|  | //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the RAGreedy function pass for register allocation in | 
|  | // optimized builds. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "RegAllocGreedy.h" | 
|  | #include "AllocationOrder.h" | 
|  | #include "InterferenceCache.h" | 
|  | #include "RegAllocBase.h" | 
|  | #include "SplitKit.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/IndexedMap.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/CodeGen/CalcSpillWeights.h" | 
|  | #include "llvm/CodeGen/EdgeBundles.h" | 
|  | #include "llvm/CodeGen/LiveDebugVariables.h" | 
|  | #include "llvm/CodeGen/LiveInterval.h" | 
|  | #include "llvm/CodeGen/LiveIntervalUnion.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/LiveRangeEdit.h" | 
|  | #include "llvm/CodeGen/LiveRegMatrix.h" | 
|  | #include "llvm/CodeGen/LiveStacks.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" | 
|  | #include "llvm/CodeGen/MachinePassManager.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RegAllocEvictionAdvisor.h" | 
|  | #include "llvm/CodeGen/RegAllocGreedyPass.h" | 
|  | #include "llvm/CodeGen/RegAllocPriorityAdvisor.h" | 
|  | #include "llvm/CodeGen/RegAllocRegistry.h" | 
|  | #include "llvm/CodeGen/RegisterClassInfo.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/CodeGen/SpillPlacement.h" | 
|  | #include "llvm/CodeGen/Spiller.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/VirtRegMap.h" | 
|  | #include "llvm/IR/Analysis.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/BlockFrequency.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/Timer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  |  | 
|  | STATISTIC(NumGlobalSplits, "Number of split global live ranges"); | 
|  | STATISTIC(NumLocalSplits,  "Number of split local live ranges"); | 
|  | STATISTIC(NumEvicted,      "Number of interferences evicted"); | 
|  |  | 
|  | static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( | 
|  | "split-spill-mode", cl::Hidden, | 
|  | cl::desc("Spill mode for splitting live ranges"), | 
|  | cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), | 
|  | clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), | 
|  | clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), | 
|  | cl::init(SplitEditor::SM_Speed)); | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, | 
|  | cl::desc("Last chance recoloring max depth"), | 
|  | cl::init(5)); | 
|  |  | 
|  | static cl::opt<unsigned> LastChanceRecoloringMaxInterference( | 
|  | "lcr-max-interf", cl::Hidden, | 
|  | cl::desc("Last chance recoloring maximum number of considered" | 
|  | " interference at a time"), | 
|  | cl::init(8)); | 
|  |  | 
|  | static cl::opt<bool> ExhaustiveSearch( | 
|  | "exhaustive-register-search", cl::NotHidden, | 
|  | cl::desc("Exhaustive Search for registers bypassing the depth " | 
|  | "and interference cutoffs of last chance recoloring"), | 
|  | cl::Hidden); | 
|  |  | 
|  | // FIXME: Find a good default for this flag and remove the flag. | 
|  | static cl::opt<unsigned> | 
|  | CSRFirstTimeCost("regalloc-csr-first-time-cost", | 
|  | cl::desc("Cost for first time use of callee-saved register."), | 
|  | cl::init(0), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned long> GrowRegionComplexityBudget( | 
|  | "grow-region-complexity-budget", | 
|  | cl::desc("growRegion() does not scale with the number of BB edges, so " | 
|  | "limit its budget and bail out once we reach the limit."), | 
|  | cl::init(10000), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness( | 
|  | "greedy-regclass-priority-trumps-globalness", | 
|  | cl::desc("Change the greedy register allocator's live range priority " | 
|  | "calculation to make the AllocationPriority of the register class " | 
|  | "more important then whether the range is global"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> GreedyReverseLocalAssignment( | 
|  | "greedy-reverse-local-assignment", | 
|  | cl::desc("Reverse allocation order of local live ranges, such that " | 
|  | "shorter local live ranges will tend to be allocated first"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> SplitThresholdForRegWithHint( | 
|  | "split-threshold-for-reg-with-hint", | 
|  | cl::desc("The threshold for splitting a virtual register with a hint, in " | 
|  | "percentage"), | 
|  | cl::init(75), cl::Hidden); | 
|  |  | 
|  | static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", | 
|  | createGreedyRegisterAllocator); | 
|  |  | 
|  | namespace { | 
|  | class RAGreedyLegacy : public MachineFunctionPass { | 
|  | RegAllocFilterFunc F; | 
|  |  | 
|  | public: | 
|  | RAGreedyLegacy(const RegAllocFilterFunc F = nullptr); | 
|  |  | 
|  | static char ID; | 
|  | /// Return the pass name. | 
|  | StringRef getPassName() const override { return "Greedy Register Allocator"; } | 
|  |  | 
|  | /// RAGreedy analysis usage. | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override; | 
|  | /// Perform register allocation. | 
|  | bool runOnMachineFunction(MachineFunction &mf) override; | 
|  |  | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().setNoPHIs(); | 
|  | } | 
|  |  | 
|  | MachineFunctionProperties getClearedProperties() const override { | 
|  | return MachineFunctionProperties().setIsSSA(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | RAGreedyLegacy::RAGreedyLegacy(const RegAllocFilterFunc F) | 
|  | : MachineFunctionPass(ID), F(std::move(F)) { | 
|  | initializeRAGreedyLegacyPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | struct RAGreedy::RequiredAnalyses { | 
|  | VirtRegMap *VRM = nullptr; | 
|  | LiveIntervals *LIS = nullptr; | 
|  | LiveRegMatrix *LRM = nullptr; | 
|  | SlotIndexes *Indexes = nullptr; | 
|  | MachineBlockFrequencyInfo *MBFI = nullptr; | 
|  | MachineDominatorTree *DomTree = nullptr; | 
|  | MachineLoopInfo *Loops = nullptr; | 
|  | MachineOptimizationRemarkEmitter *ORE = nullptr; | 
|  | EdgeBundles *Bundles = nullptr; | 
|  | SpillPlacement *SpillPlacer = nullptr; | 
|  | LiveDebugVariables *DebugVars = nullptr; | 
|  |  | 
|  | // Used by InlineSpiller | 
|  | LiveStacks *LSS; | 
|  | // Proxies for eviction and priority advisors | 
|  | RegAllocEvictionAdvisorProvider *EvictProvider; | 
|  | RegAllocPriorityAdvisorProvider *PriorityProvider; | 
|  |  | 
|  | RequiredAnalyses() = delete; | 
|  | RequiredAnalyses(Pass &P); | 
|  | RequiredAnalyses(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM); | 
|  | }; | 
|  |  | 
|  | RAGreedy::RAGreedy(RequiredAnalyses &Analyses, const RegAllocFilterFunc F) | 
|  | : RegAllocBase(F) { | 
|  | VRM = Analyses.VRM; | 
|  | LIS = Analyses.LIS; | 
|  | Matrix = Analyses.LRM; | 
|  | Indexes = Analyses.Indexes; | 
|  | MBFI = Analyses.MBFI; | 
|  | DomTree = Analyses.DomTree; | 
|  | Loops = Analyses.Loops; | 
|  | ORE = Analyses.ORE; | 
|  | Bundles = Analyses.Bundles; | 
|  | SpillPlacer = Analyses.SpillPlacer; | 
|  | DebugVars = Analyses.DebugVars; | 
|  | LSS = Analyses.LSS; | 
|  | EvictProvider = Analyses.EvictProvider; | 
|  | PriorityProvider = Analyses.PriorityProvider; | 
|  | } | 
|  |  | 
|  | void RAGreedyPass::printPipeline( | 
|  | raw_ostream &OS, | 
|  | function_ref<StringRef(StringRef)> MapClassName2PassName) const { | 
|  | StringRef FilterName = Opts.FilterName.empty() ? "all" : Opts.FilterName; | 
|  | OS << "greedy<" << FilterName << '>'; | 
|  | } | 
|  |  | 
|  | RAGreedy::RequiredAnalyses::RequiredAnalyses( | 
|  | MachineFunction &MF, MachineFunctionAnalysisManager &MFAM) { | 
|  | LIS = &MFAM.getResult<LiveIntervalsAnalysis>(MF); | 
|  | LRM = &MFAM.getResult<LiveRegMatrixAnalysis>(MF); | 
|  | LSS = &MFAM.getResult<LiveStacksAnalysis>(MF); | 
|  | Indexes = &MFAM.getResult<SlotIndexesAnalysis>(MF); | 
|  | MBFI = &MFAM.getResult<MachineBlockFrequencyAnalysis>(MF); | 
|  | DomTree = &MFAM.getResult<MachineDominatorTreeAnalysis>(MF); | 
|  | ORE = &MFAM.getResult<MachineOptimizationRemarkEmitterAnalysis>(MF); | 
|  | Loops = &MFAM.getResult<MachineLoopAnalysis>(MF); | 
|  | Bundles = &MFAM.getResult<EdgeBundlesAnalysis>(MF); | 
|  | SpillPlacer = &MFAM.getResult<SpillPlacementAnalysis>(MF); | 
|  | DebugVars = &MFAM.getResult<LiveDebugVariablesAnalysis>(MF); | 
|  | EvictProvider = MFAM.getResult<RegAllocEvictionAdvisorAnalysis>(MF).Provider; | 
|  | PriorityProvider = | 
|  | MFAM.getResult<RegAllocPriorityAdvisorAnalysis>(MF).Provider; | 
|  | VRM = &MFAM.getResult<VirtRegMapAnalysis>(MF); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses RAGreedyPass::run(MachineFunction &MF, | 
|  | MachineFunctionAnalysisManager &MFAM) { | 
|  | MFPropsModifier _(*this, MF); | 
|  |  | 
|  | RAGreedy::RequiredAnalyses Analyses(MF, MFAM); | 
|  | RAGreedy Impl(Analyses, Opts.Filter); | 
|  |  | 
|  | bool Changed = Impl.run(MF); | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  | auto PA = getMachineFunctionPassPreservedAnalyses(); | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<MachineBlockFrequencyAnalysis>(); | 
|  | PA.preserve<LiveIntervalsAnalysis>(); | 
|  | PA.preserve<SlotIndexesAnalysis>(); | 
|  | PA.preserve<LiveDebugVariablesAnalysis>(); | 
|  | PA.preserve<LiveStacksAnalysis>(); | 
|  | PA.preserve<VirtRegMapAnalysis>(); | 
|  | PA.preserve<LiveRegMatrixAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | RAGreedy::RequiredAnalyses::RequiredAnalyses(Pass &P) { | 
|  | VRM = &P.getAnalysis<VirtRegMapWrapperLegacy>().getVRM(); | 
|  | LIS = &P.getAnalysis<LiveIntervalsWrapperPass>().getLIS(); | 
|  | LSS = &P.getAnalysis<LiveStacksWrapperLegacy>().getLS(); | 
|  | LRM = &P.getAnalysis<LiveRegMatrixWrapperLegacy>().getLRM(); | 
|  | Indexes = &P.getAnalysis<SlotIndexesWrapperPass>().getSI(); | 
|  | MBFI = &P.getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); | 
|  | DomTree = &P.getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); | 
|  | ORE = &P.getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); | 
|  | Loops = &P.getAnalysis<MachineLoopInfoWrapperPass>().getLI(); | 
|  | Bundles = &P.getAnalysis<EdgeBundlesWrapperLegacy>().getEdgeBundles(); | 
|  | SpillPlacer = &P.getAnalysis<SpillPlacementWrapperLegacy>().getResult(); | 
|  | DebugVars = &P.getAnalysis<LiveDebugVariablesWrapperLegacy>().getLDV(); | 
|  | EvictProvider = | 
|  | &P.getAnalysis<RegAllocEvictionAdvisorAnalysisLegacy>().getProvider(); | 
|  | PriorityProvider = | 
|  | &P.getAnalysis<RegAllocPriorityAdvisorAnalysisLegacy>().getProvider(); | 
|  | } | 
|  |  | 
|  | bool RAGreedyLegacy::runOnMachineFunction(MachineFunction &MF) { | 
|  | RAGreedy::RequiredAnalyses Analyses(*this); | 
|  | RAGreedy Impl(Analyses, F); | 
|  | return Impl.run(MF); | 
|  | } | 
|  |  | 
|  | char RAGreedyLegacy::ID = 0; | 
|  | char &llvm::RAGreedyLegacyID = RAGreedyLegacy::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(RAGreedyLegacy, "greedy", "Greedy Register Allocator", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveDebugVariablesWrapperLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(RegisterCoalescerLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineSchedulerLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveStacksWrapperLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(VirtRegMapWrapperLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveRegMatrixWrapperLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(EdgeBundlesWrapperLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(SpillPlacementWrapperLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysisLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysisLegacy) | 
|  | INITIALIZE_PASS_END(RAGreedyLegacy, "greedy", "Greedy Register Allocator", | 
|  | false, false) | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | const char *const RAGreedy::StageName[] = { | 
|  | "RS_New", | 
|  | "RS_Assign", | 
|  | "RS_Split", | 
|  | "RS_Split2", | 
|  | "RS_Spill", | 
|  | "RS_Done" | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | // Hysteresis to use when comparing floats. | 
|  | // This helps stabilize decisions based on float comparisons. | 
|  | const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 | 
|  |  | 
|  | FunctionPass* llvm::createGreedyRegisterAllocator() { | 
|  | return new RAGreedyLegacy(); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createGreedyRegisterAllocator(RegAllocFilterFunc Ftor) { | 
|  | return new RAGreedyLegacy(Ftor); | 
|  | } | 
|  |  | 
|  | void RAGreedyLegacy::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); | 
|  | AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); | 
|  | AU.addRequired<LiveIntervalsWrapperPass>(); | 
|  | AU.addPreserved<LiveIntervalsWrapperPass>(); | 
|  | AU.addRequired<SlotIndexesWrapperPass>(); | 
|  | AU.addPreserved<SlotIndexesWrapperPass>(); | 
|  | AU.addRequired<LiveDebugVariablesWrapperLegacy>(); | 
|  | AU.addPreserved<LiveDebugVariablesWrapperLegacy>(); | 
|  | AU.addRequired<LiveStacksWrapperLegacy>(); | 
|  | AU.addPreserved<LiveStacksWrapperLegacy>(); | 
|  | AU.addRequired<MachineDominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<MachineDominatorTreeWrapperPass>(); | 
|  | AU.addRequired<MachineLoopInfoWrapperPass>(); | 
|  | AU.addPreserved<MachineLoopInfoWrapperPass>(); | 
|  | AU.addRequired<VirtRegMapWrapperLegacy>(); | 
|  | AU.addPreserved<VirtRegMapWrapperLegacy>(); | 
|  | AU.addRequired<LiveRegMatrixWrapperLegacy>(); | 
|  | AU.addPreserved<LiveRegMatrixWrapperLegacy>(); | 
|  | AU.addRequired<EdgeBundlesWrapperLegacy>(); | 
|  | AU.addRequired<SpillPlacementWrapperLegacy>(); | 
|  | AU.addRequired<MachineOptimizationRemarkEmitterPass>(); | 
|  | AU.addRequired<RegAllocEvictionAdvisorAnalysisLegacy>(); | 
|  | AU.addRequired<RegAllocPriorityAdvisorAnalysisLegacy>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     LiveRangeEdit delegate methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { | 
|  | LiveInterval &LI = LIS->getInterval(VirtReg); | 
|  | if (VRM->hasPhys(VirtReg)) { | 
|  | Matrix->unassign(LI); | 
|  | aboutToRemoveInterval(LI); | 
|  | return true; | 
|  | } | 
|  | // Unassigned virtreg is probably in the priority queue. | 
|  | // RegAllocBase will erase it after dequeueing. | 
|  | // Nonetheless, clear the live-range so that the debug | 
|  | // dump will show the right state for that VirtReg. | 
|  | LI.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { | 
