc()); | 
|  | } | 
|  |  | 
|  | if (!Res) | 
|  | LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DVR << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr, | 
|  | DILocalVariable *Var, const DebugLoc &DL) { | 
|  | // This form of DBG_VALUE is target-independent. | 
|  | const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); | 
|  | if (!V || isa<UndefValue>(V)) { | 
|  | // DI is either undef or cannot produce a valid DBG_VALUE, so produce an | 
|  | // undef DBG_VALUE to terminate any prior location. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false, 0U, Var, Expr); | 
|  | return true; | 
|  | } | 
|  | if (const auto *CI = dyn_cast<ConstantInt>(V)) { | 
|  | // See if there's an expression to constant-fold. | 
|  | if (Expr) | 
|  | std::tie(Expr, CI) = Expr->constantFold(CI); | 
|  | if (CI->getBitWidth() > 64) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) | 
|  | .addCImm(CI) | 
|  | .addImm(0U) | 
|  | .addMetadata(Var) | 
|  | .addMetadata(Expr); | 
|  | else | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) | 
|  | .addImm(CI->getZExtValue()) | 
|  | .addImm(0U) | 
|  | .addMetadata(Var) | 
|  | .addMetadata(Expr); | 
|  | return true; | 
|  | } | 
|  | if (const auto *CF = dyn_cast<ConstantFP>(V)) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) | 
|  | .addFPImm(CF) | 
|  | .addImm(0U) | 
|  | .addMetadata(Var) | 
|  | .addMetadata(Expr); | 
|  | return true; | 
|  | } | 
|  | if (const auto *Arg = dyn_cast<Argument>(V); | 
|  | Arg && Expr && Expr->isEntryValue()) { | 
|  | // As per the Verifier, this case is only valid for swift async Args. | 
|  | assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); | 
|  |  | 
|  | Register Reg = getRegForValue(Arg); | 
|  | for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) | 
|  | if (Reg == VirtReg || Reg == PhysReg) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false /*IsIndirect*/, | 
|  | PhysReg, Var, Expr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " | 
|  | "couldn't find a physical register\n"); | 
|  | return false; | 
|  | } | 
|  | if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast<AllocaInst>(V)); | 
|  | SI != FuncInfo.StaticAllocaMap.end()) { | 
|  | MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second); | 
|  | bool IsIndirect = false; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, FrameIndexOp, | 
|  | Var, Expr); | 
|  | return true; | 
|  | } | 
|  | if (Register Reg = lookUpRegForValue(V)) { | 
|  | // FIXME: This does not handle register-indirect values at offset 0. | 
|  | if (!FuncInfo.MF->useDebugInstrRef()) { | 
|  | bool IsIndirect = false; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, Reg, Var, | 
|  | Expr); | 
|  | return true; | 
|  | } | 
|  | // If using instruction referencing, produce this as a DBG_INSTR_REF, | 
|  | // to be later patched up by finalizeDebugInstrRefs. | 
|  | SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( | 
|  | /* Reg */ Reg, /* isDef */ false, /* isImp */ false, | 
|  | /* isKill */ false, /* isDead */ false, | 
|  | /* isUndef */ false, /* isEarlyClobber */ false, | 
|  | /* SubReg */ 0, /* isDebug */ true)}); | 
|  | SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); | 
|  | auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, | 
|  | TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs, | 
|  | Var, NewExpr); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr, | 
|  | DILocalVariable *Var, const DebugLoc &DL) { | 
|  | if (!Address || isa<UndefValue>(Address)) { | 
|  | LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::optional<MachineOperand> Op; | 
|  | if (Register Reg = lookUpRegForValue(Address)) | 
|  | Op = MachineOperand::CreateReg(Reg, false); | 
|  |  | 
|  | // If we have a VLA that has a "use" in a metadata node that's then used | 
|  | // here but it has no other uses, then we have a problem. E.g., | 
|  | // | 
|  | //   int foo (const int *x) { | 
|  | //     char a[*x]; | 
|  | //     return 0; | 
|  | //   } | 
|  | // | 
|  | // If we assign 'a' a vreg and fast isel later on has to use the selection | 
|  | // DAG isel, it will want to copy the value to the vreg. However, there are | 
|  | // no uses, which goes counter to what selection DAG isel expects. | 
|  | if (!Op && !Address->use_empty() && isa<Instruction>(Address) && | 
|  | (!isa<AllocaInst>(Address) || | 
|  | !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) | 
|  | Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), | 
|  | false); | 
|  |  | 
|  | if (Op) { | 
|  | assert(Var->isValidLocationForIntrinsic(DL) && | 
|  | "Expected inlined-at fields to agree"); | 
|  | if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) { | 
|  | // If using instruction referencing, produce this as a DBG_INSTR_REF, | 
|  | // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto | 
|  | // the expression, we don't have an "indirect" flag in DBG_INSTR_REF. | 
|  | SmallVector<uint64_t, 3> Ops( | 
|  | {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref}); | 
|  | auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, | 
