blob: 359590f2434dcc28a593f561d3b93beb0c3d5a6c [file] [log] [blame]
//===- SparseVectorization.cpp - Vectorization of sparsified loops --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts loops generated by the sparsifier into a form that
// can exploit SIMD instructions of the target architecture. Note that this pass
// ensures the sparsifier can generate efficient SIMD (including ArmSVE
// support) with proper separation of concerns as far as sparsification and
// vectorization is concerned. However, this pass is not the final abstraction
// level we want, and not the general vectorizer we want either. It forms a good
// stepping stone for incremental future improvements though.
//
//===----------------------------------------------------------------------===//
#include "Utils/CodegenUtils.h"
#include "Utils/LoopEmitter.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/IR/Matchers.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
/// Target SIMD properties:
/// vectorLength: # packed data elements (viz. vector<16xf32> has length 16)
/// enableVLAVectorization: enables scalable vectors (viz. ARMSve)
/// enableSIMDIndex32: uses 32-bit indices in gather/scatter for efficiency
struct VL {
unsigned vectorLength;
bool enableVLAVectorization;
bool enableSIMDIndex32;
};
/// Helper test for invariant value (defined outside given block).
static bool isInvariantValue(Value val, Block *block) {
return val.getDefiningOp() && val.getDefiningOp()->getBlock() != block;
}
/// Helper test for invariant argument (defined outside given block).
static bool isInvariantArg(BlockArgument arg, Block *block) {
return arg.getOwner() != block;
}
/// Constructs vector type for element type.
static VectorType vectorType(VL vl, Type etp) {
return VectorType::get(vl.vectorLength, etp, vl.enableVLAVectorization);
}
/// Constructs vector type from a memref value.
static VectorType vectorType(VL vl, Value mem) {
return vectorType(vl, getMemRefType(mem).getElementType());
}
/// Constructs vector iteration mask.
static Value genVectorMask(PatternRewriter &rewriter, Location loc, VL vl,
Value iv, Value lo, Value hi, Value step) {
VectorType mtp = vectorType(vl, rewriter.getI1Type());
// Special case if the vector length evenly divides the trip count (for
// example, "for i = 0, 128, 16"). A constant all-true mask is generated
// so that all subsequent masked memory operations are immediately folded
// into unconditional memory operations.
IntegerAttr loInt, hiInt, stepInt;
if (matchPattern(lo, m_Constant(&loInt)) &&
matchPattern(hi, m_Constant(&hiInt)) &&
matchPattern(step, m_Constant(&stepInt))) {
if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) {
Value trueVal = constantI1(rewriter, loc, true);
return rewriter.create<vector::BroadcastOp>(loc, mtp, trueVal);
}
}
// Otherwise, generate a vector mask that avoids overrunning the upperbound
// during vector execution. Here we rely on subsequent loop optimizations to
// avoid executing the mask in all iterations, for example, by splitting the
// loop into an unconditional vector loop and a scalar cleanup loop.
auto min = AffineMap::get(
/*dimCount=*/2, /*symbolCount=*/1,
{rewriter.getAffineSymbolExpr(0),
rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
rewriter.getContext());
Value end = rewriter.createOrFold<affine::AffineMinOp>(
loc, min, ValueRange{hi, iv, step});
return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
}
/// Generates a vectorized invariant. Here we rely on subsequent loop
/// optimizations to hoist the invariant broadcast out of the vector loop.
static Value genVectorInvariantValue(PatternRewriter &rewriter, VL vl,
Value val) {
VectorType vtp = vectorType(vl, val.getType());
return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
}
/// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi],
/// where 'lo' denotes the current index and 'hi = lo + vl - 1'. Note
/// that the sparsifier can only generate indirect loads in
/// the last index, i.e. back().