|  | if (!VRM->hasPhys(VirtReg)) | 
|  | return; | 
|  |  | 
|  | // Register is assigned, put it back on the queue for reassignment. | 
|  | LiveInterval &LI = LIS->getInterval(VirtReg); | 
|  | Matrix->unassign(LI); | 
|  | RegAllocBase::enqueue(&LI); | 
|  | } | 
|  |  | 
|  | void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { | 
|  | ExtraInfo->LRE_DidCloneVirtReg(New, Old); | 
|  | } | 
|  |  | 
|  | void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { | 
|  | // Cloning a register we haven't even heard about yet?  Just ignore it. | 
|  | if (!Info.inBounds(Old)) | 
|  | return; | 
|  |  | 
|  | // LRE may clone a virtual register because dead code elimination causes it to | 
|  | // be split into connected components. The new components are much smaller | 
|  | // than the original, so they should get a new chance at being assigned. | 
|  | // same stage as the parent. | 
|  | Info[Old].Stage = RS_Assign; | 
|  | Info.grow(New.id()); | 
|  | Info[New] = Info[Old]; | 
|  | } | 
|  |  | 
|  | void RAGreedy::releaseMemory() { | 
|  | SpillerInstance.reset(); | 
|  | GlobalCand.clear(); | 
|  | } | 
|  |  | 
|  | void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } | 
|  |  | 
|  | void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { | 
|  | // Prioritize live ranges by size, assigning larger ranges first. | 
|  | // The queue holds (size, reg) pairs. | 
|  | const Register Reg = LI->reg(); | 
|  | assert(Reg.isVirtual() && "Can only enqueue virtual registers"); | 
|  |  | 
|  | auto Stage = ExtraInfo->getOrInitStage(Reg); | 
|  | if (Stage == RS_New) { | 
|  | Stage = RS_Assign; | 
|  | ExtraInfo->setStage(Reg, Stage); | 
|  | } | 
|  |  | 
|  | unsigned Ret = PriorityAdvisor->getPriority(*LI); | 
|  |  | 
|  | // The virtual register number is a tie breaker for same-sized ranges. | 
|  | // Give lower vreg numbers higher priority to assign them first. | 
|  | CurQueue.push(std::make_pair(Ret, ~Reg.id())); | 
|  | } | 
|  |  | 
|  | unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const { | 
|  | const unsigned Size = LI.getSize(); | 
|  | const Register Reg = LI.reg(); | 
|  | unsigned Prio; | 
|  | LiveRangeStage Stage = RA.getExtraInfo().getStage(LI); | 
|  |  | 
|  | if (Stage == RS_Split) { | 
|  | // Unsplit ranges that couldn't be allocated immediately are deferred until | 
|  | // everything else has been allocated. | 
|  | Prio = Size; | 
|  | } else { | 
|  | // Giant live ranges fall back to the global assignment heuristic, which | 
|  | // prevents excessive spilling in pathological cases. | 
|  | const TargetRegisterClass &RC = *MRI->getRegClass(Reg); | 
|  | bool ForceGlobal = RC.GlobalPriority || | 
|  | (!ReverseLocalAssignment && | 
|  | (Size / SlotIndex::InstrDist) > | 
|  | (2 * RegClassInfo.getNumAllocatableRegs(&RC))); | 
|  | unsigned GlobalBit = 0; | 
|  |  | 
|  | if (Stage == RS_Assign && !ForceGlobal && !LI.empty() && | 
|  | LIS->intervalIsInOneMBB(LI)) { | 
|  | // Allocate original local ranges in linear instruction order. Since they | 
|  | // are singly defined, this produces optimal coloring in the absence of | 
|  | // global interference and other constraints. | 
|  | if (!ReverseLocalAssignment) | 
|  | Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex()); | 
|  | else { | 
|  | // Allocating bottom up may allow many short LRGs to be assigned first | 
|  | // to one of the cheap registers. This could be much faster for very | 
|  | // large blocks on targets with many physical registers. | 
|  | Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex()); | 
|  | } | 
|  | } else { | 
|  | // Allocate global and split ranges in long->short order. Long ranges that | 
|  | // don't fit should be spilled (or split) ASAP so they don't create | 
|  | // interference.  Mark a bit to prioritize global above local ranges. | 
|  | Prio = Size; | 
|  | GlobalBit = 1; | 
|  | } | 
|  |  | 
|  | // Priority bit layout: | 
|  | // 31 RS_Assign priority | 
|  | // 30 Preference priority | 
|  | // if (RegClassPriorityTrumpsGlobalness) | 
|  | //   29-25 AllocPriority | 
|  | //   24 GlobalBit | 
|  | // else | 
|  | //   29 Global bit | 
|  | //   28-24 AllocPriority | 
|  | // 0-23 Size/Instr distance | 
|  |  | 
|  | // Clamp the size to fit with the priority masking scheme | 
|  | Prio = std::min(Prio, (unsigned)maxUIntN(24)); | 
|  | assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow"); | 
|  |  | 
|  | if (RegClassPriorityTrumpsGlobalness) | 
|  | Prio |= RC.AllocationPriority << 25 | GlobalBit << 24; | 
|  | else | 
|  | Prio |= GlobalBit << 29 | RC.AllocationPriority << 24; | 
|  |  | 
|  | // Mark a higher bit to prioritize global and local above RS_Split. | 
|  | Prio |= (1u << 31); | 
|  |  | 
|  | // Boost ranges that have a physical register hint. | 
|  | if (VRM->hasKnownPreference(Reg)) | 
|  | Prio |= (1u << 30); | 
|  | } | 
|  |  | 
|  | return Prio; | 
|  | } | 
|  |  | 
|  | unsigned DummyPriorityAdvisor::getPriority(const LiveInterval &LI) const { | 
|  | // Prioritize by virtual register number, lowest first. | 
|  | Register Reg = LI.reg(); | 
|  | return ~Reg.virtRegIndex(); | 
|  | } | 
|  |  | 
|  | const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } | 
|  |  | 
|  | const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { | 
|  | if (CurQueue.empty()) | 
|  | return nullptr; | 
|  | LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); | 
|  | CurQueue.pop(); | 
|  | return LI; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            Direct Assignment | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// tryAssign - Try to assign VirtReg to an available register. | 
|  | MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, | 
|  | AllocationOrder &Order, | 
|  | SmallVectorImpl<Register> &NewVRegs, | 
|  | const SmallVirtRegSet &FixedRegisters) { | 
|  | MCRegister PhysReg; | 
|  | for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { | 
|  | assert(*I); | 
|  | if (!Matrix->checkInterference(VirtReg, *I)) { | 
|  | if (I.isHint()) | 
|  | return *I; | 
|  | else | 
|  | PhysReg = *I; | 
|  | } | 
|  | } | 
|  | if (!PhysReg.isValid()) | 
|  | return PhysReg; | 
|  |  | 
|  | // PhysReg is available, but there may be a better choice. | 
|  |  | 
|  | // If we missed a simple hint, try to cheaply evict interference from the | 
|  | // preferred register. | 
|  | if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) | 
|  | if (Order.isHint(Hint)) { | 
|  | MCRegister PhysHint = Hint.asMCReg(); | 
|  | LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); | 
|  |  | 
|  | if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, | 
|  | FixedRegisters)) { | 
|  | evictInterference(VirtReg, PhysHint, NewVRegs); | 
|  | return PhysHint; | 
|  | } | 
|  |  | 
|  | // We can also split the virtual register in cold blocks. | 
|  | if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order)) | 
|  | return MCRegister(); | 
|  |  | 
|  | // Record the missed hint, we may be able to recover | 
|  | // at the end if the surrounding allocation changed. | 
|  | SetOfBrokenHints.insert(&VirtReg); | 
|  | } | 
|  |  | 
|  | // Try to evict interference from a cheaper alternative. | 
|  | uint8_t Cost = RegCosts[PhysReg.id()]; | 
|  |  | 
|  | // Most registers have 0 additional cost. | 
|  | if (!Cost) | 
|  | return PhysReg; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " | 
|  | << (unsigned)Cost << '\n'); | 
|  | MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); | 
|  | return CheapReg ? CheapReg : PhysReg; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Interference eviction | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, | 
|  | MCRegister FromReg) const { | 
|  | auto HasRegUnitInterference = [&](MCRegUnit Unit) { | 
|  | // Instantiate a "subquery", not to be confused with the Queries array. | 
|  | LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]); | 
|  | return SubQ.checkInterference(); | 
|  | }; | 
|  |  | 
|  | for (MCRegister Reg : | 
|  | AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) { | 
|  | if (Reg == FromReg) | 
|  | continue; | 
|  | // If no units have interference, reassignment is possible. | 
|  | if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) { | 
|  | LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " | 
|  | << printReg(FromReg, TRI) << " to " | 
|  | << printReg(Reg, TRI) << '\n'); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// evictInterference - Evict any interferring registers that prevent VirtReg | 
|  | /// from being assigned to Physreg. This assumes that canEvictInterference | 
|  | /// returned true. | 
|  | void RAGreedy::evictInterference(const LiveInterval &VirtReg, | 
|  | MCRegister PhysReg, | 
|  | SmallVectorImpl<Register> &NewVRegs) { | 
|  | // Make sure that VirtReg has a cascade number, and assign that cascade | 
|  | // number to every evicted register. These live ranges than then only be | 
|  | // evicted by a newer cascade, preventing infinite loops. | 
|  | unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) | 
|  | << " interference: Cascade " << Cascade << '\n'); | 
|  |  | 
|  | // Collect all interfering virtregs first. | 
|  | SmallVector<const LiveInterval *, 8> Intfs; | 
|  | for (MCRegUnit Unit : TRI->regunits(PhysReg)) { | 
|  | LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); | 
|  | // We usually have the interfering VRegs cached so collectInterferingVRegs() | 
|  | // should be fast, we may need to recalculate if when different physregs | 
|  | // overlap the same register unit so we had different SubRanges queried | 
|  | // against it. | 
|  | ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); | 
|  | Intfs.append(IVR.begin(), IVR.end()); | 
|  | } | 
|  |  | 
|  | // Evict them second. This will invalidate the queries. | 
|  | for (const LiveInterval *Intf : Intfs) { | 
|  | // The same VirtReg may be present in multiple RegUnits. Skip duplicates. | 
|  | if (!VRM->hasPhys(Intf->reg())) | 
|  | continue; | 
|  |  | 
|  | Matrix->unassign(*Intf); | 
|  | assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || | 
|  | VirtReg.isSpillable() < Intf->isSpillable()) && | 
|  | "Cannot decrease cascade number, illegal eviction"); | 
|  | ExtraInfo->setCascade(Intf->reg(), Cascade); | 
|  | ++NumEvicted; | 
|  | NewVRegs.push_back(Intf->reg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns true if the given \p PhysReg is a callee saved register and has not | 
|  | /// been used for allocation yet. | 
|  | bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { | 
|  | MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); | 
|  | if (!CSR) | 
|  | return false; | 
|  |  | 
|  | return !Matrix->isPhysRegUsed(PhysReg); | 
|  | } | 
|  |  | 
|  | std::optional<unsigned> | 
|  | RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, | 
|  | const AllocationOrder &Order, | 
|  | unsigned CostPerUseLimit) const { | 
|  | unsigned OrderLimit = Order.getOrder().size(); | 
|  |  | 
|  | if (CostPerUseLimit < uint8_t(~0u)) { | 
|  | // Check of any registers in RC are below CostPerUseLimit. | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); | 
|  | uint8_t MinCost = RegClassInfo.getMinCost(RC); | 
|  | if (MinCost >= CostPerUseLimit) { | 
|  | LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " | 
|  | << MinCost << ", no cheaper registers to be found.\n"); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // It is normal for register classes to have a long tail of registers with | 
|  | // the same cost. We don't need to look at them if they're too expensive. | 
|  | if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { | 
|  | OrderLimit = RegClassInfo.getLastCostChange(RC); | 
|  | LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit | 
|  | << " regs.\n"); | 
|  | } | 
|  | } | 
|  | return OrderLimit; | 
|  | } | 
|  |  | 
|  | bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, | 
|  | MCRegister PhysReg) const { | 
|  | if (RegCosts[PhysReg.id()] >= CostPerUseLimit) | 
|  | return false; | 
|  | // The first use of a callee-saved register in a function has cost 1. | 
|  | // Don't start using a CSR when the CostPerUseLimit is low. | 
|  | if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " | 
|  | << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) | 
|  | << '\n'); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// tryEvict - Try to evict all interferences for a physreg. | 
|  | /// @param  VirtReg Currently unassigned virtual register. | 
|  | /// @param  Order   Physregs to try. | 
|  | /// @return         Physreg to assign VirtReg, or 0. | 
|  | MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, | 
|  | AllocationOrder &Order, | 
|  | SmallVectorImpl<Register> &NewVRegs, | 
|  | uint8_t CostPerUseLimit, | 
|  | const SmallVirtRegSet &FixedRegisters) { | 
|  | NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, | 
|  | TimePassesIsEnabled); | 
|  |  | 
|  | MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( | 
|  | VirtReg, Order, CostPerUseLimit, FixedRegisters); | 
|  | if (BestPhys.isValid()) | 
|  | evictInterference(VirtReg, BestPhys, NewVRegs); | 
|  | return BestPhys; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              Region Splitting | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// addSplitConstraints - Fill out the SplitConstraints vector based on the | 
|  | /// interference pattern in Physreg and its aliases. Add the constraints to | 
|  | /// SpillPlacement and return the static cost of this split in Cost, assuming | 
|  | /// that all preferences in SplitConstraints are met. | 
|  | /// Return false if there are no bundles with positive bias. | 
|  | bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, | 
|  | BlockFrequency &Cost) { | 
|  | ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
|  |  | 
|  | // Reset interference dependent info. | 
|  | SplitConstraints.resize(UseBlocks.size()); | 
|  | BlockFrequency StaticCost = BlockFrequency(0); | 
|  | for (unsigned I = 0; I != UseBlocks.size(); ++I) { | 
|  | const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; | 
|  | SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; | 
|  |  | 
|  | BC.Number = BI.MBB->getNumber(); | 