|  | TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op, | 
|  | Var, NewExpr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // A dbg.declare describes the address of a source variable, so lower it | 
|  | // into an indirect DBG_VALUE. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, | 
|  | TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, Var, | 
|  | Expr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We can't yet handle anything else here because it would require | 
|  | // generating code, thus altering codegen because of debug info. | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Dropping debug info (no materialized reg for address)\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: | 
|  | break; | 
|  | // At -O0 we don't care about the lifetime intrinsics. | 
|  | case Intrinsic::lifetime_start: | 
|  | case Intrinsic::lifetime_end: | 
|  | // The donothing intrinsic does, well, nothing. | 
|  | case Intrinsic::donothing: | 
|  | // Neither does the sideeffect intrinsic. | 
|  | case Intrinsic::sideeffect: | 
|  | // Neither does the assume intrinsic; it's also OK not to codegen its operand. | 
|  | case Intrinsic::assume: | 
|  | // Neither does the llvm.experimental.noalias.scope.decl intrinsic | 
|  | case Intrinsic::experimental_noalias_scope_decl: | 
|  | return true; | 
|  | case Intrinsic::objectsize: | 
|  | llvm_unreachable("llvm.objectsize.* should have been lowered already"); | 
|  |  | 
|  | case Intrinsic::is_constant: | 
|  | llvm_unreachable("llvm.is.constant.* should have been lowered already"); | 
|  |  | 
|  | case Intrinsic::allow_runtime_check: | 
|  | case Intrinsic::allow_ubsan_check: { | 
|  | Register ResultReg = getRegForValue(ConstantInt::getTrue(II->getType())); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  | updateValueMap(II, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Intrinsic::launder_invariant_group: | 
|  | case Intrinsic::strip_invariant_group: | 
|  | case Intrinsic::expect: | 
|  | case Intrinsic::expect_with_probability: { | 
|  | Register ResultReg = getRegForValue(II->getArgOperand(0)); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  | updateValueMap(II, ResultReg); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::fake_use: | 
|  | // At -O0, we don't need fake use, so just ignore it. | 
|  | return true; | 
|  | case Intrinsic::experimental_stackmap: | 
|  | return selectStackmap(II); | 
|  | case Intrinsic::experimental_patchpoint_void: | 
|  | case Intrinsic::experimental_patchpoint: | 
|  | return selectPatchpoint(II); | 
|  |  | 
|  | case Intrinsic::xray_customevent: | 
|  | return selectXRayCustomEvent(II); | 
|  | case Intrinsic::xray_typedevent: | 
|  | return selectXRayTypedEvent(II); | 
|  | } | 
|  |  | 
|  | return fastLowerIntrinsicCall(II); | 
|  | } | 
|  |  | 
|  | bool FastISel::selectCast(const User *I, unsigned Opcode) { | 
|  | EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  |  | 
|  | if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || | 
|  | !DstVT.isSimple()) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // Check if the destination type is legal. | 
|  | if (!TLI.isTypeLegal(DstVT)) | 
|  | return false; | 
|  |  | 
|  | // Check if the source operand is legal. | 
|  | if (!TLI.isTypeLegal(SrcVT)) | 
|  | return false; | 
|  |  | 
|  | Register InputReg = getRegForValue(I->getOperand(0)); | 
|  | if (!InputReg) | 
|  | // Unhandled operand.  Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), | 
|  | Opcode, InputReg); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectBitCast(const User *I) { | 
|  | EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstEVT = TLI.getValueType(DL, I->getType()); | 
|  | if (SrcEVT == MVT::Other || DstEVT == MVT::Other || | 
|  | !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | MVT SrcVT = SrcEVT.getSimpleVT(); | 
|  | MVT DstVT = DstEVT.getSimpleVT(); | 
|  | Register Op0 = getRegForValue(I->getOperand(0)); | 
|  | if (!Op0) // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // If the bitcast doesn't change the type, just use the operand value. | 
|  | if (SrcVT == DstVT) { | 
|  | updateValueMap(I, Op0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, select a BITCAST opcode. | 
|  | Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectFreeze(const User *I) { | 
|  | Register Reg = getRegForValue(I->getOperand(0)); | 
|  | if (!Reg) | 
|  | // Unhandled operand. | 
|  | return false; | 
|  |  | 
|  | EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) | 
|  | // Unhandled type, bail out. | 
|  | return false; | 
|  |  | 
|  | MVT Ty = ETy.getSimpleVT(); | 
|  | const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); | 
|  | Register ResultReg = createResultReg(TyRegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, | 
|  | TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Remove local value instructions starting from the instruction after | 
|  | // SavedLastLocalValue to the current function insert point. | 
|  | void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) | 
|  | { | 