static Value genVectorLoad(PatternRewriter &rewriter, Location loc, VL vl,
Value mem, ArrayRef<Value> idxs, Value vmask) {
VectorType vtp = vectorType(vl, mem);
Value pass = constantZero(rewriter, loc, vtp);
if (llvm::isa<VectorType>(idxs.back().getType())) {
SmallVector<Value> scalarArgs(idxs);
Value indexVec = idxs.back();
scalarArgs.back() = constantIndex(rewriter, loc, 0);
return rewriter.create<vector::GatherOp>(loc, vtp, mem, scalarArgs,
indexVec, vmask, pass);
}
return rewriter.create<vector::MaskedLoadOp>(loc, vtp, mem, idxs, vmask,
pass);
}
/// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs
/// where 'lo' denotes the current index and 'hi = lo + vl - 1'. Note
/// that the sparsifier can only generate indirect stores in
/// the last index, i.e. back().
static void genVectorStore(PatternRewriter &rewriter, Location loc, Value mem,
ArrayRef<Value> idxs, Value vmask, Value rhs) {
if (llvm::isa<VectorType>(idxs.back().getType())) {
SmallVector<Value> scalarArgs(idxs);
Value indexVec = idxs.back();
scalarArgs.back() = constantIndex(rewriter, loc, 0);
rewriter.create<vector::ScatterOp>(loc, mem, scalarArgs, indexVec, vmask,
rhs);
return;
}
rewriter.create<vector::MaskedStoreOp>(loc, mem, idxs, vmask, rhs);
}
/// Detects a vectorizable reduction operations and returns the
/// combining kind of reduction on success in `kind`.
static bool isVectorizableReduction(Value red, Value iter,
vector::CombiningKind &kind) {
if (auto addf = red.getDefiningOp<arith::AddFOp>()) {
kind = vector::CombiningKind::ADD;
return addf->getOperand(0) == iter || addf->getOperand(1) == iter;
}
if (auto addi = red.getDefiningOp<arith::AddIOp>()) {
kind = vector::CombiningKind::ADD;
return addi->getOperand(0) == iter || addi->getOperand(1) == iter;
}
if (auto subf = red.getDefiningOp<arith::SubFOp>()) {
kind = vector::CombiningKind::ADD;
return subf->getOperand(0) == iter;
}
if (auto subi = red.getDefiningOp<arith::SubIOp>()) {
kind = vector::CombiningKind::ADD;
return subi->getOperand(0) == iter;
}
if (auto mulf = red.getDefiningOp<arith::MulFOp>()) {
kind = vector::CombiningKind::MUL;
return mulf->getOperand(0) == iter || mulf->getOperand(1) == iter;
}
if (auto muli = red.getDefiningOp<arith::MulIOp>()) {
kind = vector::CombiningKind::MUL;
return muli->getOperand(0) == iter || muli->getOperand(1) == iter;
}
if (auto andi = red.getDefiningOp<arith::AndIOp>()) {
kind = vector::CombiningKind::AND;
return andi->getOperand(0) == iter || andi->getOperand(1) == iter;
}
if (auto ori = red.getDefiningOp<arith::OrIOp>()) {
kind = vector::CombiningKind::OR;
return ori->getOperand(0) == iter || ori->getOperand(1) == iter;
}
if (auto xori = red.getDefiningOp<arith::XOrIOp>()) {
kind = vector::CombiningKind::XOR;
return xori->getOperand(0) == iter || xori->getOperand(1) == iter;
}
return false;
}
/// Generates an initial value for a vector reduction, following the scheme
/// given in Chapter 5 of "The Software Vectorization Handbook", where the
/// initial scalar value is correctly embedded in the vector reduction value,
/// and a straightforward horizontal reduction will complete the operation.