|  | Intf.moveToBlock(BC.Number); | 
|  | BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; | 
|  | BC.Exit = (BI.LiveOut && | 
|  | !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) | 
|  | ? SpillPlacement::PrefReg | 
|  | : SpillPlacement::DontCare; | 
|  | BC.ChangesValue = BI.FirstDef.isValid(); | 
|  |  | 
|  | if (!Intf.hasInterference()) | 
|  | continue; | 
|  |  | 
|  | // Number of spill code instructions to insert. | 
|  | unsigned Ins = 0; | 
|  |  | 
|  | // Interference for the live-in value. | 
|  | if (BI.LiveIn) { | 
|  | if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { | 
|  | BC.Entry = SpillPlacement::MustSpill; | 
|  | ++Ins; | 
|  | } else if (Intf.first() < BI.FirstInstr) { | 
|  | BC.Entry = SpillPlacement::PrefSpill; | 
|  | ++Ins; | 
|  | } else if (Intf.first() < BI.LastInstr) { | 
|  | ++Ins; | 
|  | } | 
|  |  | 
|  | // Abort if the spill cannot be inserted at the MBB' start | 
|  | if (((BC.Entry == SpillPlacement::MustSpill) || | 
|  | (BC.Entry == SpillPlacement::PrefSpill)) && | 
|  | SlotIndex::isEarlierInstr(BI.FirstInstr, | 
|  | SA->getFirstSplitPoint(BC.Number))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Interference for the live-out value. | 
|  | if (BI.LiveOut) { | 
|  | if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { | 
|  | BC.Exit = SpillPlacement::MustSpill; | 
|  | ++Ins; | 
|  | } else if (Intf.last() > BI.LastInstr) { | 
|  | BC.Exit = SpillPlacement::PrefSpill; | 
|  | ++Ins; | 
|  | } else if (Intf.last() > BI.FirstInstr) { | 
|  | ++Ins; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Accumulate the total frequency of inserted spill code. | 
|  | while (Ins--) | 
|  | StaticCost += SpillPlacer->getBlockFrequency(BC.Number); | 
|  | } | 
|  | Cost = StaticCost; | 
|  |  | 
|  | // Add constraints for use-blocks. Note that these are the only constraints | 
|  | // that may add a positive bias, it is downhill from here. | 
|  | SpillPlacer->addConstraints(SplitConstraints); | 
|  | return SpillPlacer->scanActiveBundles(); | 
|  | } | 
|  |  | 
|  | /// addThroughConstraints - Add constraints and links to SpillPlacer from the | 
|  | /// live-through blocks in Blocks. | 
|  | bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, | 
|  | ArrayRef<unsigned> Blocks) { | 
|  | const unsigned GroupSize = 8; | 
|  | SpillPlacement::BlockConstraint BCS[GroupSize]; | 
|  | unsigned TBS[GroupSize]; | 
|  | unsigned B = 0, T = 0; | 
|  |  | 
|  | for (unsigned Number : Blocks) { | 
|  | Intf.moveToBlock(Number); | 
|  |  | 
|  | if (!Intf.hasInterference()) { | 
|  | assert(T < GroupSize && "Array overflow"); | 
|  | TBS[T] = Number; | 
|  | if (++T == GroupSize) { | 
|  | SpillPlacer->addLinks(ArrayRef(TBS, T)); | 
|  | T = 0; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(B < GroupSize && "Array overflow"); | 
|  | BCS[B].Number = Number; | 
|  |  | 
|  | // Abort if the spill cannot be inserted at the MBB' start | 
|  | MachineBasicBlock *MBB = MF->getBlockNumbered(Number); | 
|  | auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); | 
|  | if (FirstNonDebugInstr != MBB->end() && | 
|  | SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), | 
|  | SA->getFirstSplitPoint(Number))) | 
|  | return false; | 
|  | // Interference for the live-in value. | 
|  | if (Intf.first() <= Indexes->getMBBStartIdx(Number)) | 
|  | BCS[B].Entry = SpillPlacement::MustSpill; | 
|  | else | 
|  | BCS[B].Entry = SpillPlacement::PrefSpill; | 
|  |  | 
|  | // Interference for the live-out value. | 
|  | if (Intf.last() >= SA->getLastSplitPoint(Number)) | 
|  | BCS[B].Exit = SpillPlacement::MustSpill; | 
|  | else | 
|  | BCS[B].Exit = SpillPlacement::PrefSpill; | 
|  |  | 
|  | if (++B == GroupSize) { | 
|  | SpillPlacer->addConstraints(ArrayRef(BCS, B)); | 
|  | B = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | SpillPlacer->addConstraints(ArrayRef(BCS, B)); | 
|  | SpillPlacer->addLinks(ArrayRef(TBS, T)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { | 
|  | // Keep track of through blocks that have not been added to SpillPlacer. | 
|  | BitVector Todo = SA->getThroughBlocks(); | 
|  | SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; | 
|  | unsigned AddedTo = 0; | 
|  | #ifndef NDEBUG | 
|  | unsigned Visited = 0; | 
|  | #endif | 
|  |  | 
|  | unsigned long Budget = GrowRegionComplexityBudget; | 
|  | while (true) { | 
|  | ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); | 
|  | // Find new through blocks in the periphery of PrefRegBundles. | 
|  | for (unsigned Bundle : NewBundles) { | 
|  | // Look at all blocks connected to Bundle in the full graph. | 
|  | ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); | 
|  | // Limit compilation time by bailing out after we use all our budget. | 
|  | if (Blocks.size() >= Budget) | 
|  | return false; | 
|  | Budget -= Blocks.size(); | 
|  | for (unsigned Block : Blocks) { | 
|  | if (!Todo.test(Block)) | 
|  | continue; | 
|  | Todo.reset(Block); | 
|  | // This is a new through block. Add it to SpillPlacer later. | 
|  | ActiveBlocks.push_back(Block); | 
|  | #ifndef NDEBUG | 
|  | ++Visited; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | // Any new blocks to add? | 
|  | if (ActiveBlocks.size() == AddedTo) | 
|  | break; | 
|  |  | 
|  | // Compute through constraints from the interference, or assume that all | 
|  | // through blocks prefer spilling when forming compact regions. | 
|  | auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo); | 
|  | if (Cand.PhysReg) { | 
|  | if (!addThroughConstraints(Cand.Intf, NewBlocks)) | 
|  | return false; | 
|  | } else { | 
|  | // Providing that the variable being spilled does not look like a loop | 
|  | // induction variable, which is expensive to spill around and better | 
|  | // pushed into a condition inside the loop if possible, provide a strong | 
|  | // negative bias on through blocks to prevent unwanted liveness on loop | 
|  | // backedges. | 
|  | bool PrefSpill = true; | 
|  | if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) { | 
|  | // Check that the current bundle is adding a Header + start+end of | 
|  | // loop-internal blocks. If the block is indeed a header, don't make | 
|  | // the NewBlocks as PrefSpill to allow the variable to be live in | 
|  | // Header<->Latch. | 
|  | MachineLoop *L = Loops->getLoopFor(MF->getBlockNumbered(NewBlocks[0])); | 
|  | if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] && | 
|  | all_of(NewBlocks.drop_front(), [&](unsigned Block) { | 
|  | return L == Loops->getLoopFor(MF->getBlockNumbered(Block)); | 
|  | })) | 
|  | PrefSpill = false; | 
|  | } | 
|  | if (PrefSpill) | 
|  | SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); | 
|  | } | 
|  | AddedTo = ActiveBlocks.size(); | 
|  |  | 
|  | // Perhaps iterating can enable more bundles? | 
|  | SpillPlacer->iterate(); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << ", v=" << Visited); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// calcCompactRegion - Compute the set of edge bundles that should be live | 
|  | /// when splitting the current live range into compact regions.  Compact | 
|  | /// regions can be computed without looking at interference.  They are the | 
|  | /// regions formed by removing all the live-through blocks from the live range. | 
|  | /// | 
|  | /// Returns false if the current live range is already compact, or if the | 
|  | /// compact regions would form single block regions anyway. | 
|  | bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { | 
|  | // Without any through blocks, the live range is already compact. | 
|  | if (!SA->getNumThroughBlocks()) | 
|  | return false; | 
|  |  | 
|  | // Compact regions don't correspond to any physreg. | 
|  | Cand.reset(IntfCache, MCRegister::NoRegister); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Compact region bundles"); | 
|  |  | 
|  | // Use the spill placer to determine the live bundles. GrowRegion pretends | 
|  | // that all the through blocks have interference when PhysReg is unset. | 
|  | SpillPlacer->prepare(Cand.LiveBundles); | 
|  |  | 
|  | // The static split cost will be zero since Cand.Intf reports no interference. | 
|  | BlockFrequency Cost; | 
|  | if (!addSplitConstraints(Cand.Intf, Cost)) { | 
|  | LLVM_DEBUG(dbgs() << ", none.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!growRegion(Cand)) { | 
|  | LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SpillPlacer->finish(); | 
|  |  | 
|  | if (!Cand.LiveBundles.any()) { | 
|  | LLVM_DEBUG(dbgs() << ", none.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | for (int I : Cand.LiveBundles.set_bits()) | 
|  | dbgs() << " EB#" << I; | 
|  | dbgs() << ".\n"; | 
|  | }); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// calcSpillCost - Compute how expensive it would be to split the live range in | 
|  | /// SA around all use blocks instead of forming bundle regions. | 
|  | BlockFrequency RAGreedy::calcSpillCost() { | 
|  | BlockFrequency Cost = BlockFrequency(0); | 
|  | ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
|  | for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { | 
|  | unsigned Number = BI.MBB->getNumber(); | 
|  | // We normally only need one spill instruction - a load or a store. | 
|  | Cost += SpillPlacer->getBlockFrequency(Number); | 
|  |  | 
|  | // Unless the value is redefined in the block. | 
|  | if (BI.LiveIn && BI.LiveOut && BI.FirstDef) | 
|  | Cost += SpillPlacer->getBlockFrequency(Number); | 
|  | } | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | /// calcGlobalSplitCost - Return the global split cost of following the split | 
|  | /// pattern in LiveBundles. This cost should be added to the local cost of the | 
|  | /// interference pattern in SplitConstraints. | 
|  | /// | 
|  | BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, | 
|  | const AllocationOrder &Order) { | 
|  | BlockFrequency GlobalCost = BlockFrequency(0); | 
|  | const BitVector &LiveBundles = Cand.LiveBundles; | 
|  | ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
|  | for (unsigned I = 0; I != UseBlocks.size(); ++I) { | 
|  | const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; | 
|  | SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; | 
|  | bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)]; | 
|  | bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; | 
|  | unsigned Ins = 0; | 
|  |  | 
|  | Cand.Intf.moveToBlock(BC.Number); | 
|  |  | 
|  | if (BI.LiveIn) | 
|  | Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); | 
|  | if (BI.LiveOut) | 
|  | Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); | 
|  | while (Ins--) | 
|  | GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); | 
|  | } | 
|  |  | 
|  | for (unsigned Number : Cand.ActiveBlocks) { | 
|  | bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)]; | 
|  | bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; | 
|  | if (!RegIn && !RegOut) | 
|  | continue; | 
|  | if (RegIn && RegOut) { | 
|  | // We need double spill code if this block has interference. | 
|  | Cand.Intf.moveToBlock(Number); | 
|  | if (Cand.Intf.hasInterference()) { | 
|  | GlobalCost += SpillPlacer->getBlockFrequency(Number); | 
|  | GlobalCost += SpillPlacer->getBlockFrequency(Number); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | // live-in / stack-out or stack-in live-out. | 
|  | GlobalCost += SpillPlacer->getBlockFrequency(Number); | 
|  | } | 
|  | return GlobalCost; | 
|  | } | 
|  |  | 
|  | /// splitAroundRegion - Split the current live range around the regions | 
|  | /// determined by BundleCand and GlobalCand. | 
|  | /// | 
|  | /// Before calling this function, GlobalCand and BundleCand must be initialized | 
|  | /// so each bundle is assigned to a valid candidate, or NoCand for the | 
|  | /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor | 
|  | /// objects must be initialized for the current live range, and intervals | 
|  | /// created for the used candidates. | 
|  | /// | 
|  | /// @param LREdit    The LiveRangeEdit object handling the current split. | 
|  | /// @param UsedCands List of used GlobalCand entries. Every BundleCand value | 
|  | ///                  must appear in this list. | 
|  | void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, | 
|  | ArrayRef<unsigned> UsedCands) { | 
|  | // These are the intervals created for new global ranges. We may create more | 
|  | // intervals for local ranges. | 
|  | const unsigned NumGlobalIntvs = LREdit.size(); | 
|  | LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs | 
|  | << " globals.\n"); | 
|  | assert(NumGlobalIntvs && "No global intervals configured"); | 
|  |  | 
|  | // Isolate even single instructions when dealing with a proper sub-class. | 
|  | // That guarantees register class inflation for the stack interval because it | 
|  | // is all copies. | 
|  | Register Reg = SA->getParent().reg(); | 
|  | bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); | 
|  |  | 
|  | // First handle all the blocks with uses. | 
|  | ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
|  | for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { | 
|  | unsigned Number = BI.MBB->getNumber(); | 
|  | unsigned IntvIn = 0, IntvOut = 0; | 
|  | SlotIndex IntfIn, IntfOut; | 
|  | if (BI.LiveIn) { | 
|  | unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; | 
|  | if (CandIn != NoCand) { | 
|  | GlobalSplitCandidate &Cand = GlobalCand[CandIn]; | 
|  | IntvIn = Cand.IntvIdx; | 
|  | Cand.Intf.moveToBlock(Number); | 
|  | IntfIn = Cand.Intf.first(); | 
|  | } | 
|  | } | 
|  | if (BI.LiveOut) { | 
|  | unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; | 
|  | if (CandOut != NoCand) { | 
|  | GlobalSplitCandidate &Cand = GlobalCand[CandOut]; | 
|  | IntvOut = Cand.IntvIdx; | 
|  | Cand.Intf.moveToBlock(Number); | 
|  | IntfOut = Cand.Intf.last(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create separate intervals for isolated blocks with multiple uses. | 
|  | if (!IntvIn && !IntvOut) { | 
|  | LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); | 
|  | if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) | 
|  | SE->splitSingleBlock(BI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (IntvIn && IntvOut) | 