|  | MachineInstr *CurLastLocalValue = getLastLocalValue(); | 
|  | if (CurLastLocalValue != SavedLastLocalValue) { | 
|  | // Find the first local value instruction to be deleted. | 
|  | // This is the instruction after SavedLastLocalValue if it is non-NULL. | 
|  | // Otherwise it's the first instruction in the block. | 
|  | MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); | 
|  | if (SavedLastLocalValue) | 
|  | ++FirstDeadInst; | 
|  | else | 
|  | FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); | 
|  | setLastLocalValue(SavedLastLocalValue); | 
|  | removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FastISel::selectInstruction(const Instruction *I) { | 
|  | // Flush the local value map before starting each instruction. | 
|  | // This improves locality and debugging, and can reduce spills. | 
|  | // Reuse of values across IR instructions is relatively uncommon. | 
|  | flushLocalValueMap(); | 
|  |  | 
|  | MachineInstr *SavedLastLocalValue = getLastLocalValue(); | 
|  | // Just before the terminator instruction, insert instructions to | 
|  | // feed PHI nodes in successor blocks. | 
|  | if (I->isTerminator()) { | 
|  | if (!handlePHINodesInSuccessorBlocks(I->getParent())) { | 
|  | // PHI node handling may have generated local value instructions, | 
|  | // even though it failed to handle all PHI nodes. | 
|  | // We remove these instructions because SelectionDAGISel will generate | 
|  | // them again. | 
|  | removeDeadLocalValueCode(SavedLastLocalValue); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FastISel does not handle any operand bundles except OB_funclet. | 
|  | if (auto *Call = dyn_cast<CallBase>(I)) | 
|  | for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) | 
|  | if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) | 
|  | return false; | 
|  |  | 
|  | MIMD = MIMetadata(*I); | 
|  |  | 
|  | SavedInsertPt = FuncInfo.InsertPt; | 
|  |  | 
|  | if (const auto *Call = dyn_cast<CallInst>(I)) { | 
|  | const Function *F = Call->getCalledFunction(); | 
|  | LibFunc Func; | 
|  |  | 
|  | // As a special case, don't handle calls to builtin library functions that | 
|  | // may be translated directly to target instructions. | 
|  | if (F && !F->hasLocalLinkage() && F->hasName() && | 
|  | LibInfo->getLibFunc(F->getName(), Func) && | 
|  | LibInfo->hasOptimizedCodeGen(Func)) | 
|  | return false; | 
|  |  | 
|  | // Don't handle Intrinsic::trap if a trap function is specified. | 
|  | if (F && F->getIntrinsicID() == Intrinsic::trap && | 
|  | Call->hasFnAttr("trap-func-name")) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // First, try doing target-independent selection. | 
|  | if (!SkipTargetIndependentISel) { | 
|  | if (selectOperator(I, I->getOpcode())) { | 
|  | ++NumFastIselSuccessIndependent; | 
|  | MIMD = {}; | 
|  | return true; | 
|  | } | 
|  | // Remove dead code. | 
|  | recomputeInsertPt(); | 
|  | if (SavedInsertPt != FuncInfo.InsertPt) | 
|  | removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); | 
|  | SavedInsertPt = FuncInfo.InsertPt; | 
|  | } | 
|  | // Next, try calling the target to attempt to handle the instruction. | 
|  | if (fastSelectInstruction(I)) { | 
|  | ++NumFastIselSuccessTarget; | 
|  | MIMD = {}; | 
|  | return true; | 
|  | } | 
|  | // Remove dead code. | 
|  | recomputeInsertPt(); | 
|  | if (SavedInsertPt != FuncInfo.InsertPt) | 
|  | removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); | 
|  |  | 
|  | MIMD = {}; | 
|  | // Undo phi node updates, because they will be added again by SelectionDAG. | 
|  | if (I->isTerminator()) { | 
|  | // PHI node handling may have generated local value instructions. | 
|  | // We remove them because SelectionDAGISel will generate them again. | 
|  | removeDeadLocalValueCode(SavedLastLocalValue); | 
|  | FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Emit an unconditional branch to the given block, unless it is the immediate | 
|  | /// (fall-through) successor, and update the CFG. | 
|  | void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, | 
|  | const DebugLoc &DbgLoc) { | 
|  | const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); | 
|  | bool BlockHasMultipleInstrs = &BB->front() != &BB->back(); | 
|  | if (BlockHasMultipleInstrs && FuncInfo.MBB->isLayoutSuccessor(MSucc)) { | 
|  | // For more accurate line information if this is the only non-debug | 
|  | // instruction in the block then emit it, otherwise we have the | 
|  | // unconditional fall-through case, which needs no instructions. | 
|  | } else { | 
|  | // The unconditional branch case. | 
|  | TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, | 
|  | SmallVector<MachineOperand, 0>(), DbgLoc); | 
|  | } | 
|  | if (FuncInfo.BPI) { | 
|  | auto BranchProbability = FuncInfo.BPI->getEdgeProbability( | 
|  | FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); | 
|  | FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); | 
|  | } else | 
|  | FuncInfo.MBB->addSuccessorWithoutProb(MSucc); | 
|  | } | 
|  |  | 
|  | void FastISel::finishCondBranch(const BasicBlock *BranchBB, | 
|  | MachineBasicBlock *TrueMBB, | 