/// Value 'r' denotes the initial value of the reduction outside the loop.
static Value genVectorReducInit(PatternRewriter &rewriter, Location loc,
Value red, Value iter, Value r,
VectorType vtp) {
vector::CombiningKind kind;
if (!isVectorizableReduction(red, iter, kind))
llvm_unreachable("unknown reduction");
switch (kind) {
case vector::CombiningKind::ADD:
case vector::CombiningKind::XOR:
// Initialize reduction vector to: | 0 | .. | 0 | r |
return rewriter.create<vector::InsertOp>(loc, r,
constantZero(rewriter, loc, vtp),
constantIndex(rewriter, loc, 0));
case vector::CombiningKind::MUL:
// Initialize reduction vector to: | 1 | .. | 1 | r |
return rewriter.create<vector::InsertOp>(loc, r,
constantOne(rewriter, loc, vtp),
constantIndex(rewriter, loc, 0));
case vector::CombiningKind::AND:
case vector::CombiningKind::OR:
// Initialize reduction vector to: | r | .. | r | r |
return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
default:
break;
}
llvm_unreachable("unknown reduction kind");
}
/// This method is called twice to analyze and rewrite the given subscripts.
/// The first call (!codegen) does the analysis. Then, on success, the second
/// call (codegen) yields the proper vector form in the output parameter
/// vector 'idxs'. This mechanism ensures that analysis and rewriting code
/// stay in sync. Note that the analyis part is simple because the sparsifier
/// only generates relatively simple subscript expressions.
///
/// See https://llvm.org/docs/GetElementPtr.html for some background on
/// the complications described below.
///
/// We need to generate a position/coordinate load from the sparse storage
/// scheme. Narrower data types need to be zero extended before casting
/// the value into the `index` type used for looping and indexing.
///
/// For the scalar case, subscripts simply zero extend narrower indices
/// into 64-bit values before casting to an index type without a performance
/// penalty. Indices that already are 64-bit, in theory, cannot express the
/// full range since the LLVM backend defines addressing in terms of an
/// unsigned pointer/signed index pair.
static bool vectorizeSubscripts(PatternRewriter &rewriter, scf::ForOp forOp,
VL vl, ValueRange subs, bool codegen,
Value vmask, SmallVectorImpl<Value> &idxs) {
unsigned d = 0;
unsigned dim = subs.size();
Block *block = &forOp.getRegion().front();
for (auto sub : subs) {
bool innermost = ++d == dim;
// Invariant subscripts in outer dimensions simply pass through.
// Note that we rely on LICM to hoist loads where all subscripts
// are invariant in the innermost loop.
// Example:
// a[inv][i] for inv
if (isInvariantValue(sub, block)) {
if (innermost)
return false;
if (codegen)
idxs.push_back(sub);
continue; // success so far
}
// Invariant block arguments (including outer loop indices) in outer
// dimensions simply pass through. Direct loop indices in the
// innermost loop simply pass through as well.
// Example:
// a[i][j] for both i and j
if (auto arg = llvm::dyn_cast<BlockArgument>(sub)) {
if (isInvariantArg(arg, block) == innermost)
return false;
if (codegen)
idxs.push_back(sub);
continue; // success so far
}
// Look under the hood of casting.
auto cast = sub;
while (true) {
if (auto icast = cast.getDefiningOp<arith::IndexCastOp>())
cast = icast->getOperand(0);
else if (auto ecast = cast.getDefiningOp<arith::ExtUIOp>())
cast = ecast->getOperand(0);
else
break;
}
// Since the index vector is used in a subsequent gather/scatter
// operations, which effectively defines an unsigned pointer + signed
// index, we must zero extend the vector to an index width. For 8-bit
// and 16-bit values, an 32-bit index width suffices. For 32-bit values,
// zero extending the elements into 64-bit loses some performance since
// the 32-bit indexed gather/scatter is more efficient than the 64-bit
// index variant (if the negative 32-bit index space is unused, the
// enableSIMDIndex32 flag can preserve this performance). For 64-bit
// values, there is no good way to state that the indices are unsigned,
// which creates the potential of incorrect address calculations in the
// unlikely case we need such extremely large offsets.