|  | SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); | 
|  | else if (IntvIn) | 
|  | SE->splitRegInBlock(BI, IntvIn, IntfIn); | 
|  | else | 
|  | SE->splitRegOutBlock(BI, IntvOut, IntfOut); | 
|  | } | 
|  |  | 
|  | // Handle live-through blocks. The relevant live-through blocks are stored in | 
|  | // the ActiveBlocks list with each candidate. We need to filter out | 
|  | // duplicates. | 
|  | BitVector Todo = SA->getThroughBlocks(); | 
|  | for (unsigned UsedCand : UsedCands) { | 
|  | ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; | 
|  | for (unsigned Number : Blocks) { | 
|  | if (!Todo.test(Number)) | 
|  | continue; | 
|  | Todo.reset(Number); | 
|  |  | 
|  | unsigned IntvIn = 0, IntvOut = 0; | 
|  | SlotIndex IntfIn, IntfOut; | 
|  |  | 
|  | unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; | 
|  | if (CandIn != NoCand) { | 
|  | GlobalSplitCandidate &Cand = GlobalCand[CandIn]; | 
|  | IntvIn = Cand.IntvIdx; | 
|  | Cand.Intf.moveToBlock(Number); | 
|  | IntfIn = Cand.Intf.first(); | 
|  | } | 
|  |  | 
|  | unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; | 
|  | if (CandOut != NoCand) { | 
|  | GlobalSplitCandidate &Cand = GlobalCand[CandOut]; | 
|  | IntvOut = Cand.IntvIdx; | 
|  | Cand.Intf.moveToBlock(Number); | 
|  | IntfOut = Cand.Intf.last(); | 
|  | } | 
|  | if (!IntvIn && !IntvOut) | 
|  | continue; | 
|  | SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); | 
|  | } | 
|  | } | 
|  |  | 
|  | ++NumGlobalSplits; | 
|  |  | 
|  | SmallVector<unsigned, 8> IntvMap; | 
|  | SE->finish(&IntvMap); | 
|  | DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); | 
|  |  | 
|  | unsigned OrigBlocks = SA->getNumLiveBlocks(); | 
|  |  | 
|  | // Sort out the new intervals created by splitting. We get four kinds: | 
|  | // - Remainder intervals should not be split again. | 
|  | // - Candidate intervals can be assigned to Cand.PhysReg. | 
|  | // - Block-local splits are candidates for local splitting. | 
|  | // - DCE leftovers should go back on the queue. | 
|  | for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { | 
|  | const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); | 
|  |  | 
|  | // Ignore old intervals from DCE. | 
|  | if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) | 
|  | continue; | 
|  |  | 
|  | // Remainder interval. Don't try splitting again, spill if it doesn't | 
|  | // allocate. | 
|  | if (IntvMap[I] == 0) { | 
|  | ExtraInfo->setStage(Reg, RS_Spill); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Global intervals. Allow repeated splitting as long as the number of live | 
|  | // blocks is strictly decreasing. | 
|  | if (IntvMap[I] < NumGlobalIntvs) { | 
|  | if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { | 
|  | LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks | 
|  | << " blocks as original.\n"); | 
|  | // Don't allow repeated splitting as a safe guard against looping. | 
|  | ExtraInfo->setStage(Reg, RS_Split2); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Other intervals are treated as new. This includes local intervals created | 
|  | // for blocks with multiple uses, and anything created by DCE. | 
|  | } | 
|  |  | 
|  | if (VerifyEnabled) | 
|  | MF->verify(LIS, Indexes, "After splitting live range around region", | 
|  | &errs()); | 
|  | } | 
|  |  | 
|  | MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, | 
|  | AllocationOrder &Order, | 
|  | SmallVectorImpl<Register> &NewVRegs) { | 
|  | if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) | 
|  | return MCRegister::NoRegister; | 
|  | unsigned NumCands = 0; | 
|  | BlockFrequency SpillCost = calcSpillCost(); | 
|  | BlockFrequency BestCost; | 
|  |  | 
|  | // Check if we can split this live range around a compact region. | 
|  | bool HasCompact = calcCompactRegion(GlobalCand.front()); | 
|  | if (HasCompact) { | 
|  | // Yes, keep GlobalCand[0] as the compact region candidate. | 
|  | NumCands = 1; | 
|  | BestCost = BlockFrequency::max(); | 
|  | } else { | 
|  | // No benefit from the compact region, our fallback will be per-block | 
|  | // splitting. Make sure we find a solution that is cheaper than spilling. | 
|  | BestCost = SpillCost; | 
|  | LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = " | 
|  | << printBlockFreq(*MBFI, BestCost) << '\n'); | 
|  | } | 
|  |  | 
|  | unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, | 
|  | NumCands, false /*IgnoreCSR*/); | 
|  |  | 
|  | // No solutions found, fall back to single block splitting. | 
|  | if (!HasCompact && BestCand == NoCand) | 
|  | return MCRegister::NoRegister; | 
|  |  | 
|  | return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg, | 
|  | AllocationOrder &Order, | 
|  | BlockFrequency &BestCost, | 
|  | unsigned &NumCands, | 
|  | unsigned &BestCand) { | 
|  | // Discard bad candidates before we run out of interference cache cursors. | 
|  | // This will only affect register classes with a lot of registers (>32). | 
|  | if (NumCands == IntfCache.getMaxCursors()) { | 
|  | unsigned WorstCount = ~0u; | 
|  | unsigned Worst = 0; | 
|  | for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { | 
|  | if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) | 
|  | continue; | 
|  | unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); | 
|  | if (Count < WorstCount) { | 
|  | Worst = CandIndex; | 
|  | WorstCount = Count; | 
|  | } | 
|  | } | 
|  | --NumCands; | 
|  | GlobalCand[Worst] = GlobalCand[NumCands]; | 
|  | if (BestCand == NumCands) | 
|  | BestCand = Worst; | 
|  | } | 
|  |  | 
|  | if (GlobalCand.size() <= NumCands) | 
|  | GlobalCand.resize(NumCands+1); | 
|  | GlobalSplitCandidate &Cand = GlobalCand[NumCands]; | 
|  | Cand.reset(IntfCache, PhysReg); | 
|  |  | 
|  | SpillPlacer->prepare(Cand.LiveBundles); | 
|  | BlockFrequency Cost; | 
|  | if (!addSplitConstraints(Cand.Intf, Cost)) { | 
|  | LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); | 
|  | return BestCand; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) | 
|  | << "\tstatic = " << printBlockFreq(*MBFI, Cost)); | 
|  | if (Cost >= BestCost) { | 
|  | LLVM_DEBUG({ | 
|  | if (BestCand == NoCand) | 
|  | dbgs() << " worse than no bundles\n"; | 
|  | else | 
|  | dbgs() << " worse than " | 
|  | << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; | 
|  | }); | 
|  | return BestCand; | 
|  | } | 
|  | if (!growRegion(Cand)) { | 
|  | LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); | 
|  | return BestCand; | 
|  | } | 
|  |  | 
|  | SpillPlacer->finish(); | 
|  |  | 
|  | // No live bundles, defer to splitSingleBlocks(). | 
|  | if (!Cand.LiveBundles.any()) { | 
|  | LLVM_DEBUG(dbgs() << " no bundles.\n"); | 
|  | return BestCand; | 
|  | } | 
|  |  | 
|  | Cost += calcGlobalSplitCost(Cand, Order); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << ", total = " << printBlockFreq(*MBFI, Cost) << " with bundles"; | 
|  | for (int I : Cand.LiveBundles.set_bits()) | 
|  | dbgs() << " EB#" << I; | 
|  | dbgs() << ".\n"; | 
|  | }); | 
|  | if (Cost < BestCost) { | 
|  | BestCand = NumCands; | 
|  | BestCost = Cost; | 
|  | } | 
|  | ++NumCands; | 
|  |  | 
|  | return BestCand; | 
|  | } | 
|  |  | 
|  | unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, | 
|  | AllocationOrder &Order, | 
|  | BlockFrequency &BestCost, | 
|  | unsigned &NumCands, | 
|  | bool IgnoreCSR) { | 
|  | unsigned BestCand = NoCand; | 
|  | for (MCPhysReg PhysReg : Order) { | 
|  | assert(PhysReg); | 
|  | if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) | 
|  | continue; | 
|  |  | 
|  | calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands, | 
|  | BestCand); | 
|  | } | 
|  |  | 
|  | return BestCand; | 
|  | } | 
|  |  | 
|  | MCRegister RAGreedy::doRegionSplit(const LiveInterval &VirtReg, | 
|  | unsigned BestCand, bool HasCompact, | 
|  | SmallVectorImpl<Register> &NewVRegs) { | 
|  | SmallVector<unsigned, 8> UsedCands; | 
|  | // Prepare split editor. | 
|  | LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
|  | SE->reset(LREdit, SplitSpillMode); | 
|  |  | 
|  | // Assign all edge bundles to the preferred candidate, or NoCand. | 
|  | BundleCand.assign(Bundles->getNumBundles(), NoCand); | 
|  |  | 
|  | // Assign bundles for the best candidate region. | 
|  | if (BestCand != NoCand) { | 
|  | GlobalSplitCandidate &Cand = GlobalCand[BestCand]; | 
|  | if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { | 
|  | UsedCands.push_back(BestCand); | 
|  | Cand.IntvIdx = SE->openIntv(); | 
|  | LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " | 
|  | << B << " bundles, intv " << Cand.IntvIdx << ".\n"); | 
|  | (void)B; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assign bundles for the compact region. | 
|  | if (HasCompact) { | 
|  | GlobalSplitCandidate &Cand = GlobalCand.front(); | 
|  | assert(!Cand.PhysReg && "Compact region has no physreg"); | 
|  | if (unsigned B = Cand.getBundles(BundleCand, 0)) { | 
|  | UsedCands.push_back(0); | 
|  | Cand.IntvIdx = SE->openIntv(); | 
|  | LLVM_DEBUG(dbgs() << "Split for compact region in " << B | 
|  | << " bundles, intv " << Cand.IntvIdx << ".\n"); | 
|  | (void)B; | 
|  | } | 
|  | } | 
|  |  | 
|  | splitAroundRegion(LREdit, UsedCands); | 
|  | return MCRegister(); | 
|  | } | 
|  |  | 
|  | // VirtReg has a physical Hint, this function tries to split VirtReg around | 
|  | // Hint if we can place new COPY instructions in cold blocks. | 
|  | bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint, | 
|  | const LiveInterval &VirtReg, | 
|  | SmallVectorImpl<Register> &NewVRegs, | 
|  | AllocationOrder &Order) { | 
|  | // Split the VirtReg may generate COPY instructions in multiple cold basic | 
|  | // blocks, and increase code size. So we avoid it when the function is | 
|  | // optimized for size. | 
|  | if (MF->getFunction().hasOptSize()) | 
|  | return false; | 
|  |  | 
|  | // Don't allow repeated splitting as a safe guard against looping. | 
|  | if (ExtraInfo->getStage(VirtReg) >= RS_Split2) | 
|  | return false; | 
|  |  | 
|  | BlockFrequency Cost = BlockFrequency(0); | 
|  | Register Reg = VirtReg.reg(); | 
|  |  | 
|  | // Compute the cost of assigning a non Hint physical register to VirtReg. | 
|  | // We define it as the total frequency of broken COPY instructions to/from | 
|  | // Hint register, and after split, they can be deleted. | 
|  | for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { | 
|  | if (!TII->isFullCopyInstr(Instr)) | 
|  | continue; | 
|  | Register OtherReg = Instr.getOperand(1).getReg(); | 
|  | if (OtherReg == Reg) { | 
|  | OtherReg = Instr.getOperand(0).getReg(); | 
|  | if (OtherReg == Reg) | 
|  | continue; | 
|  | // Check if VirtReg interferes with OtherReg after this COPY instruction. | 
|  | if (VirtReg.liveAt(LIS->getInstructionIndex(Instr).getRegSlot())) | 
|  | continue; | 
|  | } | 
|  | MCRegister OtherPhysReg = | 
|  | OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); | 
|  | if (OtherPhysReg == Hint) | 
|  | Cost += MBFI->getBlockFreq(Instr.getParent()); | 
|  | } | 
|  |  | 
|  | // Decrease the cost so it will be split in colder blocks. | 
|  | BranchProbability Threshold(SplitThresholdForRegWithHint, 100); | 
|  | Cost *= Threshold; | 
|  | if (Cost == BlockFrequency(0)) | 
|  | return false; | 
|  |  | 
|  | unsigned NumCands = 0; | 
|  | unsigned BestCand = NoCand; | 
|  | SA->analyze(&VirtReg); | 
|  | calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand); | 
|  | if (BestCand == NoCand) | 
|  | return false; | 
|  |  | 
|  | doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            Per-Block Splitting | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// tryBlockSplit - Split a global live range around every block with uses. This | 
|  | /// creates a lot of local live ranges, that will be split by tryLocalSplit if | 
|  | /// they don't allocate. | 
|  | MCRegister RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, | 
|  | AllocationOrder &Order, | 
|  | SmallVectorImpl<Register> &NewVRegs) { | 
|  | assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); | 
|  | Register Reg = VirtReg.reg(); | 
|  | bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); | 
|  | LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
|  | SE->reset(LREdit, SplitSpillMode); | 
|  | ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); | 
|  | for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { | 
|  | if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) | 
|  | SE->splitSingleBlock(BI); | 
|  | } | 
|  | // No blocks were split. | 
|  | if (LREdit.empty()) | 
|  | return MCRegister(); | 
|  |  | 
|  | // We did split for some blocks. | 
|  | SmallVector<unsigned, 8> IntvMap; | 
|  | SE->finish(&IntvMap); | 
|  |  | 
|  | // Tell LiveDebugVariables about the new ranges. | 
|  | DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); | 
|  |  | 
|  | // Sort out the new intervals created by splitting. The remainder interval | 
|  | // goes straight to spilling, the new local ranges get to stay RS_New. | 
|  | for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { | 
|  | const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); | 
|  | if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) | 
|  | ExtraInfo->setStage(LI, RS_Spill); | 
|  | } | 
|  |  | 
|  | if (VerifyEnabled) | 
|  | MF->verify(LIS, Indexes, "After splitting live range around basic blocks", | 
|  | &errs()); | 
|  | return MCRegister(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Per-Instruction Splitting | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Get the number of allocatable registers that match the constraints of \p Reg | 
|  | /// on \p MI and that are also in \p SuperRC. | 
|  | static unsigned getNumAllocatableRegsForConstraints( | 
|  | const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, | 
|  | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, | 
|  | const RegisterClassInfo &RCI) { | 
|  | assert(SuperRC && "Invalid register class"); | 
|  |  | 
|  | const TargetRegisterClass *ConstrainedRC = | 
|  | MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, | 
|  | /* ExploreBundle */ true); | 
|  | if (!ConstrainedRC) | 
|  | return 0; | 
|  | return RCI.getNumAllocatableRegs(ConstrainedRC); | 
|  | } | 
|  |  | 