|  | MachineBasicBlock *FalseMBB) { | 
|  | // Add TrueMBB as successor unless it is equal to the FalseMBB: This can | 
|  | // happen in degenerate IR and MachineIR forbids to have a block twice in the | 
|  | // successor/predecessor lists. | 
|  | if (TrueMBB != FalseMBB) { | 
|  | if (FuncInfo.BPI) { | 
|  | auto BranchProbability = | 
|  | FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); | 
|  | FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); | 
|  | } else | 
|  | FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); | 
|  | } | 
|  |  | 
|  | fastEmitBranch(FalseMBB, MIMD.getDL()); | 
|  | } | 
|  |  | 
|  | /// Emit an FNeg operation. | 
|  | bool FastISel::selectFNeg(const User *I, const Value *In) { | 
|  | Register OpReg = getRegForValue(In); | 
|  | if (!OpReg) | 
|  | return false; | 
|  |  | 
|  | // If the target has ISD::FNEG, use it. | 
|  | EVT VT = TLI.getValueType(DL, I->getType()); | 
|  | Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, | 
|  | OpReg); | 
|  | if (ResultReg) { | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Bitcast the value to integer, twiddle the sign bit with xor, | 
|  | // and then bitcast it back to floating-point. | 
|  | if (VT.getSizeInBits() > 64) | 
|  | return false; | 
|  | EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); | 
|  | if (!TLI.isTypeLegal(IntVT)) | 
|  | return false; | 
|  |  | 
|  | Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), | 
|  | ISD::BITCAST, OpReg); | 
|  | if (!IntReg) | 
|  | return false; | 
|  |  | 
|  | Register IntResultReg = fastEmit_ri_( | 
|  | IntVT.getSimpleVT(), ISD::XOR, IntReg, | 
|  | UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); | 
|  | if (!IntResultReg) | 
|  | return false; | 
|  |  | 
|  | ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, | 
|  | IntResultReg); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectExtractValue(const User *U) { | 
|  | const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); | 
|  | if (!EVI) | 
|  | return false; | 
|  |  | 
|  | // Make sure we only try to handle extracts with a legal result.  But also | 
|  | // allow i1 because it's easy. | 
|  | EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); | 
|  | if (!RealVT.isSimple()) | 
|  | return false; | 
|  | MVT VT = RealVT.getSimpleVT(); | 
|  | if (!TLI.isTypeLegal(VT) && VT != MVT::i1) | 
|  | return false; | 
|  |  | 
|  | const Value *Op0 = EVI->getOperand(0); | 
|  | Type *AggTy = Op0->getType(); | 
|  |  | 
|  | // Get the base result register. | 
|  | Register ResultReg; | 
|  | DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); | 
|  | if (I != FuncInfo.ValueMap.end()) | 
|  | ResultReg = I->second; | 
|  | else if (isa<Instruction>(Op0)) | 
|  | ResultReg = FuncInfo.InitializeRegForValue(Op0); | 
|  | else | 
|  | return false; // fast-isel can't handle aggregate constants at the moment | 
|  |  | 
|  | // Get the actual result register, which is an offset from the base register. | 
|  | unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); | 
|  |  | 
|  | SmallVector<EVT, 4> AggValueVTs; | 
|  | ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); | 
|  |  | 
|  | for (unsigned i = 0; i < VTIndex; i++) | 
|  | ResultReg = ResultReg.id() + | 
|  | TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); | 
|  |  | 
|  | updateValueMap(EVI, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::selectOperator(const User *I, unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | return selectBinaryOp(I, ISD::ADD); | 
|  | case Instruction::FAdd: | 
|  | return selectBinaryOp(I, ISD::FADD); | 
|  | case Instruction::Sub: | 
|  | return selectBinaryOp(I, ISD::SUB); | 
|  | case Instruction::FSub: | 
|  | return selectBinaryOp(I, ISD::FSUB); | 
|  | case Instruction::Mul: | 
|  | return selectBinaryOp(I, ISD::MUL); | 
|  | case Instruction::FMul: | 
|  | return selectBinaryOp(I, ISD::FMUL); | 
|  | case Instruction::SDiv: | 
|  | return selectBinaryOp(I, ISD::SDIV); | 
|  | case Instruction::UDiv: | 
|  | return selectBinaryOp(I, ISD::UDIV); | 
|  | case Instruction::FDiv: | 
|  | return selectBinaryOp(I, ISD::FDIV); | 
|  | case Instruction::SRem: | 
|  | return selectBinaryOp(I, ISD::SREM); | 
|  | case Instruction::URem: | 
|  | return selectBinaryOp(I, ISD::UREM); | 
|  | case Instruction::FRem: | 
|  | return selectBinaryOp(I, ISD::FREM); | 
|  | case Instruction::Shl: | 
|  | return selectBinaryOp(I, ISD::SHL); | 
|  | case Instruction::LShr: | 
|  | return selectBinaryOp(I, ISD::SRL); | 
|  | case Instruction::AShr: | 
|  | return selectBinaryOp(I, ISD::SRA); | 
|  | case Instruction::And: | 
|  | return selectBinaryOp(I, ISD::AND); | 
|  | case Instruction::Or: | 
|  | return selectBinaryOp(I, ISD::OR); | 
|  | case Instruction::Xor: | 
|  | return selectBinaryOp(I, ISD::XOR); | 
|  |  | 
|  | case Instruction::FNeg: | 
|  | return selectFNeg(I, I->getOperand(0)); | 
|  |  | 
|  | case Instruction::GetElementPtr: | 
|  | return selectGetElementPtr(I); | 
|  |  | 
|  | case Instruction::Br: { | 
|  | const BranchInst *BI = cast<BranchInst>(I); | 
|  |  | 