// Example:
// a[ ind[i] ]
if (auto load = cast.getDefiningOp<memref::LoadOp>()) {
if (!innermost)
return false;
if (codegen) {
SmallVector<Value> idxs2(load.getIndices()); // no need to analyze
Location loc = forOp.getLoc();
Value vload =
genVectorLoad(rewriter, loc, vl, load.getMemRef(), idxs2, vmask);
Type etp = llvm::cast<VectorType>(vload.getType()).getElementType();
if (!llvm::isa<IndexType>(etp)) {
if (etp.getIntOrFloatBitWidth() < 32)
vload = rewriter.create<arith::ExtUIOp>(
loc, vectorType(vl, rewriter.getI32Type()), vload);
else if (etp.getIntOrFloatBitWidth() < 64 && !vl.enableSIMDIndex32)
vload = rewriter.create<arith::ExtUIOp>(
loc, vectorType(vl, rewriter.getI64Type()), vload);
}
idxs.push_back(vload);
}
continue; // success so far
}
// Address calculation 'i = add inv, idx' (after LICM).
// Example:
// a[base + i]
if (auto load = cast.getDefiningOp<arith::AddIOp>()) {
Value inv = load.getOperand(0);
Value idx = load.getOperand(1);
// Swap non-invariant.
if (!isInvariantValue(inv, block)) {
inv = idx;
idx = load.getOperand(0);
}
// Inspect.
if (isInvariantValue(inv, block)) {
if (auto arg = llvm::dyn_cast<BlockArgument>(idx)) {
if (isInvariantArg(arg, block) || !innermost)
return false;
if (codegen)
idxs.push_back(
rewriter.create<arith::AddIOp>(forOp.getLoc(), inv, idx));
continue; // success so far
}
}
}
return false;
}
return true;
}
#define UNAOP(xxx) \
if (isa<xxx>(def)) { \
if (codegen) \
vexp = rewriter.create<xxx>(loc, vx); \
return true; \
}
#define TYPEDUNAOP(xxx) \
if (auto x = dyn_cast<xxx>(def)) { \
if (codegen) { \
VectorType vtp = vectorType(vl, x.getType()); \
vexp = rewriter.create<xxx>(loc, vtp, vx); \
} \
return true; \
}
#define BINOP(xxx) \
if (isa<xxx>(def)) { \
if (codegen) \
vexp = rewriter.create<xxx>(loc, vx, vy); \
return true; \
}
/// This method is called twice to analyze and rewrite the given expression.
/// The first call (!codegen) does the analysis. Then, on success, the second
/// call (codegen) yields the proper vector form in the output parameter 'vexp'.
/// This mechanism ensures that analysis and rewriting code stay in sync. Note
/// that the analyis part is simple because the sparsifier only generates
/// relatively simple expressions inside the for-loops.
static bool vectorizeExpr(PatternRewriter &rewriter, scf::ForOp forOp, VL vl,
Value exp, bool codegen, Value vmask, Value &vexp) {
Location loc = forOp.getLoc();
// Reject unsupported types.
if (!VectorType::isValidElementType(exp.getType()))
return false;
// A block argument is invariant/reduction/index.
if (auto arg = llvm::dyn_cast<BlockArgument>(exp)) {
if (arg == forOp.getInductionVar()) {
// We encountered a single, innermost index inside the computation,
// such as a[i] = i, which must convert to [i, i+1, ...].
if (codegen) {
VectorType vtp = vectorType(vl, arg.getType());
Value veci = rewriter.create<vector::BroadcastOp>(loc, vtp, arg);
Value incr = rewriter.create<vector::StepOp>(loc, vtp);
vexp = rewriter.create<arith::AddIOp>(loc, veci, incr);
}
return true;
}
// An invariant or reduction. In both cases, we treat this as an
// invariant value, and rely on later replacing and folding to
// construct a proper reduction chain for the latter case.
if (codegen)
vexp = genVectorInvariantValue(rewriter, vl, exp);
return true;
}
// Something defined outside the loop-body is invariant.