|  | static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI, | 
|  | const TargetRegisterInfo &TRI, | 
|  | const MachineInstr &FirstMI, | 
|  | Register Reg) { | 
|  | LaneBitmask Mask; | 
|  | SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; | 
|  | (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr &>(FirstMI), Reg, &Ops); | 
|  |  | 
|  | for (auto [MI, OpIdx] : Ops) { | 
|  | const MachineOperand &MO = MI->getOperand(OpIdx); | 
|  | assert(MO.isReg() && MO.getReg() == Reg); | 
|  | unsigned SubReg = MO.getSubReg(); | 
|  | if (SubReg == 0 && MO.isUse()) { | 
|  | if (MO.isUndef()) | 
|  | continue; | 
|  | return MRI.getMaxLaneMaskForVReg(Reg); | 
|  | } | 
|  |  | 
|  | LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg); | 
|  | if (MO.isDef()) { | 
|  | if (!MO.isUndef()) | 
|  | Mask |= ~SubRegMask; | 
|  | } else | 
|  | Mask |= SubRegMask; | 
|  | } | 
|  |  | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | /// Return true if \p MI at \P Use reads a subset of the lanes live in \p | 
|  | /// VirtReg. | 
|  | static bool readsLaneSubset(const MachineRegisterInfo &MRI, | 
|  | const MachineInstr *MI, const LiveInterval &VirtReg, | 
|  | const TargetRegisterInfo *TRI, SlotIndex Use, | 
|  | const TargetInstrInfo *TII) { | 
|  | // Early check the common case. Beware of the semi-formed bundles SplitKit | 
|  | // creates by setting the bundle flag on copies without a matching BUNDLE. | 
|  |  | 
|  | auto DestSrc = TII->isCopyInstr(*MI); | 
|  | if (DestSrc && !MI->isBundled() && | 
|  | DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: We're only considering uses, but should be consider defs too? | 
|  | LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg()); | 
|  |  | 
|  | LaneBitmask LiveAtMask; | 
|  | for (const LiveInterval::SubRange &S : VirtReg.subranges()) { | 
|  | if (S.liveAt(Use)) | 
|  | LiveAtMask |= S.LaneMask; | 
|  | } | 
|  |  | 
|  | // If the live lanes aren't different from the lanes used by the instruction, | 
|  | // this doesn't help. | 
|  | return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any(); | 
|  | } | 
|  |  | 
|  | /// tryInstructionSplit - Split a live range around individual instructions. | 
|  | /// This is normally not worthwhile since the spiller is doing essentially the | 
|  | /// same thing. However, when the live range is in a constrained register | 
|  | /// class, it may help to insert copies such that parts of the live range can | 
|  | /// be moved to a larger register class. | 
|  | /// | 
|  | /// This is similar to spilling to a larger register class. | 
|  | MCRegister RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, | 
|  | AllocationOrder &Order, | 
|  | SmallVectorImpl<Register> &NewVRegs) { | 
|  | const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); | 
|  | // There is no point to this if there are no larger sub-classes. | 
|  |  | 
|  | bool SplitSubClass = true; | 
|  | if (!RegClassInfo.isProperSubClass(CurRC)) { | 
|  | if (!VirtReg.hasSubRanges()) | 
|  | return MCRegister(); | 
|  | SplitSubClass = false; | 
|  | } | 
|  |  | 
|  | // Always enable split spill mode, since we're effectively spilling to a | 
|  | // register. | 
|  | LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
|  | SE->reset(LREdit, SplitEditor::SM_Size); | 
|  |  | 
|  | ArrayRef<SlotIndex> Uses = SA->getUseSlots(); | 
|  | if (Uses.size() <= 1) | 
|  | return MCRegister(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Split around " << Uses.size() | 
|  | << " individual instrs.\n"); | 
|  |  | 
|  | const TargetRegisterClass *SuperRC = | 
|  | TRI->getLargestLegalSuperClass(CurRC, *MF); | 
|  | unsigned SuperRCNumAllocatableRegs = | 
|  | RegClassInfo.getNumAllocatableRegs(SuperRC); | 
|  | // Split around every non-copy instruction if this split will relax | 
|  | // the constraints on the virtual register. | 
|  | // Otherwise, splitting just inserts uncoalescable copies that do not help | 
|  | // the allocation. | 
|  | for (const SlotIndex Use : Uses) { | 
|  | if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) { | 
|  | if (TII->isFullCopyInstr(*MI) || | 
|  | (SplitSubClass && | 
|  | SuperRCNumAllocatableRegs == | 
|  | getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, | 
|  | TII, TRI, RegClassInfo)) || | 
|  | // TODO: Handle split for subranges with subclass constraints? | 
|  | (!SplitSubClass && VirtReg.hasSubRanges() && | 
|  | !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) { | 
|  | LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | SE->openIntv(); | 
|  | SlotIndex SegStart = SE->enterIntvBefore(Use); | 
|  | SlotIndex SegStop = SE->leaveIntvAfter(Use); | 
|  | SE->useIntv(SegStart, SegStop); | 
|  | } | 
|  |  | 
|  | if (LREdit.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "All uses were copies.\n"); | 
|  | return MCRegister(); | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 8> IntvMap; | 
|  | SE->finish(&IntvMap); | 
|  | DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); | 
|  | // Assign all new registers to RS_Spill. This was the last chance. | 
|  | ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); | 
|  | return MCRegister(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             Local Splitting | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// calcGapWeights - Compute the maximum spill weight that needs to be evicted | 
|  | /// in order to use PhysReg between two entries in SA->UseSlots. | 
|  | /// | 
|  | /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. | 
|  | /// | 
|  | void RAGreedy::calcGapWeights(MCRegister PhysReg, | 
|  | SmallVectorImpl<float> &GapWeight) { | 
|  | assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); | 
|  | const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); | 
|  | ArrayRef<SlotIndex> Uses = SA->getUseSlots(); | 
|  | const unsigned NumGaps = Uses.size()-1; | 
|  |  | 
|  | // Start and end points for the interference check. | 
|  | SlotIndex StartIdx = | 
|  | BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; | 
|  | SlotIndex StopIdx = | 
|  | BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; | 
|  |  | 
|  | GapWeight.assign(NumGaps, 0.0f); | 
|  |  | 
|  | // Add interference from each overlapping register. | 
|  | for (MCRegUnit Unit : TRI->regunits(PhysReg)) { | 
|  | if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit) | 
|  | .checkInterference()) | 
|  | continue; | 
|  |  | 
|  | // We know that VirtReg is a continuous interval from FirstInstr to | 
|  | // LastInstr, so we don't need InterferenceQuery. | 
|  | // | 
|  | // Interference that overlaps an instruction is counted in both gaps | 
|  | // surrounding the instruction. The exception is interference before | 
|  | // StartIdx and after StopIdx. | 
|  | // | 
|  | LiveIntervalUnion::SegmentIter IntI = | 
|  | Matrix->getLiveUnions()[Unit].find(StartIdx); | 
|  | for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { | 
|  | // Skip the gaps before IntI. | 
|  | while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) | 
|  | if (++Gap == NumGaps) | 
|  | break; | 
|  | if (Gap == NumGaps) | 
|  | break; | 
|  |  | 
|  | // Update the gaps covered by IntI. | 
|  | const float weight = IntI.value()->weight(); | 
|  | for (; Gap != NumGaps; ++Gap) { | 
|  | GapWeight[Gap] = std::max(GapWeight[Gap], weight); | 
|  | if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) | 
|  | break; | 
|  | } | 
|  | if (Gap == NumGaps) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add fixed interference. | 
|  | for (MCRegUnit Unit : TRI->regunits(PhysReg)) { | 
|  | const LiveRange &LR = LIS->getRegUnit(Unit); | 
|  | LiveRange::const_iterator I = LR.find(StartIdx); | 
|  | LiveRange::const_iterator E = LR.end(); | 
|  |  | 
|  | // Same loop as above. Mark any overlapped gaps as HUGE_VALF. | 
|  | for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { | 
|  | while (Uses[Gap+1].getBoundaryIndex() < I->start) | 
|  | if (++Gap == NumGaps) | 
|  | break; | 
|  | if (Gap == NumGaps) | 
|  | break; | 
|  |  | 
|  | for (; Gap != NumGaps; ++Gap) { | 
|  | GapWeight[Gap] = huge_valf; | 
|  | if (Uses[Gap+1].getBaseIndex() >= I->end) | 
|  | break; | 
|  | } | 
|  | if (Gap == NumGaps) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only | 
|  | /// basic block. | 
|  | /// | 
|  | MCRegister RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, | 
|  | AllocationOrder &Order, | 
|  | SmallVectorImpl<Register> &NewVRegs) { | 
|  | // TODO: the function currently only handles a single UseBlock; it should be | 
|  | // possible to generalize. | 
|  | if (SA->getUseBlocks().size() != 1) | 
|  | return MCRegister(); | 
|  |  | 
|  | const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); | 
|  |  | 
|  | // Note that it is possible to have an interval that is live-in or live-out | 
|  | // while only covering a single block - A phi-def can use undef values from | 
|  | // predecessors, and the block could be a single-block loop. | 
|  | // We don't bother doing anything clever about such a case, we simply assume | 
|  | // that the interval is continuous from FirstInstr to LastInstr. We should | 
|  | // make sure that we don't do anything illegal to such an interval, though. | 
|  |  | 
|  | ArrayRef<SlotIndex> Uses = SA->getUseSlots(); | 
|  | if (Uses.size() <= 2) | 
|  | return MCRegister(); | 
|  | const unsigned NumGaps = Uses.size()-1; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "tryLocalSplit: "; | 
|  | for (const auto &Use : Uses) | 
|  | dbgs() << ' ' << Use; | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  |  | 
|  | // If VirtReg is live across any register mask operands, compute a list of | 
|  | // gaps with register masks. | 
|  | SmallVector<unsigned, 8> RegMaskGaps; | 
|  | if (Matrix->checkRegMaskInterference(VirtReg)) { | 
|  | // Get regmask slots for the whole block. | 
|  | ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); | 
|  | LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); | 
|  | // Constrain to VirtReg's live range. | 
|  | unsigned RI = | 
|  | llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); | 
|  | unsigned RE = RMS.size(); | 
|  | for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { | 
|  | // Look for Uses[I] <= RMS <= Uses[I + 1]. | 
|  | assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); | 
|  | if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) | 
|  | continue; | 
|  | // Skip a regmask on the same instruction as the last use. It doesn't | 
|  | // overlap the live range. | 
|  | if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) | 
|  | break; | 
|  | LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' | 
|  | << Uses[I + 1]); | 
|  | RegMaskGaps.push_back(I); | 
|  | // Advance ri to the next gap. A regmask on one of the uses counts in | 
|  | // both gaps. | 
|  | while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) | 
|  | ++RI; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << '\n'); | 
|  | } | 
|  |  | 
|  | // Since we allow local split results to be split again, there is a risk of | 
|  | // creating infinite loops. It is tempting to require that the new live | 
|  | // ranges have less instructions than the original. That would guarantee | 
|  | // convergence, but it is too strict. A live range with 3 instructions can be | 
|  | // split 2+3 (including the COPY), and we want to allow that. | 
|  | // | 
|  | // Instead we use these rules: | 
|  | // | 
|  | // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the | 
|  | //    noop split, of course). | 
|  | // 2. Require progress be made for ranges with getStage() == RS_Split2. All | 
|  | //    the new ranges must have fewer instructions than before the split. | 
|  | // 3. New ranges with the same number of instructions are marked RS_Split2, | 
|  | //    smaller ranges are marked RS_New. | 
|  | // | 
|  | // These rules allow a 3 -> 2+3 split once, which we need. They also prevent | 
|  | // excessive splitting and infinite loops. | 
|  | // | 
|  | bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; | 
|  |  | 
|  | // Best split candidate. | 
|  | unsigned BestBefore = NumGaps; | 
|  | unsigned BestAfter = 0; | 
|  | float BestDiff = 0; | 
|  |  | 
|  | const float blockFreq = | 
|  | SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * | 
|  | (1.0f / MBFI->getEntryFreq().getFrequency()); | 
|  | SmallVector<float, 8> GapWeight; | 
|  |  | 
|  | for (MCPhysReg PhysReg : Order) { | 
|  | assert(PhysReg); | 
|  | // Keep track of the largest spill weight that would need to be evicted in | 
|  | // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. | 
|  | calcGapWeights(PhysReg, GapWeight); | 
|  |  | 
|  | // Remove any gaps with regmask clobbers. | 
|  | if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) | 
|  | for (unsigned Gap : RegMaskGaps) | 
|  | GapWeight[Gap] = huge_valf; | 
|  |  | 
|  | // Try to find the best sequence of gaps to close. | 
|  | // The new spill weight must be larger than any gap interference. | 
|  |  | 
|  | // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. | 
|  | unsigned SplitBefore = 0, SplitAfter = 1; | 
|  |  | 
|  | // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). | 
|  | // It is the spill weight that needs to be evicted. | 
|  | float MaxGap = GapWeight[0]; | 
|  |  | 
|  | while (true) { | 
|  | // Live before/after split? | 
|  | const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; | 
|  | const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] | 
|  | << '-' << Uses[SplitAfter] << " I=" << MaxGap); | 
|  |  | 
|  | // Stop before the interval gets so big we wouldn't be making progress. | 
|  | if (!LiveBefore && !LiveAfter) { | 
|  | LLVM_DEBUG(dbgs() << " all\n"); | 
|  | break; | 
|  | } | 
|  | // Should the interval be extended or shrunk? | 
|  | bool Shrink = true; | 
|  |  | 
|  | // How many gaps would the new range have? | 
|  | unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; | 
|  |  | 
|  | // Legally, without causing looping? | 
|  | bool Legal = !ProgressRequired || NewGaps < NumGaps; | 
|  |  | 
|  | if (Legal && MaxGap < huge_valf) { | 
|  | // Estimate the new spill weight. Each instruction reads or writes the | 
|  | // register. Conservatively assume there are no read-modify-write | 