|  | if (BI->isUnconditional()) { | 
|  | const BasicBlock *LLVMSucc = BI->getSuccessor(0); | 
|  | MachineBasicBlock *MSucc = FuncInfo.getMBB(LLVMSucc); | 
|  | fastEmitBranch(MSucc, BI->getDebugLoc()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Conditional branches are not handed yet. | 
|  | // Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case Instruction::Unreachable: { | 
|  | auto UI = cast<UnreachableInst>(I); | 
|  | if (!UI->shouldLowerToTrap(TM.Options.TrapUnreachable, | 
|  | TM.Options.NoTrapAfterNoreturn)) | 
|  | return true; | 
|  |  | 
|  | return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; | 
|  | } | 
|  |  | 
|  | case Instruction::Alloca: | 
|  | // FunctionLowering has the static-sized case covered. | 
|  | if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) | 
|  | return true; | 
|  |  | 
|  | // Dynamic-sized alloca is not handled yet. | 
|  | return false; | 
|  |  | 
|  | case Instruction::Call: | 
|  | // On AIX, normal call lowering uses the DAG-ISEL path currently so that the | 
|  | // callee of the direct function call instruction will be mapped to the | 
|  | // symbol for the function's entry point, which is distinct from the | 
|  | // function descriptor symbol. The latter is the symbol whose XCOFF symbol | 
|  | // name is the C-linkage name of the source level function. | 
|  | // But fast isel still has the ability to do selection for intrinsics. | 
|  | if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I)) | 
|  | return false; | 
|  | return selectCall(I); | 
|  |  | 
|  | case Instruction::BitCast: | 
|  | return selectBitCast(I); | 
|  |  | 
|  | case Instruction::FPToSI: | 
|  | return selectCast(I, ISD::FP_TO_SINT); | 
|  | case Instruction::ZExt: | 
|  | return selectCast(I, ISD::ZERO_EXTEND); | 
|  | case Instruction::SExt: | 
|  | return selectCast(I, ISD::SIGN_EXTEND); | 
|  | case Instruction::Trunc: | 
|  | return selectCast(I, ISD::TRUNCATE); | 
|  | case Instruction::SIToFP: | 
|  | return selectCast(I, ISD::SINT_TO_FP); | 
|  |  | 
|  | case Instruction::IntToPtr: // Deliberate fall-through. | 
|  | case Instruction::PtrToInt: { | 
|  | EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); | 
|  | EVT DstVT = TLI.getValueType(DL, I->getType()); | 
|  | if (DstVT.bitsGT(SrcVT)) | 
|  | return selectCast(I, ISD::ZERO_EXTEND); | 
|  | if (DstVT.bitsLT(SrcVT)) | 
|  | return selectCast(I, ISD::TRUNCATE); | 
|  | Register Reg = getRegForValue(I->getOperand(0)); | 
|  | if (!Reg) | 
|  | return false; | 
|  | updateValueMap(I, Reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case Instruction::ExtractValue: | 
|  | return selectExtractValue(I); | 
|  |  | 
|  | case Instruction::Freeze: | 
|  | return selectFreeze(I); | 
|  |  | 
|  | case Instruction::PHI: | 
|  | llvm_unreachable("FastISel shouldn't visit PHI nodes!"); | 
|  |  | 
|  | default: | 
|  | // Unhandled instruction. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | FastISel::FastISel(FunctionLoweringInfo &FuncInfo, | 
|  | const TargetLibraryInfo *LibInfo, | 
|  | bool SkipTargetIndependentISel) | 
|  | : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), | 
|  | MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), | 
|  | TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), | 
|  | TII(*MF->getSubtarget().getInstrInfo()), | 
|  | TLI(*MF->getSubtarget().getTargetLowering()), | 
|  | TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), | 
|  | SkipTargetIndependentISel(SkipTargetIndependentISel) {} | 
|  |  | 
|  | FastISel::~FastISel() = default; | 
|  |  | 
|  | bool FastISel::fastLowerArguments() { return false; } | 
|  |  | 
|  | bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } | 
|  |  | 
|  | bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmit_(MVT, MVT, unsigned) { return Register(); } | 
|  |  | 
|  | Register FastISel::fastEmit_r(MVT, MVT, unsigned, Register /*Op0*/) { | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmit_rr(MVT, MVT, unsigned, Register /*Op0*/, | 
|  | Register /*Op1*/) { | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmit_f(MVT, MVT, unsigned, | 
|  | const ConstantFP * /*FPImm*/) { | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmit_ri(MVT, MVT, unsigned, Register /*Op0*/, | 
|  | uint64_t /*Imm*/) { | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | /// This method is a wrapper of fastEmit_ri. It first tries to emit an | 
|  | /// instruction with an immediate operand using fastEmit_ri. | 
|  | /// If that fails, it materializes the immediate into a register and try | 
|  | /// fastEmit_rr instead. | 
|  | Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, Register Op0, | 
|  | uint64_t Imm, MVT ImmType) { | 
|  | // If this is a multiply by a power of two, emit this as a shift left. | 
|  | if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { | 
|  | Opcode = ISD::SHL; | 
|  | Imm = Log2_64(Imm); | 
|  | } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { | 
|  | // div x, 8 -> srl x, 3 | 
|  | Opcode = ISD::SRL; | 
|  | Imm = Log2_64(Imm); | 
|  | } | 
|  |  | 
|  | // Horrible hack (to be removed), check to make sure shift amounts are | 