Operation *def = exp.getDefiningOp();
Block *block = &forOp.getRegion().front();
if (def->getBlock() != block) {
if (codegen)
vexp = genVectorInvariantValue(rewriter, vl, exp);
return true;
}
// Proper load operations. These are either values involved in the
// actual computation, such as a[i] = b[i] becomes a[lo:hi] = b[lo:hi],
// or coordinate values inside the computation that are now fetched from
// the sparse storage coordinates arrays, such as a[i] = i becomes
// a[lo:hi] = ind[lo:hi], where 'lo' denotes the current index
// and 'hi = lo + vl - 1'.
if (auto load = dyn_cast<memref::LoadOp>(def)) {
auto subs = load.getIndices();
SmallVector<Value> idxs;
if (vectorizeSubscripts(rewriter, forOp, vl, subs, codegen, vmask, idxs)) {
if (codegen)
vexp = genVectorLoad(rewriter, loc, vl, load.getMemRef(), idxs, vmask);
return true;
}
return false;
}
// Inside loop-body unary and binary operations. Note that it would be
// nicer if we could somehow test and build the operations in a more
// concise manner than just listing them all (although this way we know
// for certain that they can vectorize).
//
// TODO: avoid visiting CSEs multiple times
//
if (def->getNumOperands() == 1) {
Value vx;
if (vectorizeExpr(rewriter, forOp, vl, def->getOperand(0), codegen, vmask,
vx)) {
UNAOP(math::AbsFOp)
UNAOP(math::AbsIOp)
UNAOP(math::CeilOp)
UNAOP(math::FloorOp)
UNAOP(math::SqrtOp)
UNAOP(math::ExpM1Op)
UNAOP(math::Log1pOp)
UNAOP(math::SinOp)
UNAOP(math::TanhOp)
UNAOP(arith::NegFOp)
TYPEDUNAOP(arith::TruncFOp)
TYPEDUNAOP(arith::ExtFOp)
TYPEDUNAOP(arith::FPToSIOp)
TYPEDUNAOP(arith::FPToUIOp)
TYPEDUNAOP(arith::SIToFPOp)
TYPEDUNAOP(arith::UIToFPOp)
TYPEDUNAOP(arith::ExtSIOp)
TYPEDUNAOP(arith::ExtUIOp)
TYPEDUNAOP(arith::IndexCastOp)
TYPEDUNAOP(arith::TruncIOp)
TYPEDUNAOP(arith::BitcastOp)
// TODO: complex?
}
} else if (def->getNumOperands() == 2) {
Value vx, vy;
if (vectorizeExpr(rewriter, forOp, vl, def->getOperand(0), codegen, vmask,
vx) &&
vectorizeExpr(rewriter, forOp, vl, def->getOperand(1), codegen, vmask,
vy)) {
// We only accept shift-by-invariant (where the same shift factor applies
// to all packed elements). In the vector dialect, this is still
// represented with an expanded vector at the right-hand-side, however,
// so that we do not have to special case the code generation.
if (isa<arith::ShLIOp>(def) || isa<arith::ShRUIOp>(def) ||
isa<arith::ShRSIOp>(def)) {
Value shiftFactor = def->getOperand(1);
if (!isInvariantValue(shiftFactor, block))
return false;
}
// Generate code.
BINOP(arith::MulFOp)
BINOP(arith::MulIOp)
BINOP(arith::DivFOp)
BINOP(arith::DivSIOp)
BINOP(arith::DivUIOp)
BINOP(arith::AddFOp)
BINOP(arith::AddIOp)
BINOP(arith::SubFOp)
BINOP(arith::SubIOp)
BINOP(arith::AndIOp)
BINOP(arith::OrIOp)
BINOP(arith::XOrIOp)
BINOP(arith::ShLIOp)
BINOP(arith::ShRUIOp)
BINOP(arith::ShRSIOp)
// TODO: complex?