|  | // instructions. | 
|  | // | 
|  | // Try to guess the size of the new interval. | 
|  | const float EstWeight = normalizeSpillWeight( | 
|  | blockFreq * (NewGaps + 1), | 
|  | Uses[SplitBefore].distance(Uses[SplitAfter]) + | 
|  | (LiveBefore + LiveAfter) * SlotIndex::InstrDist, | 
|  | 1); | 
|  | // Would this split be possible to allocate? | 
|  | // Never allocate all gaps, we wouldn't be making progress. | 
|  | LLVM_DEBUG(dbgs() << " w=" << EstWeight); | 
|  | if (EstWeight * Hysteresis >= MaxGap) { | 
|  | Shrink = false; | 
|  | float Diff = EstWeight - MaxGap; | 
|  | if (Diff > BestDiff) { | 
|  | LLVM_DEBUG(dbgs() << " (best)"); | 
|  | BestDiff = Hysteresis * Diff; | 
|  | BestBefore = SplitBefore; | 
|  | BestAfter = SplitAfter; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to shrink. | 
|  | if (Shrink) { | 
|  | if (++SplitBefore < SplitAfter) { | 
|  | LLVM_DEBUG(dbgs() << " shrink\n"); | 
|  | // Recompute the max when necessary. | 
|  | if (GapWeight[SplitBefore - 1] >= MaxGap) { | 
|  | MaxGap = GapWeight[SplitBefore]; | 
|  | for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) | 
|  | MaxGap = std::max(MaxGap, GapWeight[I]); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | MaxGap = 0; | 
|  | } | 
|  |  | 
|  | // Try to extend the interval. | 
|  | if (SplitAfter >= NumGaps) { | 
|  | LLVM_DEBUG(dbgs() << " end\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " extend\n"); | 
|  | MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Didn't find any candidates? | 
|  | if (BestBefore == NumGaps) | 
|  | return MCRegister(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' | 
|  | << Uses[BestAfter] << ", " << BestDiff << ", " | 
|  | << (BestAfter - BestBefore + 1) << " instrs\n"); | 
|  |  | 
|  | LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
|  | SE->reset(LREdit); | 
|  |  | 
|  | SE->openIntv(); | 
|  | SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); | 
|  | SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]); | 
|  | SE->useIntv(SegStart, SegStop); | 
|  | SmallVector<unsigned, 8> IntvMap; | 
|  | SE->finish(&IntvMap); | 
|  | DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); | 
|  | // If the new range has the same number of instructions as before, mark it as | 
|  | // RS_Split2 so the next split will be forced to make progress. Otherwise, | 
|  | // leave the new intervals as RS_New so they can compete. | 
|  | bool LiveBefore = BestBefore != 0 || BI.LiveIn; | 
|  | bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; | 
|  | unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; | 
|  | if (NewGaps >= NumGaps) { | 
|  | LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); | 
|  | assert(!ProgressRequired && "Didn't make progress when it was required."); | 
|  | for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) | 
|  | if (IntvMap[I] == 1) { | 
|  | ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); | 
|  | LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << '\n'); | 
|  | } | 
|  | ++NumLocalSplits; | 
|  |  | 
|  | return MCRegister(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          Live Range Splitting | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// trySplit - Try to split VirtReg or one of its interferences, making it | 
|  | /// assignable. | 
|  | /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. | 
|  | MCRegister RAGreedy::trySplit(const LiveInterval &VirtReg, | 
|  | AllocationOrder &Order, | 
|  | SmallVectorImpl<Register> &NewVRegs, | 
|  | const SmallVirtRegSet &FixedRegisters) { | 
|  | // Ranges must be Split2 or less. | 
|  | if (ExtraInfo->getStage(VirtReg) >= RS_Spill) | 
|  | return MCRegister(); | 
|  |  | 
|  | // Local intervals are handled separately. | 
|  | if (LIS->intervalIsInOneMBB(VirtReg)) { | 
|  | NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, | 
|  | TimerGroupDescription, TimePassesIsEnabled); | 
|  | SA->analyze(&VirtReg); | 
|  | MCRegister PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); | 
|  | if (PhysReg || !NewVRegs.empty()) | 
|  | return PhysReg; | 
|  | return tryInstructionSplit(VirtReg, Order, NewVRegs); | 
|  | } | 
|  |  | 
|  | NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, | 
|  | TimerGroupDescription, TimePassesIsEnabled); | 
|  |  | 
|  | SA->analyze(&VirtReg); | 
|  |  | 
|  | // First try to split around a region spanning multiple blocks. RS_Split2 | 
|  | // ranges already made dubious progress with region splitting, so they go | 
|  | // straight to single block splitting. | 
|  | if (ExtraInfo->getStage(VirtReg) < RS_Split2) { | 
|  | MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); | 
|  | if (PhysReg || !NewVRegs.empty()) | 
|  | return PhysReg; | 
|  | } | 
|  |  | 
|  | // Then isolate blocks. | 
|  | return tryBlockSplit(VirtReg, Order, NewVRegs); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          Last Chance Recoloring | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Return true if \p reg has any tied def operand. | 
|  | static bool hasTiedDef(MachineRegisterInfo *MRI, Register reg) { | 
|  | for (const MachineOperand &MO : MRI->def_operands(reg)) | 
|  | if (MO.isTied()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the existing assignment of \p Intf overlaps, but is not the | 
|  | /// same, as \p PhysReg. | 
|  | static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, | 
|  | const VirtRegMap &VRM, | 
|  | MCRegister PhysReg, | 
|  | const LiveInterval &Intf) { | 
|  | MCRegister AssignedReg = VRM.getPhys(Intf.reg()); | 
|  | if (PhysReg == AssignedReg) | 
|  | return false; | 
|  | return TRI.regsOverlap(PhysReg, AssignedReg); | 
|  | } | 
|  |  | 
|  | /// mayRecolorAllInterferences - Check if the virtual registers that | 
|  | /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be | 
|  | /// recolored to free \p PhysReg. | 
|  | /// When true is returned, \p RecoloringCandidates has been augmented with all | 
|  | /// the live intervals that need to be recolored in order to free \p PhysReg | 
|  | /// for \p VirtReg. | 
|  | /// \p FixedRegisters contains all the virtual registers that cannot be | 
|  | /// recolored. | 
|  | bool RAGreedy::mayRecolorAllInterferences( | 
|  | MCRegister PhysReg, const LiveInterval &VirtReg, | 
|  | SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { | 
|  | const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); | 
|  |  | 
|  | for (MCRegUnit Unit : TRI->regunits(PhysReg)) { | 
|  | LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); | 
|  | // If there is LastChanceRecoloringMaxInterference or more interferences, | 
|  | // chances are one would not be recolorable. | 
|  | if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= | 
|  | LastChanceRecoloringMaxInterference && | 
|  | !ExhaustiveSearch) { | 
|  | LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); | 
|  | CutOffInfo |= CO_Interf; | 
|  | return false; | 
|  | } | 
|  | for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { | 
|  | // If Intf is done and sits on the same register class as VirtReg, it | 
|  | // would not be recolorable as it is in the same state as | 
|  | // VirtReg. However there are at least two exceptions. | 
|  | // | 
|  | // If VirtReg has tied defs and Intf doesn't, then | 
|  | // there is still a point in examining if it can be recolorable. | 
|  | // | 
|  | // Additionally, if the register class has overlapping tuple members, it | 
|  | // may still be recolorable using a different tuple. This is more likely | 
|  | // if the existing assignment aliases with the candidate. | 
|  | // | 
|  | if (((ExtraInfo->getStage(*Intf) == RS_Done && | 
|  | MRI->getRegClass(Intf->reg()) == CurRC && | 
|  | !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) && | 
|  | !(hasTiedDef(MRI, VirtReg.reg()) && | 
|  | !hasTiedDef(MRI, Intf->reg()))) || | 
|  | FixedRegisters.count(Intf->reg())) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Early abort: the interference is not recolorable.\n"); | 
|  | return false; | 
|  | } | 
|  | RecoloringCandidates.insert(Intf); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring | 
|  | /// its interferences. | 
|  | /// Last chance recoloring chooses a color for \p VirtReg and recolors every | 
|  | /// virtual register that was using it. The recoloring process may recursively | 
|  | /// use the last chance recoloring. Therefore, when a virtual register has been | 
|  | /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot | 
|  | /// be last-chance-recolored again during this recoloring "session". | 
|  | /// E.g., | 
|  | /// Let | 
|  | /// vA can use {R1, R2    } | 
|  | /// vB can use {    R2, R3} | 
|  | /// vC can use {R1        } | 
|  | /// Where vA, vB, and vC cannot be split anymore (they are reloads for | 
|  | /// instance) and they all interfere. | 
|  | /// | 
|  | /// vA is assigned R1 | 
|  | /// vB is assigned R2 | 
|  | /// vC tries to evict vA but vA is already done. | 
|  | /// Regular register allocation fails. | 
|  | /// | 
|  | /// Last chance recoloring kicks in: | 
|  | /// vC does as if vA was evicted => vC uses R1. | 
|  | /// vC is marked as fixed. | 
|  | /// vA needs to find a color. | 
|  | /// None are available. | 
|  | /// vA cannot evict vC: vC is a fixed virtual register now. | 
|  | /// vA does as if vB was evicted => vA uses R2. | 
|  | /// vB needs to find a color. | 
|  | /// R3 is available. | 
|  | /// Recoloring => vC = R1, vA = R2, vB = R3 | 
|  | /// | 
|  | /// \p Order defines the preferred allocation order for \p VirtReg. | 
|  | /// \p NewRegs will contain any new virtual register that have been created | 
|  | /// (split, spill) during the process and that must be assigned. | 
|  | /// \p FixedRegisters contains all the virtual registers that cannot be | 
|  | /// recolored. | 
|  | /// | 
|  | /// \p RecolorStack tracks the original assignments of successfully recolored | 
|  | /// registers. | 
|  | /// | 
|  | /// \p Depth gives the current depth of the last chance recoloring. | 
|  | /// \return a physical register that can be used for VirtReg or ~0u if none | 
|  | /// exists. | 
|  | MCRegister RAGreedy::tryLastChanceRecoloring( | 
|  | const LiveInterval &VirtReg, AllocationOrder &Order, | 
|  | SmallVectorImpl<Register> &NewVRegs, SmallVirtRegSet &FixedRegisters, | 
|  | RecoloringStack &RecolorStack, unsigned Depth) { | 
|  | if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) | 
|  | return ~0u; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); | 
|  |  | 
|  | const ssize_t EntryStackSize = RecolorStack.size(); | 
|  |  | 
|  | // Ranges must be Done. | 
|  | assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && | 
|  | "Last chance recoloring should really be last chance"); | 
|  | // Set the max depth to LastChanceRecoloringMaxDepth. | 
|  | // We may want to reconsider that if we end up with a too large search space | 
|  | // for target with hundreds of registers. | 
|  | // Indeed, in that case we may want to cut the search space earlier. | 
|  | if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { | 
|  | LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); | 
|  | CutOffInfo |= CO_Depth; | 
|  | return ~0u; | 
|  | } | 
|  |  | 
|  | // Set of Live intervals that will need to be recolored. | 
|  | SmallLISet RecoloringCandidates; | 
|  |  | 
|  | // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in | 
|  | // this recoloring "session". | 
|  | assert(!FixedRegisters.count(VirtReg.reg())); | 
|  | FixedRegisters.insert(VirtReg.reg()); | 
|  | SmallVector<Register, 4> CurrentNewVRegs; | 
|  |  | 
|  | for (MCRegister PhysReg : Order) { | 
|  | assert(PhysReg.isValid()); | 
|  | LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " | 
|  | << printReg(PhysReg, TRI) << '\n'); | 
|  | RecoloringCandidates.clear(); | 
|  | CurrentNewVRegs.clear(); | 
|  |  | 
|  | // It is only possible to recolor virtual register interference. | 
|  | if (Matrix->checkInterference(VirtReg, PhysReg) > | 
|  | LiveRegMatrix::IK_VirtReg) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Some interferences are not with virtual registers.\n"); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Early give up on this PhysReg if it is obvious we cannot recolor all | 
|  | // the interferences. | 
|  | if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, | 
|  | FixedRegisters)) { | 
|  | LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // RecoloringCandidates contains all the virtual registers that interfere | 
|  | // with VirtReg on PhysReg (or one of its aliases). Enqueue them for | 
|  | // recoloring and perform the actual recoloring. | 
|  | PQueue RecoloringQueue; | 
|  | for (const LiveInterval *RC : RecoloringCandidates) { | 
|  | Register ItVirtReg = RC->reg(); | 
|  | enqueue(RecoloringQueue, RC); | 
|  | assert(VRM->hasPhys(ItVirtReg) && | 
|  | "Interferences are supposed to be with allocated variables"); | 
|  |  | 
|  | // Record the current allocation. | 
|  | RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); | 
|  |  | 
|  | // unset the related struct. | 
|  | Matrix->unassign(*RC); | 
|  | } | 
|  |  | 
|  | // Do as if VirtReg was assigned to PhysReg so that the underlying | 
|  | // recoloring has the right information about the interferes and | 
|  | // available colors. | 
|  | Matrix->assign(VirtReg, PhysReg); | 
|  |  | 
|  | // VirtReg may be deleted during tryRecoloringCandidates, save a copy. | 
|  | Register ThisVirtReg = VirtReg.reg(); | 
|  |  | 
|  | // Save the current recoloring state. | 
|  | // If we cannot recolor all the interferences, we will have to start again | 
|  | // at this point for the next physical register. | 
|  | SmallVirtRegSet SaveFixedRegisters(FixedRegisters); | 
|  | if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, | 
|  | FixedRegisters, RecolorStack, Depth)) { | 
|  | // Push the queued vregs into the main queue. | 
|  | llvm::append_range(NewVRegs, CurrentNewVRegs); | 
|  | // Do not mess up with the global assignment process. | 
|  | // I.e., VirtReg must be unassigned. | 
|  | if (VRM->hasPhys(ThisVirtReg)) { | 
|  | Matrix->unassign(VirtReg); | 
|  | return PhysReg; | 
|  | } | 
|  |  | 
|  | // It is possible VirtReg will be deleted during tryRecoloringCandidates. | 