|  | // in-range. | 
|  | if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && | 
|  | Imm >= VT.getSizeInBits()) | 
|  | return Register(); | 
|  |  | 
|  | // First check if immediate type is legal. If not, we can't use the ri form. | 
|  | Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); | 
|  | if (ResultReg) | 
|  | return ResultReg; | 
|  | Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); | 
|  | if (!MaterialReg) { | 
|  | // This is a bit ugly/slow, but failing here means falling out of | 
|  | // fast-isel, which would be very slow. | 
|  | IntegerType *ITy = | 
|  | IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); | 
|  | MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); | 
|  | if (!MaterialReg) | 
|  | return Register(); | 
|  | } | 
|  | return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); | 
|  | } | 
|  |  | 
|  | Register FastISel::createResultReg(const TargetRegisterClass *RC) { | 
|  | return MRI.createVirtualRegister(RC); | 
|  | } | 
|  |  | 
|  | Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, | 
|  | unsigned OpNum) { | 
|  | if (Op.isVirtual()) { | 
|  | const TargetRegisterClass *RegClass = TII.getRegClass(II, OpNum, &TRI); | 
|  | if (!MRI.constrainRegClass(Op, RegClass)) { | 
|  | // If it's not legal to COPY between the register classes, something | 
|  | // has gone very wrong before we got here. | 
|  | Register NewOp = createResultReg(RegClass); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, | 
|  | TII.get(TargetOpcode::COPY), NewOp).addReg(Op); | 
|  | return NewOp; | 
|  | } | 
|  | } | 
|  | return Op; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC) { | 
|  | Register ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, Register Op0) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | Register ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) | 
|  | .addReg(Op0); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) | 
|  | .addReg(Op0); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg) | 
|  | .addReg(II.implicit_defs()[0]); | 
|  | } | 
|  |  | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, Register Op0, | 
|  | Register Op1) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | Register ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  | Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) | 
|  | .addReg(Op0) | 
|  | .addReg(Op1); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) | 
|  | .addReg(Op0) | 
|  | .addReg(Op1); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg) | 
|  | .addReg(II.implicit_defs()[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, Register Op0, | 
|  | Register Op1, Register Op2) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | Register ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  | Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); | 
|  | Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) | 
|  | .addReg(Op0) | 
|  | .addReg(Op1) | 
|  | .addReg(Op2); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) | 
|  | .addReg(Op0) | 
|  | .addReg(Op1) | 
|  | .addReg(Op2); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg) | 
|  | .addReg(II.implicit_defs()[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, Register Op0, | 
|  | uint64_t Imm) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | Register ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) | 
|  | .addReg(Op0) | 
|  | .addImm(Imm); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) | 
|  | .addReg(Op0) | 
|  | .addImm(Imm); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg) | 
|  | .addReg(II.implicit_defs()[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, Register Op0, | 
|  | uint64_t Imm1, uint64_t Imm2) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | Register ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) | 
|  | .addReg(Op0) | 
|  | .addImm(Imm1) | 
|  | .addImm(Imm2); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) | 
|  | .addReg(Op0) | 
|  | .addImm(Imm1) | 
|  | .addImm(Imm2); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg) | 
|  | .addReg(II.implicit_defs()[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | const ConstantFP *FPImm) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | Register ResultReg = createResultReg(RC); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) | 
|  | .addFPImm(FPImm); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) | 
|  | .addFPImm(FPImm); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg) | 
|  | .addReg(II.implicit_defs()[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, Register Op0, | 
|  | Register Op1, uint64_t Imm) { | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | Register ResultReg = createResultReg(RC); | 
|  | Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); | 
|  | Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) | 
|  | .addReg(Op0) | 
|  | .addReg(Op1) | 
|  | .addImm(Imm); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) | 
|  | .addReg(Op0) | 
|  | .addReg(Op1) | 
|  | .addImm(Imm); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg) | 