}
}
return false;
}
#undef UNAOP
#undef TYPEDUNAOP
#undef BINOP
/// This method is called twice to analyze and rewrite the given for-loop.
/// The first call (!codegen) does the analysis. Then, on success, the second
/// call (codegen) rewriters the IR into vector form. This mechanism ensures
/// that analysis and rewriting code stay in sync.
static bool vectorizeStmt(PatternRewriter &rewriter, scf::ForOp forOp, VL vl,
bool codegen) {
Block &block = forOp.getRegion().front();
// For loops with single yield statement (as below) could be generated
// when custom reduce is used with unary operation.
// for (...)
// yield c_0
if (block.getOperations().size() <= 1)
return false;
Location loc = forOp.getLoc();
scf::YieldOp yield = cast<scf::YieldOp>(block.getTerminator());
auto &last = *++block.rbegin();
scf::ForOp forOpNew;
// Perform initial set up during codegen (we know that the first analysis
// pass was successful). For reductions, we need to construct a completely
// new for-loop, since the incoming and outgoing reduction type
// changes into SIMD form. For stores, we can simply adjust the stride
// and insert in the existing for-loop. In both cases, we set up a vector
// mask for all operations which takes care of confining vectors to
// the original iteration space (later cleanup loops or other
// optimizations can take care of those).
Value vmask;
if (codegen) {
Value step = constantIndex(rewriter, loc, vl.vectorLength);
if (vl.enableVLAVectorization) {
Value vscale =
rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
step = rewriter.create<arith::MulIOp>(loc, vscale, step);
}
if (!yield.getResults().empty()) {
Value init = forOp.getInitArgs()[0];
VectorType vtp = vectorType(vl, init.getType());
Value vinit = genVectorReducInit(rewriter, loc, yield->getOperand(0),
forOp.getRegionIterArg(0), init, vtp);
forOpNew = rewriter.create<scf::ForOp>(
loc, forOp.getLowerBound(), forOp.getUpperBound(), step, vinit);
forOpNew->setAttr(
LoopEmitter::getLoopEmitterLoopAttrName(),
forOp->getAttr(LoopEmitter::getLoopEmitterLoopAttrName()));
rewriter.setInsertionPointToStart(forOpNew.getBody());
} else {
rewriter.modifyOpInPlace(forOp, [&]() { forOp.setStep(step); });
rewriter.setInsertionPoint(yield);
}
vmask = genVectorMask(rewriter, loc, vl, forOp.getInductionVar(),
forOp.getLowerBound(), forOp.getUpperBound(), step);
}
// Sparse for-loops either are terminated by a non-empty yield operation
// (reduction loop) or otherwise by a store operation (pararallel loop).
if (!yield.getResults().empty()) {
// Analyze/vectorize reduction.
if (yield->getNumOperands() != 1)
return false;
Value red = yield->getOperand(0);
Value iter = forOp.getRegionIterArg(0);
vector::CombiningKind kind;
Value vrhs;
if (isVectorizableReduction(red, iter, kind) &&
vectorizeExpr(rewriter, forOp, vl, red, codegen, vmask, vrhs)) {
if (codegen) {
Value partial = forOpNew.getResult(0);
Value vpass = genVectorInvariantValue(rewriter, vl, iter);
Value vred = rewriter.create<arith::SelectOp>(loc, vmask, vrhs, vpass);
rewriter.create<scf::YieldOp>(loc, vred);
rewriter.setInsertionPointAfter(forOpNew);
Value vres = rewriter.create<vector::ReductionOp>(loc, kind, partial);
// Now do some relinking (last one is not completely type safe
// but all bad ones are removed right away). This also folds away
// nop broadcast operations.
rewriter.replaceAllUsesWith(forOp.getResult(0), vres);
rewriter.replaceAllUsesWith(forOp.getInductionVar(),
forOpNew.getInductionVar());
rewriter.replaceAllUsesWith(forOp.getRegionIterArg(0),
forOpNew.getRegionIterArg(0));
rewriter.eraseOp(forOp);
}
return true;
}
} else if (auto store = dyn_cast<memref::StoreOp>(last)) {
// Analyze/vectorize store operation.