|  | LLVM_DEBUG(dbgs() << "tryRecoloringCandidates deleted a fixed register " | 
|  | << printReg(ThisVirtReg) << '\n'); | 
|  | FixedRegisters.erase(ThisVirtReg); | 
|  | return MCRegister(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " | 
|  | << printReg(PhysReg, TRI) << '\n'); | 
|  |  | 
|  | // The recoloring attempt failed, undo the changes. | 
|  | FixedRegisters = SaveFixedRegisters; | 
|  | Matrix->unassign(VirtReg); | 
|  |  | 
|  | // For a newly created vreg which is also in RecoloringCandidates, | 
|  | // don't add it to NewVRegs because its physical register will be restored | 
|  | // below. Other vregs in CurrentNewVRegs are created by calling | 
|  | // selectOrSplit and should be added into NewVRegs. | 
|  | for (Register R : CurrentNewVRegs) { | 
|  | if (RecoloringCandidates.count(&LIS->getInterval(R))) | 
|  | continue; | 
|  | NewVRegs.push_back(R); | 
|  | } | 
|  |  | 
|  | // Roll back our unsuccessful recoloring. Also roll back any successful | 
|  | // recolorings in any recursive recoloring attempts, since it's possible | 
|  | // they would have introduced conflicts with assignments we will be | 
|  | // restoring further up the stack. Perform all unassignments prior to | 
|  | // reassigning, since sub-recolorings may have conflicted with the registers | 
|  | // we are going to restore to their original assignments. | 
|  | for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { | 
|  | const LiveInterval *LI; | 
|  | MCRegister PhysReg; | 
|  | std::tie(LI, PhysReg) = RecolorStack[I]; | 
|  |  | 
|  | if (VRM->hasPhys(LI->reg())) | 
|  | Matrix->unassign(*LI); | 
|  | } | 
|  |  | 
|  | for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { | 
|  | const LiveInterval *LI; | 
|  | MCRegister PhysReg; | 
|  | std::tie(LI, PhysReg) = RecolorStack[I]; | 
|  | if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg())) | 
|  | Matrix->assign(*LI, PhysReg); | 
|  | } | 
|  |  | 
|  | // Pop the stack of recoloring attempts. | 
|  | RecolorStack.resize(EntryStackSize); | 
|  | } | 
|  |  | 
|  | // Last chance recoloring did not worked either, give up. | 
|  | return ~0u; | 
|  | } | 
|  |  | 
|  | /// tryRecoloringCandidates - Try to assign a new color to every register | 
|  | /// in \RecoloringQueue. | 
|  | /// \p NewRegs will contain any new virtual register created during the | 
|  | /// recoloring process. | 
|  | /// \p FixedRegisters[in/out] contains all the registers that have been | 
|  | /// recolored. | 
|  | /// \return true if all virtual registers in RecoloringQueue were successfully | 
|  | /// recolored, false otherwise. | 
|  | bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, | 
|  | SmallVectorImpl<Register> &NewVRegs, | 
|  | SmallVirtRegSet &FixedRegisters, | 
|  | RecoloringStack &RecolorStack, | 
|  | unsigned Depth) { | 
|  | while (!RecoloringQueue.empty()) { | 
|  | const LiveInterval *LI = dequeue(RecoloringQueue); | 
|  | LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); | 
|  | MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, | 
|  | RecolorStack, Depth + 1); | 
|  | // When splitting happens, the live-range may actually be empty. | 
|  | // In that case, this is okay to continue the recoloring even | 
|  | // if we did not find an alternative color for it. Indeed, | 
|  | // there will not be anything to color for LI in the end. | 
|  | if (PhysReg == ~0u || (!PhysReg && !LI->empty())) | 
|  | return false; | 
|  |  | 
|  | if (!PhysReg) { | 
|  | assert(LI->empty() && "Only empty live-range do not require a register"); | 
|  | LLVM_DEBUG(dbgs() << "Recoloring of " << *LI | 
|  | << " succeeded. Empty LI.\n"); | 
|  | continue; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Recoloring of " << *LI | 
|  | << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); | 
|  |  | 
|  | Matrix->assign(*LI, PhysReg); | 
|  | FixedRegisters.insert(LI->reg()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            Main Entry Point | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, | 
|  | SmallVectorImpl<Register> &NewVRegs) { | 
|  | CutOffInfo = CO_None; | 
|  | LLVMContext &Ctx = MF->getFunction().getContext(); | 
|  | SmallVirtRegSet FixedRegisters; | 
|  | RecoloringStack RecolorStack; | 
|  | MCRegister Reg = | 
|  | selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); | 
|  | if (Reg == ~0U && (CutOffInfo != CO_None)) { | 
|  | uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); | 
|  | if (CutOffEncountered == CO_Depth) | 
|  | Ctx.emitError("register allocation failed: maximum depth for recoloring " | 
|  | "reached. Use -fexhaustive-register-search to skip " | 
|  | "cutoffs"); | 
|  | else if (CutOffEncountered == CO_Interf) | 
|  | Ctx.emitError("register allocation failed: maximum interference for " | 
|  | "recoloring reached. Use -fexhaustive-register-search " | 
|  | "to skip cutoffs"); | 
|  | else if (CutOffEncountered == (CO_Depth | CO_Interf)) | 
|  | Ctx.emitError("register allocation failed: maximum interference and " | 
|  | "depth for recoloring reached. Use " | 
|  | "-fexhaustive-register-search to skip cutoffs"); | 
|  | } | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | /// Using a CSR for the first time has a cost because it causes push|pop | 
|  | /// to be added to prologue|epilogue. Splitting a cold section of the live | 
|  | /// range can have lower cost than using the CSR for the first time; | 
|  | /// Spilling a live range in the cold path can have lower cost than using | 
|  | /// the CSR for the first time. Returns the physical register if we decide | 
|  | /// to use the CSR; otherwise return MCRegister(). | 
|  | MCRegister RAGreedy::tryAssignCSRFirstTime( | 
|  | const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, | 
|  | uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { | 
|  | if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { | 
|  | // We choose spill over using the CSR for the first time if the spill cost | 
|  | // is lower than CSRCost. | 
|  | SA->analyze(&VirtReg); | 
|  | if (calcSpillCost() >= CSRCost) | 
|  | return PhysReg; | 
|  |  | 
|  | // We are going to spill, set CostPerUseLimit to 1 to make sure that | 
|  | // we will not use a callee-saved register in tryEvict. | 
|  | CostPerUseLimit = 1; | 
|  | return MCRegister(); | 
|  | } | 
|  | if (ExtraInfo->getStage(VirtReg) < RS_Split) { | 
|  | // We choose pre-splitting over using the CSR for the first time if | 
|  | // the cost of splitting is lower than CSRCost. | 
|  | SA->analyze(&VirtReg); | 
|  | unsigned NumCands = 0; | 
|  | BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. | 
|  | unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, | 
|  | NumCands, true /*IgnoreCSR*/); | 
|  | if (BestCand == NoCand) | 
|  | // Use the CSR if we can't find a region split below CSRCost. | 
|  | return PhysReg; | 
|  |  | 
|  | // Perform the actual pre-splitting. | 
|  | doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); | 
|  | return MCRegister(); | 
|  | } | 
|  | return PhysReg; | 
|  | } | 
|  |  | 
|  | void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { | 
|  | // Do not keep invalid information around. | 
|  | SetOfBrokenHints.remove(&LI); | 
|  | } | 
|  |  | 
|  | void RAGreedy::initializeCSRCost() { | 
|  | // We use the command-line option if it is explicitly set, otherwise use the | 
|  | // larger one out of the command-line option and the value reported by TRI. | 
|  | CSRCost = BlockFrequency( | 
|  | CSRFirstTimeCost.getNumOccurrences() | 
|  | ? CSRFirstTimeCost | 
|  | : std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); | 
|  | if (!CSRCost.getFrequency()) | 
|  | return; | 
|  |  | 
|  | // Raw cost is relative to Entry == 2^14; scale it appropriately. | 
|  | uint64_t ActualEntry = MBFI->getEntryFreq().getFrequency(); | 
|  | if (!ActualEntry) { | 
|  | CSRCost = BlockFrequency(0); | 
|  | return; | 
|  | } | 
|  | uint64_t FixedEntry = 1 << 14; | 
|  | if (ActualEntry < FixedEntry) | 
|  | CSRCost *= BranchProbability(ActualEntry, FixedEntry); | 
|  | else if (ActualEntry <= UINT32_MAX) | 
|  | // Invert the fraction and divide. | 
|  | CSRCost /= BranchProbability(FixedEntry, ActualEntry); | 
|  | else | 
|  | // Can't use BranchProbability in general, since it takes 32-bit numbers. | 
|  | CSRCost = | 
|  | BlockFrequency(CSRCost.getFrequency() * (ActualEntry / FixedEntry)); | 
|  | } | 
|  |  | 
|  | /// Collect the hint info for \p Reg. | 
|  | /// The results are stored into \p Out. | 
|  | /// \p Out is not cleared before being populated. | 
|  | void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { | 
|  | for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { | 
|  | if (!TII->isFullCopyInstr(Instr)) | 
|  | continue; | 
|  | // Look for the other end of the copy. | 
|  | Register OtherReg = Instr.getOperand(0).getReg(); | 
|  | if (OtherReg == Reg) { | 
|  | OtherReg = Instr.getOperand(1).getReg(); | 
|  | if (OtherReg == Reg) | 
|  | continue; | 
|  | } | 
|  | // Get the current assignment. | 
|  | MCRegister OtherPhysReg = | 
|  | OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); | 
|  | // Push the collected information. | 
|  | Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, | 
|  | OtherPhysReg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Using the given \p List, compute the cost of the broken hints if | 
|  | /// \p PhysReg was used. | 
|  | /// \return The cost of \p List for \p PhysReg. | 
|  | BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, | 
|  | MCRegister PhysReg) { | 
|  | BlockFrequency Cost = BlockFrequency(0); | 
|  | for (const HintInfo &Info : List) { | 
|  | if (Info.PhysReg != PhysReg) | 
|  | Cost += Info.Freq; | 
|  | } | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | /// Using the register assigned to \p VirtReg, try to recolor | 
|  | /// all the live ranges that are copy-related with \p VirtReg. | 
|  | /// The recoloring is then propagated to all the live-ranges that have | 
|  | /// been recolored and so on, until no more copies can be coalesced or | 
|  | /// it is not profitable. | 
|  | /// For a given live range, profitability is determined by the sum of the | 
|  | /// frequencies of the non-identity copies it would introduce with the old | 
|  | /// and new register. | 
|  | void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { | 
|  | // We have a broken hint, check if it is possible to fix it by | 
|  | // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted | 
|  | // some register and PhysReg may be available for the other live-ranges. | 
|  | SmallSet<Register, 4> Visited; | 
|  | SmallVector<Register, 2> RecoloringCandidates; | 
|  | HintsInfo Info; | 
|  | Register Reg = VirtReg.reg(); | 
|  | MCRegister PhysReg = VRM->getPhys(Reg); | 
|  | // Start the recoloring algorithm from the input live-interval, then | 
|  | // it will propagate to the ones that are copy-related with it. | 
|  | Visited.insert(Reg); | 
|  | RecoloringCandidates.push_back(Reg); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) | 
|  | << '(' << printReg(PhysReg, TRI) << ")\n"); | 
|  |  | 
|  | do { | 
|  | Reg = RecoloringCandidates.pop_back_val(); | 
|  |  | 
|  | // We cannot recolor physical register. | 
|  | if (Reg.isPhysical()) | 
|  | continue; | 
|  |  | 
|  | // This may be a skipped register. | 
|  | if (!VRM->hasPhys(Reg)) { | 
|  | assert(!shouldAllocateRegister(Reg) && | 
|  | "We have an unallocated variable which should have been handled"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Get the live interval mapped with this virtual register to be able | 
|  | // to check for the interference with the new color. | 
|  | LiveInterval &LI = LIS->getInterval(Reg); | 
|  | MCRegister CurrPhys = VRM->getPhys(Reg); | 
|  | // Check that the new color matches the register class constraints and | 
|  | // that it is free for this live range. | 
|  | if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || | 
|  | Matrix->checkInterference(LI, PhysReg))) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) | 
|  | << ") is recolorable.\n"); | 
|  |  | 
|  | // Gather the hint info. | 
|  | Info.clear(); | 
|  | collectHintInfo(Reg, Info); | 
|  | // Check if recoloring the live-range will increase the cost of the | 
|  | // non-identity copies. | 
|  | if (CurrPhys != PhysReg) { | 
|  | LLVM_DEBUG(dbgs() << "Checking profitability:\n"); | 
|  | BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); | 
|  | BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); | 
|  | LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI, OldCopiesCost) | 
|  | << "\nNew Cost: " | 
|  | << printBlockFreq(*MBFI, NewCopiesCost) << '\n'); | 
|  | if (OldCopiesCost < NewCopiesCost) { | 
|  | LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); | 
|  | continue; | 
|  | } | 
|  | // At this point, the cost is either cheaper or equal. If it is | 
|  | // equal, we consider this is profitable because it may expose | 
|  | // more recoloring opportunities. | 
|  | LLVM_DEBUG(dbgs() << "=> Profitable.\n"); | 
|  | // Recolor the live-range. | 
|  | Matrix->unassign(LI); | 
|  | Matrix->assign(LI, PhysReg); | 
|  | } | 
|  | // Push all copy-related live-ranges to keep reconciling the broken | 
|  | // hints. | 
|  | for (const HintInfo &HI : Info) { | 
|  | if (Visited.insert(HI.Reg).second) | 
|  | RecoloringCandidates.push_back(HI.Reg); | 
|  | } | 
|  | } while (!RecoloringCandidates.empty()); | 
|  | } | 
|  |  | 
|  | /// Try to recolor broken hints. | 
|  | /// Broken hints may be repaired by recoloring when an evicted variable | 
|  | /// freed up a register for a larger live-range. | 
|  | /// Consider the following example: | 
|  | /// BB1: | 
|  | ///   a = | 
|  | ///   b = | 
|  | /// BB2: | 
|  | ///   ... | 
|  | ///   = b | 
|  | ///   = a | 
|  | /// Let us assume b gets split: | 
|  | /// BB1: | 
|  | ///   a = | 
|  | ///   b = | 
|  | /// BB2: | 
|  | ///   c = b | 
|  | ///   ... | 
|  | ///   d = c | 
|  | ///   = d | 
|  | ///   = a | 
|  | /// Because of how the allocation work, b, c, and d may be assigned different | 
|  | /// colors. Now, if a gets evicted later: | 
|  | /// BB1: | 
|  | ///   a = | 
|  | ///   st a, SpillSlot | 
|  | ///   b = | 