|  | .addReg(II.implicit_defs()[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, uint64_t Imm) { | 
|  | Register ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) | 
|  | .addImm(Imm); | 
|  | else { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg) | 
|  | .addReg(II.implicit_defs()[0]); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, Register Op0, | 
|  | uint32_t Idx) { | 
|  | Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); | 
|  | assert(Op0.isVirtual() && "Cannot yet extract from physregs"); | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(Op0); | 
|  | MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), | 
|  | ResultReg).addReg(Op0, 0, Idx); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | /// Emit MachineInstrs to compute the value of Op with all but the least | 
|  | /// significant bit set to zero. | 
|  | Register FastISel::fastEmitZExtFromI1(MVT VT, Register Op0) { | 
|  | return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); | 
|  | } | 
|  |  | 
|  | /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. | 
|  | /// Emit code to ensure constants are copied into registers when needed. | 
|  | /// Remember the virtual registers that need to be added to the Machine PHI | 
|  | /// nodes as input.  We cannot just directly add them, because expansion | 
|  | /// might result in multiple MBB's for one BB.  As such, the start of the | 
|  | /// BB might correspond to a different MBB than the end. | 
|  | bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { | 
|  | SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; | 
|  | FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); | 
|  |  | 
|  | // Check successor nodes' PHI nodes that expect a constant to be available | 
|  | // from this block. | 
|  | for (const BasicBlock *SuccBB : successors(LLVMBB)) { | 
|  | if (!isa<PHINode>(SuccBB->begin())) | 
|  | continue; | 
|  | MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); | 
|  |  | 
|  | // If this terminator has multiple identical successors (common for | 
|  | // switches), only handle each succ once. | 
|  | if (!SuccsHandled.insert(SuccMBB).second) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock::iterator MBBI = SuccMBB->begin(); | 
|  |  | 
|  | // At this point we know that there is a 1-1 correspondence between LLVM PHI | 
|  | // nodes and Machine PHI nodes, but the incoming operands have not been | 
|  | // emitted yet. | 
|  | for (const PHINode &PN : SuccBB->phis()) { | 
|  | // Ignore dead phi's. | 
|  | if (PN.use_empty()) | 
|  | continue; | 
|  |  | 
|  | // Only handle legal types. Two interesting things to note here. First, | 
|  | // by bailing out early, we may leave behind some dead instructions, | 
|  | // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its | 
|  | // own moves. Second, this check is necessary because FastISel doesn't | 
|  | // use CreateRegs to create registers, so it always creates | 
|  | // exactly one register for each non-void instruction. | 
|  | EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); | 
|  | if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { | 
|  | // Handle integer promotions, though, because they're common and easy. | 
|  | if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { | 
|  | FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); | 
|  |  | 
|  | // Set the DebugLoc for the copy. Use the location of the operand if | 
|  | // there is one; otherwise no location, flushLocalValueMap will fix it. | 
|  | MIMD = {}; | 
|  | if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) | 
|  | MIMD = MIMetadata(*Inst); | 
|  |  | 
|  | Register Reg = getRegForValue(PHIOp); | 
|  | if (!Reg) { | 
|  | FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); | 
|  | return false; | 
|  | } | 
|  | FuncInfo.PHINodesToUpdate.emplace_back(&*MBBI++, Reg); | 
|  | MIMD = {}; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { | 
|  | assert(LI->hasOneUse() && | 
|  | "tryToFoldLoad expected a LoadInst with a single use"); | 
|  | // We know that the load has a single use, but don't know what it is.  If it | 
|  | // isn't one of the folded instructions, then we can't succeed here.  Handle | 
|  | // this by scanning the single-use users of the load until we get to FoldInst. | 
|  | unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. | 
|  |  | 
|  | const Instruction *TheUser = LI->user_back(); | 
|  | while (TheUser != FoldInst && // Scan up until we find FoldInst. | 
|  | // Stay in the right block. | 
|  | TheUser->getParent() == FoldInst->getParent() && | 
|  | --MaxUsers) { // Don't scan too far. | 
|  | // If there are multiple or no uses of this instruction, then bail out. | 
|  | if (!TheUser->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | TheUser = TheUser->user_back(); | 
|  | } | 
|  |  | 
|  | // If we didn't find the fold instruction, then we failed to collapse the | 
|  | // sequence. | 
|  | if (TheUser != FoldInst) | 
|  | return false; | 
|  |  | 
|  | // Don't try to fold volatile loads.  Target has to deal with alignment | 