auto subs = store.getIndices();
SmallVector<Value> idxs;
Value rhs = store.getValue();
Value vrhs;
if (vectorizeSubscripts(rewriter, forOp, vl, subs, codegen, vmask, idxs) &&
vectorizeExpr(rewriter, forOp, vl, rhs, codegen, vmask, vrhs)) {
if (codegen) {
genVectorStore(rewriter, loc, store.getMemRef(), idxs, vmask, vrhs);
rewriter.eraseOp(store);
}
return true;
}
}
assert(!codegen && "cannot call codegen when analysis failed");
return false;
}
/// Basic for-loop vectorizer.
struct ForOpRewriter : public OpRewritePattern<scf::ForOp> {
public:
using OpRewritePattern<scf::ForOp>::OpRewritePattern;
ForOpRewriter(MLIRContext *context, unsigned vectorLength,
bool enableVLAVectorization, bool enableSIMDIndex32)
: OpRewritePattern(context), vl{vectorLength, enableVLAVectorization,
enableSIMDIndex32} {}
LogicalResult matchAndRewrite(scf::ForOp op,
PatternRewriter &rewriter) const override {
// Check for single block, unit-stride for-loop that is generated by
// sparsifier, which means no data dependence analysis is required,
// and its loop-body is very restricted in form.
if (!op.getRegion().hasOneBlock() || !isOneInteger(op.getStep()) ||
!op->hasAttr(LoopEmitter::getLoopEmitterLoopAttrName()))
return failure();
// Analyze (!codegen) and rewrite (codegen) loop-body.
if (vectorizeStmt(rewriter, op, vl, /*codegen=*/false) &&
vectorizeStmt(rewriter, op, vl, /*codegen=*/true))
return success();
return failure();
}
private:
const VL vl;
};
static LogicalResult cleanReducChain(PatternRewriter &rewriter, Operation *op,
Value inp) {
if (auto redOp = inp.getDefiningOp<vector::ReductionOp>()) {
if (auto forOp = redOp.getVector().getDefiningOp<scf::ForOp>()) {
if (forOp->hasAttr(LoopEmitter::getLoopEmitterLoopAttrName())) {
rewriter.replaceOp(op, redOp.getVector());
return success();
}
}
}
return failure();
}
/// Reduction chain cleanup.
/// v = for { }
/// s = vsum(v) v = for { }
/// u = broadcast(s) -> for (v) { }
/// for (u) { }
struct ReducChainBroadcastRewriter
: public OpRewritePattern<vector::BroadcastOp> {
public:
using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::BroadcastOp op,
PatternRewriter &rewriter) const override {
return cleanReducChain(rewriter, op, op.getSource());
}
};
/// Reduction chain cleanup.
/// v = for { }
/// s = vsum(v) v = for { }
/// u = insert(s) -> for (v) { }
/// for (u) { }
struct ReducChainInsertRewriter : public OpRewritePattern<vector::InsertOp> {
public:
using OpRewritePattern<vector::InsertOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InsertOp op,
PatternRewriter &rewriter) const override {
return cleanReducChain(rewriter, op, op.getValueToStore());
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public method for populating vectorization rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with vectorization rules.
void mlir::populateSparseVectorizationPatterns(RewritePatternSet &patterns,
unsigned vectorLength,
bool enableVLAVectorization,
bool enableSIMDIndex32) {
assert(vectorLength > 0);
vector::populateVectorStepLoweringPatterns(patterns);
patterns.add<ForOpRewriter>(patterns.getContext(), vectorLength,
enableVLAVectorization, enableSIMDIndex32);
patterns.add<ReducChainInsertRewriter, ReducChainBroadcastRewriter>(
patterns.getContext());
}