|  | /// BB2: | 
|  | ///   c = b | 
|  | ///   ... | 
|  | ///   d = c | 
|  | ///   = d | 
|  | ///   e = ld SpillSlot | 
|  | ///   = e | 
|  | /// This is likely that we can assign the same register for b, c, and d, | 
|  | /// getting rid of 2 copies. | 
|  | void RAGreedy::tryHintsRecoloring() { | 
|  | for (const LiveInterval *LI : SetOfBrokenHints) { | 
|  | assert(LI->reg().isVirtual() && | 
|  | "Recoloring is possible only for virtual registers"); | 
|  | // Some dead defs may be around (e.g., because of debug uses). | 
|  | // Ignore those. | 
|  | if (!VRM->hasPhys(LI->reg())) | 
|  | continue; | 
|  | tryHintRecoloring(*LI); | 
|  | } | 
|  | } | 
|  |  | 
|  | MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, | 
|  | SmallVectorImpl<Register> &NewVRegs, | 
|  | SmallVirtRegSet &FixedRegisters, | 
|  | RecoloringStack &RecolorStack, | 
|  | unsigned Depth) { | 
|  | uint8_t CostPerUseLimit = uint8_t(~0u); | 
|  | // First try assigning a free register. | 
|  | auto Order = | 
|  | AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); | 
|  | if (MCRegister PhysReg = | 
|  | tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { | 
|  | // When NewVRegs is not empty, we may have made decisions such as evicting | 
|  | // a virtual register, go with the earlier decisions and use the physical | 
|  | // register. | 
|  | if (CSRCost.getFrequency() && | 
|  | EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { | 
|  | MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, | 
|  | CostPerUseLimit, NewVRegs); | 
|  | if (CSRReg || !NewVRegs.empty()) | 
|  | // Return now if we decide to use a CSR or create new vregs due to | 
|  | // pre-splitting. | 
|  | return CSRReg; | 
|  | } else | 
|  | return PhysReg; | 
|  | } | 
|  | // Non empty NewVRegs means VirtReg has been split. | 
|  | if (!NewVRegs.empty()) | 
|  | return MCRegister(); | 
|  |  | 
|  | LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); | 
|  | LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " | 
|  | << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); | 
|  |  | 
|  | // Try to evict a less worthy live range, but only for ranges from the primary | 
|  | // queue. The RS_Split ranges already failed to do this, and they should not | 
|  | // get a second chance until they have been split. | 
|  | if (Stage != RS_Split) { | 
|  | if (MCRegister PhysReg = | 
|  | tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, | 
|  | FixedRegisters)) { | 
|  | Register Hint = MRI->getSimpleHint(VirtReg.reg()); | 
|  | // If VirtReg has a hint and that hint is broken record this | 
|  | // virtual register as a recoloring candidate for broken hint. | 
|  | // Indeed, since we evicted a variable in its neighborhood it is | 
|  | // likely we can at least partially recolor some of the | 
|  | // copy-related live-ranges. | 
|  | if (Hint && Hint != PhysReg) | 
|  | SetOfBrokenHints.insert(&VirtReg); | 
|  | return PhysReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); | 
|  |  | 
|  | // The first time we see a live range, don't try to split or spill. | 
|  | // Wait until the second time, when all smaller ranges have been allocated. | 
|  | // This gives a better picture of the interference to split around. | 
|  | if (Stage < RS_Split) { | 
|  | ExtraInfo->setStage(VirtReg, RS_Split); | 
|  | LLVM_DEBUG(dbgs() << "wait for second round\n"); | 
|  | NewVRegs.push_back(VirtReg.reg()); | 
|  | return MCRegister(); | 
|  | } | 
|  |  | 
|  | if (Stage < RS_Spill && !VirtReg.empty()) { | 
|  | // Try splitting VirtReg or interferences. | 
|  | unsigned NewVRegSizeBefore = NewVRegs.size(); | 
|  | MCRegister PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); | 
|  | if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) | 
|  | return PhysReg; | 
|  | } | 
|  |  | 
|  | // If we couldn't allocate a register from spilling, there is probably some | 
|  | // invalid inline assembly. The base class will report it. | 
|  | if (Stage >= RS_Done || !VirtReg.isSpillable()) { | 
|  | return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, | 
|  | RecolorStack, Depth); | 
|  | } | 
|  |  | 
|  | // Finally spill VirtReg itself. | 
|  | NamedRegionTimer T("spill", "Spiller", TimerGroupName, | 
|  | TimerGroupDescription, TimePassesIsEnabled); | 
|  | LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); | 
|  | spiller().spill(LRE, &Order); | 
|  | ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); | 
|  |  | 
|  | // Tell LiveDebugVariables about the new ranges. Ranges not being covered by | 
|  | // the new regs are kept in LDV (still mapping to the old register), until | 
|  | // we rewrite spilled locations in LDV at a later stage. | 
|  | for (Register r : spiller().getSpilledRegs()) | 
|  | DebugVars->splitRegister(r, LRE.regs(), *LIS); | 
|  | for (Register r : spiller().getReplacedRegs()) | 
|  | DebugVars->splitRegister(r, LRE.regs(), *LIS); | 
|  |  | 
|  | if (VerifyEnabled) | 
|  | MF->verify(LIS, Indexes, "After spilling", &errs()); | 
|  |  | 
|  | // The live virtual register requesting allocation was spilled, so tell | 
|  | // the caller not to allocate anything during this round. | 
|  | return MCRegister(); | 
|  | } | 
|  |  | 
|  | void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { | 
|  | using namespace ore; | 
|  | if (Spills) { | 
|  | R << NV("NumSpills", Spills) << " spills "; | 
|  | R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; | 
|  | } | 
|  | if (FoldedSpills) { | 
|  | R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; | 
|  | R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) | 
|  | << " total folded spills cost "; | 
|  | } | 
|  | if (Reloads) { | 
|  | R << NV("NumReloads", Reloads) << " reloads "; | 
|  | R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; | 
|  | } | 
|  | if (FoldedReloads) { | 
|  | R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; | 
|  | R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) | 
|  | << " total folded reloads cost "; | 
|  | } | 
|  | if (ZeroCostFoldedReloads) | 
|  | R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) | 
|  | << " zero cost folded reloads "; | 
|  | if (Copies) { | 
|  | R << NV("NumVRCopies", Copies) << " virtual registers copies "; | 
|  | R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; | 
|  | } | 
|  | } | 
|  |  | 
|  | RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { | 
|  | RAGreedyStats Stats; | 
|  | const MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  | int FI; | 
|  |  | 
|  | auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { | 
|  | return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( | 
|  | A->getPseudoValue())->getFrameIndex()); | 
|  | }; | 
|  | auto isPatchpointInstr = [](const MachineInstr &MI) { | 
|  | return MI.getOpcode() == TargetOpcode::PATCHPOINT || | 
|  | MI.getOpcode() == TargetOpcode::STACKMAP || | 
|  | MI.getOpcode() == TargetOpcode::STATEPOINT; | 
|  | }; | 
|  | for (MachineInstr &MI : MBB) { | 
|  | auto DestSrc = TII->isCopyInstr(MI); | 
|  | if (DestSrc) { | 
|  | const MachineOperand &Dest = *DestSrc->Destination; | 
|  | const MachineOperand &Src = *DestSrc->Source; | 
|  | Register SrcReg = Src.getReg(); | 
|  | Register DestReg = Dest.getReg(); | 
|  | // Only count `COPY`s with a virtual register as source or destination. | 
|  | if (SrcReg.isVirtual() || DestReg.isVirtual()) { | 
|  | if (SrcReg.isVirtual()) { | 
|  | SrcReg = VRM->getPhys(SrcReg); | 
|  | if (SrcReg && Src.getSubReg()) | 
|  | SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg()); | 
|  | } | 
|  | if (DestReg.isVirtual()) { | 
|  | DestReg = VRM->getPhys(DestReg); | 
|  | if (DestReg && Dest.getSubReg()) | 
|  | DestReg = TRI->getSubReg(DestReg, Dest.getSubReg()); | 
|  | } | 
|  | if (SrcReg != DestReg) | 
|  | ++Stats.Copies; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SmallVector<const MachineMemOperand *, 2> Accesses; | 
|  | if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { | 
|  | ++Stats.Reloads; | 
|  | continue; | 
|  | } | 
|  | if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { | 
|  | ++Stats.Spills; | 
|  | continue; | 
|  | } | 
|  | if (TII->hasLoadFromStackSlot(MI, Accesses) && | 
|  | llvm::any_of(Accesses, isSpillSlotAccess)) { | 
|  | if (!isPatchpointInstr(MI)) { | 
|  | Stats.FoldedReloads += Accesses.size(); | 
|  | continue; | 
|  | } | 
|  | // For statepoint there may be folded and zero cost folded stack reloads. | 
|  | std::pair<unsigned, unsigned> NonZeroCostRange = | 
|  | TII->getPatchpointUnfoldableRange(MI); | 
|  | SmallSet<unsigned, 16> FoldedReloads; | 
|  | SmallSet<unsigned, 16> ZeroCostFoldedReloads; | 
|  | for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { | 
|  | MachineOperand &MO = MI.getOperand(Idx); | 
|  | if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) | 
|  | continue; | 
|  | if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) | 
|  | FoldedReloads.insert(MO.getIndex()); | 
|  | else | 
|  | ZeroCostFoldedReloads.insert(MO.getIndex()); | 
|  | } | 
|  | // If stack slot is used in folded reload it is not zero cost then. | 
|  | for (unsigned Slot : FoldedReloads) | 
|  | ZeroCostFoldedReloads.erase(Slot); | 
|  | Stats.FoldedReloads += FoldedReloads.size(); | 
|  | Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); | 
|  | continue; | 
|  | } | 
|  | Accesses.clear(); | 
|  | if (TII->hasStoreToStackSlot(MI, Accesses) && | 
|  | llvm::any_of(Accesses, isSpillSlotAccess)) { | 
|  | Stats.FoldedSpills += Accesses.size(); | 
|  | } | 
|  | } | 
|  | // Set cost of collected statistic by multiplication to relative frequency of | 
|  | // this basic block. | 
|  | float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); | 
|  | Stats.ReloadsCost = RelFreq * Stats.Reloads; | 
|  | Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; | 
|  | Stats.SpillsCost = RelFreq * Stats.Spills; | 
|  | Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; | 
|  | Stats.CopiesCost = RelFreq * Stats.Copies; | 
|  | return Stats; | 
|  | } | 
|  |  | 
|  | RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { | 
|  | RAGreedyStats Stats; | 
|  |  | 
|  | // Sum up the spill and reloads in subloops. | 
|  | for (MachineLoop *SubLoop : *L) | 
|  | Stats.add(reportStats(SubLoop)); | 
|  |  | 
|  | for (MachineBasicBlock *MBB : L->getBlocks()) | 
|  | // Handle blocks that were not included in subloops. | 
|  | if (Loops->getLoopFor(MBB) == L) | 
|  | Stats.add(computeStats(*MBB)); | 
|  |  | 
|  | if (!Stats.isEmpty()) { | 
|  | using namespace ore; | 
|  |  | 
|  | ORE->emit([&]() { | 
|  | MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", | 
|  | L->getStartLoc(), L->getHeader()); | 
|  | Stats.report(R); | 
|  | R << "generated in loop"; | 
|  | return R; | 
|  | }); | 
|  | } | 
|  | return Stats; | 
|  | } | 
|  |  | 
|  | void RAGreedy::reportStats() { | 
|  | if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) | 
|  | return; | 
|  | RAGreedyStats Stats; | 
|  | for (MachineLoop *L : *Loops) | 
|  | Stats.add(reportStats(L)); | 
|  | // Process non-loop blocks. | 
|  | for (MachineBasicBlock &MBB : *MF) | 
|  | if (!Loops->getLoopFor(&MBB)) | 
|  | Stats.add(computeStats(MBB)); | 
|  | if (!Stats.isEmpty()) { | 
|  | using namespace ore; | 
|  |  | 
|  | ORE->emit([&]() { | 
|  | DebugLoc Loc; | 
|  | if (auto *SP = MF->getFunction().getSubprogram()) | 
|  | Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); | 
|  | MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, | 
|  | &MF->front()); | 
|  | Stats.report(R); | 
|  | R << "generated in function"; | 
|  | return R; | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool RAGreedy::hasVirtRegAlloc() { | 
|  | for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { | 
|  | Register Reg = Register::index2VirtReg(I); | 
|  | if (MRI->reg_nodbg_empty(Reg)) | 
|  | continue; | 
|  | if (shouldAllocateRegister(Reg)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool RAGreedy::run(MachineFunction &mf) { | 
|  | LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" | 
|  | << "********** Function: " << mf.getName() << '\n'); | 
|  |  | 
|  | MF = &mf; | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  |  | 
|  | if (VerifyEnabled) | 
|  | MF->verify(LIS, Indexes, "Before greedy register allocator", &errs()); | 
|  |  | 
|  | RegAllocBase::init(*this->VRM, *this->LIS, *this->Matrix); | 
|  |  | 
|  | // Early return if there is no virtual register to be allocated to a | 
|  | // physical register. | 
|  | if (!hasVirtRegAlloc()) | 
|  | return false; | 
|  |  | 
|  | // Renumber to get accurate and consistent results from | 
|  | // SlotIndexes::getApproxInstrDistance. | 
|  | Indexes->packIndexes(); | 
|  |  | 
|  | initializeCSRCost(); | 
|  |  | 
|  | RegCosts = TRI->getRegisterCosts(*MF); | 
|  | RegClassPriorityTrumpsGlobalness = | 
|  | GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences() | 
|  | ? GreedyRegClassPriorityTrumpsGlobalness | 
|  | : TRI->regClassPriorityTrumpsGlobalness(*MF); | 
|  |  | 
|  | ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences() | 
|  | ? GreedyReverseLocalAssignment | 
|  | : TRI->reverseLocalAssignment(); | 
|  |  | 
|  | ExtraInfo.emplace(); | 
|  |  | 
|  | EvictAdvisor = EvictProvider->getAdvisor(*MF, *this, MBFI, Loops); | 
|  | PriorityAdvisor = PriorityProvider->getAdvisor(*MF, *this, *Indexes); | 
|  |  | 
|  | VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); | 
|  | SpillerInstance.reset(createInlineSpiller({*LIS, *LSS, *DomTree, *MBFI}, *MF, | 
|  | *VRM, *VRAI, Matrix)); | 
|  |  | 
|  | VRAI->calculateSpillWeightsAndHints(); | 
|  |  | 
|  | LLVM_DEBUG(LIS->dump()); | 
|  |  | 
|  | SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); | 
|  | SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); | 
|  |  | 
|  | IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); | 
|  | GlobalCand.resize(32);  // This will grow as needed. | 
|  | SetOfBrokenHints.clear(); | 
|  |  | 
|  | allocatePhysRegs(); | 
|  | tryHintsRecoloring(); | 
|  |  | 
|  | if (VerifyEnabled) | 
|  | MF->verify(LIS, Indexes, "Before post optimization", &errs()); | 
|  | postOptimization(); | 
|  | reportStats(); | 
|  |  | 
|  | releaseMemory(); | 
|  | return true; | 
|  | } |