|  | // constraints. | 
|  | if (LI->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // Figure out which vreg this is going into.  If there is no assigned vreg yet | 
|  | // then there actually was no reference to it.  Perhaps the load is referenced | 
|  | // by a dead instruction. | 
|  | Register LoadReg = getRegForValue(LI); | 
|  | if (!LoadReg) | 
|  | return false; | 
|  |  | 
|  | // We can't fold if this vreg has no uses or more than one use.  Multiple uses | 
|  | // may mean that the instruction got lowered to multiple MIs, or the use of | 
|  | // the loaded value ended up being multiple operands of the result. | 
|  | if (!MRI.hasOneUse(LoadReg)) | 
|  | return false; | 
|  |  | 
|  | // If the register has fixups, there may be additional uses through a | 
|  | // different alias of the register. | 
|  | if (FuncInfo.RegsWithFixups.contains(LoadReg)) | 
|  | return false; | 
|  |  | 
|  | MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); | 
|  | MachineInstr *User = RI->getParent(); | 
|  |  | 
|  | // Set the insertion point properly.  Folding the load can cause generation of | 
|  | // other random instructions (like sign extends) for addressing modes; make | 
|  | // sure they get inserted in a logical place before the new instruction. | 
|  | FuncInfo.InsertPt = User; | 
|  | FuncInfo.MBB = User->getParent(); | 
|  |  | 
|  | // Ask the target to try folding the load. | 
|  | return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); | 
|  | } | 
|  |  | 
|  | bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { | 
|  | // Must be an add. | 
|  | if (!isa<AddOperator>(Add)) | 
|  | return false; | 
|  | // Type size needs to match. | 
|  | if (DL.getTypeSizeInBits(GEP->getType()) != | 
|  | DL.getTypeSizeInBits(Add->getType())) | 
|  | return false; | 
|  | // Must be in the same basic block. | 
|  | if (isa<Instruction>(Add) && | 
|  | FuncInfo.getMBB(cast<Instruction>(Add)->getParent()) != FuncInfo.MBB) | 
|  | return false; | 
|  | // Must have a constant operand. | 
|  | return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); | 
|  | } | 
|  |  | 
|  | MachineMemOperand * | 
|  | FastISel::createMachineMemOperandFor(const Instruction *I) const { | 
|  | const Value *Ptr; | 
|  | Type *ValTy; | 
|  | MaybeAlign Alignment; | 
|  | MachineMemOperand::Flags Flags; | 
|  | bool IsVolatile; | 
|  |  | 
|  | if (const auto *LI = dyn_cast<LoadInst>(I)) { | 
|  | Alignment = LI->getAlign(); | 
|  | IsVolatile = LI->isVolatile(); | 
|  | Flags = MachineMemOperand::MOLoad; | 
|  | Ptr = LI->getPointerOperand(); | 
|  | ValTy = LI->getType(); | 
|  | } else if (const auto *SI = dyn_cast<StoreInst>(I)) { | 
|  | Alignment = SI->getAlign(); | 
|  | IsVolatile = SI->isVolatile(); | 
|  | Flags = MachineMemOperand::MOStore; | 
|  | Ptr = SI->getPointerOperand(); | 
|  | ValTy = SI->getValueOperand()->getType(); | 
|  | } else | 
|  | return nullptr; | 
|  |  | 
|  | bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); | 
|  | bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); | 
|  | bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); | 
|  | const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); | 
|  |  | 
|  | AAMDNodes AAInfo = I->getAAMetadata(); | 
|  |  | 
|  | if (!Alignment) // Ensure that codegen never sees alignment 0. | 
|  | Alignment = DL.getABITypeAlign(ValTy); | 
|  |  | 
|  | unsigned Size = DL.getTypeStoreSize(ValTy); | 
|  |  | 
|  | if (IsVolatile) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | if (IsNonTemporal) | 
|  | Flags |= MachineMemOperand::MONonTemporal; | 
|  | if (IsDereferenceable) | 
|  | Flags |= MachineMemOperand::MODereferenceable; | 
|  | if (IsInvariant) | 
|  | Flags |= MachineMemOperand::MOInvariant; | 
|  |  | 
|  | return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, | 
|  | *Alignment, AAInfo, Ranges); | 
|  | } | 
|  |  | 
|  | CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { | 
|  | // If both operands are the same, then try to optimize or fold the cmp. | 
|  | CmpInst::Predicate Predicate = CI->getPredicate(); | 
|  | if (CI->getOperand(0) != CI->getOperand(1)) | 
|  | return Predicate; | 
|  |  | 
|  | switch (Predicate) { | 
|  | default: llvm_unreachable("Invalid predicate!"); | 
|  | case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break; | 
|  | case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break; | 
|  | case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break; | 
|  | case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break; | 
|  | case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break; | 
|  | case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break; | 
|  | case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break; | 
|  | case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break; | 
|  | case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break; | 
|  |  | 
|  | case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break; | 
|  | case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break; | 
|  | } | 
|  |  | 
|  | return Predicate; | 
|  | } |